EP2457390A1 - Vorrichtung und verfahren zur optimierung stereophoner oder pseudostereophoner audiosignale - Google Patents

Vorrichtung und verfahren zur optimierung stereophoner oder pseudostereophoner audiosignale

Info

Publication number
EP2457390A1
EP2457390A1 EP10716543A EP10716543A EP2457390A1 EP 2457390 A1 EP2457390 A1 EP 2457390A1 EP 10716543 A EP10716543 A EP 10716543A EP 10716543 A EP10716543 A EP 10716543A EP 2457390 A1 EP2457390 A1 EP 2457390A1
Authority
EP
European Patent Office
Prior art keywords
signals
signal
stereophonic
stereo
resulting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10716543A
Other languages
German (de)
English (en)
French (fr)
Inventor
Clemens Par
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Storming Swiss Sarl
Original Assignee
Storming Swiss Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH11592009A external-priority patent/CH701497A2/de
Application filed by Storming Swiss Sarl filed Critical Storming Swiss Sarl
Publication of EP2457390A1 publication Critical patent/EP2457390A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 

Definitions

  • the invention relates to audio signals and to devices or methods for their generation
  • audio signals which are emitted via two or more loudspeakers give the listener a spatial impression, provided that they have different amplitudes, frequencies, transit time or phase differences or are correspondingly reverberated.
  • Such decorrelated signals can be placed on the one hand by differently
  • pseudo-stereophonic techniques that produce such a suitable decorrelation - starting from a mono signal.
  • EP2124486 and EP1850639 describe a method for methodically evaluating the angle of incidence for the sound event to be imaged, which is included by the microphone main axis and the sounding axis for the sound source
  • Amplitude correction as well as the time correction are selected independently of the recording situation.
  • R (M - S) * l / V ⁇ 2), which is not the same as for intensity-stereophonic signals, ie for stereo signals that differ only in their levels, but not in transit time or phase differences or in different frequency spectra one restricting the imaging width or shifting the imaging direction of the acquired stereo signals as intended, but rather increasing or decreasing the image quality
  • Audio signal are optimal, but is not trivial.
  • the adjustment of the parameters also often has an influence on the degree of correlation between the left and the right channel.
  • pseudostereophonic signals It is also an aim to provide a method and a device for optimally and automatically determining the parameters ( ⁇ , ⁇ , p or f (or n), ⁇ , ⁇ ) in this extraction.
  • this method and this device are to be selected from several decorrelated, in particular pseudostereophonic, signal variants those whose decorrelation proves to be particularly favorable.
  • the selection criteria should themselves be able to be influenced in the most efficient and compact way, in order to obtain signals of different types
  • an apparatus and a method for obtaining pseudo-stereophonic output signals x (t) and y (t) is thus based on a
  • the extraction is iteratively optimized until a part of ⁇ x (t), y (t)> within the predetermined
  • the desired domain of definition is preferably determined by a single numerical parameter a, where preferably 0 ⁇ a ⁇ 1.
  • This parameter and thus the domain of definition, can be determined, for example, by the inequalities
  • Definition range starting from the unit circle of the complex number plane or the imaginary axis (if the maximum level of the output signal x (t), y (t) was normalized on the unit circle), using the parameter a, 0 ⁇ a ⁇ 1, set arbitrarily.
  • Unit circle of the complex number plane is selected, and another new definition area is defined.
  • the degree of correlation of the output signals (x (t) and y (t)) is normalized.
  • the level of the maximum of the resulting left and right channels is normalized. In this way, certain
  • Parameters can be iteratively optimized to achieve the desired domain of definition without affecting the degree of correlation or the level of the maximum of the resulting left and right channels.
  • x (t) represents the function value of the left output channel at time t
  • f * [x (t)] [x (t) / V 2] * (-1 + i )
  • g * [y (t)] [y (t) / V 2] * (l + i) in which the recovery is iteratively optimized until the following criteria are met:
  • Standardization can preferably be targeted by the
  • first the modulation for the maximum of the left signal L and of the right signal R is uniformly set to, for example, 0 dB by means of a first logic element.
  • This method proves to be particularly favorable, as with a single parameter, namely a, in particular the different nature of
  • Output signals of a device or a method according to EP2124486 or EP1850639 is optimally taken into account.
  • the parameter may preferably be dependent on the type of audio signal, for example to manually or automatically edit speech or music differently. In the case of language, this is determined by a
  • each optimum can be derived from the unit circle or the imaginary axis
  • R * and ⁇ are directly related to the loudness of the output signal to be obtained (ie those parameters according to which the listener also judges the validity of a stereophonic mapping).
  • the degree of correlation r, the parameter a defining the desired respective definition range and the limit value R * and its deviation ⁇ can be optimized for the respective nature of the input signals optimal systems for the respective field of application (for example speech or music reproduction).
  • the invention resides in cascading a plurality of partially adjustable parameters (eg, logic elements) in a stereo converter (for example, according to EP2124486 or EP1850639), with feedback regarding such devices or methods being that there is an optimized change the parameter ⁇ or ⁇ or p or f (or n) or CC or ß is carried out until all
  • FIG. 1 shows an example of a circuit for two logic elements for normalizing the level and for normalizing the degree of correlation of the output signals of a stereo converter (for example, a
  • FIG. 2 shows an example of a circuit which outputs given signals x (t), y (t) by means of
  • FIG. 3 shows a first example of a
  • FIG. 3a shows a second example of a circuit for the selection of a new definition range, which is advantageous to the person skilled in the art, by means of the parameter a.
  • FIG. 4 shows a first example of a circuit for a third logic element, which has the circuits shown in FIG. 1 generated, as shown in FIG. 2 on the complex
  • FIG. FIG. 4a shows a second example of a circuit for a third logic element that is advantageous for the person skilled in the art, which has the circuits shown in FIG. 1 generated, as shown in FIG. 2 mapped on the complex number plane
  • FIG. 5 shows an example of a circuit for a fourth logic element, which concludes the relief of the function f * [x (t)] + g * [y (t)] in the sense one
  • FIG. 5a shows a second example of a circuit for a fourth logic element that is advantageous for the person skilled in the art, which finally considers the relief of the function f * [x (t)] + g * [y (t)] in order to maximize its functional values the user also sets the limit value R * (or the inequality (8a) defined by the inequality (8a))
  • FIG. 6a shows an input circuit for an already existing stereo signal prior to transfer to a circuit according to FIG. 6b for the determination of
  • FIG. 6 b shows a circuit for determining the localization of the signal whose inputs are connected to the outputs of FIG. 5 or FIG. 5a and the outputs of FIG. 6a are connected.
  • FIG. FIG. 7 shows another example of a stereophonic or standardization circuit
  • pseudo-stereophonic signals which, if shown in FIG. 6b is activated, as soon as the parameter z is present as an input signal.
  • Amplification factor ⁇ corresponds to the final value of the amplification factor ⁇ of FIG. 1 upon delivery of the
  • FIG. 8 shows an example of a circuit which outputs given signals x (t), y (t) by means of the
  • FIG. Fig. 9 shows an example of a circuit for adjusting the image width of an audio signal.
  • Damping ⁇ and p optimized parameters ⁇ , ⁇ , f (or the simplifying parameter n), CC, ß are determined to convert a mono signal into corresponding pseudo-stereophonic signals, which is an optimal
  • FIG. 1 shows the circuit principle for the first two logic elements described above
  • Stereo converter with an MS matrix 110 for example, a stereo converter according to EP2124486 or EP1850639
  • the input signal M and S before passing through one of the MS matrix upstream amplifier
  • a circuit according to FIG. 7 can be supplied, which optionally and ideally of FIG. 6b is followed, and is activated as soon as the from FIG. 6b
  • the first logic element 120 for normalizing the level is coupled to two identical amplifiers with the gain factor p * and provides for a maximization of the left channel L and right channel R maximized to 0 dB. From the assembly 110 (for example, an MS matrix according to EP2124486 or EP1850639)
  • Downstream of a logic element 120 reaches, via the feedbacks 121 and 122 and variation or correction of the gain factor p * of the amplifier 118 and 119 causes a modulation of the maximum value of L and R to 0 dB.
  • r can be set by user in the range -1 ⁇ r ⁇ 1 and ideally moves in the range of 0.2 ⁇ r ⁇ 0.7. Any deviation from r leads over the
  • the resulting signals L and R pass through the amplifiers 118 and 119 as well as the
  • Logic element 120 which in turn via the feedbacks 121 and 122 a renewed modulation of the Maximum value of L and R to 0 dB, and are then supplied again to the logic element 125.
  • FIG. 2 clarifies the circuit principle, which the input signals x (t), y (t) on the
  • Amplification factor -1 passes through. This results in the transfer functions
  • Element 232 determines the argument of f * [x (t)] + g * [y (t)].
  • FIG. 3 illustrates the circuit principle for the selection of the definition range, whereby a stepless regulation via the parameter 0 ⁇ a ⁇ 1, starting from the unit circle of the complex number plane or the imaginary axis, is made possible.
  • the user can determine the domain of definition a on the complex number plane.
  • the cosine (333) or sine (334) of the just determined argument of f * [x (t)] + g * [y (t)] is calculated.
  • the resulting 333 signal is then an amplifier 335th
  • FIG. FIG. 4 shows the circuit principle for the third logic element, which has the structure shown in FIG. 1 generated, as shown in FIG. 2 on the complex number level
  • Transfer functions f * [x (t)] + g * [y (t)] and the signals resulting from 334 and 335 are here supplied to a further logic element 436, which checks whether the criteria (4) and (5) are fulfilled. thus, whether the values of the sum of the transfer functions f * [x (t)] + g * [y (t)] within the user defined by means of a
  • Feedback 437 new optimized values ⁇ or f (or n) or CC or ß determined, and will run through the entire system so far again until the values of the sum of the transfer functions f * [x (t)] + g * [y (t)] within the user's name using a
  • Deviation ⁇ can freely choose for this maximization. Overall, the condition needs
  • FIG. 3a, 4a and 5a An alternative circuit principle which is advantageous to the person skilled in the art is shown in FIG. 3a, 4a and 5a, which replace the corresponding figures 3, 4 and 5 in a preferred variant:
  • FIG. 3a again allows, via the parameter a, 0 ⁇ a ⁇ 1, the selection of a new domain of definition, where a is used to provide stepless regulation based on the unit circle of the complex number plane or the imaginary axis.
  • the squared real part (333a) or squared imaginary part (334a) of f * [x (t)] + g * [y (t)] is calculated.
  • the signal resulting from 333a is subsequently supplied to an amplifier 335a and amplified by the user-selectable amplification factor l / a 2 .
  • the squared sine of the argument of the sum of the transfer functions f * [x (t] + g * [y (t)] is calculated.
  • FIG. 4a at the output of Figure 3a
  • the imaginary part of the sum of the transfer functions f * [x (t)] + g * [y (t)] and the signals resulting from 334a and 335a are here supplied to a further logic element 436a, which checks whether the above criterion is fulfilled, thus whether the values of the sum of the transfer functions f * [x (t)] + g * [y (t)] lie within the new value range defined by the user by means of a. If this is not true, are over a
  • Feedback 437a new optimized values ⁇ or f (or n) or CC or ß determined, and will run through the entire system so far again until the values of the sum of the transfer functions f * [x (t)] + g * [y (t)] within the user's name using a
  • Deviation ⁇ can freely choose for this maximization. Overall, the condition must be new
  • Pseudo-stereo converter for example according to one of the embodiments in EP2124486 or EP1850639 (vice versa here assuming the case
  • proportional reductions ⁇ and p) iteratively determines new parameters ⁇ or f (or n) or CC or ⁇ until x (t) and y (t) satisfy the above-mentioned conditions (4), (5) and (8 ) or (4a) and (8a) meet.
  • Amplification factor a) and loudness (determined by the selectable limit R * or the selectable deviation ⁇ ) according to the user and set the Output signals L and R of the described arrangement.
  • Directional characteristic to reflect for example, there is a mirror image with respect to the main axis. This can be done manually by swapping the left and right channels.
  • the correct imaging direction can be determined by means of
  • Phantom sound sources formed pseudo stereophonic method also shown, for example, according to FIG. 6b (FIG. 5 or FIG.
  • f * (l (t ⁇ )) + g * CrCt 1 )) may be equal to zero in at least one case) which are already shown in FIG. 2 determined transfer function f * (x Ct 1 )) + g * (y (ti)) with the
  • Number are the left channel x (t) and the right channel y (t) of the approximately from an arrangement according to FIG. 1-5 or FIG. 1, 2, 3a to 5a resulting stereo signal reversed.
  • an originally stereophonic signal is to be recoded into a mono signal plus the function f (or its simplifying parameter n) describing the directional characteristic and the parameter ⁇ , ⁇ , ⁇ , ⁇ or p (for example for the purpose of data compression) (example for an output 640a) , which can be extended by the parameter z, see below)
  • Image width of the obtained stereo signal on the basis of the targeted variation of the degree of correlation r of the resulting stereo signal or the attenuation ⁇ or p (for the formation of the resulting
  • Opening angle ⁇ can be maintained, and it makes sense only a final amplitude correction about according to the logic element 120 of Figure 1 is necessary, if this limitation or extension of the image width is done manually.
  • FIG. 7 shows a further example of a circuit for standardization stereophonic or pseudostereophonous
  • Amplification factor ⁇ corresponds to the final value of the amplification factor ⁇ of FIG. 1 upon delivery of the
  • FIGS. 7 to 9 can also be used autonomously in other circuits or algorithms.
  • a logic element 110a (the
  • this MS matrix activated) the left and the right channel swapped as long as the parameter z is equal to 1, otherwise there is no such interchanging.
  • the resulting output signals L and R of the MS matrix 110 are now uniformly amplified by the factor p * (amplifiers 118, 119) so that the maximum of both signals has a level of exactly 0 dB (normalization on the unit circle of the complex
  • Downstream of a logic element 120 reaches, via the feedbacks 121 and 122 and variation or correction of the gain factor p * of the amplifier 118 and 119 causes a modulation of the maximum value of L and R to 0 dB.
  • Image width of the stereo signal to be obtained suitably selected threshold value S * or a suitably chosen deviation ⁇ , both defined by the
  • Stereo signal Stereo signal
  • the previous steps just described as shown in FIG. 7 to 9, as long as pass until the above condition (9) is satisfied.
  • the output signals for the logic element 640 are now to an arrangement approximately according to the
  • An already existing stereo signal can with respect to r or a or R * or ⁇ or the
  • Imaging direction (or the parameters S * or ⁇ or U * or K described below) and then also newly evaluated as a mono signal on the basis of the parameters ⁇ , f (or n) with respect to a device or a method according to EP2124486 or EP1850639, CC, ß, ⁇ and p are coded.
  • Imaging direction (expressed for example by the parameter z, which can take the value 0 or 1), such a decoder is reduced to an arrangement according to EP2124486 or EP1850639.
  • Satellite broadcasting equipment professional audio equipment, television, film and radio and electronic consumer goods.
  • the invention is also of particular importance in the context of obtaining stable FM stereo signals under adverse reception conditions (such as in automobiles).
  • a stable stereophonic sound can be used with the pure help of the main channel signal (L + R) as the input signal
  • the complete or incomplete sub-channel signal (L-R) representing the result of the subtraction of the left-right channel of the original stereo signal can be used to form a usable S signal or parameters f (or n), which describe the directional characteristic of the signal to be stereophonized, the manual or metrological to
  • determining angle ⁇ , the main axis and sound source include, the fictitious left opening angle CC, the fictitious right opening angle ß, the attenuations ⁇ or p for the formation of the resulting
  • Amplification factor p * of FIG. 1 for the normalization of the resulting from the MS matrix or from any other arrangement according to the invention left and right channel on the unit circle (1 corresponds to, for example, the mediated by p * maximum level of 0 dB, where x (t) that from this normalization
  • Amplification factor a for the definition of the permissible value range for the sum of the transfer functions of the resulting output signals (for example, the complex transfer functions
  • reproduced sound sources for example by determining the associated quadrants for the function values of the above transfer functions (2) and (3) for the original stereo signal (the approximately by

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)
  • Stereo-Broadcasting Methods (AREA)
EP10716543A 2009-07-22 2010-04-29 Vorrichtung und verfahren zur optimierung stereophoner oder pseudostereophoner audiosignale Withdrawn EP2457390A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH11592009A CH701497A2 (de) 2009-07-22 2009-07-22 Vorrichtung oder Methodik zur Verbesserung stereophoner oder pseudostereophoner Audiosignale.
CH17762009 2009-11-18
PCT/EP2010/055877 WO2011009650A1 (de) 2009-07-22 2010-04-29 Vorrichtung und verfahren zur optimierung stereophoner oder pseudostereophoner audiosignale

Publications (1)

Publication Number Publication Date
EP2457390A1 true EP2457390A1 (de) 2012-05-30

Family

ID=42313224

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10716543A Withdrawn EP2457390A1 (de) 2009-07-22 2010-04-29 Vorrichtung und verfahren zur optimierung stereophoner oder pseudostereophoner audiosignale
EP10716542A Withdrawn EP2457389A1 (de) 2009-07-22 2010-04-29 Vorrichtung und verfahren zur verbesserung stereophoner oder pseudostereophoner audiosignale

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10716542A Withdrawn EP2457389A1 (de) 2009-07-22 2010-04-29 Vorrichtung und verfahren zur verbesserung stereophoner oder pseudostereophoner audiosignale

Country Status (10)

Country Link
US (2) US8958564B2 (zh)
EP (2) EP2457390A1 (zh)
JP (2) JP2012533953A (zh)
KR (2) KR20120062727A (zh)
CN (3) CN102577440B (zh)
AU (2) AU2010275711B2 (zh)
HK (3) HK1167769A1 (zh)
RU (1) RU2012106341A (zh)
SG (2) SG178081A1 (zh)
WO (2) WO2011009649A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124486A1 (de) * 2008-05-13 2009-11-25 Clemens Par Winkelabhängig operierende Vorrichtung oder Methodik zur Gewinnung eines pseudostereophonen Audiosignals
CH703501A2 (de) * 2010-08-03 2012-02-15 Stormingswiss Gmbh Vorrichtung und Verfahren zur Auswertung und Optimierung von Signalen auf der Basis algebraischer Invarianten.
CH703771A2 (de) 2010-09-10 2012-03-15 Stormingswiss Gmbh Vorrichtung und Verfahren zur zeitlichen Auswertung und Optimierung von stereophonen oder pseudostereophonen Signalen.
JP2016501456A (ja) * 2012-11-09 2016-01-18 ストーミングスイス・ソシエテ・ア・レスポンサビリテ・リミテ 多チャンネル信号の非線形逆コーディング
WO2016030545A2 (de) 2014-08-29 2016-03-03 Clemens Par Vergleich oder optimierung von signalen anhand der kovarianz algebraischer invarianten
CN107659888A (zh) * 2017-08-21 2018-02-02 广州酷狗计算机科技有限公司 识别伪立体声音频的方法、装置及存储介质
CN108962268B (zh) * 2018-07-26 2020-11-03 广州酷狗计算机科技有限公司 确定单声道的音频的方法和装置
EP3937515A1 (de) 2020-07-06 2022-01-12 Clemens Par Invarianzgesteuerter elektroakustischer übertrager

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512201U (zh) * 1974-06-20 1976-01-09
JPS5927160B2 (ja) * 1979-06-04 1984-07-03 日本ビクター株式会社 擬似ステレオ音再生装置
US4524451A (en) * 1980-03-19 1985-06-18 Matsushita Electric Industrial Co., Ltd. Sound reproduction system having sonic image localization networks
JPS5744396A (en) * 1980-08-29 1982-03-12 Matsushita Electric Ind Co Ltd Stereophonic zoom microphone
JPS58194500A (ja) * 1982-04-30 1983-11-12 Nippon Hoso Kyokai <Nhk> 音声信号ズ−ミング装置
JPH0290900A (ja) * 1988-09-28 1990-03-30 Alps Electric Co Ltd 擬似ステレオ方式
JPH02138940U (zh) * 1989-04-21 1990-11-20
JPH0370000U (zh) * 1989-11-06 1991-07-12
US5235646A (en) * 1990-06-15 1993-08-10 Wilde Martin D Method and apparatus for creating de-correlated audio output signals and audio recordings made thereby
GB9107011D0 (en) * 1991-04-04 1991-05-22 Gerzon Michael A Illusory sound distance control method
JP2587634Y2 (ja) * 1991-10-30 1998-12-24 三洋電機株式会社 バランス調整回路
US5173944A (en) 1992-01-29 1992-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Head related transfer function pseudo-stereophony
GB9211756D0 (en) * 1992-06-03 1992-07-15 Gerzon Michael A Stereophonic directional dispersion method
DE4326811A1 (de) * 1993-08-10 1995-02-16 Philips Patentverwaltung Schaltungsanordnung zum Umwandeln eines Stereosignals
DE4440451C2 (de) * 1994-11-03 1999-12-09 Erdmann Mueller Richtungssteller für zweikanalige Stereofonie
DE19632734A1 (de) 1996-08-14 1998-02-19 Thomson Brandt Gmbh Verfahren und Vorrichtung zum Generieren eines Mehrton-Signals aus einem Mono-Signal
US6111958A (en) * 1997-03-21 2000-08-29 Euphonics, Incorporated Audio spatial enhancement apparatus and methods
JP3906533B2 (ja) * 1997-11-04 2007-04-18 ヤマハ株式会社 擬似ステレオ回路
US6590983B1 (en) * 1998-10-13 2003-07-08 Srs Labs, Inc. Apparatus and method for synthesizing pseudo-stereophonic outputs from a monophonic input
JP2002171590A (ja) * 2000-11-30 2002-06-14 Aiwa Co Ltd Ms方式のステレオマイクロホン
US7177432B2 (en) * 2001-05-07 2007-02-13 Harman International Industries, Incorporated Sound processing system with degraded signal optimization
SE0202159D0 (sv) * 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
SE527062C2 (sv) * 2003-07-21 2005-12-13 Embracing Sound Experience Ab Stereoljudbehandlingsmetod, -anordning och -system
KR100566115B1 (ko) * 2004-07-09 2006-03-30 주식회사 이머시스 입체 음향을 생성하는 장치 및 방법
KR101158709B1 (ko) * 2004-09-06 2012-06-22 코닌클리케 필립스 일렉트로닉스 엔.브이. 오디오 신호 강화
US7787631B2 (en) * 2004-11-30 2010-08-31 Agere Systems Inc. Parametric coding of spatial audio with cues based on transmitted channels
EP1761110A1 (en) * 2005-09-02 2007-03-07 Ecole Polytechnique Fédérale de Lausanne Method to generate multi-channel audio signals from stereo signals
EP1850639A1 (de) * 2006-04-25 2007-10-31 Clemens Par signalsysteme zur gewinnung multipler audiosignale aus wenigstens einem audiosignal
DE102007059597A1 (de) * 2007-09-19 2009-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Eine Vorrichtung und ein Verfahren zur Ermittlung eines Komponentensignals in hoher Genauigkeit
US8588427B2 (en) * 2007-09-26 2013-11-19 Frauhnhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for extracting an ambient signal in an apparatus and method for obtaining weighting coefficients for extracting an ambient signal and computer program
EP2124486A1 (de) * 2008-05-13 2009-11-25 Clemens Par Winkelabhängig operierende Vorrichtung oder Methodik zur Gewinnung eines pseudostereophonen Audiosignals
TWI433137B (zh) * 2009-09-10 2014-04-01 Dolby Int Ab 藉由使用參數立體聲改良調頻立體聲收音機之聲頻信號之設備與方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011009650A1 *

Also Published As

Publication number Publication date
AU2010275712B2 (en) 2015-08-13
JP2012533954A (ja) 2012-12-27
US8958564B2 (en) 2015-02-17
RU2012106343A (ru) 2013-08-27
AU2010275712A1 (en) 2012-02-16
CN102484763B (zh) 2016-01-06
KR20120066006A (ko) 2012-06-21
KR20120062727A (ko) 2012-06-14
RU2012106341A (ru) 2013-08-27
CN105282680A (zh) 2016-01-27
HK1167769A1 (zh) 2012-12-07
WO2011009650A1 (de) 2011-01-27
WO2011009649A1 (de) 2011-01-27
US20120134500A1 (en) 2012-05-31
HK1170356A1 (zh) 2013-02-22
SG178080A1 (en) 2012-03-29
SG178081A1 (en) 2012-03-29
AU2010275711A1 (en) 2012-02-16
US9357324B2 (en) 2016-05-31
CN102484763A (zh) 2012-05-30
AU2010275711B2 (en) 2015-08-27
CN102577440B (zh) 2015-10-21
HK1221104A1 (zh) 2017-05-19
EP2457389A1 (de) 2012-05-30
US20120128161A1 (en) 2012-05-24
JP2012533953A (ja) 2012-12-27
CN102577440A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2011009650A1 (de) Vorrichtung und verfahren zur optimierung stereophoner oder pseudostereophoner audiosignale
DE60311794T2 (de) Signalsynthese
DE602005005186T2 (de) Verfahren und system zur schallquellen-trennung
DE4331376C1 (de) Verfahren zum Bestimmen der zu wählenden Codierungsart für die Codierung von wenigstens zwei Signalen
DE102013223201B3 (de) Verfahren und Vorrichtung zum Komprimieren und Dekomprimieren von Schallfelddaten eines Gebietes
EP1687809A1 (en) Device and method for reconstruction a multichannel audio signal and for generating a parameter data record therefor
WO2006094635A1 (de) Vorrichtung und verfahren zum erzeugen eines codierten stereo-signals eines audiostücks oder audiodatenstroms
EP2891334B1 (de) Erzeugung von mehrkanalton aus stereo-audiosignalen
EP0632944A1 (de) Verfahren zum übertragen oder speichern digitalisierter, mehrkanaliger tonsignale
WO2012032178A1 (de) Vorrichtung und verfahren zur zeitlichen auswertung und optimierung von stereophonen oder pseudostereophonen signalen
DE102009059167A1 (de) Mischpultsystem und Verfahren zur Erzeugung einer Vielzahl von Mischsummensignalen
DE102008056704B4 (de) Verfahren zum Erzeugen eines abwärtskompatiblen Tonformates
DE10148351B4 (de) Verfahren und Vorrichtung zur Auswahl eines Klangalgorithmus
DE4440014C2 (de) Verfahren und Vorrichtung zur mehrkanaligen Tonwiedergabe
EP2601593A2 (de) Vorrichtung und verfahren zur auswertung und optimierung von signalen auf der basis algebraischer invarianten
EP2200341A1 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einer Quellentrennungseinrichtung
DE4345171C2 (de) Verfahren zum Bestimmen der zu wählenden Codierungsart für die Codierung von wenigstens zwei Signalen
DE102021200553B4 (de) Vorrichtung und Verfahren zum Ansteuern eines Schallerzeugers mit synthetischer Erzeugung des Differenzsignals
EP1318502B1 (de) Verfahren zur Audiocodierung
DE102017121876A1 (de) Verfahren und vorrichtung zur formatumwandlung eines mehrkanaligen audiosignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160906