EP2458310B1 - Verfahren zum Betrieb eines Kühl- und/oder Gefriergeräts und Kühl- und/oder Gefriergerät - Google Patents

Verfahren zum Betrieb eines Kühl- und/oder Gefriergeräts und Kühl- und/oder Gefriergerät Download PDF

Info

Publication number
EP2458310B1
EP2458310B1 EP11009295.4A EP11009295A EP2458310B1 EP 2458310 B1 EP2458310 B1 EP 2458310B1 EP 11009295 A EP11009295 A EP 11009295A EP 2458310 B1 EP2458310 B1 EP 2458310B1
Authority
EP
European Patent Office
Prior art keywords
refrigeration unit
refrigeration
energy
power level
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11009295.4A
Other languages
English (en)
French (fr)
Other versions
EP2458310A3 (de
EP2458310A2 (de
Inventor
Thomas Ertel
Herbert Gerner
Erwin Locher
Michael Schick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Hausgeraete Ochsenhausen GmbH
Original Assignee
Liebherr Hausgeraete Ochsenhausen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Hausgeraete Ochsenhausen GmbH filed Critical Liebherr Hausgeraete Ochsenhausen GmbH
Publication of EP2458310A2 publication Critical patent/EP2458310A2/de
Publication of EP2458310A3 publication Critical patent/EP2458310A3/de
Application granted granted Critical
Publication of EP2458310B1 publication Critical patent/EP2458310B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0252Compressor control by controlling speed with two speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the invention relates to a method for operating a refrigerator and / or freezer.
  • the invention further relates to a refrigerator and / or freezer.
  • Refrigeration units for refrigerators and / or freezers such as speed-controlled compressors, which can be operated with different capacities as required. Very good energy efficiency can be achieved at a moderate power level. At the same time, by increasing the capacity, there is the possibility of calling up a higher cooling capacity with a somewhat lower efficiency.
  • the object of the present invention is to improve the energy efficiency of a refrigerator and / or freezer.
  • a method for operating a refrigerator and / or freezer with at least one refrigeration unit is provided, the refrigeration unit being selectively operable or operated at one of at least two different power levels.
  • the method is characterized in that the duration of a running time and / or a standing time of the refrigeration unit is changed depending on a characteristic of the energy with which the refrigeration unit is operated.
  • the choice between different power levels of the refrigeration unit can be used when connecting the refrigerator and / or freezer to an intelligent power grid for the most efficient operation of the refrigerator and / or freezer, which can, for example, achieve cost savings or other optimizations.
  • Smart Grid Mode The operation of a refrigerator and / or freezer using a method according to the invention is also referred to hereinafter as "Smart Grid Mode".
  • switch-on condition or “switch-off condition” used in the following stand for threshold values of a device-specific measured variable, such as, for example, the temperature of the cooled interior or the evaporator temperature. If the switch-on condition is met, the refrigeration unit can be switched on or an operating cycle or an operating mode of the refrigeration unit can be started. If the switch-off condition is met, the refrigeration unit can switched off or an operating cycle or an operating mode of the refrigeration unit are ended.
  • operating cycle used in the following stands for the operation of the refrigeration unit between the existence of a switch-on condition and the subsequent achievement of a switch-off condition. It can correspond to the total running time of the compressor or the running time of the compressor between two standing times.
  • the cooling unit is operated with an input power stage when a switch-on condition is present. If necessary, the refrigeration unit will be activated after the switch-on condition after its idle time.
  • the refrigeration unit is operated with a subsequent power level within a time interval if a switch-off condition is not reached.
  • the transition to a subsequent power level takes place within an operating cycle of the refrigeration unit and may be due to the fact that the switch-off condition is not reached or is reached prematurely within the time interval.
  • the subsequent performance level can be higher or lower, i.e. correspond to a higher or lower cooling capacity.
  • the refrigeration unit can optionally be operated on one of at least three, four or n different power levels, where n is an integer 2 2.
  • n is an integer 2 2.
  • the term “power level” is not to be understood as restricting the fact that discrete levels have to be set, but also encompasses a continuous range of services.
  • the characteristic of energy is preferably obtained from an intelligent power grid. Suitable characteristics include the (current) electricity tariff or price, the (current) network utilization, the CO 2 balance of the electricity supplied, the environmental balance of the electricity supplied, the availability of locally stored electricity, the filling level of storage facilities, the Power source, whether it is electricity generated in your own household, and the like.
  • the duration of a running time until the cooling unit is switched from one power level to a higher or lower power level is changed, preferably lengthened or shortened, depending on the characteristic of the energy.
  • the duration of a running time until the cooling unit is switched off is changed, preferably lengthened or shortened, depending on the characteristic of the energy.
  • the duration of a standing time until the cooling unit is switched on is changed, preferably lengthened or shortened, depending on the characteristic of the energy.
  • the duration of the runtime and / or standing time is extended or shortened by adding or subtracting a fixed or changeable time.
  • the shortening or extension of the running time and standing time is preferably between approximately -60 minutes and approximately +720 minutes, and further preferably between approximately -40 minutes and approximately +240 minutes.
  • the added time or the allowed time window for an extension and / or shortening of the running time and / or standing time can be different for each switch from one power level to a higher or lower power level or depending on the current power and may be specified in the parameter set of the device.
  • a status bit is set depending on the energy signal.
  • the duration of a running time and / or a standing time of the cooling unit can be changed depending on the status bit.
  • a status bit has the value 0 or 1, for example.
  • the status bit can be set to 0 or 1 in response to a low or high electricity tariff.
  • the performance can be kept low for a disadvantageous characteristic, such as, for example, a high electricity tariff, or reduced prematurely.
  • a disadvantageous characteristic such as, for example, a high electricity tariff
  • the performance can be kept high for a longer time or increased prematurely.
  • a power level has a better efficiency and a lower absolute cooling power compared to a higher power level.
  • a higher power level can have both a higher cooling capacity and a higher power consumption. When the output increases, the power consumption can increase more than the cooling output or disproportionately to the cooling output.
  • the efficiency is defined as the cooling capacity achieved per required energy unit.
  • the benefits derived from a good characteristic for example the cost savings, at least compensate for and preferably overcompensate for the additional consumption of the device per refrigeration unit produced with a higher output of the refrigeration unit.
  • the performance of the refrigeration unit can be changed continuously.
  • the duration of a running time until the cooling unit is switched from one power level to a higher or lower power level can correspond in this embodiment to a delay in the increase or decrease in power at a specific power threshold or to staying in a specific power range.
  • the change in the duration of a term and / or a standing time of the refrigeration unit can correspond to the introduction or deletion or lengthening or shortening of such a delay or dwell time.
  • the performance of the refrigeration unit can be changed in stages.
  • the dependence of the duration of the running time and / or the standing time on the characteristic of the energy can be activated and / or deactivated.
  • the connection or disconnection can take place automatically and / or manually, and during or outside an operating cycle.
  • the refrigerator and / or freezer should always be able to provide the cooling capacity required by the user by entering commands or by his behavior.
  • a device-specific measured value such as the inside temperature of a refrigerator or freezer and / or a calculated value determined from the measured value or values deviates from a specified value such as a temperature selected by the customer or lies outside a tolerance range
  • the smart grid mode is preferably automatically deactivated and a conventional power control of the device can be used. If the deviation no longer exists, the smart grid mode can preferably be reactivated automatically.
  • the smart grid mode can be deactivated automatically, for example, when the device electronics recognize that the cooling specifications cannot be achieved by operating in the smart grid mode.
  • the implementation of an early detection for the deviation from a preset value and the early change to the power control without smart grid mode can also be provided in a method according to the invention.
  • a limit power level that does not correspond to the highest or lowest possible power level of the refrigeration unit can be specified for the operation of the refrigeration unit.
  • an upper limit power level for example, a high noise level and / or a poor efficiency of the device can be avoided.
  • a limit power level can be set so that when the cooling unit is operating below this limit, the efficiency of the cooling unit is sufficient and cooling capacities above this limit value are associated with a lower efficiency. If necessary, this limitation is only applied if there is no refrigeration-related reason, such as insufficient cooling despite operation over a time interval at the limit power level.
  • the switch from the second highest to the highest power level can be delayed.
  • the increase and / or decrease in output can be delayed as soon as the output reaches a certain threshold.
  • Suitable threshold values include, for example, approximately 20% of the maximum power as the lower limit power level and approximately 70% of the maximum power as the upper limit power level.
  • a switch-on condition and / or a switch-off condition can also be changed as a function of the characteristic of the energy, in particular reduced and / or increased by adding offset values.
  • This offers an additional possibility of dynamically controlling the power consumption.
  • the switch-on temperature can be reduced at a low electricity tariff, so that the compressor can be switched on again quickly.
  • a change in a switch-on condition and / or switch-off condition can be reversed if, in order to achieve this changed switch-on condition and / or switch-off condition, the refrigeration unit is to be operated beyond a limit power level.
  • the switch-on condition and / or the switch-off condition can be reset to the original status or the series status.
  • runtimes and / or standing times and / or status bits and / or switch-on conditions and / or switch-off conditions are determined outside the device, for example in an external control unit, and are then sent to the device electronics.
  • the invention further relates to a refrigerator and / or freezer according to claim 12.
  • a refrigerator and / or freezer with at least one refrigeration unit and at least one internal or external control and / or regulating unit.
  • the control and / or regulating unit and the refrigeration unit are connected or connectable to one another in such a way that the refrigeration unit can be controlled or controlled by the control and / or regulating unit.
  • the cooling unit should optionally be able to be operated or operated at one of at least two different power levels.
  • the refrigerator and / or freezer is characterized in that a control algorithm is stored on the control and / or regulating unit, which specifies a method according to the invention for the operation of the refrigeration unit.
  • the control algorithm can define power levels and / or running times and / or standing times and / or switch-on conditions and / or switch-off conditions for the operation of the refrigeration unit.
  • a change in these variables can be implemented by changing the control algorithm.
  • a status bit can also be set in response to an external energy signal in the control and / or regulating unit.
  • control and / or regulating unit can be part of the device electronics.
  • control and / or regulating unit can represent an external extension of the device.
  • An external control and / or regulating unit can be connected to the device electronics via a wireless and / or wired data line or via a communication module.
  • control unit has a wireless and / or wired data interface or a communication module.
  • An energy signal and / or a status bit can be obtained from a server or the like via this data interface and / or the control and / or regulating unit can be connected to a smart grid via this data interface.
  • Suitable wired data interfaces include, for example, PLC, EIB, KNX, EEBus and the like.
  • Suitable wireless data interfaces include, for example, WLAN, WiFi, Powerline, Bluetooth, Bus, GSM, ZigBee and the like.
  • the refrigeration unit comprises a compressor that can be operated at different speeds, such as, for example, a speed-controlled compressor.
  • the compressor can be part of a conventional refrigerant circuit for refrigerators and / or freezers, which has an evaporator, a condenser and a throttle.
  • the refrigerator and / or freezer according to the invention can thus be designed with such a refrigerant circuit.
  • the different performance levels of the refrigeration unit can differ due to different compressor speeds.
  • Suitable compressors include conventional compressors with reciprocating pistons or linear compressors.
  • the invention is not limited to speed-controlled compressors.
  • refrigeration units with magnetic or thermoacoustic coolers or possible future technologies are also included.
  • device-specific measured values such as the temperature in the interior of the device, are monitored with one or more temperature sensors.
  • the refrigerator and / or freezer according to the invention is a household appliance or else a commercial appliance.
  • a household cooling device has an internal temperature sensor, a speed-controlled compressor and a control unit.
  • the control unit is connected to both the inside temperature sensor and the compressor.
  • the control unit has a wireless interface, via which energy characteristics can be received from the smart grid.
  • the compressor At a low compressor speed, the compressor has good energy efficiency and low noise emissions.
  • the speed-controlled compressor can operate at four defined power levels operate. Of course, this is an example that does not limit the invention.
  • Two operating modes are available for the cooling unit: operation without Smart Grid mode and operation in Smart Grid mode.
  • the user can manually choose between the two modes.
  • the device can automatically switch between the two modes if the cooling specifications cannot be met in Smart Grid mode.
  • the compressor is controlled by the control unit according to a defined scheme, which is described in Figure 1 using a P (t) and a T (t) diagram:
  • the desired interior temperature window of the refrigerator is between T E (the switch-on temperature or condition) and T A (the switch-off temperature or condition).
  • the inside temperature is monitored with the help of a temperature sensor.
  • T E the switch-on temperature or condition
  • T A the switch-off temperature or condition
  • the inside temperature is monitored with the help of a temperature sensor.
  • the compressor is idle, the internal temperature rises due to the heat input into the refrigerator.
  • the compressor is started up with an input power stage.
  • the compressor is initially operated at a low power level with power L 1 .
  • the time t 0 is also referred to as the switch-on time.
  • a certain time interval ⁇ t (1 ⁇ 2) is provided in the algorithm for the operation of the compressor at the power level L 1 .
  • the compressor is switched off and the operating cycle of the compressor ends.
  • the switch-off condition here corresponds to the lower limit and the switch-on condition to the upper limit for the internal temperature of the refrigerator compartment.
  • the switch-off condition In practice, however, a higher temperature and the switch-on condition can be a lower temperature in order to take into account a possibly delayed response behavior.
  • the cooling space heats up during the standing time ⁇ t S of the compressor by the introduction of heat until the starting condition T E is reached again before a new (subsequent) operating cycle begins at the switch-on time t 0 '.
  • the input power level of the subsequent operating cycle corresponds to the last (final) power level of the previous operating cycle. In the example shown, this would correspond to performance level L 3 .
  • the power level (input power level of the subsequent operating cycle) is reduced (as in Figure 1 shown) if the time required to reach the switch-off condition during operation with the final power level L 3 falls below a certain duration.
  • This duration can be read off in the figure as the difference between the point in time t x and the point in time t 2 .
  • the switch-off time t 3 lies before the condition time t x , so that the input power level of the subsequent operating cycle is reduced compared to the final power level of the previous operating cycle, in the illustrated case from L 3 to L 2 .
  • the compressor When the super freeze function is activated, the compressor can be operated at the highest speed immediately.
  • the speed-controlled compressor is controlled dynamically and changeably by the control unit in order to enable more efficient operation in the Smart Grid.
  • Figures 2 and 3 show examples of the P (t) diagram Figure 1 after modification according to a current characteristic in smart grid mode.
  • control unit obtains a current characteristic via the wireless interface and outputs a status bit 0 or 1 on the basis of the energy signal.
  • Figure 2 shows the P (t) diagram Figure 1 , which was modified in Smart Grid mode according to a status bit that corresponds to a favorable energy characteristic such as a favorable electricity price.
  • the original P (t) course from Figure 1 is shown with a solid line.
  • the modified P (t) curve according to Smart Grid mode is shown with a dotted line.
  • the first time interval ⁇ t (1 ⁇ 2) is shortened and the compressor is operated at an earlier time with a higher power level L 2 .
  • the internal temperature of the refrigerator and / or freezer drops faster than during operation according to Figure 1 .
  • the higher power level is selected in spite of the poorer energy efficiency, since the system in Smart Grid mode achieves as much cooling capacity as possible using cheap energy.
  • the first time interval ⁇ t (1 ⁇ 2) can optionally also be shortened to 0, which would have the consequence that the compressor would be operated at the second power level L 2 .
  • the cooling cycle is in Figure 2 completed just after time t 1 , so that the available cheap. Energy was used optimally.
  • Figure 3 shows the P (t) diagram Figure 1 , which was modified in Smart Grid mode according to a status bit that corresponds to an unfavorable energy characteristic such as an expensive electricity price.
  • the original P (t) course from Figure 1 is shown with a solid line.
  • the modified P (t) curve according to Smart Grid mode is shown with a dotted line.
  • the first time interval ⁇ t (1 ⁇ 2) is extended and the compressor is only operated at a higher power level L 2 at a later point in time.
  • the internal temperature of the refrigerator and / or freezer drops more slowly than during operation Figure 1
  • the device works with better energy efficiency.
  • the lack of cooling capacity compared to the operation according to Figure 1 may be provided at a later date using cheap electricity.
  • Cooling takes longer than when operating in accordance with Figure 1 , However, the energy consumption for achieving the same cooling capacity is lower due to the better energy efficiency.
  • the third performance level L 3 is not used here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Kühl- und/oder Gefriergerätes. Die Erfindung betrifft ferner ein Kühl- und/oder Gefriergerät.
  • In der jüngeren Vergangenheit hat sich bei der Stromversorgung durch die Verschiebung zur dezentralen Versorgung und die gesteigerten technischen Möglichkeiten eine kommunikative Vernetzung zwischen verschiedenen Stromnetzteilnehmern (Erzeuger, Verbraucher, etc.) etabliert. Diese Art von kommunikativer Vernetzung wird als "Intelligentes Stromnetz" oder auch "Smart Grid" bezeichnet. Eine Eigenschaft des intelligenten Stromnetzes ist, dass ein Verbraucher Charakteristika des gelieferten Stroms wie beispielsweise den Strompreis oder die CO2-Bilanz, die Art der Stromgewinnung und dergleichen in bestimmten Grenzen auswählen kann.
  • Im Stand der Technik ( WO2010/031012A1 , DE19750053A1 , DE19627096A1 ) sind Kälteaggregate für Kühl- und/oder Gefriergeräte, wie beispielsweise drehzahlgeregelte Kompressoren bekannt, die je nach Bedarf mit unterschiedlicher Leistung betrieben werden können. Auf einer moderaten Leistungsstufe kann eine sehr gute Energieeffizienz erreicht werden. Gleichzeitig besteht durch eine Erhöhung der Leistung die Möglichkeit, eine größere Kälteleistung bei einer etwas niedrigeren Effizienz abzurufen.
  • Aufgabe der vorliegenden Erfindung ist es, die Energieeffizienz eines Kühl- und/oder Gefriergerätes zu verbessern.
  • Diese Aufgabe wird mit einem Verfahren gemäß Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Demnach ist ein Verfahren zum Betrieb eines Kühl- und/oder Gefriergerätes mit wenigstens einem Kälteaggregat vorgesehen, wobei das Kälteaggregat wahlweise auf einer von wenigstens zwei unterschiedlichen Leistungsstufen betreibbar ist beziehungsweise betrieben wird. Erfindungsgemäß ist das Verfahren dadurch gekennzeichnet, dass die Dauer einer Laufzeit und/oder einer Stehzeit des Kälteaggregates in Abhängigkeit eines Charakteristikums der Energie verändert wird, mit der das Kälteaggregat betrieben wird.
  • So kann die Wahlmöglichkeit zwischen verschiedenen Leistungsstufen des Kälteaggregates bei Anschluss des Kühl- und/oder Gefriergeräts an ein intelligentes Stromnetz für einen möglichst effizienten Betrieb des Kühl- und/oder Gefriergeräts genützt werden, wodurch beispielsweise eine Kosteneinsparung erreicht werden kann oder sonstige Optimierungen möglich sind.
  • Der Betrieb eines Kühl- und/oder Gefriergerätes unter Verwendung eines erfindungsgemäßen Verfahrens wird in weiterer Folge auch als Betrieb im "Smart Grid Modus" bezeichnet.
  • Die im folgenden verwendeten Begriff einer "Einschaltbedingung" oder einer "Ausschaltbedingung" stehen für Schwellenwerte einer gerätespezifischen Messgröße wie beispielsweise der Temperatur des gekühlten Innenraums oder der Verdampfertemperatur. Bei Vorliegen der Einschaltbedingung kann das Kälteaggregat eingeschaltet beziehungsweise ein Betriebszyklus oder eine Betriebsart des Kälteaggregates gestartet werden. Bei Vorliegen der Ausschaltbedingung kann das Kälteaggregat ausgeschaltet beziehungsweise ein Betriebszyklus oder eine Betriebsart des Kälteaggregates beendet werden.
  • Der im folgenden verwendete Begriff eines "Betriebszyklus" steht für den Betrieb des Kälteaggregates zwischen dem Vorliegen einer Einschaltbedingung und dem nachgelagerten Erreichen einer Ausschaltbedingung. Er kann der Gesamtlaufzeit des Kompressors beziehungsweise der Laufzeit des Kompressors zwischen zwei Stehzeiten entsprechen.
  • In einer Ausführungsform wird das Kälteaggregat bei Vorliegen einer Einschaltbedingung mit einer Eingangsleistungsstufe betrieben. Gegebenenfalls wird das Kälteaggregat bei Vorliegen der Einschaltbedingung nach dessen Stehzeit aktiviert.
  • In einer Ausführungsform wird das Kälteaggregat bei Nichterreichen einer Ausschaltbedingung innerhalb eines Zeitintervalls mit einer Folgeleistungsstufe betrieben. Der Übergang auf eine Folgeleistungsstufe erfolgt innerhalb eines Betriebszyklus des Kälteaggregats und kann dadurch bedingt sein, dass die Ausschaltbedingung innerhalb des Zeitintervalls nicht oder vorzeitig erreicht wird. Die Folgeleistungsstufe kann höher oder niedriger sein, d.h. mit einer höheren oder niedrigeren Kühlleistung korrespondieren.
  • In einer Ausführungsform ist das Kälteaggregat wahlweise auf einer von wenigstens drei, vier oder n unterschiedlichen Leistungsstufen betreibbar, wobei n eine ganze Zahl ≥ 2 ist. Der Begriff "Leistungsstufe" ist nicht dahingehend einschränkend zu verstehen, dass diskrete Stufen eingestellt werden müssen, sondern umfasst auch ein kontinuierliches Leistungsspektrum.
  • Das Charakteristikum der Energie wird vorzugsweise aus einem intelligenten Stromnetz bezogen. Geeignete Charakteristika umfassen den (momentanen) Stromtarif beziehungsweise Strompreis, die (momentane) Netzauslastung, die CO2-Bilanz des gelieferten Stroms, die Umweltbilanz des gelieferten Stroms, die Verfügbarkeit von lokal gespeichertem Strom, den Füllungsgrad von Speichern, die Stromquelle, ob es sich um im eigenen Haushalt erzeugten Strom handelt, und dergleichen.
  • Erfindungsgemäß wird die Dauer einer Laufzeit bis zum Umschalten des Kälteaggregates von einer Leistungsstufe auf eine höhere oder niedrigere Leistungsstufe in Abhängigkeit des Charakteristikums der Energie verändert, vorzugsweise verlängert oder verkürzt.
  • In einer Ausführungsform wird die Dauer einer Laufzeit bis zum Ausschalten des Kälteaggregates in Abhängigkeit des Charakteristikums der Energie verändert, vorzugsweise verlängert oder verkürzt.
  • In einer Ausführungsform wird die Dauer einer Stehzeit bis zum Anschalten des Kälteaggregates in Abhängigkeit des Charakteristikums der Energie verändert, vorzugsweise verlängert oder verkürzt.
  • Diese Veränderungen bewirken eine dynamische Verschiebung von Laufzeiten und/oder Stehzeiten des Kälteaggregats in Abhängigkeit eines vorzugsweise von externer Quelle bezogenen Charakteristikums der Energie. Die Veränderungen der Laufzeiten und/oder Stehzeiten können unabhängig vom Erreichen einer Einschaltbedingung und/oder einer Ausschaltbedingung erfolgen.
  • In einer Ausführungsform wird die Dauer der Laufzeit und/oder Stehzeit durch Addition oder Subtraktion einer fest vorgegebenen oder veränderbaren Zeit verlängert oder verkürzt. Die Verkürzug oder Verlängerung der Laufzeit und Stehzeit liegt vorzugsweise zwischen etwa -60 Minuten und etwa +720 Minuten, und weiter vorzugsweise zwischen etwa -40 Minuten und etwa +240 Minuten. Die addierte Zeit beziehungsweise das erlaubte Zeitfenster für eine Verlängerung und/oder Verkürzung der Laufzeit und/oder Stehzeit kann für jedes Umschalten von einer Leistungsstufe in eine höhere oder niedrigere Leistungsstufe beziehungsweise in Abhängigkeit der aktuellen Leistung unterschiedlich sein und gegebenenfalls im Parametersatz des Gerätes festgelegt sein.
  • In einer Ausführungsform wird in Abhängigkeit des Energiesignals ein Statusbit gesetzt. Die Dauer einer Laufzeit und/oder einer Stehzeit des Kälteaggregates kann in Abhängigkeit des Statusbits verändert werden. Ein Statusbit erhält beispielsweise den Wert 0 oder 1. Beispielsweise kann in Reaktion auf einen niedrigen oder hohen Stromtarif das Statusbit auf 0 oder 1 gesetzt werden.
  • In einer Ausführungsform kann die Leistung bei einem nachteiligen Charakteristikum, wie beispielsweise einem hohen Stromtarif, länger niedrig gehalten werden oder vorzeitig erniedrigt werden. In einer Ausführungsform kann die Leistung bei einem positiven Charakteristikum, wie beispielsweise einem niedrigen Stromtarif länger hoch gehalten werden oder vorzeitig erhöht werden.
  • In einer Ausführungsform weist eine Leistungsstufe im Vergleich zu einer höheren Leistungsstufe einen besseren Wirkungsgrad und eine geringere absolute Kühlleistung auf. Eine höhere Leistungsstufe kann sowohl eine höhere Kühlleistung als auch einen höheren Stromverbrauch haben. Der Stromverbrauch kann bei einer Leistungserhöhung stärker als die Kühlleistung beziehungsweise überproportional zur Kühlleistung ansteigen. Der Wirkungsgrad ist als erzielte Kühlleistung pro benötigter Energieeinheit definiert.
  • Es ist vorteilhaft, dass der durch ein gutes Charakteristikum gezogene Nutzen, beispielsweise die Kosteneinsparung, den Mehrverbrauch des Gerätes pro erzeugter Kälteeinheit bei einer höheren Leistung des Kälteaggregats wenigstens kompensiert und vorzugsweise überkompensiert.
  • In einer Ausführungsform kann die Leistung des Kälteaggregates kontinuierlich verändert werden. Die Dauer einer Laufzeit bis zum Umschalten des Kälteaggregates von einer Leistungsstufe auf einer höhere oder niedrigere Leistungsstufe kann in dieser Ausführungsform einer Verzögerung des Leistungsanstiegs oder -abfalls an einer konkreten Leistungsschwelle oder einem Verweilen in einem bestimmten Leistungsbereich entsprechen. Die Veränderung der Dauer einer Laufzeit und/oder einer Stehzeit des Kälteaggregates kann dem Einführen oder Streichen oder Verlängern oder Verkürzen einer solchen Verzögerungs- oder Verweilzeit entsprechen.
  • In einer Ausführungsform kann die Leistung des Kälteaggregates stufenweise verändert werden.
  • In einer Ausführungsform ist die Abhängigkeit der Dauer der Laufzeit und/oder der Stehzeit vom Charakteristikum der Energie zuschaltbar und/oder abschaltbar. Das Zuschalten beziehungsweise Abschalten kann automatisch und/oder manuell, und während oder außerhalb eines Betriebszyklus erfolgen.
  • Das Kühl- und/oder Gefriergerät sollte jederzeit in der Lage sein, die vom Nutzer durch Eingabe von Befehlen oder durch sein Verhalten verlangte Kälteleistung zu erbringen. Sobald ein gerätespezifischer Messwert wie beispielsweise die Innentemperatur eines Kühl- oder Gefrierraumes und/oder ein aus dem oder den Messwerten ermittelter Rechenwert von einem Vorgabewert wie beispielsweise einer vom Kunden gewählten Temperatur abweicht, beziehungsweise außerhalb eines Toleranzbereichs liegt, wird der Smart Grid Modus vorzugsweise automatisch deaktiviert und es kann eine herkömmliche Leistungsregelung des Gerätes zur Anwendung kommen. Wenn die Abweichung nicht mehr gegeben ist, kann der Smart Grid Modus vorzugsweise automatisch wieder aktiviert werden. Eine automatische Deaktivierung des Smart Grid Modus kann beispielsweise erfolgen, wenn die Geräteelektronik erkennt dass die Kühlvorgaben mit dem Betrieb im Smart Grid Modus nicht erreicht werden können. Auch die Implementierung einer Früherkennung für die Abweichung von einem Vorgabewert und der frühzeitige Wechsel in die Leistungsregelung ohne Smart Grid Modus kann in einem erfindungsgemäßen Verfahren vorgesehen sein.
  • In einer Ausführungsform kann für den Betrieb des Kälteaggregats eine Grenzleistungsstufe festgelegt werden, die nicht der höchsten oder niedrigsten möglichen Leistungsstufe des Kälteaggregats entspricht. Durch die Definition einer oberen Grenzleistungsstufe können beispielsweise ein hoher Geräuschpegel und/oder eine schlechte Effizienz des Gerätes vermieden werden. Beispielsweise kann eine Grenzleistungsstufe so festgelegt werden, dass beim Betrieb des Kälteaggregats unterhalb dieser Grenze die Effizienz des Kälteaggregats ausreichend ist und Kälteleistungen oberhalb dieses Grenzwertes mit einer niedrigeren Effizienz verbunden sind. Gegebenenfalls wird diese Beschränkung nur dann angewandt wenn ihr kein kältetechnischer Anlass entgegensteht, wie beispielsweise keine ausreichende Kühlung trotz Betrieb über ein Zeitintervall auf der Grenzleistungsstufe.
  • In einer Ausführungsform kann das Umschalten von der zweithöchsten in die höchste Leistungsstufe verzögert werden. Unter Verwendung von Kälteaggregaten mit kontinuierlicher Leistungsregelung kann die Leistungszunahme und/oder -abnahme verzögert werden, sobald die Leistung eine bestimmte Schwelle erreicht. Geeignete Schwellenwerte umfassen beispielsweise etwa 20% der Maximalleistung als untere Grenzleistungsstufe und etwa 70% der Maximalleistung als obere Grenzleistungsstufe.
  • In einer Ausführungsform können mehrere Grenzleistungsstufen und/oder Schwellenwerte vorgesehen sein.
  • In einer Ausführungsform kann ferner eine Einschaltbedingung und/oder eine Ausschaltbedingung in Abhängigkeit des Charakteristikums der Energie verändert werden, insbesondere durch Addition von Offsetwerten erniedrigt und/oder erhöht werden. Dies bietet eine zusätzliche Möglichkeit der dynamischen Steuerung der Leistungsaufnahme. Beispielsweise kann die Einschalttemperatur bei einem günstigen Stromtarif herabgesetzt werden, sodass ein schnelles Wiedereinschalten des Kompressors erzielt wird.
  • In einer Ausführungsform kann eine Veränderung einer Einschaltbedingung und/oder Ausschaltbedingung rückgängig gemacht werden, wenn für das Erreichen dieser veränderten Einschaltbedingung und/oder Ausschaltbedingung der Betrieb des Kälteaggregates jenseits einer Grenzleistungsstufe ansteht. Die Einschaltbedingung und/oder Ausschaltbedingung können auf den ursprünglichen Stand beziehungsweise den Serienstand zurückgesetzt werden.
  • In einer Ausführungsform werden Laufzeiten und/oder Stehzeiten und/oder Statusbits und/oder Einschaltbedingungen und/oder Ausschaltbedingungen geräteextern, beispielsweise in einer externen Steuereinheit, bestimmt und werden anschließend an die Geräteelektronik gesendet.
  • Die Erfindung betrifft ferner ein Kühl- und/oder Gefriergerät gemäß Anspruch 12.
  • Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Demnach ist ein Kühl- und/oder Gefriergerät mit wenigstens einem Kälteaggregat und wenigstens einer internen oder externen Steuer- und/oder Regeleinheit vorgesehen. Die Steuer- und/oder Regeleinheit und das Kälteaggregat sind derart miteinander verbunden oder verbindbar, dass das Kälteaggregat durch die Steuer- und/oder Regeleinheit ansteuerbar ist beziehungsweise angesteuert wird. Das Kälteaggregat soll wahlweise auf einer von wenigstens zwei unterschiedlichen Leistungsstufen betreibbar sein beziehungsweise betrieben werden. Erfindungsgemäß ist das Kühl- und/oder Gefriergerät dadurch gekennzeichnet, dass auf der Steuer- und/oder Regeleinheit ein Steueralgorithmus gespeichert ist, der für den Betrieb des Kälteaggregates ein erfindungsgemäßes Verfahren vorgibt.
  • Der Steueralgorithmus kann Leistungsstufen und/oder Laufzeiten und/oder Stehzeiten und/oder Einschaltbedingungen und/oder Ausschaltbedingungen für den Betrieb des Kälteaggregates definieren. Über eine Veränderung am Steueralgorithmus kann eine Veränderung dieser Größen umgesetzt werden. In der Steuer- und/oder Regeleinheit kann ferner ein Statusbit auf Reaktion zu einem externen Energiesignal gesetzt werden.
  • Im Fall einer internen Steuer- und/oder Regeleinheit kann die Steuer- und/oder Regeleinheit ein Teil der Geräteelektronik sein.
  • Im Falle einer externen Steuer- und/oder Regeleinheit kann die Steuer- und/oder Regeleinheit eine externe Erweiterung des Gerätes darstellen. Eine externe Steuer- und/oder Regeleinheit kann mit der Geräteelektronik über eine drahtlose und/oder drahtgebundene Datenleitung beziehungsweise über ein Kommunikationsmodul verbunden sein.
  • In einer Ausführungsform weist die Steuereinheit eine drahtlose und/oder drahtgebundene Datenschnittstelle beziehungsweise ein Kommunikationsmodul auf. Über diese Datenschnittstelle kann ein Energiesignal und/oder ein Statusbit von einem Server oder dergleichen erhalten werden und/oder die Steuer- und/oder Regeleinheit kann über diesen Datenschnittstelle mit einem Smart Grid in Verbindung stehen.
  • Geeignete drahtgebundene Datenschnittstellen umfassen beispielsweise PLC, EIB, KNX, EEBus und dergleichen. Geeignete drahtlose Datenschnittstellen umfassen beispielsweise WLAN, WiFi, Powerline, Bluetooth, Bus, GSM, ZigBee und dergleichen.
  • In einer Ausführungsform umfasst das Kälteaggregat einen mit unterschiedlichen Drehzahlen betreibbaren Kompressor, wie beispielsweise einen drehzahlgeregelten Kompressor. Der Kompressor kann Teil eines herkömmlichen Kältemittelkreislaufs für Kühl- und/oder Gefriergeräte sein, welcher einen Verdampfer, einen Verflüssiger und eine Drossel aufweist. Somit kann das erfindungsgemäße Kühl- und/oder Gefriergerät mit einem solchen Kältemittelkreislauf ausgeführt sein. Die unterschiedlichen Leistungsstufen des Kälteaggregates können sich durch unterschiedliche Kompressordrehzahlen unterscheiden. Geeignete Kompressoren umfassen herkömmliche Kompressoren mit Hubkolben oder Linearkompressoren.
  • Die Erfindung ist jedoch nicht auf drehzahlgeregelte Kompressoren beschränkt. Alternativ werden auch Kälteaggregate mit magnetischen oder thermoakustischen Kühlern oder auch mögliche zukünftige Technologien umfasst.
  • In einer Ausführungsform werden gerätespezifische Messwerte wie beispielsweise die Temperatur im Geräteinnenraum mit einem oder mehreren Temperaturfühlern überwacht.
  • In einer Ausführungsform handelt es sich bei dem erfindungsgemäßen Kühl- und/oder Gefriergerät um ein Haushaltsgerät oder auch um ein Gewerbegerät.
  • Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den nachfolgend beschriebenen Figuren und Ausführungsbeispielen. In den Figuren zeigen:
  • Figur 1:
    ein P(t) und ein T(t) Diagramm für den Betrieb eines drehzahlgeregelten Kompressors gemäß dem Stand der Technik,
    Figur 2:
    ein Beispiel für das P(t) Diagramm aus Figur 1 nach Modifikation im Smart Grid Modus bei günstigem Charakteristikum der Energie, und
    Figur 3:
    ein Beispiel für das P(t) Diagramm aus Figur 1 nach Modifikation im Smart Grid Modus bei ungünstigem Charakteristikum der Energie.
  • Ein Haushaltskühlgerät weist einen Innentemperaturfühler, einen drehzahlgeregelten Kompressor und eine Steuereinheit auf.
  • Die Steuereinheit steht sowohl mit dem Innentemperaturfühler als auch mit dem Kompressor in Verbindung. Zudem weist die Steuereinheit eine drahtlose Schnittstelle auf, über die Energiecharakteristika aus dem Smart Grid empfangen werden können.
  • Bei einer niedrigen Kompressordrehzahl weist der Kompressor eine gute Energieeffizienz und eine geringe Geräuschemission auf. Durch Erhöhung der Drehzahl besteht die Möglichkeit, eine steigende absolute Kühlleistung bei sinkender Energieeffizienz abzurufen, die ggf. mit einer steigenden Geräuschemission einhergeht. Beispielsweise kann der drehzahlgeregelte Kompressor auf vier definierten Leistungsstufen betrieben werden. Dabei handelt es sich selbstverständlich um ein die Erfindung nicht beschränkendes Beispiel.
  • Für das Kühlgerät stehen zwei Betriebsmodi zur Verfügung: Ein Betrieb ohne Smart Grid Modus und ein Betrieb im Smart Grid Modus. Der Benutzer kann manuell zwischen den beiden Modi wählen. Alternativ oder zusätzlich kann das Gerät automatisch zwischen den beiden Modi umschalten, wenn die Kühlvorgaben im Smart Grid Modus nicht erfüllt werden können.
  • Im Betrieb ohne Smart Grid Modus erfolgt die Ansteuerung des Kompressors von der Steuereinheit nach einem festgelegten Schema, welches in Figur 1 anhand eines P(t) und eines T(t) Diagramms dargestellt ist:
    Das gewünschte Innentemperaturfenster des Kühlraumes liegt zwischen TE (der Einschalttemperatur oder -bedingung) und TA (der Ausschalttemperatur oder -bedingung). Die Innentemperatur wird mit Hilfe eines Temperaturfühlers überwacht. In der Stehzeit des Kompressors steigt die Innentemperatur durch Wärmeeintrag in den Kühlraum an. Sobald die Innentemperatur zum Zeitpunkt t0 die obere Temperaturgrenze TE erreicht, wird der Kompressor mit einer Eingangsleistungsstufe in Betrieb genommen. Der Betrieb des Kompressors erfolgt zunächst auf einer geringen Leistungsstufe mit der Leistung L1. Der Zeitpunkt t0 wird auch als Einschaltzeitpunkt bezeichnet.
  • Bei Betrieb des Kompressors mit der Leistung L1 sinkt die Innentemperatur im Kühlraum langsam ab. Für den Betrieb des Kompressors auf der Leistungsstufe L1 ist im Algorithmus ein bestimmtes Zeitintervall Δt(1→2) vorgesehen.
  • Wird die untere Temperaturgrenze TA innerhalb dieses ersten Zeitintervalls Δt(1→2) erreicht (in Figur 1 nicht dargestellt), so wird der Kompressor abgeschalten und der Betriebszyklus des Kompressors endet. Der Einfachheit halber entspricht die Ausschaltbedingung hier der unteren Grenze und die Einschaltbedingung der oberen Grenze für die Innentemperatur des Kühlraumes. Die Ausschaltbedingung kann in der Praxis allerdings auch eine höhere Temperatur und die Einschaltbedingung eine niedrigere Temperatur sein, um ein eventuell verzögertes Ansprechverhalten zu berücksichtigen.
  • Wird die untere Temperaturgrenze TA innerhalb dieses ersten Zeitintervalls Δt(1→2) nicht erreicht (in Figur 1 dargestellt), so wird die Leistung des Kälteaggregats zu einem Zeitpunkt t1 (Umschaltzeitpunkt) erhöht und das Kälteaggregat auf einer höheren Leistungsstufe mit der Leistung L2 betrieben. Bei Betrieb des Kompressors mit der Leistung L2 sinkt die Innentemperatur im Kühlraum schneller ab als noch bei Betrieb des Kompressors mit der Leistung L1. Für den Betrieb des Kompressors auf der Leistungsstufe L2 ist im Algorithmus wiederum ein bestimmtes Zeitintervall Δt(2→3) vorgesehen. Dieses Zeitintervall Δt(2→3) kann dem Zeitintervall Δt(1→2) entsprechen oder kann sich davon unterscheiden, d.h. kürzer oder länger sein.
  • Wird die untere Temperaturgrenze TA innerhalb dieses zweiten Zeitintervalls Δt(2→3) erreicht (in Figur 1 nicht dargestellt), so wird der Kompressor abgeschalten und der Betriebszyklus des Kompressors endet.
  • Wird die untere Temperaturgrenze TA innerhalb dieses zweiten Zeitintervalls Δt(2→3) erneut nicht erreicht (in Figur 1 dargestellt), so wird die Leistung des Kälteaggregats zu einem Zeitpunkt t2 (ein weiterer Umschaltzeitpunkt) erhöht und das Kälteaggregat auf einer wiederum höheren Leistungsstufe mit der Leistung L3 betrieben. Bei Betrieb des Kompressors mit der Leistung L3 sinkt die Innentemperatur im Kühlraum noch schneller ab als bei Betrieb des Kompressors mit der Leistung L2. Für den Betrieb des Kompressors auf der Leistungsstufe L3 ist im Algorithmus wiederum ein bestimmtes Zeitintervall Δt(3→4) vorgesehen. Dieses Zeitintervall Δt(3→4) kann anderen Zeitintervallen wie Δt(1→2) oder Δt(2→3) entsprechen oder sich davon unterscheiden, d.h. kürzer oder länger sein.
  • Wird die untere Temperaturgrenze TA innerhalb dieses dritten Zeitintervalls Δt(3→4) erreicht (in Figur 1 dargestellt), so wird der Kompressor abgeschaltet und der Betriebszyklus Δt(TE→TA) des Kompressors endet. Der Zeitpunkt t3 wird auch als Ausschaltzeitpunkt bezeichnet.
  • Anschließend erwärmt sich der Kühlraum in der Stehzeit ΔtS des Kompressors durch Wärmeeintrag, bis die Startbedingung TE wieder erreicht ist, bevor ein neuer (Folge-)Betriebszyklus zum Einschaltzeitpunkt t0' beginnt.
  • Typischerweise entspricht die Eingangsleistungsstufe des Folgebetriebszyklus der letzten (End-)Leistungsstufe des vorhergehenden Betriebszyklus. Dies entspräche im gezeigten Beispiel der Leistungsstufe L3.
  • Im Algorithmus kann jedoch vorgesehen sein, dass die Leistungsstufe (Eingangsleistungsstufe des Folgebetriebszyklus) gesenkt wird (wie in Figur 1 dargestellt) wenn die benötigte Zeit bis zum Erreichen der Ausschaltbedingung bei Betrieb mit der Endleistungsstufe L3 einen bestimmte Dauer unterschreitet. Diese Dauer ist in der Figur als Differenz zwischen Bedingungszeitpunkt tx und Umschaltzeitpunkt t2 ablesbar. Im dargestellten Fall liegt der Ausschaltzeitpunkt t3 vor dem Bedingungszeitpunkt tx, sodass die Eingangsleistungsstufe des Folgebetriebszyklus im Vergleich zur Endleistungsstufe des vorhergehenden Betriebszyklus gesenkt wird, im abgebildeten Fall von L3 auf L2.
  • Bei Aktivierung der Superfrostfunktion kann der Kompressor sofort mit der höchsten Drehzahl betrieben werden.
  • Im Smart Grid Modus erfolgt die Ansteuerung des drehzahlgeregelten Kompressors von der Steuereinheit dynamisch und veränderbar, um einen effizienteren Betrieb im Smart Grid zu ermöglichen. Figuren 2 und 3 zeigen Beispiele für das P(t) Diagramm aus Figur 1 nach Modifikation entsprechend einem Stromcharakteristikum im Smart Grid Modus.
  • Zunächst bezieht die Steuereinheit über die drahtlose Schnittstelle ein Stromcharakteristikum und gibt auf dessen Grundlage des Energiesignals ein Statusbit 0 oder 1 aus.
  • Figur 2 zeigt das P(t) Diagramm aus Figur 1, welches im Smart Grid Modus gemäß einem Statusbit, das einem günstigen Energiecharakteristikum wie beispielsweise einem günstigen Strompreis entspricht, modifiziert wurde. Der ursprüngliche P(t) Verlauf aus Figur 1 ist mit einer durchgehenden Linie dargestellt. Der modifizierte P(t) Verlauf gemäß Smart Grid Modus ist mit einer gepunkteten Linie dargestellt.
  • Die im Zusammenhang mit der Beschreibung von Figur 1 dargestellten Ausführungen gelten für die Beschreibung von Figur 2 entsprechend.
  • Abweichend davon wird das erste Zeitintervall Δt(1→2) verkürzt und der Kompressor bereits zu einem früheren Zeitpunkt mit einer höheren Leistungsstufe L2 betrieben. Dadurch sinkt die Innentemperatur des Kühl- und/oder Gefriergerätes schneller als beim Betrieb gemäß Figur 1. Das Gerät arbeitet hier zwar mit einer schlechteren Energieeffizienz durch Verwendung höherer Kompressordrehzahlen, jedoch wird dies durch den vorliegenden, niedrigen Strompreis überkompensiert. In diesem Fall wird also trotz der schlechteren Energieeffizienz gleich die höhere Leistungsstufe gewählt, da das System im Smart Grid Modus möglichst viel Kühlleistung unter Verwendung günstiger Energie zu erzielen. Das erste Zeitintervall Δt(1→2) kann gegebenenfalls auch auf 0 verkürzt werden, was zur Folge hätte dass der Kompressor gleich auf der zweiten Leistungsstufe L2 betrieben würde.
  • Ferner wird in Figur 2 eine Verkürzung der Stehzeit des Kompressors bei Vorliegen von billigem Strom verkürzt werden kann. Der Betrieb des Kompressors setzt früher ein, obwohl die Einschaltbedingung noch nicht erreicht ist. So kann der Innenraum jedoch unter Ausnützung von billigem Strom gekühlt werden, und dieselbe Kühlleistung muss nicht zu einem späteren Zeitpunkt unter Verbrauch von gegebenenfalls teurerem Strom erbracht werden.
  • Der Kühlzyklus ist in Figur 2 bereits knapp nach dem Zeitpunkt t1 abgeschlossen, sodass die verfügbare billige. Energie optimal genützt wurde.
  • Figur 3 zeigt das P(t) Diagramm aus Figur 1, welches im Smart Grid Modus gemäß einem Statusbit, das einem ungünstigen Energiecharakteristikum wie beispielsweise einem teuren Strompreis entspricht, modifiziert wurde. Der ursprüngliche P(t) Verlauf aus Figur 1 ist mit einer durchgehenden Linie dargestellt. Der modifizierte P(t) Verlauf gemäß Smart Grid Modus ist mit einer gepunkteten Linie dargestellt.
  • Die im Zusammenhang mit der Beschreibung von Figur 1 dargestellten Ausführungen gelten für die Beschreibung von Figur 3 entsprechend.
  • Abweichend davon wird das erste Zeitintervall Δt(1→2) verlängert und der Kompressor wird erst zu einem späteren Zeitpunkt mit einer höheren Leistungsstufe L2 betrieben. Dadurch sinkt die Innentemperatur des Kühl- und/oder Gefriergerätes langsamer als beim Betrieb gemäß Figur 1, das Gerät arbeitet jedoch mit einer besseren Energieeffizienz. Die fehlende Kühlleistung im Vergleich zum Betrieb gemäß Figur 1 kann gegebenenfalls zu einem späteren Zeitpunkt unter Verbrauch von billigem Strom erbracht werden.
  • Die Kühlung dauert länger als bei Betrieb gemäß Figur 1. Der Stromverbrauch für das Erreichen derselben Kühlleistung ist durch die bessere Energieeffizienz jedoch geringer. Die dritte Leistungsstufe L3 wird hier nicht verwendet.
  • Zusammenfassend ergibt sich, dass mit einem erfindungsgemäßen Verfahren und einem erfindungsgemäßen Kühl- und/oder Gefriergerät die Energie- und/oder Kosteneffizienz durch Interaktion mit einem intelligenten Stromnetz maßgeblich gesteigert werden kann.

Claims (14)

  1. Verfahren zum Betrieb eines Kühl- und/oder Gefriergerätes mit wenigstens einem Kälteaggregat, das auf wenigstens zwei unterschiedlichen Leistungsstufen betreibbar ist, wobei die Dauer wenigstens einer Laufzeit und/oder wenigstens einer Stehzeit des Kälteaggregates in Abhängigkeit zumindest eines Charakteristikums der Energie verändert wird, mit der das Kälteaggregat betrieben wird, dadurch gekennzeichnet, dass die Dauer einer Laufzeit bis zum Umschalten des Kälteaggregates von einer Leistungsstufe auf eine höhere oder niedrigere Leistungsstufe in Abhängigkeit des Charakteristikums der Energie verkürzt oder verlängert wird.
  2. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Dauer einer Laufzeit bis zum Ausschalten des Kälteaggregates in Abhängigkeit des Charakteristikums der Energie verkürzt oder verlängert wird.
  3. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Dauer einer Stehzeit bis zum Anschalten des Kälteaggregates in Abhängigkeit des Charakteristikums der Energie verkürzt oder verlängert wird.
  4. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Dauer der Laufzeit und/oder Stehzeit des Kälteaggregates durch Addition einer fest vorgegebenen oder veränderbaren zusätzlichen Zeit verlängert oder verkürzt wird.
  5. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in Abhängigkeit des Charakteristikums der Energie ein Statusbit gesetzt wird und die Dauer der Laufzeit und/oder der Stehzeit des Kälteaggregates in Abhängigkeit des Statusbits verkürzt oder verlängert wird.
  6. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Leistungsstufe im Vergleich zu einer höheren Leistungsstufe einen besseren Wirkungsgrad und eine geringere absolute Kühlleistung aufweist.
  7. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Leistung des Kälteaggregates kontinuierlich oder stufenweise verändert wird.
  8. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Abhängigkeit der Dauer der Laufzeit und/oder Stehzeit vom Wert des Charakteristikums der Energie und/oder Statusbits automatisch und/oder manuell zugeschaltet und/oder abgeschaltet wird.
  9. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass für den Betrieb des Kälteaggregates eine Grenzleistungsstufe festgelegt wird, die nicht der höchsten oder niedrigsten möglichen Leistungsstufe des Kälteaggregates entspricht.
  10. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ferner eine Einschaltbedingung und/oder eine Ausschaltbedingung in Abhängigkeit des Charakteristikums der Energie verändert wird.
  11. Verfahren gemäß Ansprüchen 9 und 10, dadurch gekennzeichnet, dass die Veränderung einer Bedingung rückgängig gemacht wird, wenn für das Erreichen dieser veränderten Bedingung der Betrieb des Kälteaggregates jenseits einer Grenzleistungsstufe ansteht.
  12. Kühl- und/oder Gefriergerät mit wenigstens einem Kälteaggregat und wenigstens einer internen oder externen Steuer- und/oder Regeleinheit, wobei die Steuer- und/oder Regeleinheit und das Kälteaggregat derart miteinander verbunden sind, dass das Kälteaggregat durch die Steuer- und/oder Regeleinheit ansteuerbar ist, und wobei das Kälteaggregat wahlweise auf einer von wenigstens zwei unterschiedlichen Leistungsstufen betreibbar ist,
    dadurch gekennzeichnet,
    dass auf der Steuer- und/oder Regeleinheit ein Steueralgorithmus hinterlegt ist, der für den Betrieb des Kälteaggregates ein Verfahren gemäß einem der Ansprüche 1 bis 11 vorgibt.
  13. Kühl- und/oder Gefriergerät gemäß Anspruch 12, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit eine Datenschnittstelle aufweist, über die ein Charakteristikum der Energie von einem Server oder einer sonstigen Datenquelle erhalten werden kann und/oder über die die Steuer- und/oder Regeleinheit mit einem Server oder einer sonstigen Datenquelle eines intelligenten Stromnetzes in Verbindung steht.
  14. Kühl- und/oder Gefriergerät gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass das Kälteaggregat einen bei unterschiedlichen Drehzahlen betreibbaren Kompressor aufweist und unterschiedliche Leistungsstufen vorzugsweise durch unterschiedliche Kompressordrehzahlen definiert sind.
EP11009295.4A 2010-11-26 2011-11-23 Verfahren zum Betrieb eines Kühl- und/oder Gefriergeräts und Kühl- und/oder Gefriergerät Active EP2458310B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010052699A DE102010052699A1 (de) 2010-11-26 2010-11-26 Verfahren zum Betrieb eines Kühl- und/oder Gefriergeräts und Kühl- und/oder Gefriergerät

Publications (3)

Publication Number Publication Date
EP2458310A2 EP2458310A2 (de) 2012-05-30
EP2458310A3 EP2458310A3 (de) 2017-12-27
EP2458310B1 true EP2458310B1 (de) 2020-02-26

Family

ID=45217129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11009295.4A Active EP2458310B1 (de) 2010-11-26 2011-11-23 Verfahren zum Betrieb eines Kühl- und/oder Gefriergeräts und Kühl- und/oder Gefriergerät

Country Status (4)

Country Link
EP (1) EP2458310B1 (de)
CN (1) CN102564049B (de)
DE (1) DE102010052699A1 (de)
ES (1) ES2784746T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135814B (zh) * 2015-09-08 2018-06-22 合肥美的电冰箱有限公司 冰箱控制方法及冰箱
DE202017103975U1 (de) * 2017-07-04 2018-10-05 Rehau Ag + Co Regelungssystem zur Verteilung der Heiz- und/oder Kühlleistung eines Heiz- und/oder Kühlsystems
CN114279162B (zh) * 2021-12-28 2023-02-28 珠海格力电器股份有限公司 一种风冷冰箱的控制方法、装置及冰箱
CN114893921B (zh) * 2022-05-24 2023-08-08 青岛海信日立空调系统有限公司 一种磁悬浮冷水机组

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3133686A1 (de) * 1981-08-26 1983-03-17 Lattek, Gabriele, 4300 Essen Kuehlschrank od.dgl. fuer reisemobile, wohnwagen u. aehnl.
US4967568A (en) * 1988-03-25 1990-11-06 General Electric Company Control system, method of operating an atmospheric cooling apparatus and atmospheric cooling apparatus
DE19627096A1 (de) * 1996-07-05 1998-01-15 Get Mbh Kühlgerät
KR19980054641A (ko) * 1996-12-27 1998-09-25 배순훈 냉장고의 팬모우터 제어방법
DE19750053A1 (de) * 1997-11-12 1999-05-20 Etc Energietechnik Und Chemie Haushaltskühlgerät
KR20010055301A (ko) * 1999-12-10 2001-07-04 구자홍 냉장고의 운전방법
US6779353B2 (en) * 2002-03-29 2004-08-24 General Electric Company Sealed system multiple speed compressor and fan control
EP1524484A1 (de) * 2003-10-16 2005-04-20 Whirlpool Corporation Kühlschrank
EP1564514A1 (de) * 2004-02-12 2005-08-17 Whirlpool Corporation Kühlschrank und Verfahren zur Regelung Variabeler Kühlleistung Dafür
DE102005057149A1 (de) * 2005-11-30 2007-06-06 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Kühlschranks sowie Kühlschrank mit einem zeitverzögerten Einschalten des Verdichters
JP5027443B2 (ja) * 2006-05-19 2012-09-19 ホシザキ電機株式会社 冷却貯蔵庫
KR20080070438A (ko) * 2007-01-26 2008-07-30 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템 및 디맨드 제어방법
DE202008012411U1 (de) * 2008-08-14 2009-12-17 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
AU2009290591B2 (en) * 2008-09-15 2015-10-01 Haier Us Appliance Solutions, Inc. Energy management of clothes washer appliance
DE202009017807U1 (de) * 2009-01-21 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Haushaltskältegerät
DE102010018459A1 (de) * 2009-05-28 2011-03-03 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2458310A3 (de) 2017-12-27
DE102010052699A1 (de) 2012-05-31
EP2458310A2 (de) 2012-05-30
CN102564049B (zh) 2016-08-03
CN102564049A (zh) 2012-07-11
ES2784746T3 (es) 2020-09-30

Similar Documents

Publication Publication Date Title
DE10312234A1 (de) Betriebssteuervorrichtung und -verfahren für einen Linearkompressor
EP2458310B1 (de) Verfahren zum Betrieb eines Kühl- und/oder Gefriergeräts und Kühl- und/oder Gefriergerät
CN107084592B (zh) 一种风冷冰箱变频控制方法及其电冰箱
EP1538337B1 (de) Anordnung zum Überlastschutz und Verfahren zur Reduktion des Stromverbrauchs bei Netzspannungsschwankungen
EP2261585A2 (de) Kühl- und/oder Gefriergerät
EP2476984B1 (de) Kühl- und/oder Gefriergerät
DE102004037122A1 (de) Vorrichtung und Verfahren zur Steuerung des Betriebs eines Kompressors
EP0727628B1 (de) Regeleinrichtung und Verfahren zur Temperaturregelung in Kühlgeräten
DE102014222962A1 (de) Effizienter Betrieb von Mehrpumpenanlagen
EP2694897B1 (de) Ein kältegerät und ein verfahren zur regelung des kältegeräts
AT504564B1 (de) Wärmepumpe
EP2525624B1 (de) Spannungsabhängige Betriebsfreigabe
EP2705312A1 (de) Einkreis-kältegerät
WO2016155701A1 (de) Regelungsverfahren für ein schaltschrankkühlgerät
DE102007060828A1 (de) Verfahren und Steuergerät zum Steuern eines Verdichters
DE102017223189A1 (de) Mehrpumpenanlage und Verfahren zu deren Betrieb
DE102004048802B4 (de) Vorrichtung und Verfahren zur Betriebssteuerung eines Kolbenverdichters
EP2444765B1 (de) System umfassend wenigstens ein Kühl-und/oder Gefriergerät
DE102011120254A1 (de) Kühl- und/oder Gefriergerät
AT524810A2 (de) Verfahren zur Optimierung der Effizienz von Klimaanlagen
DE102012211357A1 (de) Verfahren zum Steuern eines Kühlmöbelsystems und Kühlmöbelsystem
DE102012207683A1 (de) Haushaltskältegerät mit Wärmetauscher und Verdampfer am Gefrierfach
EP2522942A1 (de) Kühl- und/oder Gefriergerät
DE202008012411U1 (de) Kühl- und/oder Gefriergerät
DE102008043914A1 (de) System mit zwei Hausgeräten und Verfahren zum Energiemanagement eines derartigen Systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 29/00 20060101AFI20171121BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1238132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016488

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200526

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200526

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2784746

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200719

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016488

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201201

Year of fee payment: 10

Ref country code: IT

Payment date: 20201130

Year of fee payment: 10

Ref country code: FR

Payment date: 20201127

Year of fee payment: 10

26N No opposition filed

Effective date: 20201127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1238132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 13