EP2491760B1 - Process for induction heating used used in a device incorporating magnetically coupled inductors - Google Patents

Process for induction heating used used in a device incorporating magnetically coupled inductors Download PDF

Info

Publication number
EP2491760B1
EP2491760B1 EP10785478.8A EP10785478A EP2491760B1 EP 2491760 B1 EP2491760 B1 EP 2491760B1 EP 10785478 A EP10785478 A EP 10785478A EP 2491760 B1 EP2491760 B1 EP 2491760B1
Authority
EP
European Patent Office
Prior art keywords
ref
mes
inductors
current
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10785478.8A
Other languages
German (de)
French (fr)
Other versions
EP2491760A1 (en
Inventor
Olivier Pateau
Yves Neau
Yvan Lefevre
Philippe Ladoux
Pascal Maussion
Gilbert Manot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Original Assignee
Electricite de France SA
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, Centre National de la Recherche Scientifique CNRS, Institut National Polytechnique de Toulouse INPT filed Critical Electricite de France SA
Priority to PL10785478T priority Critical patent/PL2491760T3/en
Priority to SI201030916T priority patent/SI2491760T1/en
Publication of EP2491760A1 publication Critical patent/EP2491760A1/en
Application granted granted Critical
Publication of EP2491760B1 publication Critical patent/EP2491760B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • H05B6/104Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/08Control, e.g. of temperature, of power using compensating or balancing arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/40Establishing desired heat distribution, e.g. to heat particular parts of workpieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • the present invention relates to a method of induction heating implemented in a heating device of a metal part such as a metal sheet or a bar, the device comprising magnetically coupled inductors.
  • magnetic coupling is meant that the inductors produce between them mutual inductions.
  • the patent application WO 00/28787 A1 discloses a system for heating a tubular metal part by induction coils fed via a dimmer type interrupt circuit connected to an inverter type power source.
  • a control circuit makes it possible to vary the duration of the power injected by the power source to each coil in order to heat different different zones of the metal part differently in view of a desired temperature profile.
  • the injection of power into a coil is therefore done in "all or nothing", that is to say, it can be prevented on a cycle corresponding to several periods of the This system nevertheless has drawbacks, and in particular it makes it possible to control only the average power produced by each coil without being able to precisely control the temperature profile generated by the coils in the heated room.
  • connection of the coils and the inverters must be to a certain extent defined according to the load and the temperature profile to be achieved.
  • this document does not mention the magnetic couplings between the circuits nor how to get rid of them or to take them into account.
  • the present invention aims to solve these disadvantages and to provide a heating method taking into account the many couplings, on the one hand between the different inductors and on the other hand between the inductors and the part to be heated, to allow control with a good accuracy the temperature profile generated by the inductors.
  • the invention aims in particular to be able to adjust the heating to different desired temperature profiles in real time, by acting on the control of inverters supplying the inductors and without the need to adjust the structure of the inductors.
  • the exemplary heating device relates to a non-magnetic metal disk configuration heated by transverse flux using three pairs of twin coils, which has the advantage of keeping the axisymmetric aspect of the problem.
  • each coil placed on one side of the disk is connected in series with its twin coil on the other side to form a single inductor. In this way, the system is rotational invariant.
  • the electromagnetic materials of the system have a constant and unitary permeability.
  • Each inductor is powered by a UPS of its own type (voltage inverter) or parallel type (inverter current).
  • N 3.
  • the impedance matrix must be complete to account for all coupling effects.
  • the determination of this matrix can be complex, several analytical or numerical means, or measurements in line and continuous injection of particular signals, can be implemented.
  • the control of the temperature profile of the heated part must be carried out not only by controlling the amplitudes of the currents in the inductors but also by controlling the phase shifts of these currents relative to one another, which implies that each inverter is controlled so as to be able to vary the amplitude and the phase of the current flowing through the corresponding inductor.
  • the system is invariant along the axis of revolution of the sheet metal disk and in the thickness of the sheet. We therefore take into account only one dimension of the disc, namely the radial direction of the considered area of the disc.
  • the image function of the power density D p ( r, x ) is determined by the relationships of equations (3) and (4) above. It is furthermore advantageous to optimize by calculation the vector of unknowns x .
  • the optimization problem consists of calculating an optimized vector x making it possible to minimize the difference between the image function of the power density and a reference power density function Dp ref ( r ) which corresponds to a reference power density profile that we try to inject into the metal disc.
  • This reference power density function takes for example a constant value if we are looking for a temperature homogeneity on the disk. It is however possible to have a non-constant function in order to obtain particular heating profiles. With the equipment of the figure 1 the applicant has carried out tests with different reference power density functions corresponding for example to sinusoidal or triangular profiles in the radial direction of the disk, and the results are very satisfactory.
  • This allows us to eliminate among other things outliers or that have no physical reality.
  • This method of resolution can easily be enlarged to take into account several dimensions of a disk, for example three if in addition to the radius one takes into account the angular position and the thickness of material of the zone considered, while taking into account also the equality of the reactive compensation required at the terminals of each coil so that the three oscillating circuits oscillate at very similar frequencies. We would thus pass from a vector to five unknowns to a vector with eighteen unknowns, without changing the physical system.
  • FIG 8 is schematically shown a first embodiment of an induction heating device according to the invention, wherein the supply 1 of the inverters is a DC source.
  • the heating device comprises inductors Ind1, Ind2,... Indp, magnetically coupled, each inductor being supplied by a current inverter O1, O2,..., Op, which is specific to it and is associated with a capacitor C 1. , C 2 , ..., Cp, to form an oscillating circuit OC1, OC2, ..., OCp.
  • the inverters of current are put in series with the power supply 1.
  • Each inverter generally comprises bidirectional electronic switches, and is controlled by a control unit also called modulator M1, M2, ..., Mp.
  • Each modulator designs control commands for the switches in the form of pulses, and the offset in time of these commands makes it possible to vary the amplitude A 1 , A 2 ,..., A p , and the phase ⁇ 1.
  • the variation of the amplitude of the current output current of each inverter is effected by introducing an offset angle on the signal generated by the modulator controlling the inverter.
  • the offset angles on the other inverters can be introduced with respect to a control angle on the reference inverter.
  • the control on the reference inverter can be carried out for example with a duty cycle equal to 2/3, that is to say a control angle of 30 °.
  • the oscillating circuits have at least approximately the same resonance frequency, which maximizes the efficiency of the induction since the inductors work substantially at this frequency, and also reduces the losses in the inverters.
  • the periodic control signals of the inverters generated by the modulators therefore have substantially the same frequency.
  • the offset can either be late or in advance compared to the control signal of the inverter of another inductor taken as a reference.
  • Means for determining the amplitude and phase parameters of currents I 1 , I 2 ,..., I p , inductors, not shown in the figure, are provided to supply these parameters to comparator units ⁇ 1 , ⁇ 2 , ..., ⁇ p .
  • These determination means may consist for example of current transformers each arranged in series with an inductor, but other means are possible. One could for example measure the active current supplied by the inverter to the oscillating circuit, and calculate the current in the inductor using the parameters of inductance and capacitance.
  • the effective temperature profile is for example determined continuously during the heating and is regularly compared to a temperature profile of reference ⁇ 1 ref , ⁇ 2 ref , ..., ⁇ n ref , corresponding to the desired final heating profile for the part and previously entered into a memory.
  • This comparison is performed by a comparator 2, which can integrate said memory.
  • the result is processed by a calculator which, from an equation deduced from the equation of heat and possibly simplified as equation (2) above, calculates the reference power density profile Dp ref 1 , Dp ref 2 , ..., Dp ref n that the heater must inject into the room to reach the reference temperature profile.
  • the computer may consist of a memory in which is entered an array of pre-calculated reference power density profiles corresponding to different actual temperature profiles for one or more room configurations and one or more reference power density profiles.
  • a calculator establishes the target currents to be delivered by the inverters so that the currents of the inductors reach appropriate target values I 1 ref , I 2 ref , ..., I p ref , to inject into the part the power density profile of the reference.
  • This computation uses the matrix of impedances Z with the vectorial functions f k and preferably the vector of the capacities of the oscillating circuits, defined previously.
  • the comparator units ⁇ 1 , ⁇ 2 , ..., ⁇ p compare the measured or calculated current parameters I 1 mes , I 2 mes , ..., I p mes , inductors to the target values I 1 ref , I 2 ref , ..., I p ref, and determine the currents deviations ⁇ I 1 corr , ⁇ I 2 corr , ..., ⁇ I p corr to be corrected, also called correction currents.
  • phase shifts are used as real-time adjustment parameters of the power density to be injected into the heated room, which is made possible by taking into account the complete impedance matrix as explained in what follows. above. In other words, phase shifts are used as control parameters of the temperature profile.
  • the modified impedance matrix Z mod ( ⁇ ) for at least one increased value ⁇ mod of the mean temperature ⁇ , and the modified impedance matrix is used to recalculate the target currents.
  • the calculation of the target currents can be carried out each time the measured average temperature ⁇ reaches substantially a new increased value ⁇ mod among a series of predetermined values.
  • the current inverter supplying the inductor of lower impedance for example the coil Ind1 in the example of the figure 1
  • the reference inverter since the current in this inductor, larger than that in the other inductors, is preferably taken as a phase reference.
  • the current inverter having the highest current, or the voltage inverter having the highest voltage in the case where the power supply 1 of the inverters is a voltage source as shown in FIG. figure 9 can be taken as reference inverter.
  • the reference inverter can be advantageously adjusted with a duty cycle of 2/3, ie it is controlled so as to generate a square wave of 120 ° ON and 60 ° OFF per half-period. .
  • This aims to cancel the harmonic of order 3 and its multiples in order to reduce the harmonic disturbances created by this inverter on these neighbors. It is understood that the duty cycle of the reference inverter is not necessarily set to 2/3. For example, a command in full wave may be preferred in some cases.
  • the rms value of the current in the reference inverter can be set by action on the DC supply 1 current or voltage. This has the advantage of having a vector of unknowns (see previous relation 1) in which the phase of the current in the inductor Ind1 has been eliminated, which simplifies obtaining the optimized vector x as in the example described previously. It is understood that one can alternatively adjust the rms value of the current in the reference inverter by introducing offset angles on the control of this inverter. On the figure 8 the current I 1 being taken as a phase reference, it is advantageous that the corresponding comparator unit ⁇ 1 receives the parameters of the current I c mes delivered by the continuous supply 1.
  • the processing unit CORR 1 associated will be adapted to generate control instructions sent to the power supply 1 via a control modulator M'1, so as to modify the current delivered by the inverter O1 to the oscillating circuit OC1, which makes it possible to control the amplitude of the this current and therefore to change the amplitude of the current I 1 in inductor Ind1.
  • the target currents as well as the currents of the inductors measured or calculated are current vectors, therefore one takes into account not only the amplitude but also the phase.
  • step (c) is carried out at least once to reduce the differences in currents to be corrected, and then steps (a) are repeated at least once, (b) and (c) by updating the actual temperature profile by temperature measurements in different heated areas of the room.
  • FIG 9 is schematically shown a second embodiment of an induction heating device according to the invention, wherein the supply 1 of the inverters is a DC voltage source.
  • the heating device is similar to that of the first embodiment of the figure 8 , but the current inverters are paralleled with the voltage source.
  • This embodiment has certain advantages, in particular that of reducing conduction losses in the inverters.
  • the current parameter I c calc representative of the current delivered by the power supply 1 to the inverter O1 must be calculated from the supply voltage by means of an impedance matrix Z '.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)

Description

La présente invention se rapporte à un procédé de chauffage par induction mis en oeuvre dans un dispositif de chauffage d'une pièce métallique telle qu'une tôle ou une barre, le dispositif comprenant des inducteurs couplés magnétiquement. Par couplage magnétique, on entend que les inducteurs produisent entre eux des inductions mutuelles.The present invention relates to a method of induction heating implemented in a heating device of a metal part such as a metal sheet or a bar, the device comprising magnetically coupled inductors. By magnetic coupling is meant that the inductors produce between them mutual inductions.

Les techniques les plus classiques de chauffage par induction mettent en oeuvre des configurations qui sont satisfaisantes lorsque les pièces à chauffer sont toujours de même nature et de mêmes dimensions. Mais l'industrie exige de plus en plus de souplesse et de productivité. Il est demandé aux lignes de production de s'adapter en fonctionnement continu au changement de la position ou du format des pièces à chauffer, et d'adapter en fonction de ce changement le profil de température désiré.The most conventional induction heating techniques implement configurations that are satisfactory when the parts to be heated are always of the same nature and dimensions. But the industry demands more and more flexibility and productivity. The production lines are required to adapt in continuous operation to the change of the position or the format of the parts to be heated, and to adapt according to this change the desired temperature profile.

Des technologies connues permettent d'avoir un contrôle du chauffage par zone de puissance injectée, mais le contrôle du profil de température dans les zones chauffées reste lié à la conception géométrique des bobines et à leur mode d'alimentation, principalement par la variation d'amplitude des courants que l'on y injecte. La détermination de ces courants et la régulation qui en découle est fortement tributaire du couplage magnétique existant entre les bobines du fait des inductions mutuelles, chaque bobine alimentée ayant une influence sur toutes les autres. Le couplage magnétique rend le contrôle du profil de température de la pièce chauffée extrêmement délicat, sans compter qu'il peut avoir des répercutions néfastes sur les générateurs de fréquence, par exemple une casse de composants.Known technologies make it possible to control heating by zone of injected power, but the control of the temperature profile in the heated zones remains linked to the geometrical design of the coils and to their mode of supply, mainly by the variation of amplitude of the currents that we inject. The determination of these currents and the resulting regulation is highly dependent on the magnetic coupling existing between the coils due to the mutual inductions, each energized coil having an influence on all the others. Magnetic coupling makes the control of the temperature profile of the heated part extremely delicate, without counting that it can have harmful repercussions on the frequency generators, for example a breakage of components.

La demande de brevet WO 00/28787 A1 décrit un système pour chauffer une pièce métallique tubulaire par des bobines d'induction alimentées par l'intermédiaire d'un circuit d'interruption de type gradateur relié à une source d'alimentation de type onduleur. Un circuit de contrôle permet de faire varier la durée de la puissance injectée par la source d'alimentation à chaque bobine afin de chauffer différemment différentes zones de la pièce métallique en vue d'un profil de température recherché. L'injection de puissance dans une bobine s'effectue donc en « tout ou rien », c'est-à-dire qu'elle peut être empêchée sur un cycle correspondant à plusieurs périodes du signal de l'onduleur.. Ce système présente néanmoins des inconvénients, et en particulier il permet de contrôler seulement la puissance moyenne produite par chaque bobine sans pouvoir contrôler précisément le profil de température généré par les bobines dans la pièce chauffée. De plus, il ressort de ce document que la connexion des bobines et des onduleurs doit être dans une certaine mesure définie en fonction de la charge et du profil de température à atteindre. Par ailleurs, ce document ne mentionne pas les couplages magnétiques entre les circuits ni la manière de s'en affranchir ou d'en tenir compte.The patent application WO 00/28787 A1 discloses a system for heating a tubular metal part by induction coils fed via a dimmer type interrupt circuit connected to an inverter type power source. A control circuit makes it possible to vary the duration of the power injected by the power source to each coil in order to heat different different zones of the metal part differently in view of a desired temperature profile. The injection of power into a coil is therefore done in "all or nothing", that is to say, it can be prevented on a cycle corresponding to several periods of the This system nevertheless has drawbacks, and in particular it makes it possible to control only the average power produced by each coil without being able to precisely control the temperature profile generated by the coils in the heated room. In addition, it is apparent from this document that the connection of the coils and the inverters must be to a certain extent defined according to the load and the temperature profile to be achieved. Moreover, this document does not mention the magnetic couplings between the circuits nor how to get rid of them or to take them into account.

La présente invention vise à résoudre ces inconvénients et à procurer un procédé de chauffage prenant en compte les nombreux couplages, d'une part entre les différents inducteurs et d'autre part entre les inducteurs et la pièce à chauffer, pour permettre de contrôler avec une bonne précision le profil de température généré par les inducteurs. L'invention vise en particulier à pouvoir ajuster le chauffage à différents profils de température recherchés en temps réel, en agissant sur la commande d'onduleurs alimentant les inducteurs et sans avoir besoin d'ajuster la structure des inducteurs.The present invention aims to solve these disadvantages and to provide a heating method taking into account the many couplings, on the one hand between the different inductors and on the other hand between the inductors and the part to be heated, to allow control with a good accuracy the temperature profile generated by the inductors. The invention aims in particular to be able to adjust the heating to different desired temperature profiles in real time, by acting on the control of inverters supplying the inductors and without the need to adjust the structure of the inductors.

A cet effet, l'invention a pour objet un procédé de chauffage par induction mis en oeuvre dans un dispositif de chauffage d'une pièce métallique, le dispositif comprenant des inducteurs couplés magnétiquement, chaque inducteur étant alimenté par un onduleur qui lui est propre et associé à un condensateur pour former un circuit oscillant, lesdits circuits oscillants possédant au moins approximativement la même fréquence de résonance, chaque onduleur étant commandé par une unité de commande de façon à faire varier l'amplitude et la phase du courant traversant l'inducteur correspondant, le dispositif comprenant en outre des moyens de détermination dudit courant ainsi que des moyens de détermination d'un profil de température effectif de ladite pièce métallique, ledit procédé comprenant les étapes suivantes :

  1. a) on compare ledit profil de température effectif à un profil de température de référence, et on calcule un profil de densité de puissance de référence que le dispositif de chauffage doit injecter dans ladite pièce pour atteindre ledit profil de température de référence ;
  2. b) à partir d'une matrice d'impédances déterminée par la connaissance des relations électromagnétiques liant lesdits inducteurs entre eux et à ladite pièce et par la connaissance de fonctions images vectorielles représentatives des relations liant les densités de courant créées par les inducteurs aux courants traversant les inducteurs, on calcule des courants cibles que doivent délivrer les onduleurs afin que les courants des inducteurs atteignent des valeurs cibles appropriées pour injecter dans ladite pièce ledit profil de densité de puissance de référence ;
  3. c) on détermine les courants traversant les inducteurs pour les comparer aux dites valeurs cibles et déterminer des écarts de courants à corriger, et on envoie aux dites unités de commande des instructions de correction en fonction desdits écarts de courants afin de commander les onduleurs de façon à corriger les courants traversant les inducteurs.
For this purpose, the subject of the invention is an induction heating method implemented in a device for heating a metal part, the device comprising magnetically coupled inductors, each inductor being powered by a specific inverter and associated with a capacitor to form an oscillating circuit, said oscillating circuits having at least approximately the same resonance frequency, each inverter being controlled by a control unit so as to vary the amplitude and phase of the current flowing through the corresponding inductor , the device further comprising means for determining said current as well as means for determining an effective temperature profile of said metal part, said method comprising the following steps:
  1. a) comparing said actual temperature profile to a reference temperature profile, and calculating a reference power density profile that the heater is to inject into said room to achieve said reference temperature profile;
  2. b) from an impedance matrix determined by the knowledge of the electromagnetic relations linking said inductors to each other and to said part and by the knowledge of vectorial image functions representative of the relationships linking the current densities created by the inductors to the currents passing through inductors, target currents to be supplied by the inverters are calculated so that the currents of the inductors reach appropriate target values for injecting into said part said reference power density profile;
  3. c) the currents passing through the inductors are determined in order to compare them with said target values and to determine current differences to be corrected, and control commands are sent to said control units as a function of said current differences in order to control the inverters in a to correct the currents passing through the inductors.

Grâce à ces dispositions, on obtient un pilotage précis du profil de température appliqué à la pièce chauffée, ce qui est idéal pour chauffer avec un même dispositif plusieurs pièces de tailles et de natures différentes.Thanks to these provisions, we obtain a precise control of the temperature profile applied to the heated room, which is ideal for heating with the same device several pieces of different sizes and natures.

Dans des modes de réalisation préférés d'un procédé de chauffage selon l'invention, on a recours notamment à l'une ou l'autre des dispositions suivantes :

  • on détermine les capacités desdits condensateurs, et on associe ladite matrice d'impédances à un vecteur des capacités ;
  • on détermine une valeur initiale de ladite matrice d'impédances pour une température moyenne initiale donnée desdits inducteurs et de ladite pièce, puis on détermine à intervalles variables ou périodiques la matrice d'impédances modifiée pour au moins une valeur augmentée de ladite température moyenne, et on utilise ladite matrice d'impédances modifiée pour recalculer les dites valeurs cibles ;
  • après avoir effectué successivement les étapes (a) et (b) on effectue au moins une fois l'étape (c) pour diminuer lesdits écarts de courants à corriger, puis on réitère au moins une fois les étapes (a), (b) et (c) en actualisant ledit profil de température effectif par des mesures de température en différentes zones chauffées de la pièce ;
  • pour la détermination par calcul des dites valeurs cibles à l'étape (b), grâce à la connaissance desdites fonctions images vectorielles, on calcule des fonctions images des densités de puissance selon les caractéristiques spatiales des zones de la pièce dans lesquelles lesdites densités de puissance sont injectées, et on calcule un vecteur optimisé des courants cibles à déterminer en minimisant la différence entre chacune desdites fonctions images des densités de puissance et une fonction densité de puissance de référence correspondant audit profil de densité de puissance de référence ;
  • on prend comme onduleur de référence un onduleur ayant par rapport aux autres onduleurs le plus fort courant dans le cas d'un onduleur de courant ou la plus forte tension dans le cas d'un onduleur de tension, et on introduit des angles de décalage sur les commandes des autres onduleurs par rapport à un angle de commande sur l'onduleur de référence ;
  • on règle l'onduleur de référence avec un rapport cyclique égal à 2/3, afin de diminuer les perturbations harmoniques créées par cet onduleur sur ces voisins ;
  • on règle la valeur efficace du courant dans ledit onduleur de référence en agissant sur une alimentation continue qui alimente les onduleurs.
In preferred embodiments of a heating method according to the invention, use is made in particular of one or other of the following provisions:
  • the capacitances of said capacitors are determined, and said impedance matrix is associated with a capacitance vector;
  • an initial value of said impedance matrix is determined for a given initial average temperature of said inductors and said part, and then the modified impedance matrix is determined at variable or periodic intervals for at least one value increased by said average temperature, and said modified impedance matrix is used to recalculate said target values;
  • after successively performing steps (a) and (b), step (c) is carried out at least once to reduce said differences in currents to be corrected, and then steps (a), (b) are repeated at least once and (c) updating said effective temperature profile by temperature measurements in different heated areas of the room;
  • for the determination by calculation of said target values in step (b), by virtue of the knowledge of said vector image functions, image functions of the power densities are calculated according to the spatial characteristics of the zones of the part in which said power densities are injected, and one calculates a optimized vector of the target currents to be determined by minimizing the difference between each of said power density image functions and a reference power density function corresponding to said reference power density profile;
  • as a reference inverter, an inverter having the highest current with respect to the other inverters in the case of a current inverter or the highest voltage in the case of a voltage inverter, and offset angles are introduced. the controls of the other inverters with respect to a control angle on the reference inverter;
  • the reference inverter is regulated with a duty cycle equal to 2/3, in order to reduce the harmonic disturbances created by this inverter on these neighbors;
  • the rms value of the current in said reference inverter is regulated by acting on a continuous supply which supplies the inverters.

L'invention a aussi pour objet un dispositif de chauffage par induction comprenant :

  • des inducteurs couplés magnétiquement, chaque inducteur étant associé à un condensateur pour former un circuit oscillant, lesdits circuits oscillants possédant au moins approximativement la même fréquence de résonance ;
  • des onduleurs alimentant chacun un inducteur qui lui est propre, chaque onduleur étant commandé par une unité de commande de façon à faire varier l'amplitude et la phase du courant traversant l'inducteur correspondant ;
  • caractérisé en ce qu'il comprend en outre :
    • des moyens de détermination des courants traversant les inducteurs ainsi que des moyens de détermination d'un profil de température effectif d'une pièce métallique chauffée par le dispositif ;
    • des moyens de comparaison dudit profil de température effectif par rapport à un profil de température de référence ;
    • des moyens de calcul d'un profil de densité de puissance de référence que le dispositif de chauffage doit injecter dans ladite pièce pour atteindre ledit profil de température de référence ;
    • des moyens de calcul, basés sur la connaissance d'une matrice des impédances, de courants cibles que doivent délivrer les onduleurs afin que les courants des inducteurs atteignent des valeurs cibles appropriées pour injecter dans ladite pièce ledit profil de densité de puissance de référence ;
    • des moyens de comparaison des courants traversant les inducteurs par rapport aux dites valeurs cibles, aptes à déterminer des écarts de courants à corriger, et des moyens de traitement desdits écarts de courants aptes à générer des instructions de correction envoyées aux dites unités de commande pour commander les onduleurs de façon à corriger les courants traversant les inducteurs.
The invention also relates to an induction heating device comprising:
  • magnetically coupled inductors, each inductor being associated with a capacitor to form an oscillating circuit, said oscillating circuits having at least approximately the same resonance frequency;
  • inverters each supplying an inductor of its own, each inverter being controlled by a control unit so as to vary the amplitude and the phase of the current flowing through the corresponding inductor;
  • characterized in that it further comprises:
    • means for determining the currents flowing through the inductors as well as means for determining an effective temperature profile of a metal part heated by the device;
    • means for comparing said effective temperature profile with respect to a reference temperature profile;
    • means for calculating a reference power density profile that the heating device is to inject into said room to reach said reference temperature profile;
    • calculation means, based on the knowledge of an impedance matrix, of the target currents to be delivered by the inverters so that the inductor currents achieve appropriate target values for injecting into said part said reference power density profile;
    • means for comparing the currents traversing the inductors with respect to said target values, able to determine current differences to be corrected, and means for processing said current differences able to generate correction instructions sent to said control units for controlling the inverters so as to correct currents flowing through the inductors.

Dans des modes de réalisation préférés d'un dispositif de chauffage selon l'invention, on a recours notamment à l'une ou l'autre des dispositions suivantes :

  • les onduleurs sont alimentés par une même alimentation source de courant ou source de tension, et lesdits moyens de comparaison desdits courants déterminés traversant les inducteurs comprennent des unités comparatrices recevant chacune des paramètres déterminés d'un courant traversant un inducteur et des paramètres des valeurs cibles correspondantes et étant chacune reliée à une unité de traitement desdits écarts de courants, une desdites unités comparatrices recevant en outre des paramètres représentatifs de ce que délivre ladite alimentation et son unité de traitement associée étant adaptée pour générer des instructions de régulation envoyées à ladite alimentation de façon à modifier le courant ou la tension qu'elle délivre.
In preferred embodiments of a heating device according to the invention, use is made in particular of one or other of the following provisions:
  • the inverters are powered by the same power supply source or voltage source, and said means for comparing said determined currents passing through the inductors comprise comparator units each receiving determined parameters of a current flowing through an inductor and parameters of the corresponding target values and each being connected to a processing unit of said current gaps, one of said comparator units further receiving parameters representative of what said power supply and its associated processing unit is adapted to generate control instructions sent to said power supply so as to to modify the current or the voltage that it delivers.

D'autres caractéristiques et avantages ressortent de la description qui va suivre d'exemples non limitatifs de modes de réalisation, en référence aux figures dans lesquelles :

  • La figure 1 représente schématiquement un premier exemple de dispositif de chauffage par induction dans lequel le procédé de chauffage selon l'invention peut être mis en oeuvre, appliqué au chauffage d'un disque métallique fixe.
  • La figure 2 représente schématiquement une modélisation du système à trois inductances couplées de la figure 1, vu de l'alimentation.
  • La figure 3 représente schématiquement le dispositif de chauffage par induction de la figure 1, appliqué au chauffage d'une tôle que l'on déplace.
  • La figure 4 représente schématiquement un deuxième exemple de dispositif de chauffage par induction, appliqué au chauffage d'une barre métallique que l'on déplace.
  • La figure 5 représente schématiquement un troisième exemple de dispositif de chauffage par induction, appliqué au chauffage d'une tôle que l'on déplace.
  • La figure 6 représente schématiquement un quatrième exemple de dispositif de chauffage par induction, appliqué au chauffage d'une tôle que l'on déplace.
  • La figure 7 représente schématiquement une fonction image de la densité de puissance calculée à partir d'un vecteur optimisé des courants permettant de minimiser la différence entre ladite fonction et une fonction référence de densité de puissance.
  • La figure 8 représente schématiquement un premier mode de réalisation d'un dispositif de chauffage par induction selon l'invention dans lequel l'alimentation des onduleurs est une source de courant.
  • La figure 9 représente schématiquement un second mode de réalisation d'un dispositif de chauffage par induction selon l'invention dans lequel l'alimentation des onduleurs est une source de tension.
Other features and advantages are apparent from the following description of non-limiting examples of embodiments, with reference to the figures in which:
  • The figure 1 schematically represents a first example of induction heating device in which the heating method according to the invention can be implemented, applied to the heating of a fixed metal disc.
  • The figure 2 schematically represents a modeling of the system with three coupled inductances of the figure 1 , seen from the diet.
  • The figure 3 schematically represents the induction heating device of the figure 1 , applied to heating a sheet that is moved.
  • The figure 4 schematically represents a second example of induction heating device, applied to the heating of a metal bar that is moved.
  • The figure 5 schematically shows a third example of induction heating device, applied to the heating of a sheet that is moved.
  • The figure 6 schematically shows a fourth example of induction heating device, applied to the heating of a sheet that is moved.
  • The figure 7 schematically represents an image function of the power density calculated from an optimized vector of the currents making it possible to minimize the difference between said function and a reference function of power density.
  • The figure 8 schematically represents a first embodiment of an induction heating device according to the invention in which the supply of the inverters is a current source.
  • The figure 9 schematically represents a second embodiment of an induction heating device according to the invention in which the supply of the inverters is a voltage source.

Sur la figure 1, le dispositif de chauffage montré en exemple concerne une configuration de disque métallique amagnétique chauffé par flux transverse à l'aide de trois couples de bobines jumelles, ce qui a l'avantage de garder l'aspect axisymétrique du problème. Afin de s'assurer de la symétrie de l'ensemble du système, chaque bobine placée d'un côté du disque est connectée en série avec sa bobine jumelle de l'autre face pour former un seul inducteur. De cette façon, le système est invariant par rotation. En outre, afin de travailler avec l'hypothèse de linéarité, on considérera que les matériaux électromagnétiques du système ont une perméabilité constante et unitaire. Chaque inducteur est alimenté par un onduleur qui lui est propre de type série (onduleur de tension) ou de type parallèle (onduleur de courant).On the figure 1 , the exemplary heating device relates to a non-magnetic metal disk configuration heated by transverse flux using three pairs of twin coils, which has the advantage of keeping the axisymmetric aspect of the problem. To ensure symmetry of the entire system, each coil placed on one side of the disk is connected in series with its twin coil on the other side to form a single inductor. In this way, the system is rotational invariant. In addition, in order to work with the linearity assumption, it will be considered that the electromagnetic materials of the system have a constant and unitary permeability. Each inductor is powered by a UPS of its own type (voltage inverter) or parallel type (inverter current).

Sur la figure 2, la modélisation du système sous forme d'inductances couplées permet de représenter les différentes interactions existantes. Cette modélisation permet également l'étude de l'alimentation électrique des inducteurs et le calcul des valeurs des courants qu'il faut injecter.On the figure 2 , the modeling of the system in the form of coupled inductances makes it possible to represent the various existing interactions. This modeling also allows the study of the electrical supply of the inductors and the calculation of the values of currents that must be injected.

Il est nécessaire de déterminer la matrice d'impédances du système pour chaque configuration de chauffage envisagé, afin de refléter l'état magnétique et électrique du système pour une géométrie donnée. La dimension N de la matrice est donnée par le nombre d'inducteurs, ici N=3.It is necessary to determine the system impedance matrix for each proposed heating configuration to reflect the magnetic state and electrical system for a given geometry. The dimension N of the matrix is given by the number of inductors, here N = 3.

La matrice d'impédances doit être complète pour tenir compte de tous les effets de couplage. La détermination de cette matrice pouvant être complexe, plusieurs moyens analytiques ou numériques, ou des mesures en ligne et en continu par injection de signaux particuliers, peuvent être mis en oeuvre.The impedance matrix must be complete to account for all coupling effects. The determination of this matrix can be complex, several analytical or numerical means, or measurements in line and continuous injection of particular signals, can be implemented.

Ainsi modélisée, l'équation générale du système peut s'écrire : V ̲ = Z . I ̲

Figure imgb0001

V
: Tensions sinusoïdales aux bornes des inducteurs ;
I
: Courants dans les enroulements des inducteurs;
Z
: Matrice d'impédances du système.
Thus modeled, the general equation of the system can be written: V = Z . I
Figure imgb0001
V
: Sinusoidal voltages across the inductors;
I
: Currents in the windings of the inductors;
Z
: Matrix of impedances of the system.

Dans notre cas, la matrice Z peut s'écrire sous la forme : Z = Z 11 ω Z 12 ω Z 13 ω Z 21 ω Z 22 ω Z 23 ω Z 31 ω Z 32 ω Z 33 ω

Figure imgb0002
ou encore : Z = R 11 + j L 11 ω R 12 + j L 12 ω R 13 + j L 13 ω R 21 + j L 21 ω R 22 + j L 22 ω R 23 + j L 23 ω R 31 + j L 31 ω R 32 + j L 32 ω R 33 + j L 33 ω
Figure imgb0003

Lmm
: représente l'inductance propre de chaque inducteur ;
Lmn = Lnm
: représente les inductances mutuelles entre inducteurs ;
Rmm
: représente les résistances propres de chaque inducteur ;
Rmn = Rnm
: représente les résistances équivalentes dues aux courants induits.
In our case, the matrix Z can be written in the form: Z = Z 11 ω Z 12 ω Z 13 ω Z 21 ω Z 22 ω Z 23 ω Z 31 ω Z 32 ω Z 33 ω
Figure imgb0002
or : Z = R 11 + j The 11 ω R 12 + j The 12 ω R 13 + j The 13 ω R 21 + j The 21 ω R 22 + j The 22 ω R 23 + j The 23 ω R 31 + j The 31 ω R 32 + j The 32 ω R 33 + j The 33 ω
Figure imgb0003
L mm
: represents the inductance of each inductor;
L mn = L nm
represents the mutual inductances between inductors;
R mm
: represents the own resistances of each inductor;
R mn = R nm
: represents the equivalent resistances due to induced currents.

Avec la connaissance des relations électromagnétiques entre les bobines et la pièce à chauffer, il est possible de procéder au calcul des courants à injecter dans chacune des bobines afin d'obtenir le chauffage désiré.With the knowledge of the electromagnetic relations between the coils and the part to be heated, it is possible to calculate the currents to be injected in each of the coils in order to obtain the desired heating.

Il est à noter que différentes configurations ou méthodes classiques de calcul essaient de minimiser les termes de couplage non-diagonaux afin de s'affranchir des problèmes liés aux interactions entre les bobines. De plus, pour de nombreux cas où les couplages sont faibles, les résistances propres de chaque inducteur sont souvent grandes devant les résistances équivalentes dues aux courants induits. Les méthodes classiques utilisent ainsi une matrice simplifiée, c'est-à-dire non complète, qui conserve seulement les termes diagonaux. Ceci implique une régulation simplifiée du chauffage, mais au détriment du contrôle précis du profil de température et de la flexibilité de l'installation, en particulier dans la zone située sous les bobines. Au contraire, la présente invention prend en compte la matrice d'impédances complète du système afin d'améliorer la détermination des courants à injecter dans les bobines et donc améliorer le contrôle du profil de température de la pièce chauffée.It should be noted that different configurations or conventional calculation methods try to minimize the non-diagonal coupling terms in order to overcome the problems related to the interactions between the coils. Moreover, for many cases where the couplings are weak, the own resistances of each inductor are often large compared to the equivalent resistances due to the currents induced. The classical methods thus use a simplified matrix, that is to say not complete, which only keeps the diagonal terms. This implies a simplified regulation of the heating, but at the expense of the precise control of the temperature profile and the flexibility of the installation, in particular in the area under the coils. On the contrary, the present invention takes into account the complete impedance matrix of the system to improve the determination of the currents to be injected into the coils and thus improve the control of the temperature profile of the heated part.

Dans l'exemple décrit, nous avons trois inducteurs alimentés par trois sources de courants différentes. La détermination des courants à injecter dans chaque bobine revient à déterminer cinq variables inconnues, la phase du courant dans l'inducteur Ind1 servant de référence et n'étant donc pas une inconnue. En effet, pour une tôle donnée constituant la pièce à chauffer, les inconnues sont :

  • I1 : Valeur efficace du courant dans l'inducteur Ind1, lequel courant est pris comme référence de phase ;
  • I2 et ϕ 2 : Valeur efficace du courant dans l'inducteur Ind2, et déphasage de ce courant par rapport à I 1 ;
  • I3 et ϕ 3 : Valeur efficace du courant dans l'inducteur Ind3, et déphasage de ce courant par rapport à I1 .
In the example described, we have three inductors powered by three different current sources. The determination of the currents to be injected in each coil amounts to determining five unknown variables, the phase of the current in the inductor Ind1 serving as a reference and therefore not an unknown. Indeed, for a given sheet constituting the part to be heated, the unknowns are:
  • I 1 : rms value of the current in inductor Ind1, which current is taken as phase reference;
  • I 2 and φ 2 : rms value of the current in inductor Ind2, and phase shift of this current with respect to I 1 ;
  • I 3 and φ 3 : RMS current value Ind3, and phase shift of this current relative to I 1 .

On comprend de ce qui précède qu'avec la matrice d'impédances complète prise en compte dans la présente invention, le contrôle du profil de température de la pièce chauffée doit s'effectuer non seulement en contrôlant les amplitudes des courants dans les inducteurs mais aussi en contrôlant les déphasages de ces courants les uns par rapport aux autres, ce qui implique que chaque onduleur est commandé de façon à pouvoir faire varier l'amplitude et la phase du courant traversant l'inducteur correspondant.It is understood from the foregoing that with the complete impedance matrix taken into account in the present invention, the control of the temperature profile of the heated part must be carried out not only by controlling the amplitudes of the currents in the inductors but also by controlling the phase shifts of these currents relative to one another, which implies that each inverter is controlled so as to be able to vary the amplitude and the phase of the current flowing through the corresponding inductor.

Au vu des relations qui précèdent, le vecteur des inconnues peut alors s'écrire : X = I 1 I 2 ϕ 2 I 3 ϕ 3 T

Figure imgb0004
In view of the above relations, the vector of unknowns can then be written: X = I 1 I 2 φ 2 I 3 φ 3 T
Figure imgb0004

Il n'est pas possible de déterminer facilement ces inconnues par les méthodes de résolution habituelles. En effet, à l'exception de cas très simples, la formulation analytique liant les données géométriques, les courants électriques dans les inducteurs, la répartition spatiale du champ électromagnétique et la densité de puissance en tous points est quasi impossible avec autant de variables. Les logiciels classiques de calcul de champ basés sur des techniques numériques de découpage du domaine d'études en mailles élémentaires permettent de connaître la répartition du champ magnétique, et par conséquent de calculer les densités de puissance dans les pièces conductrices en fonction des courants injectés dans les inducteurs. Dans notre cas, une problématique inverse se pose, puisqu'il s'agit de savoir s'il existe une ou plusieurs valeurs du vecteur x permettant d'obtenir un profil de densité de puissance voulu dans la pièce.It is not possible to easily determine these unknowns by the usual resolution methods. Indeed, with the exception of very simple cases, the analytical formulation linking the geometric data, the electric currents in the inductors, the spatial distribution of the electromagnetic field and the power density in all points is almost impossible with so many variables. The classical field calculation software based on digital cutting techniques of the field of study in elementary meshes makes it possible to know the distribution of the magnetic field, and consequently to calculate the power densities in the conductive parts as a function of the currents injected in the inductors. In our case, an inverse problem arises, since it is a question of knowing if there exists one or several values of the vector x making it possible to obtain a desired power density profile in the part.

Par l'application de l'équation de la chaleur, il est bien connu que la densité de puissance injectée Dp dans une pièce conductrice donne une bonne image du comportement thermique du produit chauffé. Par exemple, dans le cas d'une chauffe statique où la vitesse de déplacement du matériau traité est nulle, la connaissance de la température instantanée T du matériau traité nécessite classiquement la résolution temporelle d'une forme simplifiée de l'équation de la chaleur: ρ C p T t = div λ gradT + Dp

Figure imgb0005

ρ
: représente la masse volumique ;
Cp
: représente la capacité thermique massique ;
λ
: représente la conductivité thermique.
By the application of the heat equation, it is well known that the injected power density Dp in a conductive part gives a good image of the thermal behavior of the heated product. For example, in the case of static heating where the displacement speed of the treated material is zero, knowledge of the instantaneous temperature T of the treated material conventionally requires the temporal resolution of a simplified form of the heat equation: ρ VS p T t = div λ gradt + dp
Figure imgb0005
ρ
: represents the density;
C p
: represents the specific heat capacity;
λ
: represents the thermal conductivity.

La résolution de cette équation implique une intégration en temps réel, ce qui n'est pas très difficile. De plus, dans le cas d'un chauffage « flash », c'est-à-dire si le temps de chauffe est petit de telle sorte que l'on peut négliger la diffusion thermique de la chaleur au sein du matériau pendant cette durée, l'expression se simplifie encore de la sorte : ρ C p T t = Dp

Figure imgb0006
Solving this equation implies real-time integration, which is not very difficult. In addition, in the case of a "flash" heating, that is to say if the heating time is small so that one can neglect the thermal diffusion heat within the material during this time, the expression is further simplified in this way: ρ VS p T t = dp
Figure imgb0006

Nous obtenons donc une expression simplifiée classique permettant de relier la densité de puissance injectée Dp et l'élévation de la température. Ainsi, à partir du profil thermique souhaité pour la pièce chauffée, on obtient le profil de densité de puissance recherché.We thus obtain a classical simplified expression making it possible to connect the injected power density Dp and the elevation of the temperature. Thus, from the desired thermal profile for the heated part, the desired power density profile is obtained.

Dans l'exemple en référence à la figure 1, le système est invariant suivant l'axe de révolution du disque en tôle et dans l'épaisseur de la tôle. On prend donc en compte une seule dimension du disque, à savoir la direction radiale de la zone considérée du disque. Pour la détermination du vecteur x des inconnues, on sait que la densité de puissance suivant le rayon de la zone considérée se calcule par l'équation suivante : Dp r x = 1 σ J ̲ 2 , soit : Dp r x = 1 σ J R 2 r x + J I 2 r x

Figure imgb0007
où σ représente la conductivité électrique, J représente le vecteur densité de courant défini sur le rayon r dans la pièce, JR (r,x) et JI (r,x) représentant les composantes réelle et imaginaire de ce vecteur en fonction du rayon de la zone considérée.In the example with reference to the figure 1 , the system is invariant along the axis of revolution of the sheet metal disk and in the thickness of the sheet. We therefore take into account only one dimension of the disc, namely the radial direction of the considered area of the disc. For the determination of the vector x of unknowns, it is known that the power density along the radius of the zone considered is calculated by the following equation: dp r x = 1 σ J 2 , is : dp r x = 1 σ J R 2 r x + J I 2 r x
Figure imgb0007
where σ represents the electrical conductivity, J represents the current density vector defined on the radius r in the room, J R (r, x) and J I (r, x) representing the real and imaginary components of this vector as a function of radius of the considered area.

Le système pris en exemple est complètement linéaire, c'est-à-dire en particulier sans matériaux ferromagnétiques ni hystérésis. Nous pouvons donc appliquer le théorème de superposition des sources pour chacune des alimentations des trois inducteurs. On notera qu'un principe similaire peut être mis en oeuvre dans un système non linéaire. Nous obtenons ainsi des fonctions images des densités de courant en fonction du rayon r de la zone annulaire considérée du disque chauffé, chaque fonction image fk étant représentative de la relation liant la densité de courant Jk(r), créée par un inducteur, au courant Ik alimentant cet inducteur. Ces fonctions images sont vectorielles et ont des composantes réelle et imaginaire définies de la manière suivante : f kR r = J kR r l k f kl r = J kl r l k

Figure imgb0008
The exemplary system is completely linear, that is to say in particular without ferromagnetic materials or hysteresis. We can therefore apply the superimposition theorem of sources for each of the power supplies of the three inductors. It should be noted that a similar principle can be implemented in a non-linear system. We thus obtain image functions of the current densities as a function of the radius r of the annular zone considered of the heated disk, each image function f k being representative of the relation linking the current density J k (r), created by an inductor, at the current I k supplying this inductor. These image functions are vectorial and have real and imaginary components defined in the following way: f kR r = J kR r l k f kl r = J kl r l k
Figure imgb0008

Au final, dans notre exemple à trois inducteurs, le calcul vectoriel de la densité totale de courant induit dans la zone annulaire de rayon r du disque peut s'exprimer ainsi : J ̲ r x = k = 1 3 f kR r + j f kl r . l k . e jϕk ,

Figure imgb0009
avec j2 = -1, soit : J ̲ r x = k = 1 3 f kR r + j f kl r . I k + jl kl
Figure imgb0010
d'où J ̲ r x = k = 1 3 f kR r . l kR - f kl r . l kl J R r x + j k = 1 3 f kR r . l kR + f kl r . l kR J l r x
Figure imgb0011
Ce qui peut s'écrire aussi J ̲ r x = J R r x + j J l r x
Figure imgb0012
Finally, in our example with three inductors, the vector calculation of the total current density induced in the annular zone of radius r of the disk can be expressed as follows: J r x = Σ k = 1 3 f kR r + j f kl r . l k . e jφk ,
Figure imgb0009
with j 2 = -1, that is: J r x = Σ k = 1 3 f kR r + j f kl r . I k + jl kl
Figure imgb0010
from where J r x = Σ k = 1 3 f kR r . l kR - f kl r . l kl } J R r x + j Σ k = 1 3 f kR r . l kR + f kl r . l kR } J l r x
Figure imgb0011
What can also be written J r x = J R r x + j J l r x
Figure imgb0012

On obtient donc une relation entre le vecteur densité de courant induit dans la zone considérée de la pièce et les vecteurs des courants dans les inducteurs. Avec d'une part la matrice d'impédances liant les grandeurs électriques entre inducteurs, et d'autre part les fonctions images des densités de courant dans la pièce, nous disposons ainsi de toutes les informations nécessaires au calcul du vecteur des inconnues x à partir d'un profil de densité de puissance déterminé. On notera que l'on peut aussi faire intervenir dans ce calcul le vecteur des condensateurs, c'est-à-dire le vecteur des capacités des circuits oscillants, puisque ces capacités ne sont généralement pas rigoureusement égales du fait des tolérances de fabrication et qu'elles peuvent en outre dériver quelque peu. Pour le calcul, on pourra utiliser des logiciels de résolution des équations aux dérivées partielles, avec diverses techniques numériques possibles telles que les éléments finis, les différences finies, les volumes finis, les intégrales de frontière, les éléments de circuits partiels, ou tout autre technique du même genre.We thus obtain a relation between the vector of current density induced in the zone considered of the part and the vectors of the currents in the inductors. With on the one hand the impedance matrix linking electrical quantities between inductors, and on the other hand the image functions of current densities in the room, we thus have all the information necessary to calculate the vector of unknowns x from of a determined power density profile. It should be noted that the vector of the capacitors, that is to say the vector of the capacitances of the oscillating circuits, can also be used in this calculation, since these capacitors are generally not strictly equal because of the manufacturing tolerances and they can also drift somewhat. For the calculation, we can use software for solving partial differential equations, with various possible numerical techniques such as finite elements, finite differences, finite volumes, boundary integrals, partial circuit elements, or any other similar technique.

Cette méthode a été décrite pour un exemple donné d'un système magnétiquement couplé relativement simple, mais est néanmoins transposable à tout système plus complexe et non symétrique. Le nombre de bobines n'est pas limité, et diverses formes et configurations des bobines ou des pièces à chauffer sont envisageables, comme dans les exemples visibles sur les figures 3 à 6.This method has been described for a given example of a relatively simple magnetically coupled system, but is nonetheless transposable to any more complex and non-symmetrical system. The number of reels is not limited, and various shapes and configurations of the coils or parts to be heated are possible, as in the examples visible on the Figures 3 to 6 .

Une fois que la fonction image de la densité de courant est déterminée, la fonction image de la densité de puissance Dp (r,x) est déterminée par les relations des équations (3) et (4) ci-dessus. Il est avantageux en outre d'optimiser par le calcul le vecteur des inconnues x. Le problème d'optimisation consiste à calculer un vecteur optimisé x permettant de minimiser la différence entre la fonction image de la densité de puissance et une fonction densité de puissance de référence Dpref (r) qui correspond à un profil de densité de puissance de référence que l'on cherche à injecter dans le disque métallique. Cette fonction densité de puissance de référence prend par exemple une valeur constante si nous recherchons une homogénéité de température sur le disque. Il est cependant possible d'avoir une fonction non constante afin d'obtenir des profils particuliers de chauffe. Avec l'appareillage de la figure 1, la demanderesse a réalisé des essais avec différentes fonctions densités de puissances de références correspondant par exemple à des profils sinusoïdaux ou triangulaires dans la direction radiale du disque, et les résultats sont très satisfaisants.Once the image function of the current density is determined, the image function of the power density D p ( r, x ) is determined by the relationships of equations (3) and (4) above. It is furthermore advantageous to optimize by calculation the vector of unknowns x . The optimization problem consists of calculating an optimized vector x making it possible to minimize the difference between the image function of the power density and a reference power density function Dp ref ( r ) which corresponds to a reference power density profile that we try to inject into the metal disc. This reference power density function takes for example a constant value if we are looking for a temperature homogeneity on the disk. It is however possible to have a non-constant function in order to obtain particular heating profiles. With the equipment of the figure 1 the applicant has carried out tests with different reference power density functions corresponding for example to sinusoidal or triangular profiles in the radial direction of the disk, and the results are very satisfactory.

L'optimisation consiste donc à minimiser la fonction g(r,x)=|Dp(r,x)-Dpref (r)| tout en fixant des limites hautes et basses X i H

Figure imgb0013
et X i B
Figure imgb0014
sur les inconnues recherchées. Cela nous permet d'éliminer entre autres les solutions aberrantes ou qui n'ont pas de réalité physique. La formulation du problème d'optimisation revient donc à minimiser g (r, X) avec x={x 1,..., xn } T et xi ∈ └xi B,xi H ┘, i=1,...,n.Optimization therefore consists of minimizing the function g ( r, x ) = | Dp ( r, x ) - Dp ref ( r ) | while setting high and low limits X i H
Figure imgb0013
and X i B
Figure imgb0014
on the unknowns sought. This allows us to eliminate among other things outliers or that have no physical reality. The formulation of the optimization problem thus amounts to minimizing g (r, X) with x = { x 1 , ..., x n } T and x i ∈ └ x i B , x i H ┘, i = 1, ..., n .

Après résolution du problème, nous obtenons un vecteur optimisé x contenant toutes les amplitudes des vecteurs des courants dans les inducteurs et leurs phases respectives, pour le disque métallique donné. Un des résultats pour un exemple de disque de 650 mm de diamètre, avec une référence de densité de puissance |Dpref | égale à 10MW/m3, donne un écart relatif maximal de 3% sur la fonction image de la densité de puissance comme représenté Dp(r,x) sur la figure 7.After solving the problem, we obtain an optimized vector x containing all the amplitudes of the vectors of the currents in the inductors and their respective phases, for the given metal disk. One of the results for an example of a 650 mm diameter disk, with a power density reference | Dp ref | equal to 10MW / m 3 , gives a maximum relative difference of 3% on the image function of the power density as represented Dp ( r, x ) on the figure 7 .

Cette méthode de résolution peut facilement être élargie afin de prendre en compte plusieurs dimensions d'un disque, par exemple trois si outre le rayon on tient compte de la position angulaire et de l'épaisseur de matière de la zone considérée, tout en tenant compte également de l'égalité de la compensation réactive nécessaire aux bornes de chaque bobine pour que les trois circuits oscillants oscillent à des fréquences très voisines. Nous passerions ainsi d'un vecteur à cinq inconnues à un vecteur à dix-huit inconnues, sans changer le système physique.This method of resolution can easily be enlarged to take into account several dimensions of a disk, for example three if in addition to the radius one takes into account the angular position and the thickness of material of the zone considered, while taking into account also the equality of the reactive compensation required at the terminals of each coil so that the three oscillating circuits oscillate at very similar frequencies. We would thus pass from a vector to five unknowns to a vector with eighteen unknowns, without changing the physical system.

La méthode expliquée ci-dessus pour la détermination du vecteur optimisé x est avantageusement utilisée dans le procédé de chauffage par induction selon l'invention, ce procédé pouvant être mis en oeuvre en particulier dans l'un ou l'autre des dispositifs de chauffage représentés sur les figures 8 et 9.The method explained above for the determination of the optimized vector x is advantageously used in the induction heating method according to the invention, this method being able to be implemented in particular in one or the other of the heating devices represented. on the figures 8 and 9 .

Sur la figure 8 est représenté schématiquement un premier mode de réalisation d'un dispositif de chauffage par induction selon l'invention, dans lequel l'alimentation 1 des onduleurs est une source de courant continu.On the figure 8 is schematically shown a first embodiment of an induction heating device according to the invention, wherein the supply 1 of the inverters is a DC source.

Le dispositif de chauffage comprend des inducteurs Ind1, Ind2,..., Indp, couplés magnétiquement, chaque inducteur étant alimenté par un onduleur de courant O1, O2,..., Op, qui lui est propre et associé à un condensateur C1, C2,..., Cp, pour former un circuit oscillant OC1, OC2,..., OCp. Les onduleurs de courant sont mis en série avec l'alimentation 1. Chaque onduleur comprend généralement des interrupteurs électroniques bidirectionnels, et est commandé par une unité de commande aussi appelée modulateur M1, M2,..., Mp. Chaque modulateur conçoit des ordres de commande des interrupteurs sous la forme d'impulsions, et le décalage dans le temps de ces ordres permet de faire varier l'amplitude A1, A2,..., Ap, et la phase ϕ1, ϕ2,..., ϕp, du courant I1, I2,..., Ip, traversant l'inducteur correspondant. La variation de l'amplitude du fondamental de courant en sortie de chaque onduleur s'effectue en introduisant un angle de décalage sur le signal généré par le modulateur commandant l'onduleur. En choisissant un onduleur de référence comme expliqué plus loin, les angles de décalage sur les autres onduleurs pourront être introduits par rapport à un angle de commande sur l'onduleur de référence. La commande sur l'onduleur de référence peut être effectuée par exemple avec un rapport cyclique égal à 2/3 c'est-à-dire un angle de commande de 30°.The heating device comprises inductors Ind1, Ind2,... Indp, magnetically coupled, each inductor being supplied by a current inverter O1, O2,..., Op, which is specific to it and is associated with a capacitor C 1. , C 2 , ..., Cp, to form an oscillating circuit OC1, OC2, ..., OCp. The inverters of current are put in series with the power supply 1. Each inverter generally comprises bidirectional electronic switches, and is controlled by a control unit also called modulator M1, M2, ..., Mp. Each modulator designs control commands for the switches in the form of pulses, and the offset in time of these commands makes it possible to vary the amplitude A 1 , A 2 ,..., A p , and the phase φ 1. , φ 2 , ..., φ p , of the current I 1 , I 2 , ..., I p , passing through the corresponding inductor. The variation of the amplitude of the current output current of each inverter is effected by introducing an offset angle on the signal generated by the modulator controlling the inverter. By choosing a reference inverter as explained below, the offset angles on the other inverters can be introduced with respect to a control angle on the reference inverter. The control on the reference inverter can be carried out for example with a duty cycle equal to 2/3, that is to say a control angle of 30 °.

Les circuits oscillants possèdent au moins approximativement la même fréquence de résonance, ce qui permet de maximiser l'efficacité de l'induction puisque les inducteurs travaillent sensiblement à cette fréquence, et permet aussi de diminuer les pertes dans les onduleurs. Les signaux périodiques de commande des onduleurs générés par les modulateurs ont donc sensiblement la même fréquence. Pour faire varier la phase ϕ1, ϕ2,..., ϕp, d'un courant I1, I2,..., Ip, traversant un inducteur, il suffit de décaler dans le temps le signal de commande de l'onduleur correspondant, c'est-à-dire d'appliquer un même décalage temporel à la totalité des ordres de commande des interrupteurs de l'onduleur. Le décalage peut aussi bien se faire en retard ou en avance par rapport au signal de commande de l'onduleur d'un autre inducteur pris comme référence.The oscillating circuits have at least approximately the same resonance frequency, which maximizes the efficiency of the induction since the inductors work substantially at this frequency, and also reduces the losses in the inverters. The periodic control signals of the inverters generated by the modulators therefore have substantially the same frequency. To vary the phase φ 1 , φ 2 , ..., φ p , of a current I 1 , I 2 , ..., I p , passing through an inductor, it suffices to shift the control signal over time. of the corresponding inverter, that is to say to apply the same time offset to all the control commands of the switches of the inverter. The offset can either be late or in advance compared to the control signal of the inverter of another inductor taken as a reference.

Pour contrôler en temps réel la densité de puissance à injecter dans la pièce chauffée en vue d'atteindre le profil de température recherché, il faut prévoir des moyens de détermination des paramètres d'amplitude et de phase des courants traversant les inducteurs afin de pouvoir corriger la commande des onduleurs. Des moyens de détermination des paramètres d'amplitude et de phase des courants I1, I2,..., Ip, des inducteurs, non représentés sur la figure, sont prévus pour fournir ces paramètres à des unités comparatrices ε1, ε2,..., εp. Ces moyens de détermination peuvent consister par exemple en des transformateurs de courant disposés chacun en série avec un inducteur, mais d'autres moyens sont envisageables. On pourrait par exemple mesurer le courant actif fourni par l'onduleur au circuit oscillant, et calculer le courant dans l'inducteur à l'aide des paramètres d'inductance et de capacité.To control in real time the power density to be injected into the heated room in order to reach the desired temperature profile, it is necessary to provide means for determining the amplitude and phase parameters of the currents flowing through the inductors in order to be able to correct the control of the inverters. Means for determining the amplitude and phase parameters of currents I 1 , I 2 ,..., I p , inductors, not shown in the figure, are provided to supply these parameters to comparator units ε 1 , ε 2 , ..., ε p . These determination means may consist for example of current transformers each arranged in series with an inductor, but other means are possible. One could for example measure the active current supplied by the inverter to the oscillating circuit, and calculate the current in the inductor using the parameters of inductance and capacitance.

On prévoit en outre des moyens de détermination d'un profil de température effectif de la pièce métallique chauffée 10, non représentés sur la figure, en disposant par exemple des thermocouples sur un nombre n de zones chauffées et en relevant les températures θ1 mes, θ2 mes, ..., θn mes, mesurées. On peut aussi déterminer ces températures en utilisant une caméra thermique, ou encore procéder par des calculs à partir des courants induits si par exemple des zones chauffées sont trop confinées pour une mesure directe.Provision is also made for means for determining an effective temperature profile of the heated metal part 10, not shown in the figure, for example by placing thermocouples on a number n of heated zones and by raising the temperatures θ 1 mes , θ 2 mes , ..., θ n mes , measured. These temperatures can also be determined using a thermal imaging camera, or can be calculated from the induced currents if, for example, heated zones are too confined for direct measurement.

Le profil de température effectif est par exemple déterminé en continu pendant la chauffe et est régulièrement comparé à un profil de température de référence θ1 ref, θ2 ref, ..., θn ref, correspondant au profil final de chauffe souhaité pour la pièce et préalablement entré dans une mémoire. Cette comparaison est effectuée par un comparateur 2, qui peut intégrer ladite mémoire. Le résultat est traité par un calculateur qui, à partir d'une équation déduite de l'équation de la chaleur et éventuellement simplifiée comme l'équation (2) précédente, calcule le profil de densité de puissance de référence Dpref 1, Dpref 2,..., Dpref n que le dispositif de chauffage doit injecter dans la pièce pour atteindre le profil de température de référence. Le calculateur peut consister en une mémoire dans laquelle est rentré un tableau de profils précalculés de densité de puissance de référence correspondants à différents profils de température effectifs pour une ou plusieurs configurations de pièces et un ou plusieurs profils de densité de puissance de référence.The effective temperature profile is for example determined continuously during the heating and is regularly compared to a temperature profile of reference θ 1 ref , θ 2 ref , ..., θ n ref , corresponding to the desired final heating profile for the part and previously entered into a memory. This comparison is performed by a comparator 2, which can integrate said memory. The result is processed by a calculator which, from an equation deduced from the equation of heat and possibly simplified as equation (2) above, calculates the reference power density profile Dp ref 1 , Dp ref 2 , ..., Dp ref n that the heater must inject into the room to reach the reference temperature profile. The computer may consist of a memory in which is entered an array of pre-calculated reference power density profiles corresponding to different actual temperature profiles for one or more room configurations and one or more reference power density profiles.

Un calculateur établit des courants cibles que doivent délivrer les onduleurs afin que les courants des inducteurs atteignent des valeurs cibles appropriées I1 ref, I2 ref,..., Ip ref, pour injecter dans la pièce le profil de densité de puissance de référence. Ce calcul utilise la matrice d'impédances Z avec les fonctions images vectorielles fk et préférablement le vecteur des capacités des circuits oscillants, définis précédemment. Les unités comparatrices ε1, ε2,..., εp comparent les paramètres des courants mesurés ou calculés I1 mes, I2 mes,..., Ip mes, des inducteurs aux valeurs cibles I1 ref, I2 ref,..., Ip ref, et déterminent les écarts de courants δI1 corr, δI2 corr,..., δIp corr à corriger, aussi appelés courants de correction. Des unités de traitement CORR1, CORR2,..., CORRp, des paramètres d'amplitude et de phase ce ces courants de correction génèrent des instructions de correction envoyées aux modulateurs pour commander les onduleurs de façon à corriger les amplitudes et les déphasages des courants traversant les inducteurs.A calculator establishes the target currents to be delivered by the inverters so that the currents of the inductors reach appropriate target values I 1 ref , I 2 ref , ..., I p ref , to inject into the part the power density profile of the reference. This computation uses the matrix of impedances Z with the vectorial functions f k and preferably the vector of the capacities of the oscillating circuits, defined previously. The comparator units ε 1 , ε 2 , ..., ε p compare the measured or calculated current parameters I 1 mes , I 2 mes , ..., I p mes , inductors to the target values I 1 ref , I 2 ref , ..., I p ref, and determine the currents deviations δI 1 corr , δI 2 corr , ..., δI p corr to be corrected, also called correction currents. CORR 1 , CORR 2 , ..., CORR p processing units, amplitude and phase parameters that these correction currents generate correction instructions sent to the modulators to control the inverters so as to correct the amplitudes and the phase shifts of the currents passing through the inductors.

Il est entendu que par le contrôle des déphasages des courants dans les inducteurs, on ne cherche pas à obtenir un déphasage nul ou constant. On cherche au contraire à utiliser les déphasages comme des paramètres de réglage en temps réel de la densité de puissance à injecter dans la pièce chauffée, ce qui est rendu possible par la prise en compte de la matrice d'impédances complète comme expliqué dans ce qui précède. En d'autres termes, on utilise les déphasages comme des paramètres de contrôle du profil de température. Par exemple, on peut prévoir de contrôler en temps réel les déphasages des courants dans les inducteurs tous les quarts de période des signaux de commande des onduleurs générés par les modulateurs, pour contrôler finement la température selon différents profils, par exemple un profil plat, ou encore un profil montant ou décroissant linéairement (polynôme d'ordre 1) ou non linéairement (polynôme d'ordre >1).It is understood that by controlling the phase shifts of the currents in the inductors, no attempt is made to obtain a zero or constant phase shift. On the contrary, it is sought to use phase shifts as real-time adjustment parameters of the power density to be injected into the heated room, which is made possible by taking into account the complete impedance matrix as explained in what follows. above. In other words, phase shifts are used as control parameters of the temperature profile. For example, it can be planned to control in time actual phase shifts of the currents in the inductors every quarter period of the control signals of the inverters generated by the modulators, to finely control the temperature according to different profiles, for example a flat profile, or a rising or falling profile linearly (polynomial d order 1) or non-linearly (order polynomial> 1).

Avantageusement, on peut déterminer une valeur initiale Zini de la matrice d'impédances Z pour une température moyenne initiale θini donnée des inducteurs et de la pièce à chauffer, puis déterminer à intervalles variables ou périodiques la matrice d'impédances modifiée Zmod (θ) pour au moins une valeur augmentée θ mod de la température moyenne θ, et on utilise la matrice d'impédances modifiée pour recalculer les courants cibles. Dans le cas d'intervalles variables d'échantillonnage, le calcul des courants cibles peut s'effectuer à chaque fois que la température moyenne θ mesurée atteint sensiblement une nouvelle valeur augmentée θ mod parmi une série de valeurs prédéterminées.Advantageously, it is possible to determine an initial value Z ini of the impedance matrix Z for an initial average temperature θ ini of the inductors and of the part to be heated, and then to determine at variable or periodic intervals the modified impedance matrix Z mod ( θ) for at least one increased value θ mod of the mean temperature θ, and the modified impedance matrix is used to recalculate the target currents. In the case of variable sampling intervals, the calculation of the target currents can be carried out each time the measured average temperature θ reaches substantially a new increased value θ mod among a series of predetermined values.

Avantageusement, l'onduleur de courant alimentant l'inducteur de plus faible impédance, par exemple la bobine Ind1 dans l'exemple de la figure 1, est choisi comme onduleur de référence puisque le courant dans cet inducteur, plus grand que celui dans les autres inducteurs, est pris préférablement comme référence de phase. L'onduleur de courant ayant le plus fort courant, ou l'onduleur de tension ayant la plus forte tension dans le cas où l'alimentation 1 des onduleurs est une source de tension comme représenté sur la figure 9, pourra être pris comme onduleur de référence. De plus, l'onduleur de référence peut être réglé avantageusement avec un rapport cyclique de 2/3, c'est à dire qu'il est commandé de façon à générer une onde carrée de 120° ON et 60° OFF par demi-période. Ceci a pour but d'annuler l'harmonique d'ordre 3 et ses multiples afin de diminuer les perturbations harmoniques créées par cet onduleur sur ces voisins. Il est entendu que le rapport cyclique de l'onduleur de référence n'est pas nécessairement réglé à la valeur 2/3. Par exemple, une commande en pleine onde pourra être préférée dans certains cas.Advantageously, the current inverter supplying the inductor of lower impedance, for example the coil Ind1 in the example of the figure 1 , is chosen as the reference inverter since the current in this inductor, larger than that in the other inductors, is preferably taken as a phase reference. The current inverter having the highest current, or the voltage inverter having the highest voltage in the case where the power supply 1 of the inverters is a voltage source as shown in FIG. figure 9 , can be taken as reference inverter. In addition, the reference inverter can be advantageously adjusted with a duty cycle of 2/3, ie it is controlled so as to generate a square wave of 120 ° ON and 60 ° OFF per half-period. . This aims to cancel the harmonic of order 3 and its multiples in order to reduce the harmonic disturbances created by this inverter on these neighbors. It is understood that the duty cycle of the reference inverter is not necessarily set to 2/3. For example, a command in full wave may be preferred in some cases.

La valeur efficace du courant dans l'onduleur de référence pourra être réglée par action sur l'alimentation 1 continue en courant ou en tension. Ceci présente l'avantage notamment d'avoir un vecteur des inconnues (cf. relation 1 précédente) dans lequel on a éliminé la phase du courant dans l'inducteur Ind1, ce qui simplifie l'obtention du vecteur optimisé x comme dans l'exemple décrit précédemment. Il est entendu qu'on peut alternativement régler la valeur efficace du courant dans l'onduleur de référence en introduisant des angles de décalage sur la commande de cet onduleur. Sur la figure 8, le courant I1 étant pris comme référence de phase, il est avantageux que l'unité comparatrice correspondante ε1 reçoive les paramètres du courant Ic mes délivré par l'alimentation continue 1. De cette façon, l'unité de traitement CORR1 associée sera adaptée pour générer des instructions de régulation envoyées à l'alimentation 1 via un modulateur de pilotage M'1, de façon à modifier le courant délivré par l'onduleur O1 au circuit oscillant OC1, ce qui permet de contrôler l'amplitude de ce courant et donc de modifier l'amplitude du courant I1 dans l'inducteur Ind1.The rms value of the current in the reference inverter can be set by action on the DC supply 1 current or voltage. This has the advantage of having a vector of unknowns (see previous relation 1) in which the phase of the current in the inductor Ind1 has been eliminated, which simplifies obtaining the optimized vector x as in the example described previously. It is understood that one can alternatively adjust the rms value of the current in the reference inverter by introducing offset angles on the control of this inverter. On the figure 8 the current I 1 being taken as a phase reference, it is advantageous that the corresponding comparator unit ε 1 receives the parameters of the current I c mes delivered by the continuous supply 1. In this way, the processing unit CORR 1 associated will be adapted to generate control instructions sent to the power supply 1 via a control modulator M'1, so as to modify the current delivered by the inverter O1 to the oscillating circuit OC1, which makes it possible to control the amplitude of the this current and therefore to change the amplitude of the current I 1 in inductor Ind1.

Pour chauffer une pièce métallique avec le dispositif de chauffage décrit ci-dessus, on utilise le procédé comprenant les étapes suivantes:

  1. a) on compare le profil de température effectif de la pièce au profil prédéterminé de température de référence, et on calcule le profil de densité de puissance de référence que le dispositif doit injecter dans la pièce pour atteindre le profil de température de référence ;
  2. b) à partir de la matrice d'impédances Z du système, préférablement associée au vecteur des capacités des circuits oscillants, et par la connaissance des fonctions images vectorielles fk , on calcule les courants cibles que doivent délivrer les onduleurs afin que les courants des inducteurs atteignent les valeurs cibles appropriées pour injecter dans la pièce le profil de densité de puissance de référence ;
  3. c) on détermine par mesure ou par calcul les courants traversant les inducteurs pour les comparer aux valeurs cibles de ces courants et déterminer les écarts de courants à corriger, et on envoie aux modulateurs les instructions de correction afin de commander les onduleurs de façon à corriger les courants.
To heat a metal part with the heating device described above, the method comprising the following steps is used:
  1. a) comparing the effective temperature profile of the workpiece with the predetermined reference temperature profile, and calculating the reference power density profile that the device is to inject into the workpiece to reach the reference temperature profile;
  2. b) from the system impedance matrix Z , preferably associated with the vector of the oscillating circuit capacitors, and by the knowledge of the vector image functions f k , the target currents to be supplied by the inverters are calculated so that the currents of the Inductors reach the appropriate target values to inject the reference power density profile into the part;
  3. c) the currents passing through the inductors are determined by measurement or by calculation to compare them with the target values of these currents and determine the currents to be corrected, and the correction instructions are sent to the modulators in order to control the inverters so as to correct the currents.

Bien entendu, les courants cibles ainsi que les courants des inducteurs mesurés ou calculés sont des vecteurs courants, par conséquent on prend en compte non seulement l'amplitude mais aussi la phase.Of course, the target currents as well as the currents of the inductors measured or calculated are current vectors, therefore one takes into account not only the amplitude but also the phase.

Avantageusement, après avoir effectué successivement les étapes (a) et (b), on effectue au moins une fois l'étape (c) pour diminuer les écarts de courants à corriger, puis on réitère au moins une fois les étapes (a), (b) et (c) en actualisant le profil de température effectif par des mesures de température en différentes zones chauffées de la pièce.Advantageously, after successively performing steps (a) and (b), step (c) is carried out at least once to reduce the differences in currents to be corrected, and then steps (a) are repeated at least once, (b) and (c) by updating the actual temperature profile by temperature measurements in different heated areas of the room.

Sur la figure 9 est représenté schématiquement un deuxième mode de réalisation d'un dispositif de chauffage par induction selon l'invention, dans lequel l'alimentation 1 des onduleurs est une source de tension continue.On the figure 9 is schematically shown a second embodiment of an induction heating device according to the invention, wherein the supply 1 of the inverters is a DC voltage source.

Le dispositif de chauffage est analogue à celui du premier mode de réalisation de la figure 8, mais les onduleurs de courant sont mis en parallèle avec la source de tension. Ce mode de réalisation présente certains avantages, notamment celui de diminuer les pertes par conduction dans les onduleurs. Par contre, le paramètre de courant Ic calc représentatif du courant que délivre l'alimentation 1 à l'onduleur O1 doit être calculé à partir de la tension d'alimentation à l'aide d'une matrice d'impédances Z'.The heating device is similar to that of the first embodiment of the figure 8 , but the current inverters are paralleled with the voltage source. This embodiment has certain advantages, in particular that of reducing conduction losses in the inverters. On the other hand, the current parameter I c calc representative of the current delivered by the power supply 1 to the inverter O1 must be calculated from the supply voltage by means of an impedance matrix Z '.

Claims (10)

  1. Induction heating method implemented in a device for heating a metal part, the device including magnetically coupled inductors (Indl, Ind2,..., Indp), each inductor being powered by a dedicated inverter (O1, O2,..., Op) associated with a capacitor (C1, C2,..., Cp) such as to form an oscillating circuit (OC1, OC2,..., OCp), said oscillating circuits having at least approximately the same resonance frequency, each inverter being controlled by a control unit (M1, M2,..., Mp) such as to vary the amplitude (A1, A2,..., Ap) and the phase (ϕ1, ϕ2,..., ϕp) of the current (I1, I2,..., Ip) passing through the corresponding inductor, the device also including means for determining said current (I1, I2,..., Ip) as well as means for determining an actual temperature profile (θ1 mes, θ2 mes, ..., θn mes) of said metal part, said method including the following steps:
    a) comparing said actual temperature profile (θ1 mes, θ2 mes, ..., θn mes) with a reference temperature profile (θ1 ref, θ2 ref, ..., θn ref) and calculating a profile of the reference power density (Dpref 1, Dpref 2,..., Dpref n) which the heating device must inject into said part in order to achieve said reference temperature profile;
    b) from a matrix of impedances (Z) determined by knowledge of the electromagnetic relationships linking said inductors with each other and with said part and by knowledge of vector image functions (fk ) representing the relationships between the current densities created by the inductors and the currents (I1, I2,..., Ip) passing through the inductors, calculating the target currents which the inverters must produce in order for the currents of the inductors to reach target values (I1 ref, I2 ref,..., Ip ref) that are suitable for injecting said reference power density profile (Dpref 1, Dpref 2,..., Dpref n, ) into said part;
    c) determining the currents (I1 mes, I2 mes,..., Ip mes) passing through the inductors in order to compare them with said target values (I1 ref, I2 ref,..., Ip ref) and to determine current deviations (θI1 corr, δI2 corr,..., δIp corr) to be corrected, and sending correction instructions to said control units (M1, M2,..., Mp) in accordance with said current deviations in order to control the inverters such as to correct the currents passing through the inductors.
  2. Heating method according to claim 1, in which the capacitances of said capacitors (C1, C2,..., Cp) are determined, and said matrix of impedances (Z) is associated with a vector (C) of the capacitances.
  3. Heating method according to claim 1 or 2, in which the initial value (Z ini ) of said matrix of impedances (Z) is determined for a given initial average temperature (θini) of said inductors and of said part, then the matrix of impedances (Z mod (θ)) modified for at least one increased value (θ mod ) of said average temperature is determined at variable or periodic intervals, and said modified matrix of impedances is used for recalculating said target values (I1 ref, I2 ref,..., Ip ref).
  4. Heating method according to any one of claims 1 to 3, in which after having successively carried out steps (a) and (b), step (c) is carried out at least once in order to reduce the current deviations (δI1 corr, δI2 corr,..., δIp corr) to be corrected, then steps (a), (b) and (c) are reiterated at least once on updating said actual temperature profile (θ1 mes, θ2 mes, ..., θn mes) with temperature measurements in different heated zones of the part.
  5. Heating method according to any one of claims 1 to 4, in which for the determination by calculation of said target values (I1 ref, I2 ref,..., Ip ref) in step (b), because of knowledge of said vector image functions (fk ), image functions (Dp(r,x)) of the power densities are calculated according to the spatial characteristics (r) of the zones of the part into which said power densities are injected, and an optimized vector (x) of the target currents to be determined is calculated by minimizing the difference between each of said image functions of the power densities (Dp(r,x)) and a reference power density function (Dpref(r)) corresponding to said reference power density profile (Dpref 1, Dpref 2,..., Dpref n,).
  6. Heating method according to any one of claims 1 to 5, in which an inverter (O1) having, in comparison with the other inverters (O2,..., Op), the highest current in the case of a current inverter or the highest voltage in the case of a voltage inverter is chosen as the reference inverter and shift angles are introduced in the controls of the other inverters with respect to a control angle of the reference inverter.
  7. Heating method according to claim 6, in which the reference inverter (O1) is adjusted with a duty cycle equal to 2/3, in order to reduce the harmonic interference created by this inverter on its neighbours (O2,..., Op).
  8. Heating method according to claim 6 or 7, in which the RMS value of the current in said reference inverter (O1) is adjusted by acting on a DC power supply (1) which powers the inverters (O1, O2,..., Op).
  9. Induction heating device comprising:
    magnetically coupled inductors (Ind1, Ind2,..., Indp), each inductor being associated with a capacitor (C1, C2,..., Cp) in order to form an oscillating circuit (OC1, OC2,..., OCp), said oscillating circuits having at least approximately the same resonance frequency;
    inverters (O1, O2,..., Op), each powering a dedicated inductor (Ind1, Ind2,..., Indp), each inverter being controlled by a control unit (M1, M2,..., Mp) in such a way as to vary the amplitude (A1, A2,..., Ap) and the phase (ϕ1, ϕ2,..., ϕp) of the current (I1, I2,..., Ip) passing through the corresponding inductor;
    characterized in that it comprises moreover:
    means of determination of the currents (I1, I2,..., Ip) passing through the inductors as well as means of determination of an actual temperature profile (θ1 mes, θ2 mes, ..., θn mes) of a metal part heated by the device;
    means of comparison of said actual temperature profile (θ1 mes, θ2 mes, ..., θn mes) with respect to a reference temperature profile (θ1 ref, θ2 ref, ..., θn ref);
    means of calculating a reference power density profile (Dpref 1, Dpref 2,..., Dpref n) that the heating device must inject into said part in order to achieve said reference temperature profile;
    means of calculating, based on knowledge of a matrix of the impedances (Z), target currents that the inverters must deliver in order that the inductor currents reach appropriate target values (I1 ref, I2 ref,..., Ip ref) for injecting said reference power density profile (Dpref 1, Dpref 2,..., Dpref n, ) into said part;
    means of comparison (ε1, ε2,..., εp) of the currents (I1 mes, I2 mes,..., Ip mes) passing through the inductors with respect to said target values (I1 ref, I2 ref,..., Ip ref), capable of determining current deviations (δI1 corr, δI2 corr,..., δIp corr) to be corrected, and means of processing (CORR1, CORR2,..., CORRp) said current deviations capable of generating correction instructions sent to said control units (M1, M2,..., Mp) for controlling the inverters in such a way as to correct the currents passing through the inductors.
  10. Induction heating device according to claim 9, in which the inverters (O1, O2,..., Op) are powered by the same current source or voltage source power supply (1), and in which said means of comparison of said determined currents (I1 mes, I2 mes,..., Ip mes) passing through the inductors include comparator units (ε1, ε2,..., εp) each receiving determined parameters (A1, ϕ1; A2, ϕ2;...; Ap , ϕp) of a current (I1 mes, I2 mes,..., Ip mes) passing through an inductor and parameters of the corresponding target values (I1 ref, I2 ref,..., Ip ref) and each being connected to a unit (CORR1, CORR2,..., CORRp) for processing said current deviations, one (ε1) of said comparator units furthermore receiving parameters (Ic mes, Ic calc) representative of what said power supply (1) delivers and its associated processing unit (CORR1) being adapted to generate regulation instructions sent to said power supply (1) in order to modify the current or the voltage that it delivers.
EP10785478.8A 2009-10-19 2010-10-19 Process for induction heating used used in a device incorporating magnetically coupled inductors Not-in-force EP2491760B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL10785478T PL2491760T3 (en) 2009-10-19 2010-10-19 Process for induction heating used used in a device incorporating magnetically coupled inductors
SI201030916T SI2491760T1 (en) 2009-10-19 2010-10-19 Process for induction heating used used in a device incorporating magnetically coupled inductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957321A FR2951606B1 (en) 2009-10-19 2009-10-19 INDUCTION HEATING METHOD IN A DEVICE COMPRISING MAGNETICALLY COUPLED INDUCTORS
PCT/FR2010/052216 WO2011048316A1 (en) 2009-10-19 2010-10-19 Induction heating method implemented in a device including magnetically coupled inductors

Publications (2)

Publication Number Publication Date
EP2491760A1 EP2491760A1 (en) 2012-08-29
EP2491760B1 true EP2491760B1 (en) 2015-01-21

Family

ID=42244089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10785478.8A Not-in-force EP2491760B1 (en) 2009-10-19 2010-10-19 Process for induction heating used used in a device incorporating magnetically coupled inductors

Country Status (15)

Country Link
US (1) US9398643B2 (en)
EP (1) EP2491760B1 (en)
JP (1) JP5553904B2 (en)
KR (1) KR101480984B1 (en)
CN (1) CN102668692B (en)
AU (1) AU2010309618B2 (en)
BR (1) BR112012009125A2 (en)
CA (1) CA2778379C (en)
ES (1) ES2535092T3 (en)
FR (1) FR2951606B1 (en)
IN (1) IN2012DN03410A (en)
PL (1) PL2491760T3 (en)
RU (1) RU2525851C2 (en)
SI (1) SI2491760T1 (en)
WO (1) WO2011048316A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071653B2 (en) * 2013-03-06 2017-02-01 トクデン株式会社 Induction heating device
DE102013008068A1 (en) * 2013-05-10 2014-11-13 Oerlikon Textile Gmbh & Co. Kg Method and device for determining a surface temperature of an inductively heated roll shell
FR3046018B1 (en) * 2015-12-18 2018-01-26 Electricite De France INDUCTION HEATING OPTIMIZATION METHOD
EP3446543B1 (en) * 2016-04-18 2023-05-10 Alps South Europe s.r.o Induction heater and dispenser
US11877375B2 (en) * 2016-07-06 2024-01-16 AMF Lifesystems, LLC Generating strong magnetic fields at low radio frequencies in larger volumes
CN108920858B (en) * 2018-07-19 2024-01-23 成都巴莫科技有限责任公司 Method for predicting service life of roller kiln heating rod
CN110208794B (en) * 2019-04-30 2021-01-12 北京敏视达雷达有限公司 Differential propagation phase shift correction circuit and dual-polarization radar
DE102020105222A1 (en) 2020-02-27 2021-09-02 BST Induktion GmbH Induction system; Method for operating an induction system
JP1682810S (en) * 2020-08-11 2023-03-28 rectifier
JP1682812S (en) * 2020-08-11 2021-04-05 rectifier
JP1682811S (en) * 2020-08-11 2021-04-05 rectifier
JP1682813S (en) * 2020-08-11 2021-04-05 rectifier

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2811623A (en) * 1956-03-29 1957-10-29 Loftus Engineering Corp Method of heating metal billets by low frequency electrical power
US3057985A (en) * 1959-01-20 1962-10-09 Paul P Biringer Method and system for dual frequency heating having a single frequency power source
US3209114A (en) * 1962-08-01 1965-09-28 Ohio Crankshaft Co Variable inductance device for control of power in an induction heating apparatus
US3792286A (en) * 1971-10-12 1974-02-12 Reliance Electric Co Combining inverters for harmonic reduction
JPS57123917A (en) * 1981-01-22 1982-08-02 Dai Ichi High Frequency Co Ltd Induction heating method for metallic bar material having different wall thickness
US4506131A (en) * 1983-08-29 1985-03-19 Inductotherm Industries Inc. Multiple zone induction coil power control apparatus and method
US4600823A (en) * 1984-01-31 1986-07-15 Sanyo Electric Co., Ltd. Induction heating apparatus having adjustable heat output
JPH0694078B2 (en) * 1986-10-18 1994-11-24 ミヤチテクノス株式会社 Resistance welder
GB2269465A (en) * 1992-08-06 1994-02-09 Inductotherm Europ Induction heating
JP3724857B2 (en) * 1995-09-18 2005-12-07 株式会社瀬田技研 Temperature control device and start method for electromagnetic induction heating device
US6121592A (en) * 1998-11-05 2000-09-19 Inductotherm Corp. Induction heating device and process for the controlled heating of a non-electrically conductive material
JP2001175338A (en) * 1999-12-17 2001-06-29 World Seiki:Kk Temperature control method and oven
RU2214072C2 (en) * 2001-07-16 2003-10-10 Общество с ограниченной ответственностью "Магнит" Induction heating device affording desired temperature profile
EP1280381A3 (en) * 2001-07-25 2005-12-21 I. A. S. Induktions- Anlagen + Service GmbH & Co. KG Inductive heating device and process of billets with a billets heating coil
RU2240659C2 (en) * 2002-09-23 2004-11-20 Общество с ограниченной ответственностью (ООО) "Магнит" Sectionalized-inductor inductive heating device (alternatives)
JP4358701B2 (en) 2004-07-30 2009-11-04 三菱電機株式会社 Induction heating device
JP4406588B2 (en) 2004-08-27 2010-01-27 三井造船株式会社 Induction heating method and induction heating apparatus
BRPI0518867B1 (en) * 2004-12-08 2018-05-08 Inductotherm Corp apparatus for heating or melting by electric induction of an electrically conductive material, and method of controlling heating or melting by electric induction of an electrically conductive material
US7582851B2 (en) * 2005-06-01 2009-09-01 Inductotherm Corp. Gradient induction heating of a workpiece
US9040882B2 (en) * 2007-09-12 2015-05-26 Inductotherm Corp. Electric induction heating of a rail head with non-uniform longitudinal temperature distribution
ES2335256B1 (en) * 2008-01-14 2011-01-17 Bsh Electrodomesticos España, S.A. INDUCTION COOKING FIELD WITH A PLURALITY OF INDUCTION HEATING BODIES.
CN101462348B (en) * 2008-10-27 2010-12-29 黄旭峰 Electromagnetic heating system of injection mould machine
CN103262648B (en) * 2010-12-03 2015-06-10 三井造船株式会社 Induction heating device and control method thereof
JP4886080B1 (en) * 2011-03-23 2012-02-29 三井造船株式会社 Induction heating apparatus, induction heating apparatus control method, and control program

Also Published As

Publication number Publication date
AU2010309618A1 (en) 2012-05-17
RU2012120692A (en) 2013-11-27
KR101480984B1 (en) 2015-01-14
EP2491760A1 (en) 2012-08-29
CN102668692A (en) 2012-09-12
PL2491760T3 (en) 2015-07-31
FR2951606A1 (en) 2011-04-22
US9398643B2 (en) 2016-07-19
WO2011048316A1 (en) 2011-04-28
US20120199579A1 (en) 2012-08-09
SI2491760T1 (en) 2015-07-31
JP2013508908A (en) 2013-03-07
RU2525851C2 (en) 2014-08-20
AU2010309618B2 (en) 2014-03-20
CA2778379C (en) 2017-09-05
BR112012009125A2 (en) 2017-06-20
CA2778379A1 (en) 2011-04-28
JP5553904B2 (en) 2014-07-23
IN2012DN03410A (en) 2015-10-23
KR20120083475A (en) 2012-07-25
FR2951606B1 (en) 2012-01-06
CN102668692B (en) 2014-10-29
ES2535092T3 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
EP2491760B1 (en) Process for induction heating used used in a device incorporating magnetically coupled inductors
EP2572446B1 (en) Method of automatic regulation of an electrical machine's resolver
EP2572447A1 (en) Equipment and method for measuring the offset angle of a resolver in a synchronous electric machine
EP2673875A2 (en) Method and device for controlling a reluctance electric machine
FR3006125A1 (en) METHOD AND SYSTEM FOR DETERMINING INTERNAL TEMPERATURES OF A SYNCHRONOUS ELECTRIC MACHINE USING STATE OBSERVERS
CN109765210B (en) Raman spectrum method and device for measuring time-space temperature distribution and temperature phase distribution
CN106457310B (en) The control method of driving device and driving device
EP0070232A1 (en) Method and arrangement for the homogeneous heating with transverse flux electromagnetic induction of flat, conductive and amagnetic products
WO2013140059A1 (en) Method for the contactless charging of a battery of an electric motor vehicle
CN109671645B (en) Process control method and process control system for manufacturing semiconductor device
EP1070384B1 (en) Method and device for controlling a static converter powering an electrical source
EP3221958A1 (en) Method for controlling a synchronous electric machine with a wound rotor
FR2989171A1 (en) METHOD AND DEVICE FOR MEASURING A MAGNETIC FIELD AND THE TEMPERATURE OF A MAGNETO-RESISTIVE TRANSDUCER
EP3329768A1 (en) Apparatus, systems and methods for generating voltage excitation waveforms
WO2017103231A1 (en) Method for optimising induction heating
EP3414578B1 (en) Device for measuring an electrical quantity of one phase of an ac electric current of an overhead electrical network
Ramu et al. An electrical probe of the phonon mean-free path spectrum
Glotova et al. Recording 2-D Nutation NQR Spectra by Random Sampling Method
Jingzhuo et al. Dynamic Takagi‐Sugeno Model for the Control of Ultrasonic Motor
Tran et al. A fluid model of pulsed direct current planar magnetron discharge
EP0469267B1 (en) Method and device for continuous thickness measurement of a coating
JP5642438B2 (en) Capacitance measuring apparatus and capacitance measuring method
Jiang et al. Formulization of long-time domain switching around the coercive field from imprint measurements on ferroelectric thin films
FR3021821A1 (en) CONTROL OF THE ELECTROMAGNETIC TORQUE OF A VARIABLE SWITCHED RELUCTANCE MACHINE
JP2009278762A (en) Motor control device, and control method of motor control device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140904

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010022006

Country of ref document: DE

Effective date: 20150305

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 709625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2535092

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150505

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150421

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 18577

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010022006

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151022

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101019

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170925

Year of fee payment: 8

Ref country code: SK

Payment date: 20170922

Year of fee payment: 8

Ref country code: FI

Payment date: 20170925

Year of fee payment: 8

Ref country code: RO

Payment date: 20170926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170918

Year of fee payment: 8

Ref country code: LU

Payment date: 20170919

Year of fee payment: 8

Ref country code: PL

Payment date: 20170922

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20171010

Year of fee payment: 8

Ref country code: FR

Payment date: 20171027

Year of fee payment: 8

Ref country code: DE

Payment date: 20171010

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171016

Year of fee payment: 8

Ref country code: SE

Payment date: 20171017

Year of fee payment: 8

Ref country code: IT

Payment date: 20171013

Year of fee payment: 8

Ref country code: BG

Payment date: 20171002

Year of fee payment: 8

Ref country code: AT

Payment date: 20170925

Year of fee payment: 8

Ref country code: BE

Payment date: 20171025

Year of fee payment: 8

Ref country code: SI

Payment date: 20170922

Year of fee payment: 8

Ref country code: ES

Payment date: 20171121

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010022006

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 709625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181019

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 18577

Country of ref document: SK

Effective date: 20181019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019