EP2460059B1 - Estimation des positions d'un dispositif et d'au moins une cible dans un environnement - Google Patents
Estimation des positions d'un dispositif et d'au moins une cible dans un environnement Download PDFInfo
- Publication number
- EP2460059B1 EP2460059B1 EP10735331.0A EP10735331A EP2460059B1 EP 2460059 B1 EP2460059 B1 EP 2460059B1 EP 10735331 A EP10735331 A EP 10735331A EP 2460059 B1 EP2460059 B1 EP 2460059B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reference frame
- coordinate reference
- free
- correction
- global
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 20
- 238000012937 correction Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 description 10
- 238000010276 construction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000004807 localization Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0272—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/028—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
Definitions
- the present invention relates to estimating a position of a device in an environment and to estimating positions of a device and at least one target.
- Global information is provided in a fixed coordinate system external to the vehicle, e.g. the coordinate system used by GPS, and local information is provided with respect to a coordinate system that can move with the vehicle.
- global information is data provided by "external" systems where a shared reference frame is required to communicate the data, while local information is available in a relative form and may need no external reference knowledge.
- SLAM Simultaneous Localisation and Mapping
- additional aiding sensors such as GPS can be used to directly observe the global vehicle location (and since the vehicle location is correlated to the landmarks this also reduces the marginal global uncertainties for the landmark positions).
- the relative positions of the landmarks are known with monotonically decreasing uncertainty, even when their global marginal uncertainties may grow arbitrarily.
- the relative position of landmarks to the vehicle will always be better than the difference between their marginal global locations.
- Embodiments of the present invention are intended to address at least some of the problems discussed above.
- a method of estimating a position of a device (100) and at least one target (204A, 204B) in an environment including defining a global coordinate reference frame, an estimated local coordinate reference frame, and a correction-free local coordinate reference frame in which the position of the device is assumed to be error-free, and the method further including computing a state vector defined by:
- the position of the origin of the estimated local coordinate reference frame relative to an origin of the global coordinate reference frame may be known/estimated.
- a position of the origin of the correction-free local coordinate reference frame relative to the origin of the estimated local coordinate reference frame may be known/estimated.
- the state vector computed can result in the data contained in the local reference frame being robust to the effects of global corrections, but still maintained consistently with respect to those corrections.
- the position of the device in the correction-free local coordinate frame can be formally independent of estimated quantities used in state vector computation.
- the vector state may further be defined by a vector describing relative positions of these origins.
- the computation of an estimate of the state vector may implement a SLAM-type algorithm.
- the SLAM-type algorithm may involve an Extended Kalman filter.
- a computer program product comprising a computer readable medium, having thereon computer program code means, when the program code is loaded, to make the computer execute a method of estimating a state of a device and at least one target in an environment (and a method of estimating a position of a device with respect to a global coordinate reference frame) substantially as described herein.
- apparatus configured to estimate a position of a device (100) and at least one target (206A, 206B) in an environment, the apparatus including a device (102) configured to define a global coordinate reference frame, an estimated local coordinate reference frame based on a position of the device, and a correction-free local coordinate reference frame in which the position of the device is assumed to be error-free, further configured to compute a state vector defined by:
- the apparatus may include at least one sensor taking measurements relative to the device, e.g. distance to a said target.
- the sensor may include a RADAR or LIDAR device.
- the at least one sensor and/or the processor device will typically be mounted onboard the device.
- the apparatus may further include a device for receiving information relative to the global coordinate reference frame, for example a device configured to receive a GPS locating signal.
- a vehicle including apparatus configured to estimate a position of a vehicle and at least one target in an environment substantially as described herein.
- a method of estimating a state of a device and at least one target in an environment including computing a state vector of a device and at least one target using an error state form of a position of the device in a local coordinate reference frame.
- Figure 1 shows a vehicle 100 that is fitted with a computing device including a processor 102 and memory 104.
- the vehicle will also include other conventional features, e.g. steering and traction components, and may be at least partially automated, or can include a planning system for assisting a human operator.
- the vehicle will also typically include communications devices for communicating with external systems, including other vehicles.
- a vehicle is only one example of a device that can be used to estimate the position of at least one target in an environment.
- the device can comprise a hand-held tracking unit with a display for indicating the position of the target(s) to a user, or the device may be incorporated into another type of mechanism.
- the vehicle 100 is further fitted with at least one local onboard sensor.
- the vehicle has a first local sensor 106A and a second local sensor 106B.
- the local sensors are configured to take measurements relative to the vehicle, typically to obtain information regarding obstacles/object (which may be static or moving) in the vicinity of the vehicle.
- obstacles/objects shall be called “targets” herein and an example is shown schematically at 105, but it will be understood that a target is not necessarily something at which a weapon is to be fired.
- suitable local sensors include RADAR and/or LIDAR type devices and the sensors can produce information regarding the range and/or angle to an object in the environment, but other types of output could be produced, e.g. estimated velocity of a moving object. This information is normally presented with respect to a local coordinate system based on the current position of the vehicle.
- the second local sensor 106B can be configured to take a measurement relating to how the vehicle has moved with respect to where it was previously located, but it will be understood that in some cases this information can be measured by a single local sensor device in combination with sensing objects in the environment.
- the output provided by the local sensor 106B may be in the form of velocity and turn-rate, acceleration, etc.
- the computing device onboard the vehicle 100 may be configured to store and process data relating to a model 107 that is intended to estimate the same types of measurements as the second local sensor 106B above.
- the skilled person will be familiar with processes such as inertial or constant-velocity models that can be used for this purpose.
- the vehicle 100 further includes a device 108 for receiving global information.
- a typical example of this type of information comprises GPS or LORAN (LOng Range Aid to Navigation) that provides an estimate of the location of the vehicle 100 with respect to a global coordinate system, transmitted by an external system 110.
- GPS GPS or LORAN (LOng Range Aid to Navigation) that provides an estimate of the location of the vehicle 100 with respect to a global coordinate system, transmitted by an external system 110.
- LORAN LOng Range Aid to Navigation
- the approach used by the embodiments described herein can take advantage of the additional finesse that is made available for tasks by separating the fine-scale motions of the device with respect to local features from the global pose uncertainty. For example, it is not necessary to consider the global location of a vehicle and some gate-posts when navigating through a narrow opening; rather, it can be sufficient to know where the gate-posts are located with respect to the vehicle.
- Figures 2A and 2B illustrate qualitative differences between the two approaches. In these Figures the obstacles lie off the global plan (i.e. route traversal will not require reactive deviations from that path), e.g. the planned route is clear of unexpected obstacles such as a parked car in the carriageway.
- FIG. 2A the control (or mapping, planning, etc) is performed in the global space with respect to the global, marginal uncertainties.
- the corridor defines a width w c g and the nominal trajectory is shown as a dotted line.
- Global pose (position and orientation) uncertainty defines the effective corridor width, w e g , as the narrow region in which a valid global path exists at the current pose uncertainty. That is, even if the estimate of the vehicle was "worst case" with respect to this uncertainty then the vehicle would still remain within the predefined corridor.
- the two targets 204A', 204B' and their uncertainty in location with respect to the vehicle is shown by the two small, grey ellipses 206A', 206B'.
- a vehicle controller is required for planning navigation through on opening of traversable width w t g , which is substantially narrower than the original corridor.
- the local estimated coordinate reference frame ( l ) is defied relative to the vehicle (but not any external reference), which represents a special-case of a generic local coordinate frame where the vehicle position, as well as objects within the environment, are represented with respect to an arbitrary local coordinate system (local in the sense that no additional information is needed for the vehicle to use the data; that information would be necessary to communicate the data to another device).
- the construction represents the vehicle and environmental locations ( x v ⁇ and x • respectively) in a local coordinate frame ( l ) in addition to the global frame ( g ). Also shown is a vehicle frame 300. If the statistical dependencies are known between the data in the local frame and the data in the global frame (and equivalently between the local and vehicle frames), then it is possible to convert between the different representations without loss of information.
- estimator corrections can result in apparent step-changes in non-statistical downstream devices' (e.g. for control) error-terms and will necessarily reduce the stability and controllability of the composite system.
- the vehicle's local position, x v l be "correction-free" so that estimates in the local frame achieve the desired continuity properties. If this is done, however, then the vector construction would no longer hold: x v l would no longer correspond to x v g ⁇ x l g . Regardless of how the estimator is constructed, using this scheme to keep the local position correction-free must result in the local position being stored in a manner that is uncorrelated with the global positions and this inconsistency will be the result.
- Figure 4 shows a construction that is intended to address the inconsistency described above with reference to Figure 3 whilst maintaining a useful continuous control space (in which the corrections do not occur) and illustrates the development of a "Correction-free" Local frame. It is firstly assumed that the vehicle position in the local frame is known perfectly. This assumed "error-free" local position is denoted by x v L and is represented in Figure 4 by a dashed outline 100' of the vehicle. The solid line construction in Figure 4 is the same as that shown in Figure 3 .
- this error-free position will be inconsistent with the estimated local position, x v l and this difference is denoted by the error term ⁇ x v L .
- this true local position (relative to the "estimated local frame") can be seen to correspond to the vector sum of this error-free quantity and an appropriate error term, ⁇ x v L , which gives rise to the upper dashed triangle 402 in Figure 4 .
- the error-term (rather than the estimate x v L ) can be maintained along with the local frame position and the global position and the vector sum involving these quantities and the error-free position will remain consistent.
- the vector parallelogram (the lower dashed triangle 404 in Figure 4 ) is constructed with sides equal to the error-free position and the local position error-term.
- the lower apex 406 defines the origin of the "Correction-free" Local Frame ( L ) in which the vehicle position is without error, x v L .
- the vector parallelogram (dashed lines) is constructed so that the "correction-free" position now corresponds to the actual position of the vehicle, where the local reference frame position in the global frame has an error ⁇ x L l equal to the local position error-term in the upper triangle 402.
- Equations (2) - (4) the update equations for the system are given by Equations (2) - (4) above.
- Figures 5A and 5B illustrate steps performed by the computing device onboard the vehicle 100 in order to implement the computations described above to generate state information, which can include an indication of the location (e.g. X, Y coordinates with respect to the global coordinate system, although other types of positional information could be generated) of the vehicle as well as one or more targets in the environment.
- the overall computation can be divided into a correction-free part (involving a computation of the position of the vehicle/target(s) with respect to the local frame that is assumed to be error-free) and an estimated part.
- more than one processor may be used to perform the computations. It is also possible for at least part of the computation to be performed remotely, with the result being transmitted to a processor onboard the vehicle for further processing, e.g. implementing a vehicle manoeuvre.
- Figure 5A shows steps performed in connection with the error-free part of the process.
- step 502A data representing the initial/previous value of the state is obtained.
- the state is considered to be the error-free position of the vehicle and target(s) with respect to the correction-free local frame coordinate system because it is based on a measurement of the vehicle/target(s) positions that is assumed to be correct.
- a prediction process e.g. a predict step from a Kalman filter (alternatively, Extended Kalman Filter, Particle Filter or Bayes Filter could be used), in most cases along with a measurement taken by the at least one local sensor (e.g. 106A, 106B) fitted on the vehicle and the prediction model 107.
- a prediction process e.g. a predict step from a Kalman filter (alternatively, Extended Kalman Filter, Particle Filter or Bayes Filter could be used), in most cases along with a measurement taken by the at least one local sensor (e.g. 106A
- the information may be obtained from a global sensor, e.g. 108.
- the measurement typically comprises an indication of the position of the vehicle/target(s) in terms of the local coordinate system and, again, is considered to be error-free.
- data representing the current state output by step 504A is obtained and control returns to step 502A, with the current state replacing the previous state.
- the values involved in the process of Figure 5A have uncertainty, but the process does not track/deal with this uncertainly; instead, this is done by the process of Figure 5B .
- step 502B data representing the initial/current state is obtained.
- the state is an estimate of the position of the vehicle with respect to the global frame coordinate system and will include an element of uncertainty.
- step 504B that data is used in a prediction process, e.g. the predict step of a Kalman filter, along with a measurement taken by the at least one local sensor (e.g. 106A, 106B, which may include an inertial unit or the like) and the prediction model 107.
- the information may be obtained from a global sensor, e.g. sensor 108.
- step 506B data representing the current state output by step 504B is obtained and control may return to step 502B, with the current state replacing the previous state.
- Step 508B shows an update process that uses a measurement received via the device 108 for receiving global information and the prediction model 107.
- the information may be obtained from at least one local data-obtaining sensor, e.g. sensor 106A or 106B, which may include a laser scanner or the like. This may take place following a prediction cycle of step 506B (before control returns to step 502B), as depicted by arrow 505, or asynchronously as depicted by arrow 505'.
- step 510B an updated value is obtained and control returns to step 502B, with the updated state replacing the previous state.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Claims (14)
- Procédé d'estimation d'une position d'un dispositif (100) et d'au moins une cible (204A, 204B) dans un environnement, le procédé comprenant la définition d'une trame de référence de coordonnées globales, d'une trame de référence de coordonnées locales estimées, et d'une trame de référence de coordonnées locales sans correction dans laquelle la position du dispositif est supposée être sans erreur, et le procédé comprenant en outre le calcul d'un vecteur d'état défini par :un vecteurun vecteurune forme d'état d'erreurcaractérisé en ce quel'origine de la trame de référence de coordonnées sans correction est définie de telle sorte qu'un vecteur représentant la position du dispositif dans la trame de référence de coordonnées sans correction est égal à un vecteur représentant la position estimée du dispositif dans la trame de référence de coordonnées locales estimées.
- Procédé selon la revendication 1, la position du dispositif (100) dans la trame de coordonnées locales sans correction (L) étant formellement indépendante des quantités estimées utilisées dans le calcul du vecteur d'état.
- Procédé selon la revendication 1 ou 2, si l'origine de la trame de référence de coordonnées globales (g) n'étant pas coïncidente avec l'origine de la trame de coordonnées locales estimées (l), alors l'état du vecteur est en outre défini par un vecteur
- Procédé selon l'une des revendications 1 à 3, le calcul mettant en oeuvre un algorithme de type SLAM.
- Procédé selon l'une quelconque des revendications 1 à 4, le dispositif (100) comprenant un premier capteur embarqué (106A) configuré pour prendre des mesures en rapport avec ladite cible à proximité du dispositif (100) ; et le procédé comprenant en outre l'étape de réception d'informations de la part du premier capteur embarqué et l'utilisation des informations reçues pour déterminer un vecteur représentant une position de ladite cible dans la trame de référence de coordonnées locales sans correction.
- Procédé selon l'une quelconque des revendications 1 à 5, le dispositif (100) comprenant en outre un deuxième capteur embarqué configuré pour prendre des mesures en rapport avec la manière dont le dispositif s'est déplacé par rapport à un emplacement précédent du dispositif ; et le procédé comprenant en outre l'étape de réception d'informations de la part du deuxième capteur embarqué et l'utilisation des informations reçues de manière déterministe pour calculer une position du dispositif dans la trame de référence de coordonnées locales sans correction.
- Procédé selon l'une quelconque des revendications 1 à 6, comprenant en outre l'étape de réception, par le biais de moyens embarqués sur le dispositif, d'informations en rapport avec la trame de référence de coordonnées globales.
- Produit de programme informatique comprenant un support lisible par ordinateur sur lequel se trouvent des moyens de code de programme informatique qui, lorsque le code de programme est chargé, amènent l'ordinateur à mettre en oeuvre un procédé d'estimation d'un état d'un dispositif et d'au moins une cible dans un environnement selon l'une quelconque des revendications précédentes.
- Appareil configuré pour estimer une position d'un dispositif (100) et d'au moins une cible (206A, 206B) dans un environnement, l'appareil comprenant un dispositif (102) configuré pour définir une trame de référence de coordonnées globales, une trame de référence de coordonnées locales estimées, et une trame de référence de coordonnées locales sans correction dans laquelle la position du dispositif est supposée être sans erreur, configuré en outre pour calculer un vecteur d'état défini par :un vecteurun vecteurune forme d'état d'erreurcaractérisé en ce quel'origine de la trame de référence de coordonnées sans correction est définie de telle sorte qu'un vecteur représentant la position du dispositif dans la trame de référence de coordonnées sans correction est égal à un vecteur représentant la position estimée du dispositif dans la trame de référence de coordonnées locales estimées.
- Appareil selon la revendication 9, comprenant au moins un capteur (106A, 106B) destiné à prendre des mesures en rapport avec une dite cible à proximité du dispositif (100).
- Appareil selon la revendication 10, l'au moins un capteur (106A, 106B) étant monté embarqué sur le dispositif (100).
- Appareil selon l'une quelconque des revendications 9 à 11, comprenant en outre un dispositif (108) destiné à recevoir des informations relatives à la trame de référence de coordonnées globales.
- Appareil selon la revendication 12, le dispositif (108) destiné à recevoir les informations globales étant configuré pour recevoir un signal de localisation GPS.
- Véhicule (100) comprenant un appareil selon l'une quelconque des revendications 9 à 13.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10735331T PL2460059T3 (pl) | 2009-07-28 | 2010-07-22 | Szacowanie położeń urządzenia i co najmniej jednego celu w środowisku |
EP10735331.0A EP2460059B1 (fr) | 2009-07-28 | 2010-07-22 | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0913078A GB0913078D0 (en) | 2009-07-28 | 2009-07-28 | Estimating positions of a device and at least one target in an environment |
EP09275054A EP2287698A1 (fr) | 2009-07-28 | 2009-07-28 | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement |
PCT/GB2010/051210 WO2011012882A1 (fr) | 2009-07-28 | 2010-07-22 | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement |
EP10735331.0A EP2460059B1 (fr) | 2009-07-28 | 2010-07-22 | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2460059A1 EP2460059A1 (fr) | 2012-06-06 |
EP2460059B1 true EP2460059B1 (fr) | 2018-09-05 |
Family
ID=42753269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10735331.0A Active EP2460059B1 (fr) | 2009-07-28 | 2010-07-22 | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement |
Country Status (5)
Country | Link |
---|---|
US (1) | US8831880B2 (fr) |
EP (1) | EP2460059B1 (fr) |
ES (1) | ES2706123T3 (fr) |
PL (1) | PL2460059T3 (fr) |
WO (1) | WO2011012882A1 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123727B (zh) * | 2011-11-21 | 2015-12-09 | 联想(北京)有限公司 | 即时定位与地图构建方法和设备 |
US9342888B2 (en) | 2014-02-08 | 2016-05-17 | Honda Motor Co., Ltd. | System and method for mapping, localization and pose correction of a vehicle based on images |
US20150373293A1 (en) * | 2014-06-24 | 2015-12-24 | Sony Corporation | Video acquisition with adaptive frame rate |
DE102014111126A1 (de) * | 2014-08-05 | 2016-02-11 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum Erzeugen einer Umgebungskarte eines Umgebungsbereichs eines Kraftfahrzeugs, Fahrerassistenzsystem sowie Kraftfahrzeug |
CN104850131A (zh) * | 2015-04-21 | 2015-08-19 | 北京理工大学 | 一种基于位置估计的机器人编队控制方法 |
EP3497405B1 (fr) * | 2016-08-09 | 2022-06-15 | Nauto, Inc. | Système et procédé de localisation de précision et de cartographie |
US10048753B1 (en) * | 2017-04-20 | 2018-08-14 | Robert C. Brooks | Perspective or gaze based visual identification and location system |
US11506745B2 (en) | 2017-06-01 | 2022-11-22 | Terranet Ab | Vehicular self-positioning |
US10453150B2 (en) | 2017-06-16 | 2019-10-22 | Nauto, Inc. | System and method for adverse vehicle event determination |
EP3506040B8 (fr) | 2017-12-28 | 2021-09-22 | Einride AB | Détection coopérative |
WO2019169031A1 (fr) | 2018-02-27 | 2019-09-06 | Nauto, Inc. | Procédé de détermination de politique de conduite |
CN109974704B (zh) * | 2019-03-01 | 2021-01-08 | 深圳市智能机器人研究院 | 一种全局定位与局部定位互校准的机器人及其控制方法 |
US20220334594A1 (en) * | 2019-09-13 | 2022-10-20 | Sony Group Corporation | Information processing system, information processing apparatus, and information processing program |
SE2050260A1 (en) | 2020-03-09 | 2021-09-10 | Einride Ab | Method for controlling a fleet of autonomous/remotely operated vehicles |
CN113492882B (zh) * | 2021-07-14 | 2022-09-23 | 清华大学 | 一种实现车辆控制的方法、装置、计算机存储介质及终端 |
US20230166759A1 (en) * | 2021-12-01 | 2023-06-01 | Toyota Research Institute, Inc. | Systems and methods for improving localization accuracy by sharing dynamic object localization information |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7962285B2 (en) | 1997-10-22 | 2011-06-14 | Intelligent Technologies International, Inc. | Inertial measurement unit for aircraft |
US6408245B1 (en) | 2000-08-03 | 2002-06-18 | American Gnc Corporation | Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit |
US6879875B1 (en) * | 2003-09-20 | 2005-04-12 | American Gnc Corporation | Low cost multisensor high precision positioning and data integrated method and system thereof |
US7395156B2 (en) | 2005-06-23 | 2008-07-01 | Raytheon Company | System and method for geo-registration with global positioning and inertial navigation |
US20080091352A1 (en) | 2006-10-11 | 2008-04-17 | O'hare James K | Automobile collision avoidance system |
EP2095148B8 (fr) * | 2006-11-06 | 2012-12-12 | TomTom Global Content B.V. | Agencement et procédé de détermination précise d'emplacements et d'orientations bidimensionnels et tridimensionnels |
GB0625244D0 (en) | 2006-12-19 | 2007-01-24 | Qinetiq Ltd | GPS corrections |
-
2010
- 2010-07-22 PL PL10735331T patent/PL2460059T3/pl unknown
- 2010-07-22 US US13/387,523 patent/US8831880B2/en active Active
- 2010-07-22 ES ES10735331T patent/ES2706123T3/es active Active
- 2010-07-22 WO PCT/GB2010/051210 patent/WO2011012882A1/fr active Application Filing
- 2010-07-22 EP EP10735331.0A patent/EP2460059B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
US20120122486A1 (en) | 2012-05-17 |
EP2460059A1 (fr) | 2012-06-06 |
US8831880B2 (en) | 2014-09-09 |
WO2011012882A1 (fr) | 2011-02-03 |
PL2460059T3 (pl) | 2018-12-31 |
ES2706123T3 (es) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2460059B1 (fr) | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement | |
US20240011776A9 (en) | Vision-aided inertial navigation | |
US10409233B2 (en) | Method with quasi-Newton Jacobian updates for nonlinear predictive control | |
CN110554376A (zh) | 用于运载工具的雷达测程法 | |
US11158065B2 (en) | Localization of a mobile unit by means of a multi hypothesis kalman filter method | |
EP1548534B1 (fr) | Procédé et appareil pour utiliser la quantité de mouvement en rotation d'un dispositif mobile et support d'enregistrement pouvant être lu par un ordinateur pour stocker un programme informatique | |
US20140136046A1 (en) | Vehicle navigation | |
CN105333869A (zh) | 一种基于自适应ekf的无人侦察机同步定位与构图方法 | |
CN110637209B (zh) | 估计机动车的姿势的方法、设备和具有指令的计算机可读存储介质 | |
EP2287698A1 (fr) | Estimation des positions d'un dispositif et d'au moins une cible dans un environnement | |
CN113508344B (zh) | 利用不确定运动模型的基于模型的控制 | |
Glavine et al. | Gps integrated inertial navigation system using interactive multiple model extended kalman filtering | |
JP7206883B2 (ja) | ヨーレート補正装置 | |
Wang et al. | Visual regulation of a nonholonomic wheeled mobile robot with two points using Lyapunov functions | |
US11613272B2 (en) | Lane uncertainty modeling and tracking in a vehicle | |
US11756312B2 (en) | Orientation-agnostic lane tracking in a vehicle | |
US12092458B2 (en) | System and process for correcting gyroscope drift for a motor vehicle | |
KR20190079470A (ko) | 객체 측위 방법 및 장치 | |
JP7409037B2 (ja) | 推定装置、推定方法、推定プログラム | |
Webster | A localization solution for an autonomous vehicle in an urban environment | |
Zhang et al. | Variational Bayesian Based Adaptive CKF-SLAM Algorithm under Non-steady Noise | |
Xu | On the fusion of disparate sensory data | |
Ryu et al. | Indoor Pedestrian-Following System by a Drone with Edge Computing and Neural Networks: Part 1-System Design | |
Prieto Francia | Autonomous vehicle localization using state estimation techniques | |
Shrotriya | Robot path planning and tracking of a moving target using Kalman filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120124 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130722 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180406 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1038556 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010053315 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E016328 Country of ref document: EE Effective date: 20181001 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181206 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1038556 Country of ref document: AT Kind code of ref document: T Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2706123 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010053315 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
26N | No opposition filed |
Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: HC1A Ref document number: E016328 Country of ref document: EE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230801 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602010053315 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G05D0001020000 Ipc: G05D0001430000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240619 Year of fee payment: 15 Ref country code: EE Payment date: 20240619 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240621 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240619 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 15 |