EP2457240B1 - Method for reducing the noise emission of a transformer - Google Patents

Method for reducing the noise emission of a transformer Download PDF

Info

Publication number
EP2457240B1
EP2457240B1 EP09781032.9A EP09781032A EP2457240B1 EP 2457240 B1 EP2457240 B1 EP 2457240B1 EP 09781032 A EP09781032 A EP 09781032A EP 2457240 B1 EP2457240 B1 EP 2457240B1
Authority
EP
European Patent Office
Prior art keywords
vibration
tank wall
mode
transformer
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09781032.9A
Other languages
German (de)
French (fr)
Other versions
EP2457240A1 (en
Inventor
Andreas Dantele
Johannes Korak
Thomas Rittenschober
Helmut Wernick
Alexander Hackl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2457240A1 publication Critical patent/EP2457240A1/en
Application granted granted Critical
Publication of EP2457240B1 publication Critical patent/EP2457240B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations

Definitions

  • the invention relates to a method for reducing the noise emission of a transformer whose transformer tank is filled with a liquid and the boiler wall executes vibrations during operation.
  • a vibration applying device for vibration in antiphase is arranged so that it lies as close as possible to maximum curvature or maximum transverse deflection of an eigenform of the vessel wall.
  • An eigenform, or fashion describes the appearance of a waveform at a natural frequency.
  • a boiler wall can be used as a plate with a fixed edge.
  • the plate modes occurring there are named with an ordinal number (mn).
  • actuator for short
  • a particularly favorable embodiment of the method according to the invention is characterized in that a piezoelectric element is used as the vibration-applying device.
  • a particular advantage of this piezoelectric element is that it can be used both as an actuator and as a transmitter.
  • the piezoelectric element or another measuring transducer supplies a measurement signal proportional to the oscillation of the boiler wall and this is passed back to the control device.
  • the control device analyzes this measurement signal and determines therefrom amplitude and phase for a control signal with which the piezoactuator is driven to cancel out the oscillation. In this way, an adaptation of the vibration damping to changing operating conditions is possible. This maintains the effect of noise reduction over a long period of operation.
  • the FIG. 1a shows in a spatial representation of a transformer tank.
  • the boiler wall of the transformer is excited to oscillate during operation by the transformer core and / or the transformer winding. Especially with a transformer of high power, this noise emission is disturbing.
  • the excitation frequency is usually 50 Hz or 60 Hz.
  • FIG. 1b is shown forming on the wall of the transformer tank waveform.
  • a pictorial representation of a boiler vibration form can be obtained experimentally by analyzing the vibration during operation.
  • FIG. 1b, FIG. 1c and FIG. 1d in each case the speed of the boiler surface is drawn. That is, the speed of change of the wall around its rest position. From the illustration, the areas with maximum deflection (belly) and the areas with the minimum deflection (node) can be seen.
  • Figure 1e the fashion spectrum is shown. For this purpose, the person skilled in the art knows devices and methods with which a mode spectrum can be created.
  • a container wall can be excited to oscillate and the vibrations of the vessel wall can be measured, for example, with acceleration sensors or piezoelectric force transducers distributed on the boiler wall surface.
  • These measurement signals can be fed to a computer system, which performs a modal analysis and numerically determines the dynamic behavior of the boiler wall.
  • a waveform is composed of the interference of its natural modes and can thus be decomposed into their modes. This can be done for example by a simulation.
  • the FIG. 1 shows an analysis of a 100 Hz boiler vibration as a result of a simulation on a computer system. In the simulation pictures Figure 1c and Figure 1d the eigenmodes are shown.
  • the boiler vibration is essentially composed of two modes of natural vibration: a 2-3 mode (see FIG. 2b ) and a 1-5 mode (see Figure 2c ).
  • This composition of the boiler vibration also illustrates the diagram of FIG. 1 e; it shows the proportion of the amplitude of the modes in the boiler vibration as a function of frequency.
  • FIG. 4 shows a representation of simulation images for the case of an excitation frequency of 100 Hz (f 1 ) and the first harmonic at 200 Hz (f 2 ).
  • the boiler vibration at 200 Hz is composed of a 1-7 mode (oscillation image 41) and a 2-6 mode (oscillation image 51).
  • the gray areas of the eigen-shape 40 and 51 were merged and the gray areas of the eigen-shape 50 were subtracted.
  • the areas 401 identify those areas in which the eigenvagant 40 and 51 can be damped separately, ideally by means of an actuator.
  • the gray areas of the eigenform 50 and 41 were merged and the gray areas of the eigenform 51 were subtracted.
  • the gray hatched areas 501 identify those areas in which the eigenvagant 50 and 41, in the ideal case by means of an actuator, can be damped separately.
  • an actuator By controlling an actuator with a frequency mix of 100 Hz and 200 Hz, it can be used both to reduce the 100 Hz component and to reduce the 200 Hz component. This allows you to dampen two frequencies and four modes with two actuators. In other words, in order to reduce the number of actuators, one does not consider each stimulating frequency 100 Hz, 200 Hz, 300 Hz, 400 Hz, etc. alone, but overlays all considered eigenmodes of all frequencies and determines by superposition those areas that correspond to the optimization strategy presented above. In this case, the number of actuators is increased stepwise until all modes are separately ausregelbar.
  • the amplitude and phase vary depending on the operating condition and operating time, the contribution of the natural vibration modes that make up the boiler vibration. Over the entire operating period an effective suppression of the To achieve sound radiation, the noise suppression system must be adapted to the actual state.
  • This is achieved by the piezo elements are temporarily used as a vibration absorber, at times as a transducer for receiving a vibration.
  • the measurement signal generated by the piezoelectric element is fed back into the control unit.
  • the magnitude and phase of the measured oscillation are determined from the measurement signal.
  • the boiler vibration is broken down into its own forms.
  • the piezoelectric element is used again as a vibration absorber, this information is used for the control of the piezoelectric element, possibly also other actuators.
  • Each actuator is assigned its own control loop. In this way, the suppression of sound radiation is adjusted.
  • Each actuator is thereby adjusted to the temporal changes in the boiler oscillation within its operating range. Thus, the overall effect of noise reduction over a long period of operation is maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren zur Reduktion der Geräuschemission eines Transformators, dessen Transformatorkessel mit einer Flüssigkeit gefüllt ist und die Kesselwand im Betriebsfall Vibrationen ausführt.The invention relates to a method for reducing the noise emission of a transformer whose transformer tank is filled with a liquid and the boiler wall executes vibrations during operation.

Stand der TechnikState of the art

Bei Betrieb eines Transformators führt die durch Magnetostriktion bedingte Formänderung des weichmagnetischen Kern und/oder auf die Wicklungen wirkenden elektrodynamischen Kräfte zu Druckwellen in der Kühlflüssigkeit des Transformators, welche die Wand des Transformatorkessels zu Schwingungen anregen. Diese Kesselvibrationen haben eine im Hörbereich liegende Schallabstrahlung zufolge, die insbesondere dann als störend empfunden wird, wenn der Transformator beispielsweise in der Nähe eines Wohngebietes installiert wird.During operation of a transformer caused by magnetostriction shape change of the soft magnetic core and / or acting on the windings electrodynamic forces leads to pressure waves in the cooling liquid of the transformer, which excite the wall of the transformer tank to vibrate. These boiler vibrations have a sound radiation in the audible range, which is particularly disturbing when the transformer is installed, for example, in the vicinity of a residential area.

Um Betriebsgeräusche eines Transformators zu reduzieren sind verschiedene aktiv wirkende Einrichtungen bekannt. Aus der DE 699 01 596 T2 ist beispielsweise ein geräuscharmer Transformator bekannt, bei dem im Transformatorkessel eine Schwingungszelle angeordnet ist, welche eine zu den Druckwellen gegenphasige Schwingung erzeugt und dadurch die Vibrationen der Kesselwand abschwächt. Ein ähnliches Verfahren wird in der US 5,394,376 vorgeschlagen, wo ebenfalls eine Flüssigkeits-Verdrängungseinrichtung Druckwellen im Inneren Transformatorkessel entgegenwirkt. Diesen bekannten Einrichtungen ist aber gemeinsam, dass eine Verbindung zwischen einem Aktuator und der Flüssigkeit im Inneren des Kessels erforderlich ist. Außerdem nimmt der Aktuator eine beträchtliche Menge Energie auf. Aus US 5,617,479 ist eine Vorrichtung bekannt, bei der Aktuatoren in Bereichen maximaler transversaler Ablenkung der Kesselwand positioniert werden.In order to reduce operating noise of a transformer, various active devices are known. From the DE 699 01 596 T2 For example, a low-noise transformer is known in which a vibration cell is arranged in the transformer tank, which generates a vibration in phase opposition to the pressure waves and thereby attenuates the vibrations of the boiler wall. A similar Procedure is in the US 5,394,376 proposed where also a liquid displacement device counteracts pressure waves inside the transformer tank. However, these known devices have in common that a connection between an actuator and the liquid inside the boiler is required. In addition, the actuator consumes a considerable amount of energy. Out US 5,617,479 a device is known in which actuators are positioned in areas of maximum transverse deflection of the boiler wall.

Darstellungen der ErfindungIllustrations of the invention

Es ist eine Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben, das auf möglichst einfache und zuverlässige Weise die Geräuschemission eines Transformators wirkungsvoll verringert und dabei möglichst wenig Energie verbraucht. Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen definiert.
Gemäß einem Grundgedanken der Erfindung, wird außen an der Wand des Transformatorkessels eine zur Vibration in Gegenphase wirkende Schwingungs-Beaufschlagungseinrichtung so angeordnet, dass sie möglichst nahe Bereichen maximaler Krümmung bzw. maximaler transversaler Auslenkung einer Eigenform der Kesselwand liegt. Dadurch ist eine effiziente Einwirkung auf die störende Vibration der Kesselwand möglich. Eine Eigenform, oder auch Mode genannt, beschreibt das Aussehen einer Schwingungsform bei einer Eigenfrequenz. Bei jeder Eigenfrequenz gibt es eine bestimmte geometrische Form der Kesselwandschwingung, das heißt einen bestimmten Mode. In einer ersten Näherung lässt sich eine Kesselwand als Platte mit fixiertem Rand betrachten. Die dort auftretenden Plattenmoden werden mit einer Ordnungszahl (m-n) benannt. Wenn die Schwingungs-Beaufschlagungseinrichtung, im Folgenden auch kurz Aktuator genannt, in einem Bereich großer Auslenkung der Eigenform platziert wird, ist vergleichsweise wenig Energie für die Schwingungstilgung erforderlich.
Eine besonders günstige Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass als Schwingungs-Beaufschlagungseinrichtung ein Piezoelement verwendet wird. Ein besonderer Vorteil dieses Piezoelements liegt darin, dass es sowohl als Aktuator - als auch als Messumformer verwendet werden kann. Gemäß der Erfindung ist vorgesehen, dass das Piezoelement oder ein anderer Messumformer ein der Schwingung der Kesselwand proportionales Messsignal liefert und dieses zurück an die Steuereinrichtung geleitet wird. Die Steuereinrichtung analysiert dieses Messsignal und ermittelt daraus Amplitude und Phase für ein Steuersignal, mit dem der Piezoaktuator zur Tilgung der Schwingung angesteuert wird. Auf diese Weise ist eine Anpassung der Schwingungsdämpfung an sich ändernde Betriebszustände möglich. Dadurch bleibt die Wirkung der Geräuschminderung über einen langen Betriebszeitraum erhalten.
It is an object of the present invention to provide a method which effectively reduces the noise emission of a transformer in the simplest and most reliable way, while consuming as little energy as possible. This object is achieved by a method having the features of claim 1. Advantageous embodiments are defined in the subclaims.
According to a basic idea of the invention, on the outside of the wall of the transformer tank, a vibration applying device for vibration in antiphase is arranged so that it lies as close as possible to maximum curvature or maximum transverse deflection of an eigenform of the vessel wall. As a result, an efficient action on the disturbing vibration of the boiler wall is possible. An eigenform, or fashion, describes the appearance of a waveform at a natural frequency. At each natural frequency, there is a certain geometric shape of the boiler wall vibration, that is, a particular mode. In a first approximation, a boiler wall can be used as a plate with a fixed edge. The plate modes occurring there are named with an ordinal number (mn). When the vibration applying means, hereinafter also referred to as actuator for short, is placed in a large deflection range of the eigenform, comparatively little energy is required for the vibration damping.
A particularly favorable embodiment of the method according to the invention is characterized in that a piezoelectric element is used as the vibration-applying device. A particular advantage of this piezoelectric element is that it can be used both as an actuator and as a transmitter. According to the invention, it is provided that the piezoelectric element or another measuring transducer supplies a measurement signal proportional to the oscillation of the boiler wall and this is passed back to the control device. The control device analyzes this measurement signal and determines therefrom amplitude and phase for a control signal with which the piezoactuator is driven to cancel out the oscillation. In this way, an adaptation of the vibration damping to changing operating conditions is possible. This maintains the effect of noise reduction over a long period of operation.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Zur weiteren Erläuterung der Erfindung wird im nachfolgenden Teil der Beschreibung auf die Zeichnungen Bezug genommen in denen weitere vorteilhafte Ausgestaltungen, Einzelheiten und Weiterbildungen der Erfindung zu entnehmen sind.
Es zeigt:

Figur 1
Kesselschwingung bei einer Anregung von 100 Hz und deren Zerlegung in Eigenformen;
Figur 2
eine Darstellung von Simulationsbildern, welche die Zerlegung einer Plattenschwingung in ihre Eigenformen zeigen;
Figur 3
eine Darstellung von Simulationsbildern, welche eine Überlagerung eines 2-3-Modes mit einem 1-5-Mode zeigen;
Figur 4
eine Darstellung von Simulationsbildern, welche eine Überlagerung eines 2-3-Modes mit einem 2-6-Mode und eine Überlagerung eines 1-5-Modes mit einem 1-7-Mode zeigen.
To further explain the invention, reference is made in the following part of the description to the drawings in which further advantageous embodiments, details and further developments of the invention can be found.
It shows:
FIG. 1
Boiler vibration at excitation of 100 Hz and its decomposition into eigenmodes;
FIG. 2
a representation of simulation images showing the decomposition of a plate vibration in its eigen forms;
FIG. 3
a representation of simulation images showing a superposition of a 2-3 mode with a 1-5 mode;
FIG. 4
a representation of simulation images showing a superposition of a 2-3 mode with a 2-6 mode and a superimposition of a 1-5 mode with a 1-7 mode.

Ausführung der ErfindungEmbodiment of the invention

Die Figur 1a zeigt in einer räumlichen Darstellung einen Transformatorkessel. Wie bereits eingangs dargestellt, wird die Kesselwand des Transformators bei Betrieb durch den Trafokern und/oder die Trafowicklung zu Schwingungen angeregt. Insbesondere bei einem Transformator großer Leistung ist diese Geräuschabstrahlung störend. Bei einem Verteil- oder Leistungstransformator liegt die Anregungsfrequenz üblicher Weise bei 50 Hz beziehungsweise 60 Hz.The FIG. 1a shows in a spatial representation of a transformer tank. As already mentioned, the boiler wall of the transformer is excited to oscillate during operation by the transformer core and / or the transformer winding. Especially with a transformer of high power, this noise emission is disturbing. In a distribution or power transformer, the excitation frequency is usually 50 Hz or 60 Hz.

In Figur 1b ist die sich auf der Wand des Transformatorkessels ausbildende Schwingungsform dargestellt. Eine solche bildliche Darstellung einer Kesselschwingungsform kann durch eine Analyse der Schwingung bei Betrieb experimentell gewonnen werden. In Figur 1b, Figur 1c und Figur 1d ist jeweils die Schnelle der Kesseloberfläche gezeichnet. D.h. die Wechselgeschwindigkeit der Wand um ihre Ruhelage. Aus der Darstellung lassen sich die Gebiete mit maximaler Auslenkung (Bauch) und die Gebiete mit der minimalen Auslenkung (Knoten) entnehmen. In Figur 1e ist das Modenspektrum dargestellt. Dem Fachmann sind hierzu Einrichtungen und Verfahren bekannt, mit denen ein Modenspektrum erstellt werden kann. Beispielsweise kann mit einem Impulshammer eine Behälterwand zu Schwingungen angeregt werden und die Schwingungen der Kesselwand beispielsweise mit auf der Kesselwandfläche verteilten Beschleunigungssensoren oder piezoelektrischen Kraftaufnehmern gemessen werden. Diese Mess-Signale können einer Rechenanlage zugeführt werden, die eine Modalanalyse durchführt und daraus das dynamische Verhalten der Kesselwand numerisch ermittelt.
Wie bereits oben dargestellt, setzt sich eine Schwingungsform aus der Interferenz ihrer Eigenschwingungsformen zusammen und kann somit in ihre Moden zerlegt werden. Dies kann beispielsweise durch eine Simulation erfolgen. Die Figur 1 zeigt als Ergebnis einer Simulation auf einer Rechenanlage eine Analyse einer 100 Hz Kesselvibration. In den Simulationsbildern Figur 1c und Figur 1d sind die Eigenformen dargestellt. Wie aus Figur 1c und 1d zu sehen ist, ist die Kesselvibration im Wesentlichen aus zwei Eigenschwingungsformen zusammen gesetzt: einem 2-3-Mode (siehe Figur 2b) und einem 1-5-Mode (siehe Figur 2c). Diese Zusammensetzung der Kesselschwingung veranschaulicht auch das Diagramm der Figur 1 e; es zeigt den Anteil der Amplitude der Moden an der Kesselvibration in Abhängigkeit der Frequenz.
In FIG. 1b is shown forming on the wall of the transformer tank waveform. Such a pictorial representation of a boiler vibration form can be obtained experimentally by analyzing the vibration during operation. In FIG. 1b, FIG. 1c and FIG. 1d in each case the speed of the boiler surface is drawn. That is, the speed of change of the wall around its rest position. From the illustration, the areas with maximum deflection (belly) and the areas with the minimum deflection (node) can be seen. In Figure 1e the fashion spectrum is shown. For this purpose, the person skilled in the art knows devices and methods with which a mode spectrum can be created. For example, with an impulse hammer, a container wall can be excited to oscillate and the vibrations of the vessel wall can be measured, for example, with acceleration sensors or piezoelectric force transducers distributed on the boiler wall surface. These measurement signals can be fed to a computer system, which performs a modal analysis and numerically determines the dynamic behavior of the boiler wall.
As already stated above, a waveform is composed of the interference of its natural modes and can thus be decomposed into their modes. This can be done for example by a simulation. The FIG. 1 shows an analysis of a 100 Hz boiler vibration as a result of a simulation on a computer system. In the simulation pictures Figure 1c and Figure 1d the eigenmodes are shown. How out Figure 1c and 1d can be seen, the boiler vibration is essentially composed of two modes of natural vibration: a 2-3 mode (see FIG. 2b ) and a 1-5 mode (see Figure 2c ). This composition of the boiler vibration also illustrates the diagram of FIG. 1 e; it shows the proportion of the amplitude of the modes in the boiler vibration as a function of frequency.

Die vertikale punktierte Linie kennzeichnet die Anregungsfrequenz 100 Hz. Der Peak links davon zeigt den stärker ausgeprägten Extremwert des 2-3-Modes bei seiner zugehörigen Eigenfrequenz von 99 Hz. Der Peak rechts davon zeigt den Extremwert des 1-5-Modes bei seiner zugehörigenEigenfrequenz von 101 Hz.
Figur 2 zeigt im oberen Simulationsbild die Schwingungsform 30; die beiden darunter liegenden Simulationsbilder 40 und 50 den 2-3-Mode (Figur 2b) beziehungsweise den 1-5-Mode (Figur 2c). Im Diagramm 60 in der Mitte der Figur 2 ist wieder die Amplitude in Abhängigkeit der Frequenz gezeichnet.
Bei der Geräuschreduktion ist man bestrebt, mit möglichst wenig Aktuatoren eine möglichst große Wirkung der Geräuschminderung zu erzielen. Für die Verringerung der Kesselvibration ist pro Mode die Anbringung zumindest eines Aktuators erforderlich. Um nun auf der Kesselfläche jene Bereiche herauszufinden, die für eine Tilgung der Schwingung besonders geeignet sind, werden Schwingungsbilder übereinander gelegt. Dabei muss sicher gestellt werden, dass der eine Mode gedämpft, der andere aber nicht unbeabsichtigt angeregt wird. Um diese Bereiche auf der Kesselfläche herauszufinden, wird erfindungsgemäß eine Subtraktion der Moden-Bilder durchgeführt, was im Folgenden näher erläutert ist:

  • Die Figur 3 zeigt im Schwingungsbild 40 einen 2-3-Mode. Gebiete, in denen sich dieser 2-3 Mode besonders gut anregen und somit dämpfen lässt, sind mit dem Bezugszeichen 401 gekennzeichnet und zeichnerisch grau schraffiert dargestellt. Rechts daneben ist der 1-5-Mode 50 dargestellt, der sich in den Bereichen 501 besonders gut anregen lässt.
Die weißen Bereiche in den beiden Bildern 40, 50 kennzeichnen Gebiete, in denen sich der jeweilige Mode nur schlecht anregen lässt. Um nun mit möglichst wenigen Aktuatoren eine effiziente Reduktion der Geräusche herbeizuführen, werden von den grau schraffiert dargestellten Flächen des 2-3-Mode (Figur 3a) die grau schraffiert gezeichneten Flächen des 1-5-Mode (Figur 3b) subtrahiert. Das Ergebnis ist in Figur 3c (Bild 100) dargestellt. Die Differenzflächen 101 stellen Gebiete auf der Kesselwand dar, welche besonders günstig sind, um einen der beiden Moden wirkungsvoll zu dämpfen, ohne dass der andere Mode unbeabsichtigter Weise angeregt wird. Figur 3c zeigt sichel- und tropfenförmigen Restflächen, in denen ein Aktuator angeordnet werden kann, der durch gegenphasige Schwingungseinleitung wirkungsvoll den 2-3-Mode dämpft, ohne den 1-5-Mode zu verstärken. Subtrahiert man hingegen die grauen Flächen 401 von den grauen Flächen 501, - siehe Figur 3d Bild 200 -, so erhält man jene Gebiete 201, in denen sich der Mode 1-5 gut anregen lässt, der Mode 2-3 hingegen schlecht.The vertical dotted line indicates the excitation frequency 100 Hz. The peak to the left thereof shows the more pronounced extreme of the 2-3 mode at its associated natural frequency of 99 Hz. The peak to the right thereof shows the extreme value of the 1-5 mode at its inherent natural frequency of 101 Hz.
FIG. 2 shows in the upper simulation image, the waveform 30; the two underlying simulation images 40 and 50 represent the 2-3 mode ( FIG. 2b ) or the 1-5-mode ( Figure 2c ). In diagram 60 in the middle of FIG. 2 again the amplitude is drawn as a function of the frequency.
In the noise reduction, one strives to achieve the greatest possible effect of noise reduction with as few actuators. For the reduction of the boiler vibration per attachment at least one actuator is required. In order to find out on the boiler surface those areas which are particularly suitable for a damping of the oscillation, oscillation patterns are superimposed. It must be ensured that the one mode is damped, the other is not inadvertently stimulated. In order to find out these areas on the boiler surface, a subtraction of the mode images is carried out according to the invention, which is explained in more detail below:
  • The FIG. 3 shows a 2-3 mode in the vibration image 40. Areas in which this 2-3 mode excite particularly well and thus can be dampened, are identified by the reference numeral 401 and shown graphically gray hatched. To the right is the 1-5 mode 50, which can be particularly well stimulated in the areas 501.
The white areas in the two pictures 40, 50 indicate Areas in which the respective fashion can only be stimulated poorly. In order to bring about an efficient reduction of the noise with as few actuators as possible, the areas of the 2-3-mode (shaded in gray) FIG. 3a ) the gray hatched areas of the 1-5-Mode ( FIG. 3b subtracted. The result is in Figure 3c (Figure 100). The differential surfaces 101 represent areas on the boiler wall which are particularly favorable to effectively damp one of the two modes without inadvertently exciting the other mode. Figure 3c shows sickle-shaped and teardrop-shaped residual surfaces in which an actuator can be arranged, which effectively attenuates the 2-3 mode by antiphase oscillation initiation without amplifying the 1-5 mode. On the other hand, one subtracts the gray areas 401 from the gray areas 501, - see 3d figure Picture 200 -, you get those areas 201, in which the mode 1-5 can be well stimulated, the mode 2-3, however bad.

Auf diese Weise hat man auf der Kesselwand jene Bereiche ermittelt, in denen sich Vibrationen besonders effizient bedämpfen lassen.In this way, those areas have been identified on the boiler wall in which vibrations can be attenuated particularly efficiently.

Grundsätzlich ist man bestrebt, mit möglichst wenig Aktuatoren möglichst viele Frequenzen und Moden zu bedämpfen. Störend sind jedoch nicht nur die Grundanregung, sondern auch die höheren Harmonischen der Grundanregung.In principle, efforts are made to dampen as many frequencies and modes as possible with as few actuators as possible. Not only the basic excitation, but also the higher harmonics of the basic excitation are disturbing.

Figur 4 zeigt eine Darstellung von Simulationsbildern für den Fall einer Anregungsfrequenz von 100 Hz (f1) und der ersten Oberschwingung bei 200 Hz (f2). Die Kesselschwingung bei 200 Hz ist aus einem 1-7-Mode (Schwingungsbild 41) und einem 2-6-Mode (Schwingungsbild 51) zusammengesetzt. FIG. 4 shows a representation of simulation images for the case of an excitation frequency of 100 Hz (f 1 ) and the first harmonic at 200 Hz (f 2 ). The boiler vibration at 200 Hz is composed of a 1-7 mode (oscillation image 41) and a 2-6 mode (oscillation image 51).

Im Überlagerungsbild 400 wurden die grauen Bereiche der Eigenform 40 und 51 vereinigt und die grauen Bereiche der Eigenform 50 abgezogen. Die Flächen 401 kennzeichnen jene Bereiche in denen sich die Eigenform 40 und 51, im Idealfall mittels eines Aktuators, getrennt dämpfen lassen.In the overlay image 400, the gray areas of the eigen-shape 40 and 51 were merged and the gray areas of the eigen-shape 50 were subtracted. The areas 401 identify those areas in which the eigenvagant 40 and 51 can be damped separately, ideally by means of an actuator.

Im Überlagerungsbild 500 wurden die grauen Bereiche der Eigenform 50 und 41 vereinigt und die grauen Bereiche der Eigenform 51 abgezogen. Die grau schraffierten Flächen 501 kennzeichnen jene Bereiche in denen die Eigenform 50 und 41, im Idealfall mittels eines Aktuators, getrennt dämpfen lassen.In the overlay image 500, the gray areas of the eigenform 50 and 41 were merged and the gray areas of the eigenform 51 were subtracted. The gray hatched areas 501 identify those areas in which the eigenvagant 50 and 41, in the ideal case by means of an actuator, can be damped separately.

Indem ein Aktuator mit einem Frequenzgemisch aus 100 Hz und 200 Hz angesteuert wird, kann er sowohl zur Minderung des 100 Hz Anteils als auch zur Minderung des 200 Hz Anteils verwendet werden. Dadurch kann man mit zwei Aktuatoren zwei Frequenzen und vier Moden dämpfen. Mit anderen Worten, um die Anzahl der Aktuatoren zu reduzieren, betrachtet man nicht jede anregende Frequenz 100 Hz, 200 Hz, 300 Hz, 400 Hz usw. für sich alleine, sondern legt alle betrachteten Eigenformen aller Frequenzen übereinander und ermittelt durch Überlagerung jene Gebiete, die der oben dargestellten Optimierungsstrategie entsprechen. Dabei wird die Anzahl der Aktuatoren schrittweise erhöht, bis alle Eigenformen getrennt ausregelbar sind.By controlling an actuator with a frequency mix of 100 Hz and 200 Hz, it can be used both to reduce the 100 Hz component and to reduce the 200 Hz component. This allows you to dampen two frequencies and four modes with two actuators. In other words, in order to reduce the number of actuators, one does not consider each stimulating frequency 100 Hz, 200 Hz, 300 Hz, 400 Hz, etc. alone, but overlays all considered eigenmodes of all frequencies and determines by superposition those areas that correspond to the optimization strategy presented above. In this case, the number of actuators is increased stepwise until all modes are separately ausregelbar.

Obwohl der Kessel mit der Frequenz von 100 Hz angeregt wird, schwankt in Amplitude und Phase je nach Betriebszustand und Betriebszeit der Beitrag der Eigenschwingungsformen, aus denen sich die Kesselschwingung zusammen setzt. Um über die gesamte Betriebsdauer eine wirkungsvolle Unterdrückung der Schallabstrahlung zu erreichen, muss das Geräuschunterdrückungssystem an den Ist-Zustand angepasst werden. Dies wird dadurch erreicht, indem die Piezoelemente zeitweise als Schwingungstilger, zeitweise als Messumformer zur Aufnahme einer Schwingung verwendet werden. In dieser Messephase wird das vom Piezoelement erzeugte Messsignal zurück in die Steuereinheit geführt. In der Steuereinheit wird aus dem Messsignal Betrag und Phase der gemessenen Schwingung ermittelt. Die Kesselvibration wird in ihre Eigenformen zerlegt. Wenn das Piezoelement wieder als Schwingungstilger verwendet wird, wird diese Information für die Ansteuerung des Piezoelements, ggf. auch anderer Aktuatoren verwendet. Dabei ist jedem Aktuator ein eigener Regelkreis zugeordnet. Auf diese Weise wird die Unterdrückung der Schallabstrahlung angepasst. Jeder Aktuator wird dadurch auf die in seinem Wirkungsbereich liegenden zeitlichen Änderungen der Kesselschwingung angepasst. Damit bleibt die Wirkung der Geräuschereduzierung insgesamt über einen langen Betriebszeitraum erhalten.Although the boiler is energized at the frequency of 100 Hz, the amplitude and phase vary depending on the operating condition and operating time, the contribution of the natural vibration modes that make up the boiler vibration. Over the entire operating period an effective suppression of the To achieve sound radiation, the noise suppression system must be adapted to the actual state. This is achieved by the piezo elements are temporarily used as a vibration absorber, at times as a transducer for receiving a vibration. In this measuring phase, the measurement signal generated by the piezoelectric element is fed back into the control unit. In the control unit, the magnitude and phase of the measured oscillation are determined from the measurement signal. The boiler vibration is broken down into its own forms. If the piezoelectric element is used again as a vibration absorber, this information is used for the control of the piezoelectric element, possibly also other actuators. Each actuator is assigned its own control loop. In this way, the suppression of sound radiation is adjusted. Each actuator is thereby adjusted to the temporal changes in the boiler oscillation within its operating range. Thus, the overall effect of noise reduction over a long period of operation is maintained.

Zusammenstellung der verwendeten BezugszeichenCompilation of the reference numbers used

11
Transformatorkesseltransformer tank
22
Schwingungsformwaveform
33
Mode 2-3Fashion 2-3
44
Mode 1-5Fashion 1-5
55
Modenspektrummode spectrum
3030
Simulationsbild, SchwingungsformSimulation image, waveform
4040
Simulationsbild Mode 2-3Simulation picture Mode 2-3
4141
Simulationsbild Mode 1-7Simulation screen Mode 1-7
5050
Simulationsbild Mode 1-5Simulation screen Mode 1-5
5151
Simulationsbild Mode 2-6Simulation picture Mode 2-6
6060
Diagrammdiagram
100100
Differenzbild (40 ohne 50)Difference image (40 without 50)
101101
Bereiche günstiger Anregung des 2-3-ModeAreas of favorable stimulation of the 2-3-Mode
200200
Differenzbild (50 ohne 40)Difference image (50 without 40)
201201
Bereiche günstiger Anregung des 1-5-ModeAreas of favorable excitation of the 1-5-Mode
400400
Differenzbild ((40 vereinigt mit 51)ohne 50)Difference image ((40 combined with 51) without 50)
500500
Differenzbild ((50 vereinigt mit 41)ohne 51)Difference picture ((50 united with 41) without 51)
401401
Bereiche günstiger Anregung des 2-3-Mode bei f1 und 2-6-Mode bei f2 Regions effective excitation of the 2-3 mode at f 1 and f 2 2-6 mode at
501501
Bereiche günstiger Anregung des 1-5-Mode bei f1 und 1-7-Mode bei f2 Areas of favorable excitation of the 1-5-mode at f 1 and 1-7-mode at f 2

Claims (7)

  1. Method for reducing the noise emission of a transformer, the transformer tank (1) of which is filled with a liquid and the tank wall of which vibrates during operation, characterised by the following sequence of method steps:
    a.) detecting natural vibration values of the tank wall for at least one excitation frequency;
    b.) determining at least two eigenforms (3,4,30,40,41,50,51), from which the vibration of the tank wall is composed at an excitation frequency, by means of computer-aided processing of the natural vibration values, wherein a subtraction of the at least two eigenforms is performed and difference areas (100,200,400,500) of the tank wall are determined on the tank wall by means of computer-aided superimposition;
    c.) arranging at least one vibration loading device in at least one of these difference areas;
    d.) activating the at least one vibration loading device by means of a control device in order to counteract the vibration of the tank wall.
  2. Method according to claim 1, characterised in that the activation is performed such that each eigenform is counteracted separately.
  3. Method according to claim 2, characterised in that the activation is effected by a control signal which is composed of a frequency mixture in order to damp a plurality of eigenforms using different excitation frequencies.
  4. Method according to one of the preceding claims, characterised in that the vibration loading device takes the form of a piezoelectric element.
  5. Method according to claim 4, characterised in that use is made of a measuring transducer which converts the vibrations of the tank wall into a measured signal that is supplied to the control device.
  6. Method according to claim 5, characterised in that the control device determines magnitude and phase of an eigenform from the supplied measured signal and, on the basis of these, calculates a control variable for the piezoelectric actuator, said control variable being used for the activation of the piezoelectric element in a time interval following the measurement interval.
  7. Method according to one of the claims 4 to 6, characterised in that the at least one piezoelectric element is fastened to the tank wall by means of adhesive.
EP09781032.9A 2009-07-24 2009-07-24 Method for reducing the noise emission of a transformer Not-in-force EP2457240B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/059557 WO2011009491A1 (en) 2009-07-24 2009-07-24 Method for reducing the noise emission of a transformer

Publications (2)

Publication Number Publication Date
EP2457240A1 EP2457240A1 (en) 2012-05-30
EP2457240B1 true EP2457240B1 (en) 2018-01-03

Family

ID=42097374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781032.9A Not-in-force EP2457240B1 (en) 2009-07-24 2009-07-24 Method for reducing the noise emission of a transformer

Country Status (3)

Country Link
US (1) US9020156B2 (en)
EP (1) EP2457240B1 (en)
WO (1) WO2011009491A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632690B (en) * 2014-11-06 2018-10-23 国家电网公司 A kind of power transformer class equipment vibration insulation and noise reduction method
CN110569526B (en) * 2019-06-27 2022-04-01 武汉大学 Method for analyzing sound radiation characteristics of power transformer in multiple operating states
US20240013963A1 (en) 2021-02-11 2024-01-11 Hitachi Energy Switzerland Ag A winding, a transformer and a transformer arrangement
JP7493107B2 (en) 2021-02-11 2024-05-30 ヒタチ・エナジー・リミテッド Transformers and Transformer Configurations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692053A (en) 1992-10-08 1997-11-25 Noise Cancellation Technologies, Inc. Active acoustic transmission loss box
EP0746843B1 (en) 1993-09-09 2001-11-14 NCT Group, Inc. Global quieting system for stationary induction apparatus
US7623993B2 (en) * 2003-12-09 2009-11-24 Iowa State University Research Foundation, Inc. Method and system to perform energy-extraction based active noise control

Also Published As

Publication number Publication date
WO2011009491A1 (en) 2011-01-27
EP2457240A1 (en) 2012-05-30
US20120121101A1 (en) 2012-05-17
US9020156B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
DE3344910C2 (en) Arrangement for the active damping of sound waves
EP2457240B1 (en) Method for reducing the noise emission of a transformer
DE10229491C2 (en) Nuclear spin tomography device with damping layer plates for vibration reduction
DE10116166C2 (en) Acoustically active disc
DE4441726B4 (en) Control device and method for damping sinusoidal vibrations of an arrangement and for damping sinusoidal noise on an enclosure
DE102004026660A1 (en) Active noise control system
EP2978991B1 (en) Vibration damper for shielding plate
DE10130751A1 (en) Ultrasonic transmission involves transmitting essentially identical pulse from fewer than total number of transducer elements so all pulses arrive at focal point at essentially same time
DE69429111T2 (en) GLOBAL CALMING ARRANGEMENT FOR STATIONARY INDUCTION DEVICES
DE10391596B4 (en) Encapsulation of a magnetic resonance tomography device for damping low sound frequencies
DE102006019421B4 (en) magnetic resonance apparatus
DE19829296B4 (en) Magnetic resonance device with noise reduction
EP2378513B1 (en) Method and system for active noise reduction
DE102009024343A1 (en) Electronic device with noise suppression system
DE102008011285A1 (en) Active sound blocker
DE1904417A1 (en) Device for increasing the acoustic power emitted in a gas and method for producing this device
EP3026664B1 (en) Method and system for active noise suppression
DE1071364B (en)
EP3065129B1 (en) Assembly for reducing the noise emissions of a transformer or a throttle
DE102011104419A1 (en) Operating device for motor car, has actuator producing mechanical vibration of control element with pulse signal to user, where pulse signal is band-limited such that mechanical vibration is limited to frequency range on frequency spectrum
DE4133407C2 (en) Arrangement for compensating the sound emitted by a vibrating wall
DE102008061552A1 (en) Method for reducing noise of electrical transformer, involves determining current operating point of transformer and providing measurement protocol for characterizing operating point dependent behavior of transformer
DE2220416B2 (en) Arrangement for regulating a vibration device to a specified spectrum
DE1812515A1 (en) Arrangement for generating artificial reverberation
DE19912974A1 (en) Attenuation device for vibrations for damping vibrations of measuring instrument such as scale has control loop with sensor receiving vibrations and sensor interface receives output signal and actuator carries out damping

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AG OESTERREICH

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960986

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014653

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180611

Year of fee payment: 10

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009014653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960986

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103