EP2473978B1 - Verfahren und vorrichtung zur prüfung von wertdokumenten - Google Patents

Verfahren und vorrichtung zur prüfung von wertdokumenten Download PDF

Info

Publication number
EP2473978B1
EP2473978B1 EP10747629.3A EP10747629A EP2473978B1 EP 2473978 B1 EP2473978 B1 EP 2473978B1 EP 10747629 A EP10747629 A EP 10747629A EP 2473978 B1 EP2473978 B1 EP 2473978B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
signal
coercive
low
security element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10747629.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2473978A1 (de
Inventor
Jürgen Schützmann
Elisabeth Paul
Wolfgang Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP2473978A1 publication Critical patent/EP2473978A1/de
Application granted granted Critical
Publication of EP2473978B1 publication Critical patent/EP2473978B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the invention relates to a method and a device for checking value documents, such as e.g. Banknotes, checks, cards, tickets, coupons.
  • the magnetic codes known hitherto for example, two different coercive magnetic materials are used, from which two types of magnetic regions are formed, which can be arranged next to one another or one above the other.
  • the WO2009090676A1 a value document with a magnetic coding of high-coercive magnetic regions and low-coercive magnetic regions, which may be present separated from one another by gaps or may lie on one another.
  • banknotes with security threads which have a magnetic coding of different coercive materials.
  • the banknotes are transported parallel to the course of the security element and pass successively first a strong magnetic field parallel to the transport direction, which magnetizes both the high and the low-coercive magnet regions along the transport direction.
  • the remaining magnetization is checked by means of an inductive magnetic head, which is sensitive only parallel to the transport direction.
  • the banknotes then pass through a weaker magnetic field perpendicular to the transport direction, which aligns only the low-coercive magnetic regions perpendicular to the transport direction, while the high-coercive magnetic regions remain magnetized in the transport direction.
  • the remaining magnetization by means of an inductive magnetic head, which is sensitive only parallel to the transport direction, checked. With the first inductive magnetic head while the high and the low-coercive magnetic regions are detected and with the second inductive magnetic head only the high-coercive magnetic regions are detected.
  • the security element as in the WO2009090676A1 , also contains combined magnetic areas, both of which contain different coercive magnetic materials, so that the different coercive magnetic materials at the same time reach the detection range of the magnetic detector, a superposition of the magnetic signals of the different coercive magnetic materials is detected.
  • the combined magnetic regions thereby provide a reduced magnetic signal, whose signal swing lies between that of the high-coercive and the low-coercive magnetic regions.
  • the disadvantage of this method is that these combined magnetic areas only difficult to distinguish from the high coercive and low coercive magnetic regions.
  • the invention is therefore based on the object to carry out the examination of the documents of value so that the high coercive, the low coercive and the combined magnetic regions can each be reliably distinguished from each other.
  • the value document to be checked has a security element with a plurality of magnetic areas.
  • the magnetic regions include at least one high-coercive magnetic region made of a highly coercive magnetic material with a first coercive force and at least one low coercive magnetic region of a low coercive magnetic material having a second coercive force lower than the first coercive force, and at least one combined magnetic region having both the high coercive and the low coercive magnetic materials.
  • the at least one high-coercive, the at least one low-coercive and the at least one combined magnetic region on the security element are each spaced from each other by non-magnetic regions lying therebetween.
  • the at least one combined magnetic region contains both the high-coercive and the low-coercive magnetic material.
  • the combined magnetic region contains a smaller amount of the high-coercive magnetic material than the high-coercive magnetic region and a smaller one of the lower-coercive magnetic material than the low-coercive magnetic region.
  • the combined magnetic region is formed so that the high-coercive and the low-coercive magnetic material of the combined magnetic region have substantially the same remanent flux density.
  • the combined magnetic region contains the same amount of the high-coercive magnetic material as the low-coercive magnetic material.
  • the high-coercive and the low-coercive magnetic material of the combined magnetic region are arranged on each other.
  • the combined magnetic region may comprise the high coercive and low coercive magnetic material also in the form of a material mixture.
  • the high-coercive magnetic material of the high-coercive magnetic region is not designed to be the low-coercive magnetic material of the combined magnetic region or the low-coercive magnetic material of the to relocate the low-coercive magnetic field.
  • the high-coercive magnetic material of the combined magnetic region is not designed to remagnetize the low-coercive magnetic material of the combined magnetic region or the low-coercive magnetic material of the low-coercive magnetic region. This results from the fact that the magnetic field strength, which generates the respective high-coercive magnetic material at the location of the low-coercive magnetic material, is lower than the coercive field strength of the respective low-coercive magnetic material.
  • the remanent flux density of the high-coercive magnetic region and that of the low-coercive magnetic region are the same.
  • the remanent flux density of the high coercive magnetic material of the combined magnetic region is, for example, one half of the remanent flux density of the high coercive magnetic region and the remanent flux density of the low coercive magnetic material of the other magnetic region is one half of the remanent flux density of the low coercive magnetic region.
  • a resulting remanent flux density results from the sum of the two remanent flux densities of the high-coercive and low-coercive magnetic materials of the combined magnet region.
  • the resulting remanent flux density of the combined magnetic region is preferably equal to the remanent flux density of the high-coercive magnetic region and equal to the remanent flux density of the low-coercive magnetic region.
  • the value document or the security element of the value document is magnetized by a first magnetic field whose magnetic field strength is greater than the first and second coercive field strength.
  • the magnetization of the high coercive magnetic material (both of the high coercive and the combined magnetic region) and the magnetization of the low coercive magnetic material (both of the low coercive and the combined magnetic regions) are uniformly aligned in a first magnetization direction. After this first magnetization, first magnetic signals of the security element are detected by a first magnetic detector.
  • the value document or the security element is magnetized by a second magnetic field whose magnetic field strength is smaller than the first coercive field strength, but greater than the second coercive field strength.
  • the magnetization of the high-coercive magnetic material remains unchanged in the first magnetization direction.
  • the second magnetic field is oriented so that the magnetization of the low-coercive magnetic material (both the low-coercive and the combined magnetic regions) is oriented anti-parallel to the first magnetization direction.
  • the second magnetic field is anti-parallel to the first magnetic field.
  • the second magnetic signals are detected by a second magnetic detector, which is identical in construction, for example, with the first magnetic detector.
  • the second magnetic signals can also be detected by the first, that is, by the same magnetic detector as the first magnetic signals.
  • the first and second magnetic signals are analyzed to determine at which positions on the security element the magnetic areas of the security element are located and to identify each of the magnetic areas of the security element either as one of the combined magnetic areas or as one of the high or low low-coercive Magnetic regions. Since the first magnetic field magnetizes all magnetic regions of the security element in a first direction of magnetization, it can be determined from the first magnetic signal at which positions on the security element magnetic regions are located.
  • the high-coercive magnetic regions are not re-magnetized by the second magnetic field.
  • the first and the second magnetic signals of the high-coercive magnetic regions are therefore essentially the same. Since the low-coercive magnetic material is aligned by the second magnetic field in anti-parallel to the first direction of magnetization, in each case the second magnetic signal of the at least one low-coercive magnetic field from the first magnetic signal of the at least one low-coercive magnetic field.
  • the second magnetic signal of the low-coercive magnetic region is substantially inverted compared to the first magnetic signal of the low-coercive magnetic region.
  • the antiparallel magnetization of the low-coercive magnet material also causes each of the second magnetic signal of the at least one combined magnetic range from the first magnetic signal of the at least one combined magnetic region and the second magnetic signals of the high and low-coercive magnetic regions. It can be deduced from the second magnetic signal of the respective magnetic region whether the respective magnetic region is a high-coercive, a low-coercive or a combined magnetic region.
  • the at least one combined magnetic region is magnetized by the second magnetic field so that a resulting magnetization of the at least one combined magnetic region, which results from the second magnetization, at least approximately disappears.
  • the remanent flux densities of the low-coercive and the high-coercive magnetic material of the at least one combined magnetic region are selected so that a vanishing resulting magnetization of the respective combined magnetic region is set by an antiparallel magnetization of the high-coercive and low-coercive magnet material.
  • the combined magnetic regions are formed so that the low coercive magnetic material of the combined magnetic region and the high coercive magnetic material of the combined magnetic region have the same remanent flux density.
  • the first and second magnetization directions are preferably in the value document level. This is advantageous in comparison with a direction of magnetization perpendicular to the value document plane, since the magnetic material of the security element can be magnetized more easily in the value document plane than perpendicular to the value document plane. Due to the magnetization in the value document level, therefore, a more reliable examination of the value document is possible.
  • the first magnetization direction is parallel or antiparallel to the transport direction of the value document and the second direction of magnetization opposite thereto.
  • the first and second magnetization directions can also lie in the value document plane and run perpendicular or obliquely to the transport direction.
  • Each of the magnetic regions of the security element makes a contribution to the first and to the second magnetic signal of the security element.
  • the contribution which the respective magnetic area makes to the first or the second magnetic signal of the security element is referred to below as the first or second magnetic signal of the respective magnetic area.
  • the first magnetic signal and the second magnetic signal of a magnetic region are formed as the first and second magnetic signal signature.
  • the first and the second magnetic signal of the security element can therefore contain a plurality of individual magnetic signal signatures.
  • the exact shape of the magnetic signal signatures depends on the magnetic detector used as well as on the remanent flux density of the respective magnetic area and on the length of the respective magnetic area.
  • the first magnetic signal signature of the high-coercive, the low-coercive and the combined magnetic regions may each be designed as a single peak or as a double peak.
  • the second magnetic signal of the combined magnetic domain consists of a magnetic signal amplitude which has no pronounced peaks and which remains close to a second signal offset, which has the second magnetic signal.
  • the second magnetic signals of the magnetic regions are analyzed.
  • a signal processing of the second magnetic signals is used, which uses two thresholds, with which the respective second magnetic signal of the respective magnetic region is compared.
  • the two thresholds are formed by an upper threshold and by a lower threshold, the lower threshold being below the upper threshold. With respect to a positive magnetic signal amplitude of the second magnetic signal, this means that the upper threshold is at a larger magnetic signal amplitude than the lower threshold.
  • each magnetic region whose second magnetic signal exceeds the upper threshold or the second magnetic signal falls below the lower threshold identified as a high or low-coercive magnetic region.
  • the length of the individual magnetic regions along the longitudinal direction of the security element can be determined, for example, from the width of the second magnetic signal of the respective magnetic region or from a signal derived from the second magnetic signal or from one of the first and second magnetic signals of the respective magnetic region.
  • the decision as to whether a magnetic region is identified as a high-coercive or a low-magnetic magnetic region depends on the type of the magnetic detector.
  • the second magnetic signal of the high-coercive magnetic regions is formed in each case as a positive single peak and the second magnetic signal of the low-coercive magnetic regions in each case as a negative single peak.
  • each magnetic domain whose second magnetic signal exceeds the upper threshold is identified as a high-coercive magnetic domain
  • each magnetic domain whose second magnetic signal falls below the lower threshold is identified as Low-Coercive Magnetic Area.
  • the second magnetic signal of the high-coercive and the low-coercive magnetic regions is respectively formed as a double peak, wherein the double peak of the low-coercive magnetic region is formed inversely to the double peak of the high-coercive magnetic region.
  • the signal shape of the second magnetic signals of the high-coercive and the low-coercive magnetic regions is additionally analyzed in this case.
  • the second magnetic signal of the security element has a second signal offset.
  • the second magnetic signals of the magnetic regions are formed relative to this second signal offset.
  • the upper threshold is defined to be above the second signal offset and the lower threshold is defined to be below the second signal offset.
  • a signal derived from the second magnetic signal or a signal derived from the second or from the first and second magnetic signals may also be used.
  • the derived signal may be from the second magnetic signal, for example by forming a correlation of the second Magnetic signal are derived with a base signal which is characteristic of the magnetic detector which detects the second magnetic signal, and for the security element to be tested.
  • the derived signal may correspond to the maximum value of a correlation curve determined for each position along the lengthwise direction of the security element.
  • the derived signal can also directly be the maximum value of the second magnetic signal which the second magnetic detector detects at the respective position along the longitudinal direction of the security element.
  • the derived signal may also be the area under the second magnetic signal at the respective position along the security element or other characteristics of the second magnetic signal or characteristics of a signal derived from the first and second magnetic signals.
  • any magnetic region for which a signal derived from its second magnetic signal or for the signal derived from one of its first and second magnetic signals neither exceeds an upper threshold nor undershoots a lower threshold is identified as a combined magnetic region ,
  • each magnetic domain for which a signal derived from its second magnetic signal or for the signal derived from one of the first and second magnetic signals thereof exceeds the upper threshold and / or falls below the lower threshold is identified as either a high-coercive or a low-coercive magnetic domain.
  • the upper and lower thresholds are preferably defined so that the two thresholds are at a relatively large distance from each other.
  • the distance between the upper and the lower threshold is in particular at least 50%, preferably at least 75%, in particular at least 100% of a mean signal stroke H2 (cf. Fig. 2 ) of the second magnetic signal having the second magnetic signal of the high-coercive and / or the second magnetic signal of the low-coercive magnetic regions relative to the second signal offset of the second magnetic signal.
  • the mean signal deviation can be determined, for example, from empirical values that are set in the course of the calibration of the second magnetic detector in advance of the document of value verification.
  • the average signal swing can also be determined, quasi online, from the second magnetic signal, for example by averaging the signal swing of the individual magnetic signal signatures of the high-coercive and / or low-coercive magnet regions contained in the second magnetic signal.
  • the upper and / or lower threshold are selected in response to the first magnetic signal of the security element, in particular in response to a signal swing of the first magnetic signal having the first magnetic signal relative to a first signal offset.
  • the upper and / or lower threshold are selected in response to the first magnetic signal of the security element, in particular in response to a signal swing of the first magnetic signal having the first magnetic signal relative to a first signal offset.
  • the upper threshold and / or the lower threshold can be selected to be the same for all magnetic regions, so that all second magnetic signals of the magnetic regions are compared with the same upper and lower threshold, but which is dynamically selected as a function of the first magnetic signal of the security element. If the signal deviation of the first magnetic signals of the magnetic regions of the security element is relatively high or low, for example, on average, the upper threshold is also correspondingly increased or reduced.
  • different upper thresholds or different lower thresholds can be selected for the magnetic areas of the security element, so that the second magnetic signals of the magnetic areas are compared with different upper or with different lower thresholds.
  • the upper and / or lower threshold is selected individually, in dependence on the first magnetic signal of the respective magnetic region, in particular as a function of a signal stroke of the first magnetic signal of the respective magnetic region, which the first magnetic signal of the respective magnetic region relative to a first magnetic field Signal offset of the first magnetic signal has. It is particularly advantageous to select the upper and / or the lower threshold individually for all magnetic regions of the security element as a function of the signal deviation of the first magnetic signal of the respective magnetic region.
  • the upper threshold for that magnetic domain is also reduced.
  • the upper and the lower threshold are individually connected to the respective magnetic area and its nature, e.g. adjusted its length and amount of magnetic material.
  • an optimal position of the upper and lower threshold is achieved for each magnetic area.
  • the distinction of the combined magnetic regions from the high and low coercive magnetic regions is thereby further improved.
  • the invention also relates to a device for testing a value document, which has a security element with a plurality of magnetic regions, which has at least one highly coercive, at least one low coercive and at least one combined magnetic region.
  • the device includes a first magnetic detector for detecting first magnetic signals of the security element.
  • the device also has a magnetic detector for detecting second magnetic signals of the security element, wherein this magnetic detector is either the first magnetic detector or a second magnetic detector which is, for example, identical to the first magnetic detector.
  • the first and second magnetic detectors may be formed by one or more inductive elements, by Hall elements or by conventional magnetoresistive elements, GMR, AMR, TMR, SdT or spin valve elements.
  • the apparatus further includes signal processing means arranged to analyze the first and second magnetic signals.
  • the signal processing device is set up to determine at which positions on the security element magnetic areas of the security element are located, and to identify these magnetic areas. In identifying, each of the magnetic regions of the security element is identified either as one of the combined magnetic regions comprising both the high and low coercivity magnetic materials, or as one of the high or low magnetic magnetic regions, ie as one of the remaining magnetic regions which the security element may comprise ,
  • the signal processing device is set up to identify those magnetic regions whose second magnetic signal neither exceeds an upper threshold nor falls below a lower threshold than combined magnetic regions.
  • the upper threshold lies above the second signal offset and the lower threshold below the second signal offset.
  • the upper and / or the lower threshold can either be stored in the signal processing device or will be generated dynamically by the signal processing device. It can the upper and lower thresholds are selected according to the above explanations.
  • the device also includes first and second magnetization devices that are components of the device.
  • the first magnetization device of the device is designed to provide a first magnetic field, which is designed for the first magnetization of the security element.
  • the second magnetization device is designed to provide a second magnetic field, which is designed for the second magnetization of the security element.
  • the first and second magnetic field can be provided, for example, by permanent magnets or by electromagnets.
  • the first magnetic field provided by the first magnetizing means is arranged to first magnetize the high-coercive and low-coercive magnetic materials in a first magnetization direction, wherein the magnetic field strength of the first magnetic field used for the first magnetization is greater than the first coercive force.
  • the first magnetizing device is arranged so that, when operating the device, the first magnetization is performed for each of the magnetic regions before the first magnetic signal of the respective magnetic region is detected.
  • the second magnetic field provided by the second magnetizing means is arranged to second magnetize the low-coercive magnetic material in a second magnetization direction which is anti-parallel to a first magnetizing direction.
  • the magnetic field strength used for the second magnetization is smaller than the first coercive field strength but greater than the second coercive field strength.
  • the magnetization of the high-coercive magnetic material remains aligned in the first direction of magnetization in the second magnetization.
  • the second magnetization device is arranged such that, in operating the device, for each of the magnet regions the second magnetization is performed after the first and before the second magnetic signal of the respective magnetic domain is detected.
  • the magnetic field direction of the second magnetic field runs antiparallel to the magnetic field direction of the first magnetic field.
  • the first magnetization device is not a component of the device, but is formed by an external magnetization device, which is arranged outside the device and provides the first magnetic field.
  • an external magnetization device which is arranged outside the device and provides the first magnetic field.
  • a permanent magnet or an electromagnet can be used as the external magnetization device, past which the value document is passed manually or automatically in order to carry out the first magnetization of the security element.
  • the external magnetization device provides a magnetic field strength which is greater than the first coercive field strength, so that all magnetic regions can be magnetized in the first magnetization direction.
  • the second magnetization device can be embodied as part of the device in this exemplary embodiment, as described above.
  • the second magnetization device may be formed by an external magnetization device which is arranged outside the device and provides the second magnetic field.
  • an external magnetization device which is arranged outside the device and provides the second magnetic field.
  • a permanent magnet or an electromagnet is used for the second magnetization, past which the value document is passed manually or automatically in order to carry out the second magnetization of the security element.
  • the external magnetization device provides a second magnetic field strength that lies between the first and the second coercive field strength, so that the low-coercive magnetic material can be re-magnetized in an antiparallel direction.
  • the first magnetization device may be performed either as part of the device in this embodiment, or also as an external magnetization device. In the latter case, the first and second magnetizing means may be implemented as two separate external magnetizing means or as a combined external magnetizing means providing both the first and second magnetic fields.
  • FIG. 1 schematically a device for testing the magnetic properties of a value document is shown, in which a value document containing a security element 2, along a transport direction T is transported past the device (value document not shown).
  • the device is designed to test a security element 2 that runs parallel to the transport direction T of the value document.
  • the device may be part of a value-document processing machine with which value documents are checked for authenticity, type and / or condition, in particular a magnetic sensor that can be installed in such a machine.
  • the device can also be a self-sufficient measuring device for testing the magnetic properties of value documents.
  • the security element 2 is in this example designed as a security thread which contains along its longitudinal direction a first high-coercive magnetic region h, a combined magnetic region c, a low-coercive magnetic region 1 and a second high-coercive magnetic region h. Between these magnetic regions h, l, c, h is nonmagnetic material.
  • the high-coercive and low-coercive magnetic materials of the combined magnetic region c have the same remanent flux density.
  • the device has a first magnetization device 9 and a second magnetization device 19, which provide a magnetic field parallel or antiparallel to the transport direction T of the value document.
  • the first magnetization device is formed in this example for the first magnetization of the security element 2 parallel to the transport direction T and the second magnetization device 19 for the second magnetization of the security element 2 antiparallel to the transport direction T.
  • the security element 2 also antiparallel and then be magnetized parallel to the transport direction T.
  • the device also includes a first magnetic detector 10 disposed between the two magnetizing devices 9, 19 and a second magnetic detector 20, which, viewed in the direction of transport T, is disposed after the two magnetizing devices 9, 19.
  • the two magnetic detectors 10, 20 are oriented perpendicular to the longitudinal direction of the security element 2 and have a detection element which is formed at least for detecting magnetic fields parallel and antiparallel to the transport direction T.
  • the device also has a signal processing device 8, which is connected to the first and the second magnetic detector 10, 20 via the lines 7.
  • the signal processing device 8 receives measurement signals from the two magnetic detectors 10, 20 and processes and analyzes them.
  • the signal processing device 8 may e.g. be arranged together with the magnetic detectors 10,20 in the same housing. Via an interface 6 data can be sent outwards from the signal processing device 8, e.g. to a control device which processes the data, and / or to a display device which informs about the result of the value-document check.
  • the same reference numerals are used for the same elements.
  • the magnetic signals of the security element 2 are represented as a function of time, which are obtained when the security element 2 is transported past the inland transport FIG. 1 revealed device.
  • the first magnetic detector 10 the first magnetic signal M1 of the security element 2 is detected.
  • the first magnetization device 9 generates parallel to the transport direction T a first magnetic field with high magnetic field strength, through which, when passing the security element 2, all Magnetic regions h, c, l are magnetized parallel to the transport direction T.
  • the first magnetic signal M1 shows, for all magnetic regions h, l, c, h, at the beginning of the magnetic region a magnetic signal signature consisting of a positive peak at the beginning and a negative peak at the end of a magnetic region (M1 h , M1 c , M1 l ).
  • the second magnetizing device 19 generates a magnetic field with a lower field strength, the direction of which runs antiparallel to the first magnetic field of the first magnetizing device 9.
  • the field strength is dimensioned so that only the low-coercive magnetic material is re-magnetized while the magnetization of the high-coercive magnetic material is maintained.
  • the low-coercive magnetic domain 1 and the low-coercive material of the combined magnetic domain c are re-magnetized in the antiparallel direction.
  • the two high-coercive magnetic regions h and the high-coercive material of the combined magnetic region c continue to be magnetized in the first magnetization direction.
  • the second magnetic signal M2 of the security element 2 is detected.
  • the second magnetic signals M2 h of the high-coercive magnetic regions h show the same magnetic-signal signature as the first magnetic signals M1 h of the high-coercive magnetic regions h.
  • the second magnetic signal M2 l of the low-coercive magnetic field l shows a magnetic signal signature which is inverse to the observed in the first magnetic signal magnetic signal signatures, and which also inverse to the magnetic signal signature observed in the second magnetic signal high coercive magnetic regions h is (negative peak at the beginning, positive peak at the end of the magnetic region l).
  • the combined magnetic region c results in a greatly reduced magnetic signal M2 c , which relative to a second signal offset 02 of the second magnetic signal M2, has a nearly vanishing signal amplitude.
  • the signal processing device 8 determines at which positions on the security element 2 magnetic regions are present. This can already be derived, for example, from the first magnetic signal M1 alone, for example by analyzing at which positions on the security element 2 the magnetic signal signature is to be found which is expected for the magnetic regions after the first magnetization (in this case a double peak).
  • the signal processing device 8 is set up to determine the type of the respective magnetic region for each of the magnetic regions found. For this purpose, two thresholds S1 and S2 are used, with which the second magnetic signal M2 is compared. The upper threshold Sl is chosen to be above the second signal offset 02 of the second magnetic signal M2 and the lower threshold S2 is selected to be below the second signal offset 02 of the second magnetic signal M2.
  • each magnetic region whose second magnetic signal exceeds the upper threshold S1 and / or falls below the lower threshold S2 is identified as a high-coercive or low-coercive magnetic region.
  • M2 l of these magnetic regions are analyzed to see whether a positive and then a negative peak has been detected first (high-coercive magnetic regions h) or vice versa (low-magnetic magnetic region l).
  • high-coercive magnetic regions h high-coercive magnetic regions h
  • low-magnetic magnetic region l low-magnetic magnetic region l
  • the upper and / or the lower threshold S1, S2 can be selected as a function of the first magnetic signal M1 of the security element 2.
  • the upper threshold S1 to which the second magnetic signal M2 1 of the low magnetic domain 1 is compared may be individually reduced to the first threshold S1 * for the low magnetic domain 1, while the second magnetic signals of the remaining magnetic domains h, c, h are referred to the threshold S1 are compared.
  • the first threshold can be individually adapted to the relatively small signal H1 l , the first magnetic signal M1 l of the low-coercive magnetic field has l relative to the first signal offset O1 of the first magnetic signal M1.
  • FIG. 3 is sketched another embodiment in which the security element 2 is transported so that its longitudinal direction is oriented perpendicular to the transport direction T of the value document.
  • a first detector row 11 and a second detector row 21, each having a plurality of individual detection elements 12, 22, are used as first and second magnetic detectors.
  • Each of these detection elements 12, 22 supplies a magnetic signal, so that in this example, a plurality of first magnetic signals M1 are detected by means of the detection elements 12 and a plurality of second magnetic signals M2 by means of the detection elements 22.
  • Each detection element 12 of the first detector line 11 detects the same section of the transported security element 2 as a corresponding thereto detection element 22 of the second detector line 21.
  • the signal processing can, for example, analogous to the embodiment of FIGS. 1 and 2 take place, in each case the magnetic signals of two mutually corresponding detection elements 12, 22 are processed as the first and second magnetic signal.
  • FIG. 4 is sketched a further embodiment in which the security element 2, as well as in FIG. 3 is transported with its longitudinal direction perpendicular to the transport direction T.
  • the two detection elements of the magnetic detectors 10, 20 detect the first and the second magnetic signal, analogously to the example of Figures 1 and 2 , as a function of time.
  • FIGS. 5 and 6 show a further embodiment in which the device is designed as a self-sufficient measuring device, which is designed to test the magnetic properties of individual value documents 1.
  • the second magnetization device 19 and the second magnetic detector 23 are disposed adjacent to the first magnetization device 9 and the first magnetic detector 13.
  • the two magnetic detectors 13, 23 and the two magnetizing devices 9,19 are mounted on a scanning device 5, which is transportable along the direction B and is arranged at a small distance to the Trommel.3.
  • the magnetic detectors 13, 23 each have a magnetic field-sensitive region 14, 24 on their underside.
  • the value document 1 is mounted on a drum 3, which is rotatable about the axis A, which is parallel to the direction B.
  • the document of value 1 can be repeatedly transported past the magnet detectors 13, 23 and the magnetizing devices 9, 19 along the circumference of the drum 3.
  • the magnetic signals of those sections of the security element 2 can be detected, which, depending on the position of the scanning device 5, are located just in the detection range of the magnetic detectors 13 and 23, respectively.
  • the magnetic portions h, l, c of the security element 2 as in the previous embodiments, successively magnetized twice and then each detected their magnetic signals.
  • the device is shown at a time during a rotation in which the combined magnetic domain c is magnetized by the first magnetizing means 9 and the first magnetic signals M1 c of the combined magnetic domain c are detected by means of the magnetic detector 13.
  • the high-coercive and low-coercive magnet regions h, l are outside the detection range of the two magnetic detectors 13, 23 during this rotation.
  • the document of value 1 can also be fastened on the drum 3 in such a way that the security element 2 is not oriented perpendicularly but parallel to the transport direction T of the document of value.
  • the first and second magnetic signals respectively as a function of time, first detected by the first and then by the second magnetic detector.
  • first and second magnetic signals M1, M2 of the security element 2 are also processed in the following manner: first signal M1 'is derived from first magnetic signal M1, and a second signal M2' is derived from second magnetic signal M2.
  • first signal M1 ' is derived from first magnetic signal M1
  • second signal M2' is derived from second magnetic signal M2.
  • FIG. 7 Examples of such derived first and second signals M1 ', M2' are shown.
  • the derived first signal M1 'derived from the first magnetic signal M1 of the magnetic detector 10 is derived by forming a correlation of the first magnetic signal M1 with a base signal characteristic of the magnetic detector 10, 11 used and the security element 2 to be tested FIG.
  • the derived first signal M1 ' corresponds to the maximum value of the correlation curve, which was determined for each position y along the longitudinal direction of the security element 2.
  • the derived second signal M2 ' was derived from the second magnetic signal M2 of the magnetic detector 20, 21 by forming a correlation of the second magnetic signal M2 with a base signal characteristic of the magnetic detector 20, 21 and the security element 2 used.
  • the maximum value of the first magnetic signal M1 which the first magnetic detector 10, 11 or its individual detection elements 12 detect at the respective y-position of the security element 2 can also be used as the derived first signal M1 '.
  • a derived first signal M1 'but also the area under the first magnetic signal M1 at the respective y-position of the security element 2 can be used or other characteristics of the first magnetic signal M1.
  • the derived second signal M2 ' is derived analogously from the second magnetic signal M2 as the derived first signal M1' is derived from the first magnetic signal M1.
  • the derived second signal M2 ' may be derived either from the second magnetic signal M2 alone or from the first and second magnetic signals M1, M2. In the latter case, for example, first the maximum value or the area of the first and second magnetic signals M1, M2 or respectively a correlation value of the first and second magnetic signals M1, M2 are determined with the base signal, and subsequently the derived second signal M2 'is derived therefrom, eg by a linear combination or ratio formation. For example, the derived second signal M2 'is derived by adding or subtracting the maximum values of the first M1 and second magnetic signals M2 at the respective y-position or by adding or subtracting the correlation values of the first and second magnetic signals at the respective y-position.
  • the derived second signal M2 ' is then compared with an upper threshold S1 and a lower threshold S2 to identify the magnetic areas h, l, c. If the comparison with the two thresholds S1, S2 for one of the magnetic areas h, l, c found that the derived second signal M2 'of the respective magnetic area neither exceeds the upper threshold S1 nor falls below the lower threshold S2, this magnetic area is called Combined magnetic domain c identified, cf. FIG. 7 , When the upper threshold S1 is exceeded, the respective magnetic area is identified as a high-coercive magnetic area h and, when the lower threshold is undershot, as a low-magnetic area l.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)
EP10747629.3A 2009-09-01 2010-08-31 Verfahren und vorrichtung zur prüfung von wertdokumenten Active EP2473978B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009039588A DE102009039588A1 (de) 2009-09-01 2009-09-01 Verfahren und Vorrichtung zur Prüfung von Wertdokumenten
PCT/EP2010/062681 WO2011026829A1 (de) 2009-09-01 2010-08-31 Verfahren und vorrichtung zur prüfung von wertdokumenten

Publications (2)

Publication Number Publication Date
EP2473978A1 EP2473978A1 (de) 2012-07-11
EP2473978B1 true EP2473978B1 (de) 2017-07-05

Family

ID=42989579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10747629.3A Active EP2473978B1 (de) 2009-09-01 2010-08-31 Verfahren und vorrichtung zur prüfung von wertdokumenten

Country Status (9)

Country Link
US (1) US8544630B2 (zh)
EP (1) EP2473978B1 (zh)
CN (1) CN102576477B (zh)
BR (1) BR112012004544B1 (zh)
DE (1) DE102009039588A1 (zh)
ES (1) ES2642105T3 (zh)
RU (1) RU2560787C2 (zh)
WO (1) WO2011026829A1 (zh)
ZA (1) ZA201200778B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2580745B1 (de) * 2010-06-09 2017-08-16 Giesecke+Devrient Currency Technology GmbH Verfahren und vorrichtung zur prüfung von wertdokumenten
DE102011109949A1 (de) * 2011-08-10 2013-02-14 Giesecke & Devrient Gmbh Prüfanordnung zur Wertdokumentprüfung
DE102011120972A1 (de) * 2011-12-13 2013-06-13 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zur Prüfung von Wertdokumenten
CN103971443B (zh) * 2013-01-24 2016-08-10 中钞特种防伪科技有限公司 对防伪元件进行检测的方法和装置
WO2014147824A1 (ja) * 2013-03-22 2014-09-25 グローリー株式会社 磁気質検出装置
DE102013205891A1 (de) * 2013-04-03 2014-10-09 Giesecke & Devrient Gmbh Prüfung eines mit Magnetmaterialien versehenen Sicherheitselements
CN103226865B (zh) * 2013-04-16 2016-05-25 无锡乐尔科技有限公司 一种基于磁电阻技术检测磁性图形表面磁场的磁头
CN103544764B (zh) * 2013-09-12 2016-11-16 无锡乐尔科技有限公司 一种用于识别磁性介质的传感器
CN103809137B (zh) * 2014-02-21 2016-08-31 中国人民银行印制科学技术研究所 纸页检测装置和纸页检测方法
FR3028801B1 (fr) 2014-11-24 2021-11-19 Arjowiggins Security Element de securite
DE102015002219A1 (de) 2015-02-24 2016-08-25 Meas Deutschland Gmbh Vormagnetisierungsmagnet und Messvorrichtung zum Messen magnetischer Eigenschaften der Umgebung der Messvorrichtung sowie Verfahren zur Vormagnetisierung magnetischer Materialien auf einem Messobjekt
CN105118137A (zh) * 2015-07-31 2015-12-02 孙宗远 一种移动便携式手持验钞装置以及验钞方法
CN105160753A (zh) * 2015-09-16 2015-12-16 深圳市倍量科技有限公司 一种纸币安全线防伪检测的装置及方法
DE102016015559A1 (de) 2016-12-27 2018-06-28 Giesecke+Devrient Currency Technology Gmbh Verfahren und Vorrichtung zum Detektieren eines Sicherheitsfadens in einem Wertdokument
DE102016015545A1 (de) 2016-12-27 2018-06-28 Giesecke+Devrient Currency Technology Gmbh Verfahren und Vorrichtung zum Detektieren eines Sicherheitsfadens in einem Wertdokument
BE1025465B1 (de) * 2017-08-11 2019-03-11 Phoenix Contact Gmbh & Co. Kg Verfahren zum Magnetisieren von mindestens zwei Magneten unterschiedlicher magnetischer Koerzitivfeldstärken
DE102018008519A1 (de) 2018-10-30 2020-04-30 Giesecke+Devrient Currency Technology Gmbh Magnetische Prüfung von Wertdokumenten
CN110108781B (zh) * 2019-05-15 2023-11-10 中钞印制技术研究院有限公司 移动设备及其物品鉴别方法、装置和系统、存储介质
DE102019003491A1 (de) * 2019-05-16 2020-11-19 Giesecke+Devrient Currency Technology Gmbh Prüfung der Koerzitivfeldstärke von Magnetpigmenten
CN110738785A (zh) * 2019-09-19 2020-01-31 中钞特种防伪科技有限公司 用于磁性防伪元件的检测方法及设备
CN113516216A (zh) * 2021-04-26 2021-10-19 中钞特种防伪科技有限公司 防伪元件、防伪元件检测方法及防伪产品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834287C2 (de) 1978-08-04 1984-03-22 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Vorrichtung zur Echtheitsprüfung ferromagnetischer Sicherheitsfäden in Wertdrucken
GB2130414A (en) * 1982-11-18 1984-05-31 Portals Ltd Security documents and verification thereof
GB8921435D0 (en) * 1989-09-22 1989-11-08 Bank Of England Sensor system for document sorting machines
DE68926714T3 (de) * 1989-11-23 2000-01-05 Mantegazza A Arti Grafici Einheit zum Abtasten von magnetischen Kodes
WO1998038792A1 (en) * 1997-02-28 1998-09-03 University And Community College System Of Nevada Magnetoresistive scanning system
FR2838543B1 (fr) * 2002-04-12 2004-06-04 Cryptic Systeme de marquage magnetique, procede et machine pour sa fabrication
DE102004049999A1 (de) 2004-10-14 2006-04-20 Giesecke & Devrient Gmbh Sicherheitselement
DE102006055170A1 (de) * 2006-11-22 2008-05-29 Giesecke & Devrient Gmbh Sicherheitselement zur Absicherung von Wertdokumenten
ITMI20080053A1 (it) * 2008-01-15 2009-07-16 Fabriano Securities Srl Elemento di sicurezza, particolarmente per banconote, carte di sicurezza e simili, avente caratteristiche anti-contraffazione.
ITMI20080261A1 (it) * 2008-02-19 2009-08-20 Fabriano Securities Srl Sensore di lettura di banconote, carte di sicurezza e simili, contenenti almeno un elemento di sicurezza.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2012112338A (ru) 2014-10-20
BR112012004544A2 (pt) 2018-06-26
BR112012004544B1 (pt) 2021-03-16
CN102576477A (zh) 2012-07-11
US20120160632A1 (en) 2012-06-28
DE102009039588A1 (de) 2011-03-03
US8544630B2 (en) 2013-10-01
RU2560787C2 (ru) 2015-08-20
WO2011026829A1 (de) 2011-03-10
ZA201200778B (en) 2012-10-31
CN102576477B (zh) 2015-10-14
ES2642105T3 (es) 2017-11-15
EP2473978A1 (de) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2473978B1 (de) Verfahren und vorrichtung zur prüfung von wertdokumenten
EP2580745B1 (de) Verfahren und vorrichtung zur prüfung von wertdokumenten
EP2376932B1 (de) Magnetsensor zur prüfung von wertdokumenten
EP2791919B1 (de) Verfahren und vorrichtung zur prüfung von wertdokumenten
EP2742492B1 (de) Prüfanordnung zur wertdokumentprüfung
EP2981948B1 (de) Prüfung eines mit magnetmaterialien versehenen sicherheitselements
EP2745277B1 (de) Messvorrichtung zum messen magnetischer eigenschaften der umgebung der messvorrichtung
WO2010006801A1 (de) Messvorrichtung zum messen magnetischer eigenschaften und herstellungsverfahren für eine solche messvorrichtung
DE2834287C2 (de) Vorrichtung zur Echtheitsprüfung ferromagnetischer Sicherheitsfäden in Wertdrucken
EP3262432B2 (de) Verfahren zur vormagnetisierung magnetischer materialien auf einem messobjekt
WO2014090397A1 (de) Vorrichtung zur untersuchung eines wertdokuments und verfahren zur untersuchung eines wertdokuments
EP2941759B1 (de) Messvorrichtung zum messen magnetischer eigenschaften der umgebung der messvorrichtung
WO2015090545A1 (de) Magnetisierungseinrichtung zum prüfen eines sicherheitselements
EP2385503B1 (de) Sicherheitselement zur Absicherung von Wertdokumenten
EP3874475B1 (de) Magnetische prüfung von wertdokumenten
DE102016015545A1 (de) Verfahren und Vorrichtung zum Detektieren eines Sicherheitsfadens in einem Wertdokument

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170203

INTG Intention to grant announced

Effective date: 20170203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 907075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013826

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2642105

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171115

Ref country code: AT

Ref legal event code: HC

Ref document number: 907075

Country of ref document: AT

Kind code of ref document: T

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20170918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE AND DEVRIENT GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013826

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 907075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210823

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 14

Ref country code: GB

Payment date: 20230824

Year of fee payment: 14

Ref country code: ES

Payment date: 20230918

Year of fee payment: 14

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230831

Year of fee payment: 14