EP2476194A1 - Dispositif onduleur dc-ac, en particulier circuit inverseur pour cellules solaires - Google Patents

Dispositif onduleur dc-ac, en particulier circuit inverseur pour cellules solaires

Info

Publication number
EP2476194A1
EP2476194A1 EP10740574A EP10740574A EP2476194A1 EP 2476194 A1 EP2476194 A1 EP 2476194A1 EP 10740574 A EP10740574 A EP 10740574A EP 10740574 A EP10740574 A EP 10740574A EP 2476194 A1 EP2476194 A1 EP 2476194A1
Authority
EP
European Patent Office
Prior art keywords
inverter
converter
bridge circuit
voltage
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10740574A
Other languages
German (de)
English (en)
Inventor
Walter Thieringer
Gisbert Krauter
Bernhard Feuchter
Georg Mayer
Liliane Gasse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMA Solar Technology AG
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2476194A1 publication Critical patent/EP2476194A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • DC-AC inverter arrangement in particular solar cell inverter
  • the invention relates to an inverter arrangement according to the preamble of claim 1 or of claim 10.
  • AC-DC DC-AC converter
  • Power supply network found wide application. Even when using other renewable energies, such as wind turbines, Stirling engines, heat pumps or modern energy storage systems based on Primärt. Secondary cells are used converters of this or similar type.
  • a generic DC-AC inverter arrangement is known from DE 102004 030912 B3.
  • the invention describes a possibility in which the half-waves of the AC voltage on the output side are not generated by the bridge, but by an upstream DC-DC converter.
  • the bridge only works as a turner.
  • this makes it possible to use in the bridge circuit for switch Sl in the bridge transistors with low R ds , on.
  • This can significantly contribute to reducing the power loss, since these components must be designed only at the peak value of the output voltage and thus can have very low Rd S , on, even with a large input voltage range of the inverter.
  • these transistors can also be switched on in reverse conduction via a diode, so that even in this operating state only a minimal voltage drop is generated on the component.
  • the DC-DC converter has a buck converter.
  • the DC-DC converter has a combination of a buck converter and a boost converter or a high-low converter with common inductance.
  • the DC-DC converter is designed as a four-quadrant controller and thus capable of being fed back, and the inverter arrangement is thereby designed to be capable of reactive power. Due to the regenerative capacity, this version can provide the power grid with reactive power, which may be required by E-Werke in the future.
  • the regenerator is also capable of regenerating direct current from alternating current, whereby this topology is suitable, for example, for chargers.
  • switching devices of the bridge circuit have MOSFETs or low-value IGBTs of R ds , on.
  • the semiconductor bridge circuit is implemented as an H-bridge for single-phase output.
  • 1 is a circuit diagram of a first embodiment of the invention
  • 2 is a circuit diagram of a second embodiment of the invention
  • FIG. 3 is a circuit diagram of a third embodiment of the invention.
  • FIG. 4 shows a circuit diagram of a fourth embodiment of the invention
  • FIG. 5 shows a graph of the time profile of the output voltage of the overall arrangement and the voltage generated by the DC chopper in the embodiment according to FIG. 4.
  • TSS Step-down converter, power electronic basic circuit for voltage
  • HSS boost converter, power electronic base circuit for voltage conversion, where U 2 > Ui.
  • HTSS high stepper, combination of TSS and HSS with common
  • Ui (referred to in the figures as u_l) is the input voltage of the circuit
  • U 2 (in the figures u_2) is the output voltage of the circuit.
  • UTSS (denoted U_TSS in Figs. 1 and 2) is the voltage at the output of the buck converter
  • U H TSS (denoted U_HTSS in Figs. 3 and 4) is the voltage at the output of the buck converter.
  • FIGS. 1 to 4 are essentially self-explanatory, so that subsequently no closed verbal description of the circuit structure will be given, but primarily important functional aspects of the respective arrangement will be described.
  • the bridge circuit comprises four switching devices Sl to S4, specifically as MOSFETs or IGBTs with low R ds , on can be formed.
  • the DC-DC converter component 11 in all embodiments has an input-side capacitor C_ZK and an output capacitor, which is designated C_TSS in FIG. 1 and FIG. 2, and a circuit inductance (which is denoted L_TSS in FIGS. 1 and 2).
  • the input voltage Ui is buffered in the buffer capacitor C_K. Subsequently, this voltage is reduced via the buck converter 11 down to a controllable voltage U T ss with Ui> U T ss> 0.
  • the time profile of the voltage U T ss is specified as the magnitude function of the output voltage u 2 (t):
  • the H-bridge which is connected to the output of the step-down converter, works as a polarity reverser, so that
  • the circuit of FIG. 1 can be extended by executing the step-down converter in a feedback-capable manner. Then with the described topology also power from the connected network (voltage U 2 ) can be taken and stored in the intermediate circuit.
  • a modified inverter arrangement 20 with a buck converter 21 and a B4 bridge 22 is shown in FIG. It is by the provision of a second switching device S2 T ss of Tiefsetzstellers blind power and also has a higher control reserve, which is necessary in order to discharge the filter capacitor C 2 of the buck converter for small network currents can.
  • an extension of the topology is possible in which the usable input voltage range is increased.
  • FIG. 3 shows an inverter arrangement 30 with a stepping converter 31 and a B4 bridge 32, wherein the buck converter components S1_TSS and D2_TSS, with the common use of an inductance L_HTSS, boost converter components S2_HSS and D1_HSS are connected on the output side.
  • the output capacitor is here designated C_HTSS.
  • the step-up converter makes it possible to set an output voltage whose instantaneous value can also be greater than the voltage at the DC link.
  • FIG. 4 shows, as a reactive power variant of the circuit arrangement of FIG. 3, an inverter arrangement 40 with a regenerative high-low setting divider 41 and a B4 bridge 42. Both in the step-down converter and in the step-up converter section, in comparison to the embodiment according to FIG Diode replaced by a switching device S2_TSS or S1_HSS.
  • FIG. 5 shows the graph of the voltage characteristics of the output voltage u_HTSS (t) at the step-up converter and the output voltage u_2 (t) of the inverter arrangement that the DC component of the respective circuits performs the sine wave shaping of the input-side DC voltage, while the downstream H or B4 bridge only acts as a pole turner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un dispositif onduleur DC-AC, en particulier un circuit inverseur pour cellules solaires d'une installation photovoltaïque, présentant un circuit en pont à semi-conducteur, caractérisé en ce qu'un régulateur de courant continu est prévu pour la production de demi-ondes d'une tension alternative de sortie, et en ce que le circuit en pont est monté en aval du régulateur de courant continu, et agit sur les demi-ondes en tant qu'inverseur de pôles.
EP10740574A 2009-09-11 2010-07-20 Dispositif onduleur dc-ac, en particulier circuit inverseur pour cellules solaires Withdrawn EP2476194A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009029387A DE102009029387A1 (de) 2009-09-11 2009-09-11 DC-AC-Wechselrichteranordnung, insbesondere Solarzelleninverter
PCT/EP2010/060501 WO2011029650A1 (fr) 2009-09-11 2010-07-20 Dispositif onduleur dc-ac, en particulier circuit inverseur pour cellules solaires

Publications (1)

Publication Number Publication Date
EP2476194A1 true EP2476194A1 (fr) 2012-07-18

Family

ID=43242589

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10740574A Withdrawn EP2476194A1 (fr) 2009-09-11 2010-07-20 Dispositif onduleur dc-ac, en particulier circuit inverseur pour cellules solaires

Country Status (8)

Country Link
US (1) US20120228938A1 (fr)
EP (1) EP2476194A1 (fr)
KR (1) KR20120041791A (fr)
CN (1) CN102640409A (fr)
AU (1) AU2010294425A1 (fr)
DE (1) DE102009029387A1 (fr)
IN (1) IN2012DN01551A (fr)
WO (1) WO2011029650A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772965B2 (en) * 2010-06-29 2014-07-08 General Electric Company Solar power generation system and method
DE102011017601A1 (de) 2011-04-27 2012-10-31 Robert Bosch Gmbh Ansteuerverfahren für einen Wechselrichter und Wechselrichteranordnung, insbesondere Solarzelleninverter
US8937822B2 (en) 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
CN102291028A (zh) * 2011-08-17 2011-12-21 福州大学 基于有源功率因数校正芯片控制的微功率并网逆变器
JP5963531B2 (ja) * 2012-05-15 2016-08-03 オムロン株式会社 インバータ装置および太陽光発電システム
KR20140031766A (ko) * 2012-09-05 2014-03-13 엘에스산전 주식회사 인버터 및 그 구동 방법
DE102012215978A1 (de) 2012-09-10 2014-03-13 Robert Bosch Gmbh Verfahren zur Verlängerung der Lebensdauer des Wechselrichters einer elektrischen Anlage, elektrische Anlage und Steuer- und Regeleinheit für eine elektrische Anlage
DE102014101571B4 (de) 2013-02-08 2015-02-19 Sma Solar Technology Ag Wechselrichter sowie verfahren zum betrieb eines wechselrichters
US20140268927A1 (en) * 2013-03-14 2014-09-18 Vanner, Inc. Voltage converter systems
DE102013211121A1 (de) 2013-06-14 2014-12-18 Robert Bosch Gmbh Wechselrichter
DE102014102000B3 (de) * 2014-02-18 2014-09-11 Sma Solar Technology Ag Verfahren zum Betreiben eines blindleistungsfähigen Wechselrichters mit Polwender und blindleistungsfähiger Wechselrichter mit Polwender
DE102014219857A1 (de) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Erzeugen einer Ausgangsspannung
FR3033962A1 (fr) * 2015-03-20 2016-09-23 Francecol Tech Onduleur pour source d’energie continue
DE102015005992A1 (de) 2015-05-08 2016-11-10 Kostal Industrie Elektrik Gmbh Wechselrichter
DE102015222210A1 (de) 2015-11-11 2017-05-11 Siemens Aktiengesellschaft Verfahren, Prognoseeinrichtung und Steuereinrichtung zum Steuern eines Stromnetzes mit einer Photovoltaikanlage
DE102017106224A1 (de) 2016-03-24 2017-09-28 Sma Solar Technology Ag Wechselrichter und Steuerverfahren für einen Wechselrichter
CN111213018B (zh) 2017-10-11 2022-07-15 泰立戴恩菲力尔商业系统公司 制冷机控制器系统和方法
CN108566106A (zh) * 2018-06-22 2018-09-21 林福祥 一种逆变器托扑结构

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
GB2179477B (en) * 1985-08-23 1989-03-30 Ferranti Plc Power supply circuit
US4761722A (en) * 1987-04-09 1988-08-02 Rca Corporation Switching regulator with rapid transient response
US6049471A (en) * 1998-02-11 2000-04-11 Powerdsine Ltd. Controller for pulse width modulation circuit using AC sine wave from DC input signal
DE10063538C1 (de) * 2000-12-20 2003-03-13 Ascom Energy Systems Ag Bern Verfahren zur Datenübertragung in Wechselstromnetzen
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
FR2851091B1 (fr) * 2003-02-07 2005-03-11 Commissariat Energie Atomique Convertisseur electrique pour pile a combustible
DE102004030912B3 (de) 2004-06-25 2006-01-19 Sma Technologie Ag Verfahren zum Umwandeln einer elektrischen Gleichspannung einer Gleichspannungsquelle, insbesondere einer Photovoltaik-Gleichspannungsquelle in eine Wechselspannung
TW200709544A (en) * 2005-08-29 2007-03-01 Ind Tech Res Inst Transformer-free power conversion circuit for parallel connection with commercial electricity system
DE102005047373A1 (de) * 2005-09-28 2007-04-05 Schekulin, Dirk, Dr. Ing. Tiefsetzstellerschaltung und Wechselrichter-Schaltungsanordnung
TWI307571B (en) * 2006-03-31 2009-03-11 Delta Electronics Inc Current source inverter with energy clamp circuit and controlling method thereof having relatively better effectiveness
CN201087938Y (zh) * 2007-09-10 2008-07-16 天津理工大学 基于dsp控制的双向升降压直直变换器装置
JP5124345B2 (ja) * 2008-05-26 2013-01-23 株式会社アルバック バイポーラパルス電源及びこのバイポーラパルス電源を複数台並列接続してなる電源装置
US8218338B2 (en) * 2008-12-26 2012-07-10 Acbel Polytech Inc. High efficiency universal input switching power supply
JP5605548B2 (ja) * 2010-04-12 2014-10-15 富士電機株式会社 系統連系装置
US8570006B2 (en) * 2011-07-21 2013-10-29 Intersil Americas Inc. Device and method for controlling a buck-boost converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011029650A1 *

Also Published As

Publication number Publication date
IN2012DN01551A (fr) 2015-06-05
WO2011029650A1 (fr) 2011-03-17
CN102640409A (zh) 2012-08-15
DE102009029387A1 (de) 2011-03-24
KR20120041791A (ko) 2012-05-02
US20120228938A1 (en) 2012-09-13
AU2010294425A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
EP2476194A1 (fr) Dispositif onduleur dc-ac, en particulier circuit inverseur pour cellules solaires
EP3496259B1 (fr) Système de convertisseur électrique
EP2515424B1 (fr) Convertisseur de tension continue
EP1311058B1 (fr) Convertisseur de frequence
EP2451064B1 (fr) Convertisseur élévateur
EP1956703B1 (fr) Dispositif destiné à l'alimentation électrique à partir d'une source de courant
EP3014725B1 (fr) Dispositif accumulateur d'énergie doté d'un circuit d'alimentation en tension continue et procédé pour fournir une tension continue à partir d'un dispositif accumulateur d'énergie
AT505801B1 (de) Verfahren zum betrieb eines elektronisch gesteuerten wechselrichters
EP2815497B1 (fr) Dispositif d'alimentation réseau, système d'alimentation en énergie et procédé de fonctionnement d'un disposif d'alimentation réseau
EP2702680B1 (fr) Procédé de commande pour un onduleur et onduleur, en particulier pour cellules solaires
DE102013212682B4 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102013005070B4 (de) Hoch-Tiefsetzsteller
AT504944B1 (de) Wechselrichter
DE102008050402A1 (de) Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung
DE102010064325A1 (de) System mit einer elektrischen Maschine
DE102011011330B4 (de) Tiefsetzsteller
EP1766767B1 (fr) Procede d'utilisation d'un onduleur et dispositif de mise en oeuvre de ce procede
DE102012202867A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102012202764A1 (de) Ladevorrichtung eines elektrisch betriebenen Fahrzeugs
EP2515425B1 (fr) Convertisseur de tension continue
WO2015062900A1 (fr) Circuit de charge pour dispositif d'accumulation d'énergie et procédé permettant de charger un dispositif d'accumulation d'énergie
WO2014154495A1 (fr) Dispositif accumulateur d'énergie et système comprenant un dispositif accumulateur d'énergie
CH700030B1 (de) Schaltungsanordnung mit Wechselrichter- und Gleichstromstellerfunktion.
DE102011116593B4 (de) Wechselrichter mit asymmetrischen Drosseln und einer Steuereinheit zum asymmetrischen Betrieb der Drosseln
DE102010060687A1 (de) Leistungselektronische Wandlerstufe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMA SOLAR TECHNOLOGY AG

17Q First examination report despatched

Effective date: 20171128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180119