EP2478219A1 - Propulseur plasmique a effet hall - Google Patents

Propulseur plasmique a effet hall

Info

Publication number
EP2478219A1
EP2478219A1 EP10770585A EP10770585A EP2478219A1 EP 2478219 A1 EP2478219 A1 EP 2478219A1 EP 10770585 A EP10770585 A EP 10770585A EP 10770585 A EP10770585 A EP 10770585A EP 2478219 A1 EP2478219 A1 EP 2478219A1
Authority
EP
European Patent Office
Prior art keywords
chamber
distributor
wall
channel
plasma thruster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10770585A
Other languages
German (de)
English (en)
Other versions
EP2478219B1 (fr
Inventor
Frédéric MARCHANDISE
Jean-Luc Pattyn
Laurent Godard
Dominique Indersie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2478219A1 publication Critical patent/EP2478219A1/fr
Application granted granted Critical
Publication of EP2478219B1 publication Critical patent/EP2478219B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Definitions

  • the invention relates to a Hall effect plasma thruster comprising an annular discharge channel (forming a main channel of ionization and acceleration) around a main axis having an open downstream end and which is delimited between a wall internal and an outer wall, at least one cathode, a magnetic circuit for creating a magnetic field in said channel, a pipe for supplying ionizable gas to the channel, an anode and a distributor placed in the upstream end of the channel, said distributor being connected to the pipe and allowing the ionizable gas to flow into the ionization zone of the channel concentrically around the main axis.
  • This type of engine is still called plasma engine drift closed electron or stationary plasma engines.
  • the invention particularly relates to Hall effect plasma thrusters used for space electric propulsion, in particular for the propulsion of satellites, such as geostationary telecommunication satellites. Thanks to their high specific impulse (from 1500 to 6000s), they allow considerable weight savings on satellites compared to engines using chemical propulsion.
  • This type of engine is also used in interplanetary primary propulsion, low orbit drag compensation, sun-synchronous orbit retention, orbit transfer and end-of-life de-orbiting. It can be used occasionally, possibly by combining electric and chemical propulsion, to avoid a collision with debris or to compensate for a failure when placed in a transfer orbit.
  • FIG. 1 the hall effect thruster 10 is shown schematically.
  • a central magnetic coil 12 surrounds a central core 14 extending along the main longitudinal axis A.
  • An annular inner wall 16 encircles the central coil 12.
  • This inner wall 16 is surrounded by an annular outer wall 18, the inner wall 16 and the outer wall 18 delimiting between them the annular discharge channel 20 extending around the main axis A.
  • the term “internal” designates a part close to the main axis A while the term “external” designates a part remote from the main axis A.
  • ⁇ "upstream” and “downstream” are defined with respect to the normal flow direction of the gas (from upstream to downstream) through the discharge channel 20.
  • the inner wall 16 and the outer wall 18 form part of a single ceramic part 19, this ceramic being insulating and homogeneous, in particular made of boron nitride and silica (BNSiO 2 ).
  • Boron nitride ceramics allow Hall effect thrusters to achieve high performance in terms of efficiency, but nevertheless exhibit high erosion rates under ion bombardment, which limits the life of thrusters.
  • the upstream end 20a of the discharge channel 20 (on the left in FIG. 1) is closed by an injection system 22 composed of a duct 24 for supplying the ionizable gas (generally xenon), the line 24 being connected by a feed hole 25 to an anode 26 serving as a distributor for the injection of the gas molecules into the discharge channel 20.
  • the gas molecules pass a tubular path from of the pipe 24 to an injection according to an annular section in the upstream end 20a of the discharge channel 20 which belongs to the ionization zone 28.
  • the downstream end 20b of the discharge channel 20 is open (on the right in FIG. 1).
  • peripheral magnetic coils 30 having an axis parallel to the main axis A are arranged all around the outer wall 18.
  • the central magnetic coil 12 and the peripheral magnetic coils 30 make it possible to generate a radial magnetic field B whose intensity is maximum at the downstream end 20b of the discharge channel 20.
  • a hollow cathode 40 is disposed outside the peripheral windings 30, its output being oriented in order to eject electrons in the direction of the main axis A and the zone situated downstream of the downstream end 20b of the discharge channel. 20.
  • a potential difference is established between the cathode 40 and the anode 26.
  • the electrons thus ejected are partly directed inside the discharge channel 20. Some of these electrons reach, under the influence of the electric field generated between the cathode 40 and the anode 26, to the anode 26 while the majority of them is trapped by the intense magnetic field B near the downstream end 20b of the discharge channel 20.
  • these electrons present in the discharge channel 20 create an axial electric field E, which accelerates the ions between the anode 26 and the outlet (the downstream end 20b) of the discharge channel 20, so that these Ions are ejected at high speed from the discharge channel 20, which causes the propulsion of the engine.
  • the trajectory of the ions is not parallel to the main axis A of the thruster corresponding to the direction of thrust, but it undergoes angular deflection.
  • the angle formed between the ion jet (path 44 in Figures 2 to 4) and the main axis A is of the order of 6 °.
  • FIGS. 3 and 4 show the deflection of the trajectory 44 of the ions from a circle 46 centered in the discharge channel 20. This angular deflection of the trajectory of the ions tends to deform the desired laminar displacement into a slightly swirling centered motion. around the main axis A.
  • This deflection is partly responsible for the divergence observed on the current Hall effect plasma thrusters.
  • the deflection of the ionized gas by the radial magnetic field B generates a parasitic mechanical torque in the search for obtaining the optimal thrust of the thruster.
  • the present invention aims to provide a Hall effect plasma thruster to overcome the disadvantages of the prior art and in particular offering the ability to control, by modifying, the angular deflection or deflection created on the ions by the magnetic field radial outlet of the discharge channel 20.
  • the present invention aims to compensate in whole or part or to accentuate this deflection.
  • total compensation of the deflection would to cancel the radial component of the movement of the ions at the outlet of the discharge channel.
  • the Hall effect plasma thruster is characterized in that the anode serves as a distributor and in that the distributor comprises directional means which generate at the outlet of the distributor a vortex movement of the gas around the main axis.
  • the swirling motion of the gas molecules generated at the outlet of the distributor is capable of compensating for the angular deviation of the ion trajectory generated by the radial magnetic field at the end. downstream of the discharge channel.
  • a swirling motion is created at the upstream end of the discharge channel, which is superimposed on that generated by the radial magnetic field at the downstream end of the discharge channel.
  • the mechanical torque generated by the angular velocity of the neutral gas due to the presence of the directional means allows to take into account the deflection suffered by the ions due to the radial magnetic field present at the downstream end of the discharge channel.
  • the directional means comprise a series of exhaust ports opening at the outlet of the anode near the ionization zone of the channel forming, in projection in a plane transverse to said main axis, a first non-zero angle ⁇ with the radial direction so as to orient the flow of gas according to said swirling motion.
  • each jet of gas leaving the distributor has a trajectory with a tangential component orthogonal to the radial direction, whereby the set of gas jets coming out of the anode creates a mechanical torque capable of adding to or opposing the mechanical torque generated at the downstream end of the discharge channel by the ions undergoing the angular deflection induced by the radial magnetic field.
  • the first angle ⁇ formed between the projection in a plane transverse to said main axis of the outlet of the exhaust orifices and the radial direction is between 20 and 70 °, advantageously between 35 and 55 °, and is particularly equal to 45 °.
  • FIG. 1, already described, is a schematic sectional view of a Hall effect plasma thruster of the prior art
  • FIG. 2, already described, represents detail II of FIG. 1;
  • FIG. 3, already described, is a perspective view in longitudinal section of the discharge channel showing the angular deviation of the trajectory of the gas in the case a plasma thruster of the prior art,
  • FIG. 4 is a view in section from the direction IV of FIG. 3,
  • FIG. 5 is a perspective view in longitudinal section of the discharge channel of a Hall effect plasma thruster according to the invention.
  • FIG. 6 represents in perspective and in cross-section the anode of the Hall effect plasma thruster according to the invention
  • FIG. 7 is an enlarged sectional view of the radial section of the anode of FIG. 4;
  • FIGS. 8 to 11 illustrate the anode of FIG. 7, in cross section respectively along the directions VIII-VIII, IX-IX, X-X and XI-XI of FIG. 7,
  • FIG. 12 is a view similar to that of FIG. 7 for a first embodiment of the anode.
  • Figure 13 is a view similar to that of Figure 7 for a second embodiment of the anode.
  • the anode 50 of the invention also constitutes the distributor and for this purpose delimits, with the inner wall 16 and the outer wall 18 of the ceramic part 19, downstream upstream, an annular discharge chamber 52 opening into the ionization zone 28 of the channel 20 and an annular intermediate chamber 54 of which at least one portion is concentrically disposed with respect to the discharge chamber 52.
  • Exhaust ports 53 connect said intermediate chamber 54 to said discharge chamber 52.
  • These exhaust ports 53 are preferably rectilinear. By the first non-zero angle ⁇ formed (see Figure 9) between the radial direction and the transverse projection of these exhaust ports 53, is generated at the outlet of the anode a swirling motion.
  • the anode 50 forming the distributor comprises at least four exhaust ports 53 angularly distributed regularly around the main axis A.
  • sixteen exhaust orifices 53 are distributed regularly around the main axis A in a circular symmetry (see FIG. 9). This non-purely radial injection of the gas at the outlet of the anode generates a mechanical torque which will be added to or compensate (in the case of FIG. 9) the mechanical torque generated at the downstream end of the discharge channel by the ions undergoing the angular deviation induced by the radial magnetic field B.
  • the exhaust ports 53 of the illustrated embodiment are rectilinear and parallel to a transverse plane orthogonal to the main axis A, forming in this transverse plane a first angle ⁇ of 45 ° with the radial direction.
  • Other variants are of course possible, both at the level of the first angle ⁇ (between 0 and 90 °), and the possible inclination with respect to a transverse plane (in certain cases, the plane of the plane).
  • injection is non-orthogonal to the thrust axis or main axis A).
  • the anode 50 forming the distributor delimits further (see FIGS. 5, 6 and 7), with the inner and outer walls 16 and 18 of the component. ceramic 19, upstream of the intermediate chamber 54, an annular distribution chamber 56 connected on the one hand to the pipe 24 and on the other hand to the intermediate chamber 54 by a series of flow orifices 55.
  • the flow orifices 55 form, at their outlet, in projection in a plane transverse to said main axis A, a second angle ⁇ which is not zero with the radial direction so as to orient the gas flow in a swirling motion.
  • the second angle ⁇ formed between the projection in a plane transverse to said main axis A of the outlet of the flow orifices 55 and the radial direction, is between 20 and 70 °, advantageously between 35 and 55 °, and is in particular equal to 45 °.
  • this second angle ⁇ is oriented opposite the first angle ⁇ with respect to the radial direction (in FIGS. 7, 9 and 10, the first angle ⁇ is + 45 ° while the second angle ⁇ is -45 °).
  • These flow orifices 55 are preferably rectilinear.
  • the anode 50 forming the distributor comprises at least two flow orifices 55 angularly distributed regularly around the main axis A.
  • the flow orifices 55 of the illustrated embodiment are rectilinear and parallel to a transverse plane, forming in this transverse plane a second angle ⁇ of 45 ° with the radial direction.
  • Other variants are of course possible, whether at the level of the second angle ⁇ (between 0 and 90 °), only on the possible inclination with respect to a transverse plane of the flow orifices 55.
  • the exhaust ports 53 are oriented such that they allow the exit of the ionizable gas towards the inner wall 16 (see FIG. Figure 9).
  • Such a configuration makes it possible to compensate in whole or in part for the angular deflection of the ions due to the radial magnetic field B and which is visible in FIGS. 2 to 4. If the orientation of the radial magnetic field B is opposite to that of FIGS. 1 to 4 the situation would be modified and there would be an accentuation of the angular deflection of the ions due to this magnetic field.
  • the impacts on the outer wall 18 of the molecules or ions of gas have a specularity sufficient for the gas arriving in the ionization zone 28 to have a significant residual swirling speed. of the order of that provided by the temperature difference between the inner wall 16 and the outer wall 18 of ceramic.
  • the residual swirling speed mentioned above can also be added to or compensate for the swirling speed due to the temperature difference between the inner wall 16 and the outer wall 18.
  • this physical effect The result of the difference in temperature is only a second order phenomenon with respect to the main phenomenon relating to the compensation of the circumferential deviation of ions and molecules by the magnetic field.
  • the thruster 10 comprises in the upstream portion of the discharge channel 20, from upstream to downstream, an annular distribution chamber 56 connected to the line 24 and delimited between the anode 50 forming the distributor and the inner wall 16, an annular intermediate chamber 54 delimited between the anode 50 forming the distributor and the outer wall 18, and an annular discharge chamber 52 delimited between the anode 50 forming the distributor and the inner wall 18 and opening into the ionization zone 28 of the channel 20.
  • said discharge chamber 52 and the distribution chamber 56 are superimposed, the intermediate chamber 54 surrounds the distribution chamber 56 and the discharge chamber 52.
  • a series of flow ports 55 connect the distribution chamber 56 to the intermediate chamber 54
  • a series of exhaust ports 53 connect said intermediate chamber 54 to said discharge chamber 52.
  • the intermediate chamber 54 constitutes an outer chamber.
  • the distribution chamber 56 is fed only by a single orifice (the feed hole 25), pressures and speeds are not uniform. Thus, by its volume and the fact that it is fed by a plurality of flow orifices 55 (four flow orifices 55 in the embodiment shown), the intermediate chamber 54 sees the pressure and the circumferential speed. gas distributed more evenly and thus serves as a chamber of tranquilization.
  • the anode 50 has a modified form.
  • the thruster 10 comprises in the upstream portion of the discharge channel 20, from upstream to downstream, an annular distribution chamber 56 connected to the pipe 24 and delimited between the anode 50 forming the distributor and the inner wall 16 an annular intermediate chamber 54 delimited between the anode 50 forming the distributor and the outer wall 18, and an annular discharge chamber 52 delimited between the anode 50 forming the distributor and the inner wall 16 and opening into the ionization zone 28 of the channel 20.
  • the intermediate chamber 54 surrounds the discharge chamber 52, said discharge chamber 52 and the distribution chamber 56 are superimposed, said intermediate chamber 54 and the distribution chamber 56 are superimposed.
  • a series of flow orifices 55 connect the distribution chamber 56 to the intermediate chamber 54 and a series of exhaust ports 53 connect said intermediate chamber 54 to said discharge chamber 52 by forming, in projection in a plane transverse to said main axis A, a first non-zero angle ⁇ with the radial direction so as to orient the flow of gas according to said swirling motion.
  • the discharge chamber 52 is an internal chamber and the intermediate chamber 54 constitutes an outer chamber, while the distribution chamber 56 forms a chamber extending substantially over the entire section of the discharge channel 20.
  • the anode 50 has another modified form.
  • the thruster 10 comprises in the upstream portion of the discharge channel 20, from upstream to downstream, an annular distribution chamber 56 connected to the pipe 24 and delimited between the anode 50 forming the distributor and the outer wall 18 an annular intermediate chamber 54 delimited between the anode 50 forming the distributor and the inner wall 16, and an annular discharge chamber 52 delimited between the anode 50 forming the distributor and the outer wall 18 and opening into the ionization zone
  • said distribution chamber 56 and the discharge chamber 52 are superimposed, the intermediate chamber 54 surrounds the distribution chamber 56 and the discharge chamber 52.
  • a series of flow orifices 55 connect the distribution chamber 56 to the intermediate chamber 54 and a series of exhaust ports 53 connect said intermediate chamber 54 to said discharge chamber 52 forming, in projecti in a plane transverse to said main axis A, a first non-zero angle ⁇ with the radial direction so as to orient the flow of gas according to said swirling motion.
  • the distribution chamber 56 and the discharge chamber 52 form internal chambers and the intermediate chamber 54 constitutes an outer chamber.
  • the exhaust ports 53 allow the exit of the ionizable gas towards the outer wall 18, with a swirling motion.
  • a wall of the anode 50 extends radially above the outlet of the exhaust ports 53 to form a protective wall 58 which prevents, or at least limit, the presence of ions and / or electrons near the outlet of the exhaust ports 53.
  • the exhaust ports 53 are protected from clogging by the eroded material (the ceramic) coming from the inner wall 16 and the outer wall 18.
  • the anode 50 and the distributor are merged. These two functions are then filled by the same part or group of parts.
  • the anode 50 is essentially made of carbon, which facilitates its mounting at the bottom of the discharge channel 20. It is also possible to make the anode 50 in several parts assembled between it.
  • the inner wall 16 and the outer wall 18 are made of ceramic and are sealed with the anode 50.
  • the ceramic part 19 is made of boron nitride and silica (BNSiO 2 ).
  • the anode and the dispenser have been illustrated as forming one and the same piece (reference numeral 26 in FIGS. 1 to 4 and reference numeral 50 in FIGS. Figures 5 to 13): it should be noted, however, that one could separate the two functions by two pieces or two independent sets without departing from the scope of the present invention.
  • the anode and the distributor are placed at the bottom of the discharge channel, the distributor being connected to the gas supply pipe and the anode being connected to a current source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

L'invention concerne un propulseur plasmique à effet HaII comprenant un canal de décharge annulaire autour d'un axe principal présentant une extrémité aval ouverte et qui est délimité entre une paroi interne et une paroi externe, au moins une cathode, un circuit magnétique de création d'un champ magnétique dans ledit canal, une canalisation pour alimenter en gaz ionisable Ie canal, une anode et un distributeur placés dans l'extrémité amont du canal, ledit distributeur permettant au gaz ionîsable de s'écouler dans la zone d'ionisation du canal de façon concentrique autour de l'axe principal. De façon caractéristique, l'anode sert de distributeur et le distributeur comporte des moyens directionnels qui engendrent à la sortie de l'anode un mouvement tourbillonnaire du gaz autour de l'axe principal.

Description

Propulseur plasmique à effet Hall
L'invention concerne un moteur du type propulseur plasmique à effet Hall comprenant un canal de décharge annulaire (formant un canal principal d'ionisation et d'accélération) autour d'un axe principal présentant une extrémité aval ouverte et qui est délimité entre une paroi interne et une paroi externe, au moins une cathode, un circuit magnétique de création d'un champ magnétique dans ledit canal, une canalisation pour alimenter en gaz ionisable le canal, une anode et un distributeur placés dans l'extrémité amont du canal, ledit distributeur étant relié à la canalisation et permettant au gaz ionisable de s'écouler dans la zone d'ionisation du canal de façon concentrique autour de l'axe principal.
Ce type de moteur est encore appelé moteur à plasma à dérive fermée d'électrons ou moteurs à plasma stationnaire.
L'invention concerne en particulier les propulseurs à plasma à effet Hall utilisés pour la propulsion électrique spatiale, en particulier pour la propulsion de satellites, tels que des satellites géostationnaires de télécommunication. Grâce à leur haute impulsion spécifique (de 1500 à 6000s), ils permettent des gains de masse considérables sur les satellites par rapport à des moteurs utilisant la propulsion chimique.
L'une des applications typique de ce type de moteur correspond au contrôle nord/sud des satellites géostationnaires, pour lesquels on obtient des gains de masse de 10 à 15%. Ce type de moteur est également utilisé en propulsion primaire interplanétaire, en compensation de traînée d'orbite basse, en maintien d'orbite héliosynchrone, en transfert d'orbites et en désorbitation de fin de vie. Il peut être utilisé occasionnellement, éventuellement en combinant propulsion électrique et chimique, pour éviter une collision avec un débris ou pour compenser une défaillance lors de la mise sur une orbite de transfert.
Les figures 1 à 4 se rapportent à un propulseur à effet Hall 10 de l'art antérieur. Sur la figure 1, le propulseur à effet hall 10 est représenté de façon schématique. Un bobinage magnétique central 12 entoure un noyau central 14 s'étendant selon l'axe principal longitudinal A. Une paroi interne 16 annulaire encercle le bobinage central 12. Cette paroi interne 16 est entourée par une paroi externe annulaire 18, la paroi interne 16 et la paroi externe 18 délimitant entre elles le canal de décharge annulaire 20 s'étendant autour de l'axe principal A. Dans la suite de la description, le terme « interne » désigne une partie proche de l'axe principal A tandis que le terme « externe » désigne une partie éloignée de l'axe principal A. Egalement, Γ « amont » et « aval » sont définis par rapport au sens d'écoulement normal du gaz (de l'amont vers l'aval) à travers le canal de décharge 20.
Habituellement, la paroi interne 16 et la paroi externe 18 font partie d'une unique pièce en céramique 19, cette céramique étant isolante et homogène, notamment réalisée à base de nitrure de bore et de silice (BNSi02). Les céramiques à base de nitrure de bore permettent aux propulseurs à effet Hall d'atteindre des performances élevées en termes de rendement, mais présentent toutefois des taux d'érosion élevée sous bombardement ionique, ce qui limite la durée de vie des propulseurs.
L'extrémité amont 20a du canal de décharge 20 (à gauche sur la figure 1) est refermée par un système d'injection 22 composé d'une canalisation 24 d'amenée du gaz ionisable (en général du xénon), la canalisation 24 étant reliée par un trou d'alimentation 25 à une anode 26 servant de distributeur pour l'injection des molécules de gaz dans le canal de décharge 20. Au niveau de l'anode 26, les molécules de gaz passe d'un parcours tubulaire en provenance de la canalisation 24 à une injection selon une section annulaire dans l'extrémité amont 20a du canal de décharge 20 qui appartient à la zone d'ionisation 28.
L'extrémité aval 20b du canal de décharge 20 est ouverte (à droite sur la figure 1).
Plusieurs bobinages magnétiques périphériques 30 présentant un axe parallèle à l'axe principal A sont disposés tout autour de la paroi externe 18. Le bobinage magnétique central 12 et les bobinages magnétiques périphériques 30 permettent de générer un champ magnétique radial B dont l'intensité est maximale au niveau de l'extrémité aval 20b du canal de décharge 20.
Une cathode creuse 40 est disposée à l'extérieur des bobinages périphériques 30, sa sortie étant orientée afin d'éjecter des électrons en direction de l'axe principal A et de la zone située en aval de l'extrémité aval 20b du canal de décharge 20. Il est établi une différence de potentiel entre la cathode 40 et l'anode 26.
Les électrons ainsi éjectés sont en partie dirigés à l'intérieur du canal de décharge 20. Certains de ces électrons parviennent, sous l'influence du champ électrique généré entre la cathode 40 et l'anode 26, jusqu'à l'anode 26 tandis que la majorité d'entre eux se retrouve piégés par le champ magnétique B intense au voisinage de l'extrémité aval 20b du canal de décharge 20.
Ces électrons entrant en collision avec des molécules de gaz circulant de l'amont vers l'aval dans le canal de décharge 20, ils réalisent une ionisation de ces molécules de gaz.
Par ailleurs, ces électrons présents dans le canal de décharge 20 créent un champ électrique E axial, ce qui accélère les ions entre l'anode 26 et la sortie (l'extrémité aval 20b) du canal de décharge 20, de telle sorte que ces ions sont éjectés à grande vitesse du canal de décharge 20, ce qui engendre la propulsion du moteur.
Comme il est représenté sur les figures 2 à 4, en présence du champ magnétique radial B (lignes de champ 42) la trajectoire des ions n'est pas parallèle à l'axe principal A du propulseur correspondant à la direction de poussée, mais elle subit une déflection angulaire. En pratique, l'angle a formé entre le jet d'ions (trajectoire 44 sur les figures 2 à 4) et l'axe principal A est de l'ordre de 6°.
Sur les figures 3 et 4, est illustrée la déviation de la trajectoire 44 des ions depuis un cercle 46 centré dans le canal de décharge 20. Cette déviation angulaire de la trajectoire des ions tend à déformer le déplacement laminaire souhaité en un mouvement légèrement tourbillonnaire centré autour de l'axe principal A.
Cette déflection est partiellement à l'origine de la divergence constatée sur les propulseurs plasmiques à effet Hall actuels.
En effet, la déflection du gaz ionisé par le champ magnétique radial B engendre un couple mécanique parasite dans la recherche de l'obtention de la poussée optimale du propulseur.
La présente invention a pour objectif de fournir un propulseur plasmique à effet Hall permettant de surmonter les inconvénients de l'art antérieur et en particulier offrant la possibilité de maîtriser, en la modifiant, la déviation angulaire ou déflection créée sur les ions par le champ magnétique radial en sortie du canal de décharge 20.
Plus précisément, la présente invention a pour objectif de compenser en tout ou partie ou bien d'accentuer cette déflection. Ainsi, par exemple, une compensation totale de la déflection permettrait d'annuler la composante radiale du mouvement des ions à la sortie du canal de décharge.
A cet effet, selon la présente invention, le propulseur plasmique à effet Hall est caractérisé en ce que l'anode sert de distributeur et en ce que le distributeur comporte des moyens directionnels qui engendrent à la sortie du distributeur un mouvement tourbillonnaire du gaz autour de l'axe principal.
De cette manière, on comprend que par la présence de ces moyens directionnels, le mouvement tourbillonnaire des molécules de gaz engendré dès la sortie du distributeur est susceptible de compenser la déviation angulaire de la trajectoire des ions engendrée par le champ magnétique radial à l'extrémité aval du canal de décharge.
En effet, d'une manière générale selon l'invention, on créé un mouvement tourbillonnaire à l'extrémité amont du canal de décharge, qui vient se superposer à celui engendré par le champ magnétique radial à l'extrémité aval du canal de décharge.
Cette superposition des deux mouvements tourbillonnaires permet de faire varier et de contrôler la déflection subie par les ions du fait du champ magnétique radial présent à l'extrémité aval du canal de décharge, en accentuant, en diminuant ou en compensant totalement cette déflection.
Globalement, grâce à la solution selon la présente invention, le couple mécanique généré par la vitesse angulaire du gaz neutre du fait de la présence des moyens directionnels, permet de tenir compte de la déflection subie par les ions du fait du champ magnétique radial présent à l'extrémité aval du canal de décharge.
Selon une disposition préférentielle, les moyens directionnels comportent une série d'orifices d'échappement débouchant à la sortie de l'anode à proximité de la zone d'ionisation du canal en formant, en projection dans un plan transversal audit axe principal, un premier angle β non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
On comprend que grâce à l'angle non nul formé par la sortie des orifices d'échappement, chaque jet de gaz sortant du distributeur présente une trajectoire avec une composante tangentielle orthogonale à la direction radiale, ce par quoi l'ensemble des jets de gaz sortant de l'anode crée un couple mécanique susceptible de s'ajouter ou de s'opposer au couple mécanique engendré à l'extrémité aval du canal de décharge par les ions subissant la déviation angulaire induite par le champ magnétique radial.
De préférence, le premier angle β formé entre la projection dans un plan transversal audit axe principal de la sortie des orifices d'échappement et la direction radiale est compris entre 20 et 70°, avantageusement entre 35 et 55° et il est notamment égal à 45°.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :
- la figure 1, déjà décrite, est une vue schématique en coupe d'un propulseur plasmique à effet Hall de l'art antérieur,
- la figure 2, déjà décrite, représente le détail II de la figure 1, - la figure 3, déjà décrite, est une vue en perspective et en coupe longitudinale du canal de décharge représentant la déviation angulaire de la trajectoire du gaz dans le cas d'un propulseur plasmique de l'art antérieur,
- la figure 4 est une vue en section depuis la direction IV de la figure 3,
- la figure 5 est une vue en perspective et en coupe longitudinale du canal de décharge d'un propulseur plasmique à effet Hall selon l'invention,
- la figure 6 représente en perspective et en coupe transversale l'anode du propulseur plasmique à effet Hall selon l'invention,
- la figure 7 est une vue agrandie en coupe de la section radiale de l'anode de la figure 4,
- les figures 8 à 11 illustrent l'anode de la figure 7, en coupe transversale respectivement selon les directions VIII-VIII, IX-IX, X-X et XI- XI de la figure 7,
- la figure 12 est une vue analogue à celle de la figure 7 pour une première variante de réalisation de l'anode, et
- la figure 13 est une vue analogue à celle de la figure 7 pour une deuxième variante de réalisation de l'anode.
On décrit maintenant en relation avec les figures 5 à 11 un mode de réalisation préférentiel. L'anode 50 de l'invention constitue également le distributeur et à cet effet, délimite, avec la paroi interne 16 et la paroi externe 18 de la pièce en céramique 19, d'aval en amont, une chambre de décharge annulaire 52 débouchant dans la zone d'ionisation 28 du canal 20 et une chambre intermédiaire annulaire 54 dont un tronçon au moins est disposé de façon concentrique par rapport à la chambre de décharge 52. Des orifices d'échappement 53 relient ladite chambre intermédiaire 54 à ladite chambre de décharge 52.
Ces orifices d'échappement 53 sont de préférence rectilignes. De par le premier angle β non nul formé (voir la figure 9) entre la direction radiale et la projection transversale de ces orifices d'échappement 53, on engendre à la sortie de l'anode un mouvement tourbillonnaire.
De préférence, l'anode 50 formant le distributeur comporte au moins quatre orifices d'échappement 53 répartis angulairement de façon régulière autour de l'axe principal A.
Dans le cas du mode de réalisation illustré, on utilise seize orifices d'échappement 53 répartis de manière régulière autour de l'axe principal A selon une symétrie circulaire (voir la figure 9). Cette injection non purement radiale du gaz à la sortie de l'anode génère un couple mécanique qui va s'ajouter à ou compenser (cas de la figure 9) le couple mécanique engendré à l'extrémité aval du canal de décharge par les ions subissant la déviation angulaire induite par le champ magnétique radial B.
Les orifices d'échappement 53 du mode de réalisation illustré (voir les figures 7 et 9) sont rectilignes et parallèle à un plan transversal orthogonal avec l'axe principal A, en formant dans ce plan transversal, un premier angle β de 45° avec la direction radiale. D'autres variantes sont bien entendu possibles, que ce soit au niveau de la valeur du premier angle β (compris entre 0 et 90°), que sur l'inclinaison éventuelle par rapport à un plan transversal (dans certains cas, le plan d'injection est non orthogonal à l'axe de poussée ou axe principal A).
A la sortie des orifices d'échappement 53, la circulation de gaz dans la chambre de décharge 52 située juste en amont de la zone d'ionisation 28, se fait normalement en moléculaire libre.
L'anode 50 formant le distributeur délimite en outre (voir les figures 5, 6 et 7) , avec les parois interne 16 et externe 18 de la pièce en céramique 19, en amont de la chambre intermédiaire 54, une chambre de répartition annulaire 56 reliée d'une part à la canalisation 24 et d'autre part à la chambre intermédiaire 54 par une série d'orifices d'écoulement 55.
Comme on le voit sur les figures 7 et 10, les orifices d'écoulement 55 forment, à leur sortie, en projection dans un plan transversal audit axe principal A, un deuxième angle γ non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon un mouvement tourbillonnaire.
De préférence, le deuxième angle γ, formé entre la projection dans un plan transversal audit axe principal A de la sortie des orifices d'écoulement 55 et la direction radiale, est compris entre 20 et 70°, avantageusement entre 35 et 55° et il est notamment égal à 45°.
De préférence, ce deuxième angle γ est orienté à l'opposé du premier angle β par rapport à la direction radiale (sur les figures 7, 9 et 10, le premier angle β est de +45° tandis que le deuxième angle γ est de -45°).
Ces orifices d'écoulement 55 sont de préférence rectilignes.
De par le deuxième angle γ non nul formé (voir la figure 10) entre la direction radiale et la projection transversale de ces orifices d'écoulement 55, on engendre dans la chambre intermédiaire 54 un écoulement tourbillonnaire favorisant l'écoulement moléculaire dans les orifices d'échappement 53 vers la chambre de décharge 52 et la sortie de l'anode 50.
De préférence, l'anode 50 formant le distributeur comporte au moins deux orifices d'écoulement 55 répartis angulairement de façon régulière autour de l'axe principal A.
Dans le cas du mode de réalisation illustré, on utilise quatre orifices d'écoulement 55 répartis de manière régulière autour de l'axe principal A selon une symétrie circulaire (voir la figure 10).
Les orifices d'écoulement 55 du mode de réalisation illustré (voir les figures 7 et 10) sont rectilignes et parallèle à un plan transversal, en formant dans ce plan transversal, un deuxième angle γ de 45° avec la direction radiale. D'autres variantes sont bien entendu possibles, que ce soit au niveau de la valeur du deuxième angle γ (compris entre 0 et 90°), que sur l'inclinaison éventuelle par rapport à un plan transversal des orifices d'écoulement 55.
Sur le mode de réalisation des figures 5 à 11 et sur la première variante de la figure 12, les orifices d'échappement 53 sont orientés de telle sorte qu'ils permettent la sortie du gaz ionisable en direction de la paroi interne 16 (voir la figure 9).
Une telle configuration permet de compenser en tout ou partie la déflection angulaire des ions due au champ magnétique radial B et qui est visible sur les figures 2 à 4. Si l'orientation du champ magnétique radial B est opposée à celle des figures 1 à 4, la situation serait modifiée et il y aurait une accentuation de la déflection angulaire des ions due à ce champ magnétique.
Dans ce cas, en outre, à la sortie de l'anode, les impacts sur la paroi externe 18 des molécules ou ions de gaz présentent une spécularité suffisante pour que le gaz arrivant dans la zone d'ionisation 28 présente une vitesse tourbillonnaire résiduelle significative de l'ordre de celle fournie par la différence de température entre la paroi interne 16 et la paroi externe 18 en céramique.
En effet, on rappelle que les chocs des électrons, des ions et des molécules sur la paroi interne 16 et sur la paroi externe 18 provoquent réchauffement de ces parois 16 et 18 également chauffées par le rayonnement du plasma, et que du fait de la surface plus petite de la paroi interne 16, celle-ci présente une température plus élevée que la paroi externe 18 (écart de température de plus de 100°C, de l'ordre de 160°C).
En conséquence, selon l'invention, la vitesse tourbillonnaire résiduelle mentionnée ci-dessus peut également s'ajouter ou compenser la vitesse tourbillonnaire due à l'écart de température entre la paroi interne 16 et la paroi externe 18. Bien entendu, cet effet physique résultant de la différence de température ne représente qu'un phénomène du second ordre par rapport au phénomène principal relatif à la compensation de la déviation circonférentielle des ions et des molécules par le champ magnétique.
En conséquence, selon le mode de réalisation des figures 5 à 11 , le propulseur 10 comporte dans la partie amont du canal de décharge 20, d'amont en aval, une chambre de répartition 56 annulaire reliée à la canalisation 24 et délimitée entre l'anode 50 formant le distributeur et la paroi interne 16, une chambre intermédiaire 54 annulaire délimitée entre l'anode 50 formant le distributeur et la paroi externe 18, et une chambre de décharge 52 annulaire délimitée entre l'anode 50 formant le distributeur et la paroi interne 18 et débouchant dans la zone d'ionisation 28 du canal 20. Par ailleurs, ladite chambre de décharge 52 et la chambre de répartition 56 sont superposées, la chambre intermédiaire 54 entoure la chambre de répartition 56 et la chambre de décharge 52. En outre, une série d'orifices d'écoulement 55 relient la chambre de répartition 56 à la chambre intermédiaire 54 une série d'orifices d'échappement 53 relient ladite chambre intermédiaire 54 à ladite chambre de décharge 52 en formant, en projection dans un plan transversal audit axe principal A, un premier angle β non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
Ainsi, la chambre de répartition 56 et la chambre de décharge
52 forment des chambres internes et la chambre intermédiaire 54 constitue une chambre externe.
Quand on indique que deux chambres sont superposées, cela signifie une position amont et aval dans le sens de l'axe principal A.
II est à noter que la chambre de répartition 56 n'étant alimentée que par un seul orifice (le trou d'alimentation 25), les pressions et les vitesses n'y sont pas uniformes. Ainsi, par son volume et par le fait qu'elle est alimentée par une pluralité d'orifices d'écoulement 55 (quatre orifices d'écoulement 55 sur le mode de réalisation représenté), la chambre intermédiaire 54 voit la pression et la vitesse circonférentielle du gaz répartis plus uniformément et sert ainsi de chambre de tranquilisation.
Dans le cas de la première variante de la figure 12, l'anode 50 présente une forme modifiée. Dans ce cas, le propulseur 10 comporte dans la partie amont du canal de décharge 20, d'amont en aval, une chambre de répartition 56 annulaire reliée à la canalisation 24 et délimitée entre l'anode 50 formant le distributeur et la paroi interne 16, une chambre intermédiaire 54 annulaire délimitée entre l'anode 50 formant le distributeur et la paroi externe 18, et une chambre de décharge 52 annulaire délimitée entre l'anode 50 formant le distributeur et la paroi interne 16 et débouchant dans la zone d'ionisation 28 du canal 20. Par ailleurs, la chambre intermédiaire 54 entoure la chambre de décharge 52, ladite chambre de décharge 52 et la chambre de répartition 56 sont superposées, ladite chambre intermédiaire 54 et la chambre de répartition 56 sont superposées. De plus, une série d'orifices d'écoulement 55 relient la chambre de répartition 56 à la chambre intermédiaire 54 et une série d'orifices d'échappement 53 relient ladite chambre intermédiaire 54 à ladite chambre de décharge 52 en formant, en projection dans un plan transversal audit axe principal A, un premier angle β non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
Dans cette première variante de la figure 12, la chambre de décharge 52 et la chambre de répartition 56 sont superposées.
Ainsi, la chambre de décharge 52 est une chambre interne et la chambre intermédiaire 54 constitue une chambre externe, tandis que la chambre de répartition 56 forme une chambre s'étendant sensiblement sur toute la section du canal de décharge 20.
Selon la deuxième variante de la figure 13, l'anode 50 présente une autre forme modifiée. Dans ce cas, le propulseur 10 comporte dans la partie amont du canal de décharge 20, d'amont en aval, une chambre de répartition 56 annulaire reliée à la canalisation 24 et délimitée entre l'anode 50 formant le distributeur et la paroi externe 18, une chambre intermédiaire 54 annulaire délimitée entre l'anode 50 formant le distributeur et la paroi interne 16, et une chambre de décharge 52 annulaire délimitée entre l'anode 50 formant le distributeur et la paroi externe 18 et débouchant dans la zone d'ionisation 28 du canal 20. En outre, ladite chambre de répartition 56 et la chambre de décharge 52 sont superposées, la chambre intermédiaire 54 entoure la chambre de répartition 56 et la chambre de décharge 52. Egalement, une série d'orifices d'écoulement 55 relient la chambre de répartition 56 à la chambre intermédiaire 54 et en une série d'orifices d'échappement 53 relient ladite chambre intermédiaire 54 à ladite chambre de décharge 52 en formant, en projection dans un plan transversal audit axe principal A, un premier angle β non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
Ainsi, la chambre de répartition 56 et la chambre de décharge 52 forment des chambres internes et la chambre intermédiaire 54 constitue une chambre externe. Il faut relever que dans le cas de la deuxième variante de la figure 13, les orifices d'échappement 53 permettent la sortie du gaz ionisable en direction de la paroi externe 18, avec un mouvement tourbillonnaire.
Une telle configuration vient alors, dans le cas de l'orientation du champ magnétique radial B visible sur les figures 2 à 4, accentuer la déflection angulaire des ions due à ce champ magnétique radial . Si l'orientation du champ magnétique radial B est opposée à celle des figures 1 à 4, la situation serait modifiée et il y alors aurait une compensation (totale ou partielle) de la déflection angulaire des ions due à ce champ magnétique.
Dans tous les cas, on prévoit qu'une paroi de l'anode 50 s'étende radialement au dessus de la sortie des orifices d'échappement 53 afin de former une paroi de protection 58 qui empêche, ou tout au moins limite, la présence d'ions et/ou d'électrons à proximité de la sortie des orifices d'échappement 53. De cette façon, les orifices d'échappement 53 sont protégés d'un colmatage par la matière (la céramique) érodée provenant de la paroi interne 16 et de la paroi externe 18.
De préférence, l'anode 50 et le distributeur sont confondus. Ces deux fonctions sont alors remplies par la même pièce ou le même groupe de pièces.
De préférence, l'anode 50 est monobloc est essentiellement réalisée en carbone, ce qui facilite son montage au fond du canal de décharge 20. On peut également réaliser l'anode 50en plusieurs pièces assemblées entre elle.
Par ailleurs, de préférence, la paroi interne 16 et la paroi externe 18 sont réalisées en céramique et sont reliées de façon étanche avec I'anode50.
Par exemple, la pièce en céramique 19 est réalisée en nitrure de bore et de silice (BNSiO2).
Ainsi, en utilisant pour l'anode 50 et pour la pièce en céramique 19 des matériaux présentant un coefficient de dilatation thermique proche, on assure le maintien d'une liaison étanche entre l'anode 50 et les parois interne 16 et externe 18, et ce faisant au niveau des chambres 52, 54 et 56. Ainsi, on réalise par exemple par brasage quatre zones de fixation annulaires 60 entre l'anode 50et les parois interne 16 et externe 18 (voir les figures 7, 12 et 13).
Dans les exemples illustrant l'art antérieur et la présente invention, l'anode et le distributeur ont été illustrés comme formant une seule et même pièce (sous le signe de référence 26 sur les figures 1 à 4 et sous le signe de référence 50 sur les figures 5 à 13) : il faut cependant relever que l'on pourrait dissocier les deux fonctions par deux pièces ou deux ensembles indépendants sans sortir du cadre de la présente invention. Dans ce cas l'anode et le distributeur sont placés au fond du canal de décharge, le distributeur étant relié à la canalisation d'amenée du gaz et l'anode étant reliée à une source de courant.

Claims

REVENDICATIONS
1. Propulseur plasmique à effet Hall (10) comprenant un canal (20) de décharge annulaire autour d'un axe principal (A) présentant une extrémité aval (20b) ouverte et qui est délimité entre une paroi interne (16) et une paroi externe (18), au moins une cathode (40), un circuit magnétique de création d'un champ magnétique dans ledit canal (20), une canalisation (24) pour alimenter en gaz ionisable le canal (20), une anode (50) et un distributeur placés dans l'extrémité amont (20a) du canal (20), ledit distributeur (50) étant relié à la canalisation (24) et permettant au gaz ionisable de s'écouler dans la zone d'ionisation (28) du canal (20) de façon concentrique autour de l'axe principal (A),
caractérisé en ce que l'anode (50) sert de distributeur et en ce que le distributeur (50) comporte des moyens directionnels (53) qui engendrent à la sortie du distributeur (50) un mouvement tourbillonnaire du gaz autour de l'axe principal (A).
2. Propulseur plasmique à effet Hall (10) selon la revendication 1, caractérisé en ce que les moyens directionnels comportent une série d'orifices d'échappement (53) débouchant à la sortie de l'anode (50) à proximité de la zone d'ionisation (28) du canal (20) en formant, en projection dans un plan transversal audit axe principal (A), un premier angle (β) non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
3. Propulseur plasmique à effet Hall (10) selon la revendication 2, caractérisé en ce que le distributeur (50) délimite, avec la paroi interne (16) et la paroi externe (18), d'aval en amont, une chambre de décharge (52) annulaire débouchant dans la zone d'ionisation (28) du canal (20) et une chambre intermédiaire (54) annulaire dont un tronçon au moins est disposé de façon concentrique par rapport à la chambre de décharge (52), et en ce que lesdits orifices d'échappement (53) relient ladite chambre intermédiaire (54) à ladite chambre de décharge (52).
4. Propulseur plasmique à effet Hall (10) selon la revendication 3, caractérisé en ce que le distributeur (50) délimite en outre, avec les parois interne et externe, en amont de la chambre intermédiaire (54), une chambre de répartition (56) annulaire reliée d'une part à la canalisation (24) et d'autre part à la chambre intermédiaire (54) par une série d'orifices d'écoulement (55).
5. Propulseur plasmique à effet Hall (10) selon la revendication 4, caractérisé en ce que lesdits orifices d'écoulement (55) forment, en projection dans un plan transversal audit axe principal (A), un deuxième angle (γ) non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon un mouvement tourbillonnaire.
6. Propulseur plasmique à effet Hall (10) selon l'une quelconque des revendications 2 à 5, caractérisé en ce que le premier angle (β) est compris entre 20 et 70°.
7. Propulseur plasmique à effet Hall (10) selon la revendication 6, caractérisé en ce que le premier angle (β) est compris entre 35 et 55°.
8. Propulseur plasmique à effet Hall (10) selon la revendication 6, caractérisé en ce que le premier angle (β) est sensiblement égal à 45°.
9. Propulseur plasmique à effet Hall (10) selon la revendication 2, caractérisé en ce que les orifices d'échappement (53) permettent la sortie du gaz ionisable en direction de la paroi interne (16).
10. Propulseur plasmique à effet Hall (10) selon la revendication 2, caractérisé en ce que les orifices d'échappement (53) permettent la sortie du gaz ionisable en direction de la paroi externe (18).
11. Propulseur plasmique à effet Hall (10) selon la revendication 2, caractérisé en ce que le distributeur (50) comporte au moins quatre orifices d'échappement (53) répartis angulairement de façon régulière autour de l'axe principal (A).
12. Propulseur plasmique à effet Hall (10) selon l'une quelconque des revendications 1 à 9 et 11, caractérisé en ce qu'il comporte dans la partie amont du canal (20) de décharge, d'amont en aval, une chambre de répartition (56) annulaire reliée à la canalisation (24) et délimitée entre le distributeur (50) et la paroi interne (16), une chambre intermédiaire (54) annulaire délimitée entre le distributeur (50) et la paroi externe (18), et une chambre de décharge (52) annulaire délimitée entre le distributeur (50) et la paroi interne (16) et débouchant dans la zone d'ionisation (28) du canal (20), en ce que ladite chambre de décharge (52) et la chambre de répartition (56) sont superposées, en ce que la chambre intermédiaire (54) entoure la chambre de répartition (56) et la chambre de décharge (52), en ce qu'une série d'orifices d'écoulement (55) relient la chambre de répartition (56) à la chambre intermédiaire (54) et en ce qu'une série d'orifices d'échappement (53) relient ladite chambre intermédiaire (54) à ladite chambre de décharge (52) en formant, en projection dans un plan transversal audit axe principal (A), un premier angle (β) non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
13. Propulseur plasmique à effet Hall (10) selon l'une quelconque des revendicationsl à 9 et 11, caractérisé en ce qu'il comporte dans la partie amont du canal (20) de décharge, d'amont en aval, une chambre de répartition (56) annulaire reliée à la canalisation (24) et délimitée entre le distributeur (50) et la paroi interne (16), une chambre intermédiaire (54) annulaire délimitée entre le distributeur (50) et la paroi externe (18), et une chambre de décharge (52) annulaire délimitée entre le distributeur (50) et la paroi interne (16) et débouchant dans la zone d'ionisation (28) du canal (20), en ce que la chambre intermédiaire (54) entoure la chambre de décharge (52), en ce que ladite chambre de décharge (52) et la chambre de répartition (56) sont superposées, en ce que ladite chambre intermédiaire (54) et la chambre de répartition (56) sont superposées, en ce qu'une série d'orifices d'écoulement (55) relient la chambre de répartition (56) à la chambre intermédiaire (54) et en ce qu'une série d'orifices d'échappement (53) relient ladite chambre intermédiaire (54) à ladite chambre de décharge (52) en formant, en projection dans un plan transversal audit axe principal (A), un premier angle (β) non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
14. Propulseur plasmique à effet Hall (10) selon l'une quelconque des revendications 1 à 8, 10 et 11, caractérisé en ce qu'il comporte dans la partie amont du canal (20) de décharge, d'amont en aval, une chambre de répartition (56) annulaire reliée à la canalisation (24) et délimitée entre le distributeur (50) et la paroi externe (18), une chambre intermédiaire (54) annulaire délimitée entre le distributeur (50) et la paroi interne (16), et une chambre de décharge (52) annulaire délimitée entre le distributeur (50) et la paroi externe (18) et débouchant dans la zone d'ionisation (28) du canal (20), en ce que ladite chambre de répartition (56) et la chambre de décharge (52) sont superposées, en ce que la chambre intermédiaire (54) entoure la chambre de répartition (56) et la chambre de décharge (52), en ce qu'une série d'orifices d'écoulement (55) relient la chambre de répartition (56) à la chambre intermédiaire (54) et en ce qu'une série d'orifices d'échappement (53) relient ladite chambre intermédiaire (54) à ladite chambre de décharge (52) en formant, en projection dans un plan transversal audit axe principal (A), un premier angle (β) non nul avec la direction radiale de façon à orienter l'écoulement du gaz selon ledit mouvement tourbillonnaire.
15. Propulseur plasmique à effet Hall (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'anode et le distributeur (50) sont confondus.
16. Propulseur plasmique à effet Hall (10) selon la revendication 15, caractérisé en ce que l'anode (50) est monobloc est essentiellement réalisée en carbone, et en ce que la paroi interne (16) et la paroi externe (18) sont réalisées en céramique et sont reliées de façon étanche avec l'anode (50).
17. Propulseur plasmique à effet Hall (10) selon la revendication 5, caractérisé en ce que le deuxième angle (γ) est compris entre 20 et 70°.
18. Propulseur plasmique à effet Hall (10) selon la revendication 5, caractérisé en ce que le deuxième angle (γ) est compris entre 35 et 55°.
19. Propulseur plasmique à effet Hall (10) selon la revendication 5, caractérisé en ce que le deuxième angle (γ) est sensiblement égal à 45°.
EP10770585.7A 2009-09-17 2010-09-17 Propulseur plasmique a effet hall Active EP2478219B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956397A FR2950115B1 (fr) 2009-09-17 2009-09-17 Propulseur plasmique a effet hall
PCT/FR2010/051943 WO2011033238A1 (fr) 2009-09-17 2010-09-17 Propulseur plasmique a effet hall

Publications (2)

Publication Number Publication Date
EP2478219A1 true EP2478219A1 (fr) 2012-07-25
EP2478219B1 EP2478219B1 (fr) 2018-10-31

Family

ID=42166766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10770585.7A Active EP2478219B1 (fr) 2009-09-17 2010-09-17 Propulseur plasmique a effet hall

Country Status (9)

Country Link
US (1) US8704444B2 (fr)
EP (1) EP2478219B1 (fr)
JP (1) JP5685255B2 (fr)
CN (1) CN102630277B (fr)
CA (1) CA2774006A1 (fr)
FR (1) FR2950115B1 (fr)
IL (1) IL218587A0 (fr)
RU (1) RU2555780C2 (fr)
WO (1) WO2011033238A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180984B2 (en) 2012-05-11 2015-11-10 The Boeing Company Methods and apparatus for performing propulsion operations using electric propulsion systems
FR2997386B1 (fr) * 2012-10-31 2015-05-29 Thales Sa Dispositif de propulsion optimise pour controle d'orbite et controle d'attitude de satellite
CA2831309C (fr) 2012-12-04 2017-05-30 The Boeing Company Methodes et appareil d'execution des fonctions de propulsion a l'aide de dispositifs de propulsion electriques
US10273944B1 (en) * 2013-11-08 2019-04-30 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Propellant distributor for a thruster
CN103945632B (zh) * 2014-05-12 2016-05-18 哈尔滨工业大学 角向速度连续可调的等离子体射流源及该射流源的使用方法
FR3038663B1 (fr) * 2015-07-08 2019-09-13 Safran Aircraft Engines Propulseur a effet hall exploitable en haute altitude
CN105257491B (zh) * 2015-11-30 2017-11-03 哈尔滨工业大学 一种霍尔推力器阳极
CN105736273B (zh) * 2016-04-11 2018-09-07 哈尔滨工业大学 一种大高径比霍尔推力器的磁路结构
CN106742073B (zh) * 2016-11-21 2019-12-20 北京控制工程研究所 一种微弧阴极放电微型电推进模块
CN107762754A (zh) * 2017-11-20 2018-03-06 北京千乘探索科技有限公司 一种适用于微电推力器的一体封装结构
US10723489B2 (en) * 2017-12-06 2020-07-28 California Institute Of Technology Low-power hall thruster with an internally mounted low-current hollow cathode
CN108320879B (zh) * 2018-02-06 2020-02-07 哈尔滨工业大学 霍尔推力器柔性磁路调控方法
CN108457827A (zh) * 2018-03-16 2018-08-28 哈尔滨工业大学 一种磁聚焦霍尔推力器的旋流出气结构
US11145496B2 (en) * 2018-05-29 2021-10-12 Varian Semiconductor Equipment Associates, Inc. System for using O-rings to apply holding forces
FR3093771B1 (fr) * 2019-03-15 2021-04-02 Safran Aircraft Engines Fond de chambre pour propulseur plasmique
CN111219306B (zh) * 2019-03-21 2020-12-11 哈尔滨工业大学 一种双磁屏的霍尔推力器
CN110307132B (zh) * 2019-05-24 2020-09-18 北京控制工程研究所 一种提高气体均匀性的霍尔推力器定位结构
CN110735775B (zh) * 2019-09-16 2021-02-09 北京控制工程研究所 一种霍尔推力器用中空阳极结构
CN111038741B (zh) * 2019-12-31 2022-03-18 哈尔滨工业大学 百瓦级航天电推进空心阴极结构
CN111114774B (zh) * 2019-12-31 2021-10-22 浙江大学 一种基于电磁场提供动力的无旋翼飞碟及其飞行方法
CN111785600A (zh) * 2020-07-15 2020-10-16 中山市博顿光电科技有限公司 离子源供气结构及离子源装置
CN113357109B (zh) * 2021-06-30 2022-07-15 哈尔滨工业大学 一种射频离子推力器点火装置
WO2023027679A1 (fr) * 2021-08-25 2023-03-02 Частное Акционерное Общество "Фэд" Moteur ionique-plasmique stationnaire
CN114352831A (zh) * 2021-12-21 2022-04-15 上海空间推进研究所 气体分配器
CN114810527B (zh) * 2022-06-28 2022-09-09 国科大杭州高等研究院 低功率霍尔推力器的气体逆向注入分配器阳极一体结构
CN115559874A (zh) * 2022-09-20 2023-01-03 兰州空间技术物理研究所 一种混合推进霍尔推力器
CN115711208B (zh) * 2022-11-22 2023-07-28 哈尔滨工业大学 一种适合高比冲后加载霍尔推力器的供气结构
CN115681057B (zh) * 2023-01-03 2023-06-02 国科大杭州高等研究院 一种霍尔推进系统及其运行方法
CN115681055A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 紧凑型气体分配器及霍尔推力器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862032A (en) * 1986-10-20 1989-08-29 Kaufman Harold R End-Hall ion source
FR2693770B1 (fr) * 1992-07-15 1994-10-14 Europ Propulsion Moteur à plasma à dérive fermée d'électrons.
RU2107837C1 (ru) 1993-06-21 1998-03-27 Сосьете Оропеен де Пропюльсьон Плазменный двигатель уменьшенной длины с замкнутым дрейфом электронов
US5646476A (en) * 1994-12-30 1997-07-08 Electric Propulsion Laboratory, Inc. Channel ion source
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
JP3982565B2 (ja) * 1996-04-01 2007-09-26 ユナイテッド テクノロジーズ コーポレイション ホール効果プラズマ加速器
US6612105B1 (en) * 1998-06-05 2003-09-02 Aerojet-General Corporation Uniform gas distribution in ion accelerators with closed electron drift
US6777862B2 (en) * 2000-04-14 2004-08-17 General Plasma Technologies Llc Segmented electrode hall thruster with reduced plume
US6735935B2 (en) * 2000-12-14 2004-05-18 Busek Company Pulsed hall thruster system
WO2002069364A2 (fr) * 2001-02-23 2002-09-06 Kaufman & Robinson Inc. Champ magnetique pour propulseur de petite taille a courant en circuit ferme
WO2002101235A2 (fr) * 2001-06-13 2002-12-19 The Regents Of The University Of Michigan Propulseur ionique lineaire sans grilles
RU2209532C2 (ru) * 2001-10-10 2003-07-27 Сорокин Игорь Борисович Плазменный ускоритель с замкнутым дрейфом электронов
US7030576B2 (en) * 2003-12-02 2006-04-18 United Technologies Corporation Multichannel hall effect thruster
US7116054B2 (en) * 2004-04-23 2006-10-03 Viacheslav V. Zhurin High-efficient ion source with improved magnetic field
US7459858B2 (en) * 2004-12-13 2008-12-02 Busek Company, Inc. Hall thruster with shared magnetic structure
RU2347106C2 (ru) * 2006-11-27 2009-02-20 Федеральное государственное унитарное предприятие Федерального космического агентства "Опытное конструкторское бюро "Факел" Электрический реактивный двигатель малой тяги и способ изготовления и термической обработки биметаллических магнитопроводов
US7589474B2 (en) * 2006-12-06 2009-09-15 City University Of Hong Kong Ion source with upstream inner magnetic pole piece
FR2912836B1 (fr) * 2007-02-21 2012-11-30 Snecma Emetteur pour propulseur ionique.
FR2945842B1 (fr) * 2009-05-20 2011-07-01 Snecma Propulseur a plasma a effet hall.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011033238A1 *

Also Published As

Publication number Publication date
JP2013505529A (ja) 2013-02-14
US8704444B2 (en) 2014-04-22
CN102630277B (zh) 2015-06-10
CN102630277A (zh) 2012-08-08
US20120206045A1 (en) 2012-08-16
WO2011033238A1 (fr) 2011-03-24
FR2950115A1 (fr) 2011-03-18
IL218587A0 (en) 2012-05-31
JP5685255B2 (ja) 2015-03-18
CA2774006A1 (fr) 2011-03-24
EP2478219B1 (fr) 2018-10-31
RU2012113127A (ru) 2013-10-27
RU2555780C2 (ru) 2015-07-10
FR2950115B1 (fr) 2012-11-16

Similar Documents

Publication Publication Date Title
EP2478219B1 (fr) Propulseur plasmique a effet hall
EP2783112B1 (fr) Propulseur à effet hall
EP0982976B1 (fr) Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques
EP3174795B1 (fr) Systeme et procede de propulsion spatiale
EP2211056B1 (fr) Propulseur à dérive fermée d'électrons
EP2433002A1 (fr) Propulseur a plasma a effet hall
FR3021301A1 (fr) Moteur pour engin spatial, et engin spatial comprenant un tel moteur
CA2695238C (fr) Dispositif d'ejection d'ions a effet hall
WO2015132534A1 (fr) Propulseur plasmique a effet hall.
EP1101938A1 (fr) Propulseur à plasma à dérivé fermée d'électrons à vecteur poussée orientable
EP3250859B1 (fr) Module de combustion a volume constant pour une turbomachine comportant un allumage par communication
WO2017006056A1 (fr) Propulseur a effet hall exploitable en haute altitude
EP1260689B1 (fr) Doseur de carburant à deux sorties intégrées
US7543441B2 (en) Hall-effect plasma thruster
FR2651835A1 (fr) Propulseur a reaction assiste par un arc electrique.
FR2684175A1 (fr) Munition pour projectile sous-calibre.
FR2995941A1 (fr) Divergent a deviateurs de jet pour propulseurs a charge solide
EP1101030B1 (fr) Tuyere compacte et modulable pour le pilotage d'engins aerospatiaux
EP2162893B1 (fr) Appareil electrique de coupure comportant une fonction electrique complementaire.
FR2864143A1 (fr) Systeme de filtration electrostatique pour les gaz d'echappement d'un moteur a combustion interne
CN115822906A (zh) 一种霍尔推力器
FR2906674A1 (fr) Dispositif pour prolonger dans le vide un plasma conducteur d'electricite
FR3043067A1 (fr) Systeme de pilotage en force et de controle d'attitude a compacite augmentee et enfin comportant un tel systeme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170526

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180409

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1059732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010054796

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1059732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010054796

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190917

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190917

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100917

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220818

Year of fee payment: 13

Ref country code: IT

Payment date: 20220825

Year of fee payment: 13

Ref country code: GB

Payment date: 20220818

Year of fee payment: 13

Ref country code: DE

Payment date: 20220616

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010054796

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917