EP2472215B1 - Verfahren und Vorrichtung zur Neutralisierung eines Ziels - Google Patents

Verfahren und Vorrichtung zur Neutralisierung eines Ziels Download PDF

Info

Publication number
EP2472215B1
EP2472215B1 EP11306780.5A EP11306780A EP2472215B1 EP 2472215 B1 EP2472215 B1 EP 2472215B1 EP 11306780 A EP11306780 A EP 11306780A EP 2472215 B1 EP2472215 B1 EP 2472215B1
Authority
EP
European Patent Office
Prior art keywords
target
antenna
array
frequency
radiofrequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11306780.5A
Other languages
English (en)
French (fr)
Other versions
EP2472215A1 (de
Inventor
Jean-Pierre Brasile
Dominique Fasse
Patrick Sirot
Dominique Jousse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2472215A1 publication Critical patent/EP2472215A1/de
Application granted granted Critical
Publication of EP2472215B1 publication Critical patent/EP2472215B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0075Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a radiofrequency beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/45Jamming having variable characteristics characterized by including monitoring of the target or target signal, e.g. in reactive jammers or follower jammers for example by means of an alternation of jamming phases and monitoring phases, called "look-through mode"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/62Jamming involving special techniques by exposing communication, processing or storing systems to electromagnetic wave radiation, e.g. causing disturbance, disruption or damage of electronic circuits, or causing external injection of faults in the information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/65Jamming involving special techniques using deceptive jamming or spoofing, e.g. transmission of false signals for premature triggering of RCIED, for forced connection or disconnection to/from a network or for generation of dummy target signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/24Jamming or countermeasure used for a particular application for communication related to weapons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/30Jamming or countermeasure characterized by the infrastructure components
    • H04K2203/32Jamming or countermeasure characterized by the infrastructure components including a particular configuration of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/30Jamming or countermeasure characterized by the infrastructure components
    • H04K2203/34Jamming or countermeasure characterized by the infrastructure components involving multiple cooperating jammers

Definitions

  • the invention relates to the field of microwave weapons and jammers applied to the disruption or destruction of remote electronic equipment, particularly weapons systems or explosive devices.
  • a method for neutralizing a target comprising a step of transmitting a broadband signal on the target by an emitter and a step of receiving the signals re-emitted by the target by several receivers.
  • the received signals are then inverted temporally and returned by several high power transmitters towards the target.
  • This method makes it possible to emit a wave whose waveform obtained by time reversal is optimized for a given position of the target.
  • time reversal methods are complex and require significant calculation means.
  • the object of the invention is to provide a method for neutralizing a remote target that is both efficient and without complex signal processing that is expensive in terms of calculation time.
  • the neutralization device has the following characteristic: the antenna array comprises the probe antenna, the probe antenna being adapted to receive a radiofrequency wave broadcast by the target.
  • the invention relates to a method of neutralizing a remote target and its associated device. Such a method is intended to neutralize systems comprising electronic components.
  • an electromagnetic wave sent to the target generates a particular coupling with the target, because of the configuration of the latter and in particular the presence of electric cables, the arrangement of openings conducive to the propagation of certain wavelengths, the nature of the materials and components integrated into the target.
  • the optimal coupling frequency is that for which the wave penetrates best into the target, that which allows a strong coupling with cables and / or with sensitive electronic components.
  • the method according to the invention aims to identify the most efficient frequencies (resonance, harmonic detection) and emit them in phase coherence.
  • the figure 1 illustrates an embodiment according to the invention of a device 10 for neutralizing a target 12 comprising at least one active electronic component 13 and an opening 14.
  • the device 10 comprises several antennas designated by the general reference E i , with i an integer between 1 and N.
  • This plurality of antennas forms a lacunary network of antennas, also called gap antenna.
  • One of the antennas is particularly suitable for transmitting towards the target a radio frequency test signal having a frequency spectrum comprising at least two distinct frequencies and comprising at least one radiofrequency wave.
  • this antenna is called probe antenna 16.
  • the probe antenna transmits a test signal comprising a single radiofrequency wave having a spectrum comprising at least two distinct frequencies.
  • the probe antenna emits a test signal comprising a plurality of successive radiofrequency waves, each of these radiofrequency waves being either mono-frequency or having a spectrum comprising at least two distinct frequencies.
  • the antennas E.sub.i of the lacunary network each comprise a receiver R.sub.i capable of receiving a radiofrequency wave diffused by the target and a transmitter P.sub.I capable of transmitting a radiofrequency wave towards the target.
  • each antenna E i of the lacunary network comprises processing means T i radiofrequency waves broadcast by the target, connected to the transmitter P i and the receiver R i of the antenna.
  • These processing means T i comprise means for measuring the amplitude of the waves diffused by the target as a function of the emission frequencies of the wave radio frequency transmitted by the probe antenna 16, or any other value representative of the amplitude such as instantaneous power or intensity.
  • the processing means T i comprise means for measuring the travel time t i radiofrequency waves diffused between the target and the antenna E i of the network as a function of the radiofrequency wave emission frequencies, or any other representative value of the travel time t i such as the phase of the radiofrequency waves broadcast by the target and received by each antenna E i of the network.
  • the device 10 comprises a unit 50 for selecting at least one preferred transmission frequency as a function of the amplitude and the travel time t i of the scattered waves received by each of the antennas E i .
  • This unit 50 comprises means for assigning to each transmitter P i of each antenna E i a set of preferred transmission frequencies possibly specific to each antenna E i .
  • the unit 50 is also able to provide the probe antenna 16 with a set of test frequencies suitable for being implemented in a radio frequency test signal initially sent to the target 12.
  • the probe antenna is independent of the gap network.
  • the device 10 is adapted to implement the neutralization method 100 according to the invention which will now be described with regard to the figure 2 .
  • the probe antenna 16 transmits a radio frequency test signal towards the target.
  • This radiofrequency signal has a frequency spectrum comprising at least two different frequencies in order to reach an optimal coupling with the target whose effective cross section varies greatly with the frequency.
  • this signal is a signal having a broadband frequency spectrum of a width of at least 100 MHz.
  • this signal is a radio frequency wave train, each wave having a narrow frequency spectrum, of the order of 10 to 100 kHz.
  • the frequency spectrum of the transmitted signal is in the range of 1 to 5 GHz.
  • the radio frequency test signal sent on the target 12 generates a particular coupling with the target, because of the configuration of the latter, for example the arrangement of openings 14 conducive to the propagation of certain wavelengths, thus improving the penetration of the signal into the target.
  • Radiofrequency waves are then broadcast by the target 12 in several directions. For example, they are directly reflected on the target or after penetration through the openings 14 of the target. These openings, when excited by a wave at the resonant frequency of the target, behave as antennas radiating a radiofrequency signal amplified by the resonance in all directions, in particular towards the inside of the target and towards the antennas E i of the network.
  • the amplitude of the radiofrequency waves scattered is a function of the radiofrequency signal received by the target and resonances thereof, that is to say the privileged frequencies generating optimal coupling.
  • the processing means T i analyze the frequency spectrum of the signals received and identify the frequencies having the largest amplitude corresponding to the frequencies for which a particular coupling has taken place between the target and the radiofrequency wave received by the target.
  • Each receiver R i receives a signal broadcast by the target having a frequency spectrum comprising the frequencies of the radio frequency test wave and, where appropriate their higher order harmonics, that is to say the multiples of these frequencies.
  • the test radiofrequency wave is detected by a non-linear element of the target, in particular by the electronic component 13.
  • the radiofrequency wave emitted towards the target has a frequency spectrum comprising four frequencies f 1 , f 2 , f 3 and f 4 of the same intensity or amplitude.
  • the signal received at the frequency f 3 has a greater amplitude compared to the signals received at the frequencies f 2 or f 4 on the receivers R 2 and R 4 , while on the receiver R 3 , the signal received at the frequencies f 2 and f 4 have the largest amplitudes.
  • a step 114 at least one preferred transmission frequency is chosen for each antenna E i as a function of the amplitude of the scattered waves received by each antenna E i . This step is implemented by the selection unit 50.
  • a radiofrequency wave is then emitted by each antenna E i from the network to the target at at least one frequency chosen from the previously preferred transmission frequencies during a step 116 so as to achieve a coherent addition to the target of the radio frequency waves. transmitted by the antennas E i of the network.
  • the preferred transmission frequency or frequencies chosen are those corresponding to the highest amplitude of the radiofrequency waves broadcast for all the antennas E i of the network.
  • the or each frequency selected for the transmission of a radiofrequency wave by the antennas E i of the network are common for all the antennas E i of the antenna array.
  • a single frequency is selected for transmitting a radiofrequency wave for each transmitter P i of an antenna E i of the gap network.
  • all the antennas E i of the network then emit in phase coherence a signal at the selected frequency towards the target.
  • the frequency f 3 has the greatest amplitude for a majority of the antennas E i of the gap network.
  • each emitter P i of the antennas E i of the network emits in phase coherence a wave at the selected frequency f 3 .
  • the frequency f 3 has a small amplitude for the antenna E 3 , it is preferable to favor the emission for this antenna E 3 of a wave at the frequency f 4 which has a greater amplitude.
  • a large amplitude of a frequency in the frequency spectra of the signals received by the entire gap network is characteristic of a resonance of the target while a low level on one of the receivers R i of the antennas E i of the network is characteristic of an unfavorable diffusion direction.
  • This unfavorable direction of diffusion is then also unfavorable in the event of transmission at this frequency for the antenna E i in the orientation of the target in question. Therefore, it is therefore unwise to transmit a wave at this frequency for the antenna considered.
  • this antenna E i emits a wave at a frequency which has a greater amplitude for this antenna E i .
  • the preferred transmission frequency or frequencies chosen are those corresponding to the highest amplitude of the radiofrequency waves broadcast for each antenna of the network.
  • each transmitter of the antenna array transmits a radiofrequency wave towards the target at the frequency having the greatest amplitude in the frequency spectrum of the radiofrequency signal re-broadcast by the target and received by the receiver R i of the antenna.
  • antenna E i of the network antenna E i of the network.
  • the frequency f 3 has the greatest amplitude for the antennas of the network E 2 and E N.
  • the antennas of the network E 3 and E i are respectively the frequencies f 4 and f 2 .
  • the transmitters of the antennas network E 2 , E 3 , E i and E N respectively emit a wave at the selected frequency f 3 , f 4 , f 2 , f 3 .
  • a set of frequencies is chosen by the selection unit 50 and the signal emitted by each transmitter P i of the lacunar network has a frequency spectrum comprising the frequencies of the set chosen.
  • the signal comprises several mono-frequency waves, each being transmitted at a frequency of the selected frequency set.
  • Each emitter P i of the antennas E i of the network transmits, in phase coherence, successively mono-frequency waves.
  • each transmitter P i of the antennas E i of the network transmits, in phase coherence, a mono-frequency wave successively to the two selected frequencies f 2 and f 3 .
  • the signal comprises an emitted wave which is then the sum of several mono-frequency waves, each having a frequency among the chosen frequency set.
  • the amplitude of the single-frequency waves in the radiofrequency wave transmitted is weighted according to the amplitude of their frequency in the frequency spectrum of the radio frequency signals received by all the antennas E i of the network.
  • the preferred transmission frequency or frequencies chosen are those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target 12 for several frequency combinations.
  • the test radio frequency wave has a frequency spectrum having two frequencies f 1 and f 2 .
  • Each receiver R i receives one of the radiofrequency waves broadcast by the target in response to the radio frequency test wave.
  • the values representative of the amplitude of these waves diffused on each receiver R i are denoted U i1 and U i2 for the frequencies f 1 and f 2 .
  • the preferred transmission frequency chosen for all the antennas E i of the network is the frequency for which the function G is maximum. In particular, this function favors the frequencies allowing the detection of harmonics, which even at very low levels, correspond to frequencies having an effect on the electronics integrated in the target.
  • waves are emitted successively in the direction of the target at frequencies chosen according to all or part of the possible variants.
  • a measurement step 118 is implemented for each antenna E i of the network receiving a radiofrequency broadcast wave of travel time t i of the radiofrequency wave diffused between the target and the antenna E i of the network.
  • each antenna E i of the network emits a signal comprising at least one wave.
  • the frequency spectrum of this signal comprises at least one selected preferred transmission frequency.
  • the transit times t i ( ⁇ ) of the signal for each selected preferred transmission frequency ⁇ are measured by the processing means T i for example, by measuring the phase of the waves diffused by the target as a function of the frequencies of emission of the radiofrequency wave emitted by the antenna E i .
  • the antennas of the network transmit a signal comprising at least one radiofrequency wave towards the target at a time preceding the arrival time of the or each wave, each having a chosen preferred transmission frequency, on the expected target. of a duration equal to t i ( ⁇ ) / c where c is the celerity of the wave.
  • This step 118 is performed after step 114 of choosing at least one preferred frequency.
  • the antennas E i of the network are synchronized together.
  • the probe antenna transmits a synchronization signal at a reference instant T 0 .
  • This signal has a frequency spectrum comprising at least the test frequencies. Subsequently, the operation will be detailed only for a test frequency ⁇ to facilitate understanding.
  • This signal is received by each receiver of the antennas E i at time T 0 + t s ( ⁇ ) + t i ( ⁇ ), that is to say after a duration t s ( ⁇ ) of propagation of the signal of synchronization for a frequency ⁇ between the probe and the target and a duration t i ( ⁇ ) of propagation of the synchronization signal for a frequency ⁇ between the target and the receiver of the antenna E i .
  • Each antenna of the lacunary network then emits a wave at a time T 0 + t s ( ⁇ ) + t i ( ⁇ ) + T ( ⁇ ) - 2 t i ( ⁇ ) + kT ⁇ with k an integer.
  • T ( ⁇ ) is a predefined duration known as the increase time in order to be sure that all the receivers have received the synchronization wave at frequency ⁇ .
  • T is defined such that T ( ⁇ ) - 2 t i ( ⁇ )> 0 for all the antennas E i of the network.
  • the duration T is unique for all the test frequencies.
  • T f is the period corresponding to the emission frequency f .
  • t i can not be measured with sufficient accuracy, in this case the phase difference at the frequency ⁇ between the signal emitted by the antenna E i and the wave backscattered by the target is measured. and received by the antenna E i , which is equal to the travel time t i modulo the period T f .
  • Each radiofrequency wave transmitted at a preferred transmission frequency chosen ⁇ by an antenna E i of the lacunary network arrives on the target after a time t i , depending on the frequency ⁇ , that is to say at a given moment T 0 + t s ( ⁇ ) + T ( ⁇ ) + kT f .
  • all the waves arrive at the same time on the target so as to obtain a coherent addition of the signals on the target for each chosen preferred transmission frequency.
  • step 118 is carried out in parallel with or before step 114 of choosing at least one preferred frequency.
  • the chosen preferred transmission frequency or frequencies are, for example, those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target 12 for several frequency combinations. as well as times t i .
  • the test radio frequency wave has a frequency spectrum having two frequencies f 1 and f 2 .
  • Each receiver R i receives one of the radiofrequency waves broadcast by the target in response to the radio frequency test wave.
  • the values representative of the amplitude of these waves diffused on each receiver R i are denoted U i1 and U i2 for the frequencies f 1 and f 2 .
  • the weighting coefficient h i depends on the travel time t i of the radiofrequency wave diffused between the target 12 and the antenna E i of the network.
  • the preferred transmission frequency chosen for the antennas E i of the network is the frequency for which the function G is maximum.
  • the link budget that is to say the quality of the the link is then more favorable for the antenna E 1 than for the antenna E 2 at the frequency ⁇ .
  • the amplitude of the signal received at the frequency ⁇ will be preponderant for the antenna E 1 . Therefore, the H function will be weighted to account for it.
  • the device and the method according to the invention make it possible to identify the most efficient frequencies (resonance, harmonic detection, orientation of the favorable target) and to transmit in phase coherence.
  • the choice of the optimal frequency is realized by the analysis of the level of the power received by the various antennas of the lacunary network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (10)

  1. Verfahren zur Neutralisierung (100) eines Ziels (12), das die folgenden Schritte umfasst:
    - Senden (110) eines Testsignals, das mindestens eine Testfunkfrequenzwelle aufweist und ein Frequenzspektrum hat, das mindestens zwei unterschiedliche Testfrequenzen aufweist, durch eine Sondenantenne (16) in Richtung des Ziels (12),
    - Empfangen durch ein Netzwerk aus mindestens zwei Antennen (Ei) einer Vielzahl von Wellen, die durch das Ziel als Antwort auf das Testsignal gestreut werden, wobei jede Antenne des Netzwerks mindestens eine durch das Ziel (12) gestreute Welle empfängt, wobei das Verfahren dadurch gekennzeichnet ist, dass es mindestens die folgenden Schritte umfasst:
    - Messen eines für die Amplitude der durch das Ziel (12) in Abhängigkeit der Sendetestfrequenzen der Funkfrequenzwelle gestreuten Wellen repräsentativen Werts,
    - Auswahl (114) für jede Antenne (Ei) des Netzwerks mindestens einer bevorzugten Sendefrequenz in Abhängigkeit des für die Amplitude der gestreuten Wellen repräsentativen Werts, und
    - Senden durch jede Antenne (Ei) des Netzwerks mindestens einer Funkfrequenzwelle in Richtung des Ziels (12) mit mindestens einer bevorzugten Frequenz, die zuvor für diese Antenne ausgewählt wurde, mit einer Phase, die die kohärente Addition der von den Antennen des Netzwerks gesendeten Funkfrequenzwellen auf dem Ziel sicherstellt.
  2. Neutralisierungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass es für jede Antenne (Ei) des Netzwerks, die eine gestreute Funkfrequenzwelle empfängt, einen Messschritt der Wegezeit (ti) der gestreuten Funkfrequenzwelle zwischen dem Ziel (12) und der Antenne (Ei) des Netzwerks umfasst.
  3. Neutralisierungsverfahren nach Anspruch 2, dadurch gekennzeichnet, dass jede Antenne (Ei) des Netzwerks mit der Sondenantenne (16) synchronisiert ist und dass sie die Funkfrequenzwelle in Richtung des Ziels (12) in einem Augenblick sendet, der in Abhängigkeit von der gemessenen Wegezeit der gestreuten Funkfrequenzwelle zwischen dem Ziel (12) und der Antenne (Ei) des Netzwerks festgelegt wird.
  4. Neutralisierungsverfahren nach Anspruch 3, dadurch gekennzeichnet, dass es einen Sendeschritt eines Synchronisierungssignals durch die Sondenantenne (16) und einen Empfangsschritt dieses Synchronisierungssignals durch jede Antenne (Ei) des Netzwerks umfasst, die sich auf dieses Synchronisierungssignal synchronisiert.
  5. Neutralisierungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die ausgewählte(n) bevorzugte(n) Sendefrequenz(en) diejenigen ist/sind, deren für die Amplitude repräsentativer Wert der höchste ist von den gestreuten Funkfrequenzwellen die von der Gesamtheit der Antennen (Ei) des Netzwerks empfangen werden, und dass die oder jede für die Sendung einer Funkfrequenzwelle durch die Antennen des Netzwerks ausgewählte Frequenz allen Antennen (Ei) des Netzwerks gemeinsam ist.
  6. Neutralisierungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die für die Antenne (Ei) ausgewählte(n) bevorzugte(n) Sendefrequenzen diejenige(n) ist/sind, deren für die Amplitude repräsentativer Wert der höchste von den für jede Antenne des Netzwerks gestreuten Funkfrequenzwellen ist.
  7. Neutralisierungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die ausgewählte(n) bevorzugte(n) Sendefrequenzen diejenigen sind, die das Maximum einer vorbestimmten Funktion erreichen, die von den für die Amplitude repräsentativen Werten der durch das Ziel (12) für mehrere Frequenzkombinationen gestreuten Wellen abhängt.
  8. Neutralisierungsverfahren nach Anspruch 7, wenn er von Anspruch 2 abhängt, dadurch gekennzeichnet, dass die vorbestimmte Funktion von der Wegezeit (ti) der gestreuten Funkfrequenzwelle zwischen dem Ziel (12) und der Antenne (Ei) des Netzwerks abhängt.
  9. Vorrichtung (10) zur Neutralisierung eines Ziels (12), aufweisend:
    - eine Sondenantenne (16), die ausgebildet ist, um in Richtung des Ziels (12) ein Testsignal zu senden, das mindestens eine Testfunkfrequenzwelle aufweist und ein Frequenzspektrum hat, das mindestens zwei unterschiedliche Testfrequenzen aufweist,
    - ein Netzwerk aus mindestens zwei Antennen (Ei), wobei jede Antenne ausgebildet ist, um mindestens eine durch das Ziel (12) in Antwort auf das Testsignal gestreute Funkfrequenzwelle zu empfangen und mindestens eine Funkfrequenzwelle in Richtung des Zieles zu senden,
    wobei die Vorrichtung dadurch gekennzeichnet ist, dass:
    - jede Antenne (Ei) des Netzwerks Messmittel (Ti) eines für die Amplitude der durch das Ziel (12) gestreuten Wellen in Abhängigkeit von den Testsendefrequenzen der Funkfrequenzwelle repräsentativen Werts umfasst,
    - die Vorrichtung eine Auswahleinheit (50) mindestens einer für jede Antenne (Ei) des Netzwerks bevorzugten Sendefrequenz aufweist, in Abhängigkeit des für die Amplitude der gestreuten Wellen repräsentativen Wertes,
    - jede Antenne (Ei) des Netzwerks imstande ist, eine Funkfrequenzwelle in mindestens einer bevorzugten Frequenz, die zuvor für diese Antenne ausgewählt wurde, in Richtung des Zieles zu senden (12), mit einer Phase, die die kohärente Addition der von den Antennen des Netzwerks gesendeten Funkfrequenzwellen auf dem Ziel (12) sicherstellt, und
    dass die Vorrichtung imstande ist, das Verfahren nach einem der vorangehenden Ansprüche umzusetzen.
  10. Neutralisierungsvorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das Netzwerk von Antennen (Ei) die Sondenantenne (6) aufweist, wobei die Sondenantenne (16) ausgebildet ist, um eine durch das Ziel (12) gestreute Funkfrequenzwelle zu empfangen.
EP11306780.5A 2010-12-29 2011-12-27 Verfahren und Vorrichtung zur Neutralisierung eines Ziels Active EP2472215B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1005160A FR2970072B1 (fr) 2010-12-29 2010-12-29 Procede et dispositif de neutralisation d'une cible

Publications (2)

Publication Number Publication Date
EP2472215A1 EP2472215A1 (de) 2012-07-04
EP2472215B1 true EP2472215B1 (de) 2013-08-28

Family

ID=45443000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11306780.5A Active EP2472215B1 (de) 2010-12-29 2011-12-27 Verfahren und Vorrichtung zur Neutralisierung eines Ziels

Country Status (3)

Country Link
US (1) US20120212363A1 (de)
EP (1) EP2472215B1 (de)
FR (1) FR2970072B1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103778B4 (de) * 2014-03-19 2023-04-20 Rheinmetall Waffe Munition Gmbh Verfahren, bei dem ein Objekt abgewehrt und/oder gestört wird
DE102014014117A1 (de) * 2014-09-24 2016-03-24 Diehl Bgt Defence Gmbh & Co. Kg Abwehrvorrichtung zum Bekämpfen eines unbemannten Luftfahrzeugs, Schutzeinrichtung zum Bekämpfen eines unbemannten Luftfahrzeugs und Verfahren zum Betrieb einer Schutzeinrichtung
RU2594306C1 (ru) * 2015-03-03 2016-08-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ защиты объектов от поражения огневыми комплексами
DE102016009408B4 (de) * 2016-08-04 2020-06-18 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Elektromagnetisches mobiles Wirksystem
LT6913B (lt) * 2020-07-03 2022-05-25 Vilniaus Universitetas Elektroninės įrangos nuotolinio trikdymo būdas
CN112769410A (zh) * 2020-12-25 2021-05-07 西安讯飞超脑信息科技有限公司 滤波器构建方法、音频处理方法及电子设备、存储装置
US11946726B2 (en) 2022-07-26 2024-04-02 General Atomics Synchronization of high power radiofrequency sources

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191343A (en) * 1992-02-10 1993-03-02 United Technologies Corporation Radar target signature detector
FR2718228B1 (fr) * 1994-03-31 1997-09-26 Excem Procédé et dispositif électromagnétique pour la défense antiaérienne par génération d'une agression résonante .
US6163259A (en) * 1999-06-04 2000-12-19 Research Electronics International Pulse transmitting non-linear junction detector
GB0103429D0 (en) * 2001-02-13 2001-03-28 Audiotel Internat Ltd Non-linear junction detector
US7515094B2 (en) * 2004-10-18 2009-04-07 Nokomis, Inc. Advanced electromagnetic location of electronic equipment
US7142147B2 (en) * 2004-11-22 2006-11-28 The Boeing Company Method and apparatus for detecting, locating, and identifying microwave transmitters and receivers at distant locations
WO2007059508A1 (en) * 2005-11-15 2007-05-24 University Of Florida Research Foundation, Inc. Time reversal antenna network based directed energy systems
US7629918B2 (en) * 2005-12-15 2009-12-08 Raytheon Company Multifunctional radio frequency directed energy system
US7512511B1 (en) * 2006-03-30 2009-03-31 The Boeing Company Improvised explosive device countermeasures
DE102006038627A1 (de) * 2006-08-17 2008-02-21 Rheinmetall Waffe Munition Gmbh Vorrichtung und Verfahren zur Detektion von nichtlinearen elektronischen Bauelementen oder Schaltungen insbesondere einer Sprengfalle oder dergleichen
DE102006038626A1 (de) * 2006-08-17 2008-02-28 Rheinmetall Waffe Munition Gmbh Verfahren zur dauerhaften Störung/Zerstörung einer Elektronik, insbesondere einer Sprengfalle oder dergleichen
GB2449151B (en) * 2007-05-11 2009-07-01 Sky Ind Inc A method and device for estimation of the transmission characteristics of a radio frequency system
US8299924B2 (en) * 2007-06-06 2012-10-30 The Boeing Company Method and apparatus for locating objects using radio frequency identification
IL184672A (en) * 2007-07-17 2012-10-31 Eran Ben-Shmuel Apparatus and method for concentrating electromagnetic energy on a remotely-located object
US20100295717A1 (en) * 2008-01-29 2010-11-25 Rourk Christopher J Weapon detection and elimination system
US7773025B2 (en) * 2008-01-30 2010-08-10 The Boeing Company Remote circuit interaction
US8188905B2 (en) * 2008-05-29 2012-05-29 Raytheon Company Target tracking system and method with jitter reduction suitable for directed energy systems
US8035550B2 (en) * 2008-07-03 2011-10-11 The Boeing Company Unbalanced non-linear radar
IL196102A (en) * 2008-12-22 2016-09-29 Rafael Advanced Defense Systems Ltd Laser beam consolidation
US8054213B2 (en) * 2009-10-13 2011-11-08 The Boeing Company Multiple beam directed energy system
US8537050B2 (en) * 2009-10-23 2013-09-17 Nokomis, Inc. Identification and analysis of source emissions through harmonic phase comparison

Also Published As

Publication number Publication date
EP2472215A1 (de) 2012-07-04
FR2970072B1 (fr) 2013-02-08
US20120212363A1 (en) 2012-08-23
FR2970072A1 (fr) 2012-07-06

Similar Documents

Publication Publication Date Title
EP2472215B1 (de) Verfahren und Vorrichtung zur Neutralisierung eines Ziels
EP3411728B1 (de) Verfahren zum stören von radaren mit synthetischer apertur und zugehörige vorrichtung
US7777672B2 (en) Radar system and method
US7777671B2 (en) Radar system and method
EP2831615B1 (de) Vorrichtung für aktive und passive elektromagnetische detektion mit geringer wahrscheinlichkeit von unterbrechungen
EP2217944B1 (de) Einrichtung zum detektieren von objekten, insbesondere gefährlichen objekten
EP3234638B1 (de) Verfahren zur bestimmung von parametern eines kompressionsfilters und zugehöriges mehrkanalradar
Ghasempour et al. LeakyTrack: Non-coherent single-antenna nodal and environmental mobility tracking with a leaky-wave antenna
EP3803452B1 (de) Verfahren zur bestimmung einer charakteristik eines empfängers in einem medium und system zur implementierung dieses verfahrens
FR2907249A1 (fr) Dispositif et procede de detection de la presence d'un objet
FR2741451A1 (fr) Systeme telemetrique a cibles multiples
EP2737337B1 (de) Vorrichtung für clutter-resistente zielerkennung
EP3040727A1 (de) Mess- und Lokalisierungsverfahren der passiven Intermodulation einer Test-Vorrichtung
EP3654059B1 (de) Verfahren zur erzeugung mindestens eines virtuellen empfangswegs unter verwendung einer radarantenne, und radarsystem
FR3094797A1 (fr) Procede et dispositif d'emission reception radar par changement dynamique de polarisation notamment pour l'implementation de modes radar entrelaces
EP3726243B1 (de) Verfahren zur störung der von einem radar gesendeten elektronischen signatur und entsprechend angepasste sende-/empfangsvorrichtung für die umsetzung dieses verfahrens
EP3211452A1 (de) Objekterfassungsvorrichtung, das von einer person getragen wird
US10514443B2 (en) Method for evaluating radar radiation, and radar apparatus
EP1818684B1 (de) Verfahren zur Hochfrequenzsdetektion und Sensor, der dieses Verfahren anwendet
FR2931948A1 (fr) Procede et dispositif de mesure en champ proche du facteur de merite d'une antenne
EP2729832A1 (de) Vorrichtung zur erfassung zumindest eines in einem haufen vergrabenen objekts und mit einer derartigen vorrichtung umgesetztes verfahren
EP3077853A1 (de) System und verfahren zur messung des ausmasses eines defekts auf einer zu überwachenden stelle
WO2011076670A1 (fr) Systeme et procede de formation d'un faisceau d'ondes a partir d'antennes mobiles les unes par rapport aux autres
EP3377914A2 (de) Verfahren zur ortung einer bake durch ankunftswinkel
FR2698448A1 (fr) Procédé et dispositif pour la détection à distance de cibles avec émission transhorizon et réception locale.

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 629594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011002850

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 629594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131230

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131129

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011002850

Country of ref document: DE

BERE Be: lapsed

Owner name: THALES

Effective date: 20131231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011002850

Country of ref document: DE

Effective date: 20140530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171211

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191227

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 13

Ref country code: DE

Payment date: 20231208

Year of fee payment: 13