EP2446505A1 - Holder for a movable sensor - Google Patents

Holder for a movable sensor

Info

Publication number
EP2446505A1
EP2446505A1 EP10735182A EP10735182A EP2446505A1 EP 2446505 A1 EP2446505 A1 EP 2446505A1 EP 10735182 A EP10735182 A EP 10735182A EP 10735182 A EP10735182 A EP 10735182A EP 2446505 A1 EP2446505 A1 EP 2446505A1
Authority
EP
European Patent Office
Prior art keywords
sensor
bearing
support structure
kinematic
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10735182A
Other languages
German (de)
French (fr)
Inventor
Bernhard Ahring
Horst Christof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP2446505A1 publication Critical patent/EP2446505A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/18Means for stabilising antennas on an unstable platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B30/00Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
    • F42B30/006Mounting of sensors, antennas or target trackers on projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/26Peepholes; Windows; Loopholes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1242Rigid masts specially adapted for supporting an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the present invention relates to a holder for a movable sensor, which can be aligned with a target, on a support structure.
  • sensors may be, for example, radar sensors, camera sensors or in general transmitters and / or receivers of electromagnetic radiation.
  • sensor for an alignable functional element in the context of the present application is therefore not limited to receiving devices, but may also include transmitting devices or combined transmit / receive devices for electromagnetic radiation.
  • a movable support for the sensor is required.
  • the support structure itself is also movable, for example, part of an aircraft, a spacecraft, a watercraft or a land vehicle, this holder must be able to track the sensor so that it remains aligned with the target. This is also true when the target moves.
  • Object of the present invention is to provide a holder for a movable sensor which can be aligned with a target on a supporting structure, wherein the holder has a compact structure, allows rapid alignment of the sensor to the target and further rapid tracking of the sensor allowed with moving target and / or moving support structure.
  • This object is achieved by the holder specified in claim 1.
  • the holder is provided with at least two spaced-apart sensor-side bearings, at least two spaced-apart support structure side bearings, at least two variable in length
  • Actuator units each of the actuator units is provided between an associated sensor-side bearing and an associated support structure side bearing, and a central bearing which is designed such that it supports the sensor about a kinematic pivot center and at least two spatial axes pivotally mounted on the support structure.
  • Such a sensor holder has a very light and compact design. Its kinematics enable optimum tracking of the sensor (eg a radar antenna) in a space that is very limited in space, for example an aircraft nose.
  • the pivoting about at least two spatial axes, which are preferably perpendicular to each other, allows pivoting of the sensor in each direction within the predetermined by the corresponding construction pivoting range about the respective axis of space. Accordingly, the tracking of the sensor can be carried out continuously in each of these directions.
  • the middle bearing which may be formed, for example, as a universal joint, ensures the pivoting of the sensor and the actuator units, which may be formed for example by variable in length handlebar or struts and may have a servo drive, allow the pivotal movement about the two spatial axes.
  • a control device for controlling the respective servo drives of the actuator units which controls the change in length of the respective actuator unit and thus the pivoting movement of the sensor controls.
  • a kinematics allows for a lightweight and compact design, a continuous sensor tracking in all directions with optimum force and low to rotating masses. Even with constantly changing coordinates of the target and a moving support structure, such as a flying plane or a moving ship or land vehicle, allows the kinematics of the holder according to the invention, the sensor, for example, a radar antenna continuously track within the structurally predetermined pivoting range.
  • An advantageous development of the holder according to the invention is characterized in that at least three spaced-apart sensor side bearings are provided that at least three spaced support structure side bearings are provided that at least three variable length actuator units are provided, each of the actuator units between an associated sensor-side bearing and a associated bearing structure side bearing is provided and that the middle bearing is designed such that it supports the sensor about the kinematic pivot center about three spatial axes pivotally mounted on the support structure.
  • This advantageous development of the holder additionally makes it possible to pivot the sensor relative to the support structure about the third spatial axis. This makes it possible for a sensor that is designed as a radar antenna or a
  • Radar antenna has to not only track the sensor, but also keep the polarization plane of the antenna always aligned with respect to the target constant.
  • this also applies to other types of sensors, which are preferably to be held in a constant alignment with the target, which also applies, for example, to imaging sensors in the field Wavelength range of visible light or in another wavelength range applies.
  • the sensor-side bearings each have a kinematic center, by which the respective bearing permits a pivoting movement about three spatial axes.
  • the sensor-side bearings are preferably designed as ball-joint-like bearings.
  • the kinematic bearing centers of the sensor-side bearings are located in a common plane.
  • the supporting-structure-side bearings each have a kinematic bearing center about which the respective bearing permits a pivoting movement about three spatial axes.
  • the support structure side bearing are preferably designed as ball-joint-like bearings.
  • the kinematic bearing centers of the bearing structure side bearings are located in a common plane.
  • the kinematic pivot center of the central bearing is located in the plane of the kinematic bearing centers of the sensor-side bearing or in the plane of the kinematic bearing centers of the bearing structure side bearing.
  • the sensor has a transmitting and / or receiving antenna.
  • the sensor is designed as a radar sensor and has, for example, a radar antenna.
  • the invention is not limited to a radar sensor, but the holder according to the invention is also suitable for other sensors, such as imaging sensors or other types of antennas or, for example, for a depth sounder.
  • the invention is not limited to that the sensor has or represents a receiver or an antenna thereof, but it is an alignable functional element, which can be formed according to the definition of the term "sensor" in this application by a transmitting device or an antenna thereof or this may comprise or may represent a combination of transmitting and receiving device or related antennas.
  • a transmitting device for example, an energy radiator (for example, a laser emitter) to understand a beam weapon.
  • Fig. 1 shows a first embodiment of the holder according to the invention
  • FIG. 1A shows an enlarged detail of FIG. 1, illustrating the middle bearing; FIG. 2A to 2D, the holder according to the invention according to claim 1 in four different pivot positions.
  • Fig. 3 shows a second embodiment of the present invention
  • FIG. 4 different conditions of use for the holder according to the second embodiment shown in Fig. 3.
  • a sensor-side support plate 10 is for this purpose connected to a sensor rear wall 20 of the sensor 2.
  • the sensor-side support plate 10 of the holder 1 has two spaced-apart sensor-side bearings 22, 24, on which actuator units 4, 5 are articulated.
  • the sensor-side bearings 22, 24 are designed ball-joint-like and thus allow a relative pivoting of the respective actuator unit 4, 5 with respect to the sensor-side support plate 10 in all directions about a bearing center.
  • the sensor-side support plate 10 further comprises a central or central bearing 7, which supports the sensor-side support plate 10 on a bearing block 12 about two mutually perpendicular spatial axes X, Y.
  • the bearing block 12 is provided on a support structure-side support plate 14, which in turn is attached to the support structure 3.
  • the support structure-side support plate 14 has two spaced-apart support structure side bearings 32, 34, by means of which the actuator units 4 and 5 are pivotally mounted on the support structure side support plate 14 pivotally about a respective bearing center point.
  • the actuator units 4, 5 each have an outer housing body 40, 50 and an inner housing body 42, 52.
  • Housing body 42, 52 is received in the associated outer housing body 40, 50 longitudinally displaceable.
  • the free end of the inner housing body 42, 52 is articulated by means of the associated sensor-side bearing 22, 24 on the sensor-side support plate 10, as already described.
  • the respective free end of the outer housing body 40, 50 is mounted by means of the associated support structure side bearing 32, 34 in the manner already described on the support structure side support plate 14 articulated.
  • the actuator units 4, 5 each have a - not shown - actuator, which causes an axial Relatiwerschiebung between the respective outer housing body 40, 50 and the respective inner housing body 42, 52.
  • the actuator units 4, 5 may have a known rack drive, worm drive or another translation drive. For particularly fast axial relative movements, it is advantageous to provide a linear drive.
  • the bearing center points of the sensor-side bearings 22, 24 and the bearing center of the central bearing 7 lie in a common plane.
  • at least one of the sensor-side bearings 22, 24 must be from the first axis X and at least the second of the bearings 24, 22 must be from the axis Y be laterally criticized.
  • the central bearing 7 is formed as a universal joint, whereby a gimbal bearing is formed, which pivot about a kinematic pivot point, the pivot point being defined by the intersection of the X and Y axes.
  • the pivoting about the pivot point is effected by a length adjustment of at least one of the actuator units 4, 5, whereby the distance between each associated with an actuator unit associated sensor side bearing 22, 24 and this actuator unit associated support structure side bearing 32, 34 is shortened or extended.
  • FIG. 2A shows a position in which the sensor 2 is pivoted upward.
  • Fig. 2B shows a position in which the sensor 2 (in the direction Z) is pivoted to the bottom right
  • Fig. 2C a position in which the sensor 2 is pivoted to the bottom left.
  • Fig. 2D shows a position in which the sensor 2 is pivoted directly downwards.
  • FIG. An alternative embodiment of the present invention is shown in FIG. Again, the attitude 1 'on a sensor-side support plate 10 which is connected to the sensor 2 and which is connected via a central bearing 8 with a bearing block 12 which is mounted on a support structure-side support plate 14, by means of which the entire support on the Support structure 3 is attached.
  • the middle bearing 8 is embodied as a ball joint in the embodiment of the invention shown in FIG. 3, so that this middle bearing 8 surrounds the sensor 2 about the kinematic pivot center of the middle bearing about three spatial axes X, Y, Z pivotally mounted on the support structure 3.
  • the kinematic pivot center of this ball joint-like central bearing 8 is the intersection of the three spatial axes X, Y, Z.
  • the holder 1 1 comprises three actuator units 4, 5, 6, which are constructed in the same manner as described in connection with FIG.
  • sensor-side bearings 22, 24, 26 and support structure side Bearings 32, 34, 36 are mounted on the sensor-side support plate 10 and on the support structure-side support plate 14 ball joint-like manner.
  • the three sensor-side bearings 22, 24, 26 form on the sensor-side support plate 10, the corners of a triangle, wherein the ball joint-like central bearing 8 is located in the interior of the triangle.
  • Both the bearing centers of the sensor-side bearings 22, 24, 26, and the pivot point of the central bearing 8 lie in a common plane.
  • the attachment of the central bearing 8 in the center of the sensor 2 causes when rotating the sensor 2 mass forces via a central point of rotation, namely the bearing center of the central bearing 8, are introduced and so imbalances can be reduced or even prevented.
  • the respective other end of the actuator unit 4, 5, 6 is mounted by means of a respective ball-joint-like support structure side bearing 32, 34, 36 on the support structure side support plate 14 in the same manner as has been described in connection with the embodiment of FIG.
  • the support structure side bearings 32, 34, 36 form the corners of a triangle, wherein the longitudinal axis Z passes through this triangle.
  • the support structure side bearings 32, 34, 36 are in a common plane, so this is not necessarily functional.
  • the advantage of the holder 1 shown in Fig. 3 is that the sensor 2 can be pivoted with this holder not only about the two spatial axes X, Y, as is the case in the embodiment of FIG. 1, but that the sensor by means of the holder 1 1 is also pivotable about the longitudinal axis Z around.
  • a support structure 3 which is part of an aircraft, then corresponds to the longitudinal axis Z of the roll axis (longitudinal axis) of the aircraft or at least parallel to this.
  • the vertical axis X is parallel to the yaw axis (vertical axis) of the aircraft and the transverse axis Y is parallel to the pitch axis (transverse axis) of the aircraft.
  • pitch movements of the aircraft can be compensated for by pivoting the sensor 2 about the axis Y by means of the holder 1 '.
  • Yaw movements of the aircraft can be compensated by the sensor 2 is pivoted about the vertical axis X, and rolling movements of the aircraft can be compensated by a pivoting of the sensor 2 about the longitudinal axis Z.
  • the sensor orthogonal axis M of the sensor 2 is set to a target T and is tracked by compensating for the pitching and yawing movements of the aircraft, but it is also possible that rolling movements of the aircraft are compensated by a rotation of the sensor 2 about the axis Z, so that the sensor 2 with respect to the target T is not rotated about the sensor axis M.
  • This is advantageous, for example, in the case of sensors which have a predetermined polarization plane.
  • the polarization plane of the sensor 2 with respect to the target T remains stable even when the aircraft performs a rolling motion about the longitudinal axis Z.
  • FIG. 4 There are shown different attitudes of an aircraft 9.
  • the longitudinal axis Z of the aircraft is aligned directly with the target T.
  • a compensation of pitch or yaw movements of the aircraft is not required in this case.
  • the aircraft can roll about its longitudinal axis Z, as symbolized by the arrow a.
  • this rolling movement can be compensated by pivoting the sensor 2 about the aircraft longitudinal axis Z.
  • the illustration B shows an aircraft 9 whose longitudinal axis Z no longer points to the target T, which has meanwhile also moved away from the original position, as shown by the dashed line.
  • the aircraft 9 also has in this position with respect to the direction z on the target a yaw motion, performed by the angle ß.
  • the yaw angle ⁇ can be compensated for by pivoting the sensor 2 by means of the holder Y about the axis X.
  • the aircraft 9 can also perform a rolling movement in the position shown at B, as shown by the arrow b; This rolling movement is compensated by the holder 1 1 by rotation of the sensor 2 about the axis Z.
  • the illustration C of the aircraft 9 in FIG. 4 shows a further change in the location of the destination T, assuming that the aircraft does not change its flight direction and attitude shown in FIG.
  • the sensor 2 of the aircraft 9 had targeted the target T in the direction represented by the arrow Ci.
  • the target T has thereupon changed its position along the dashed arrow line, whereby by controlled pivoting of the sensor 2 about the axes X and Y a tracking of the bearing directed to the target T bearing takes place, as shown by the arrow C 2 .
  • the holder of the invention thus allows both a compensation of the position of the target, to which the sensor is aligned, even if the target moves.
  • the holder according to the invention also allows a compensation of the position and the position of the sensor, if it is attached to a moving carrier (aircraft, ship, land vehicle or spacecraft).
  • a moving carrier aircraft, ship, land vehicle or spacecraft.

Abstract

The invention relates to a holder for a movable sensor (1), which can be directed towards a sensor target (T), on a supporting structure (2), which holder contains at least two sensor-side bearings (22, 24; 26) at a distance to each other, at least two supporting-structure-side bearings (32, 34; 36) at a distance to each other, at least two length-adjustable actuating drive units (4, 5; 6), wherein each of the actuating drive units (4, 5; 6) is provided between an associated sensor-side bearing (22, 24; 26) and an associated supporting-structure-side bearing (32, 34; 36), and a center bearing (7; 8), which is designed in such a way that the center bearing supports the sensor (1) on the supporting structure (2) so that the sensor can be swiveled about a kinematic swivel center point about at least two spatial axes (X, Y; Z).

Description

Halterung für einen bewegbaren Sensor Holder for a movable sensor
TECHNISCHES GEBIETTECHNICAL AREA
Die vorliegende Erfindung betrifft eine Halterung für einen bewegbaren Sensor, der auf ein Ziel ausrichtbar ist, an einer Tragstruktur. Derartige Sensoren können beispielsweise Radarsensoren, Kamerasensoren oder allgemein Sender und/oder Empfänger von elektromagnetischer Strahlung sein.The present invention relates to a holder for a movable sensor, which can be aligned with a target, on a support structure. Such sensors may be, for example, radar sensors, camera sensors or in general transmitters and / or receivers of electromagnetic radiation.
Die Bezeichnung "Sensor" für ein ausrichtbares Funktionselement im Kontext der vorliegenden Anmeldung ist somit nicht auf Empfangseinrichtungen begrenzt, sondern kann ebenso Sendeeinrichtungen oder kombinierte Sende-/ Empfangseinrichtungen für elektromagnetische Strahlung umfassen.The term "sensor" for an alignable functional element in the context of the present application is therefore not limited to receiving devices, but may also include transmitting devices or combined transmit / receive devices for electromagnetic radiation.
Um derartige Sensoren auf ein Ziel ausrichten zu können, ist eine bewegbare Halterung für den Sensor erforderlich. Insbesondere, wenn die Tragstruktur selbst ebenfalls bewegbar ist, beispielsweise Bestandteil eines Luftfahrzeugs, eines Raumfahrzeugs, eines Wasserfahrzeugs oder eines Landfahrzeugs ist, muss diese Halterung in der Lage sein, den Sensor so nachführen zu können, dass dieser auf das Ziel ausgerichtet bleibt. Das trifft auch zu, wenn sich das Ziel bewegt.In order to align such sensors to a target, a movable support for the sensor is required. In particular, if the support structure itself is also movable, for example, part of an aircraft, a spacecraft, a watercraft or a land vehicle, this holder must be able to track the sensor so that it remains aligned with the target. This is also true when the target moves.
DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION
Aufgabe der vorliegenden Erfindung ist es, eine Halterung für einen bewegbaren Sensor, der auf ein Ziel ausrichtbar ist, an einer Tragstruktur anzugeben, wobei die Halterung einen kompakten Aufbau aufweist, eine schnelle Ausrichtung des Sensors auf das Ziel ermöglicht und weiterhin eine schnelle Nachführung des Sensors bei bewegtem Ziel und/oder bewegter Tragstruktur gestattet. Diese Aufgabe wird durch die im Patentanspruch 1 angegebene Halterung gelöst.Object of the present invention is to provide a holder for a movable sensor which can be aligned with a target on a supporting structure, wherein the holder has a compact structure, allows rapid alignment of the sensor to the target and further rapid tracking of the sensor allowed with moving target and / or moving support structure. This object is achieved by the holder specified in claim 1.
Dazu ist die Halterung versehen mit zumindest zwei voneinander beabstandeten sensorseitigen Lagern, zumindest zwei voneinander beabstandeten tragstrukturseitigen Lagern, zumindest zwei längenveränderbarenFor this purpose, the holder is provided with at least two spaced-apart sensor-side bearings, at least two spaced-apart support structure side bearings, at least two variable in length
Stellantriebseinheiten, wobei jede der Stellantriebseinheiten zwischen einem zugeordneten sensorseitigen Lager und einem zugeordneten tragstrukturseitigen Lager vorgesehen ist, und einem mittleren Lager, das derart ausgebildet ist, dass es den Sensor um einen kinematischen Schwenkmittelpunkt und zumindest zwei Raumachsen schwenkbar an der Tragstruktur lagert.Actuator units, each of the actuator units is provided between an associated sensor-side bearing and an associated support structure side bearing, and a central bearing which is designed such that it supports the sensor about a kinematic pivot center and at least two spatial axes pivotally mounted on the support structure.
VORTEILEADVANTAGES
Eine derartige Sensorhalterung besitzt einen sehr leichten und kompakten Aufbau. Ihre Kinematik ermöglicht eine optimale Nachführung des Sensors (z. B. einer Radarantenne) in einem räumlich sehr eingeschränkten Raum, beispielsweise einer Flugzeugnase. Die Schwenkbarkeit um zumindest zwei Raumachsen, die vorzugsweise rechtwinklig zueinander stehen, gestattet ein Schwenken des Sensors in jede Richtung innerhalb des durch die entsprechende Konstruktion vorgegebenen Schwenkbereichs um die jeweilige Raumachse. Entsprechend kann auch die Nachführung des Sensors kontinuierlich in jede dieser Richtungen erfolgen. Das mittlere Lager, das beispielsweise als Kreuzgelenk ausgebildet sein kann, gewährleistet die Schwenkbarkeit des Sensors und die Stellantriebseinheiten, die beispielsweise durch in ihrer Länge veränderbare Lenker oder Streben gebildet sein können und einen Servoantrieb aufweisen können, ermöglichen die Schwenkbewegung um die beiden Raumachsen.Such a sensor holder has a very light and compact design. Its kinematics enable optimum tracking of the sensor (eg a radar antenna) in a space that is very limited in space, for example an aircraft nose. The pivoting about at least two spatial axes, which are preferably perpendicular to each other, allows pivoting of the sensor in each direction within the predetermined by the corresponding construction pivoting range about the respective axis of space. Accordingly, the tracking of the sensor can be carried out continuously in each of these directions. The middle bearing, which may be formed, for example, as a universal joint, ensures the pivoting of the sensor and the actuator units, which may be formed for example by variable in length handlebar or struts and may have a servo drive, allow the pivotal movement about the two spatial axes.
Vorzugsweise ist eine Steuerungseinrichtung zur Steuerung der jeweiligen Servoantriebe der Stellantriebseinheiten vorgesehen, die die Längenveränderung der jeweiligen Stellantriebseinheit kontrolliert und somit die Schwenkbewegung des Sensors steuert. Eine derartige Kinematik ermöglicht bei leichter und kompakter Bauweise eine kontinuierliche Sensornachführung in allen Richtungen bei optimaler Krafteinleitung und niedrigen zu drehenden Massen. Selbst bei sich stetig verändernden Koordinaten des Ziels und einer sich bewegenden Tragstruktur, beispielsweise bei einem fliegenden Flugzeug oder einem fahrenden Schiff bzw. Landfahrzeug, gestattet es die Kinematik der erfindungsgemäßen Halterung, den Sensor, beispielsweise eine Radarantenne, kontinuierlich innerhalb des konstruktiv vorgegebenen Schwenkbereichs nachzuführen.Preferably, a control device for controlling the respective servo drives of the actuator units is provided, which controls the change in length of the respective actuator unit and thus the pivoting movement of the sensor controls. Such a kinematics allows for a lightweight and compact design, a continuous sensor tracking in all directions with optimum force and low to rotating masses. Even with constantly changing coordinates of the target and a moving support structure, such as a flying plane or a moving ship or land vehicle, allows the kinematics of the holder according to the invention, the sensor, for example, a radar antenna continuously track within the structurally predetermined pivoting range.
Weitere bevorzugte und vorteilhafte Ausgestaltungsmerkmale der erfindungsgemäßen Halterung sind Gegenstand der Unteransprüche.Further preferred and advantageous design features of the holder according to the invention are the subject of the dependent claims.
Eine vorteilhafte Weiterbildung der erfindungsgemäßen Halterung zeichnet sich dadurch aus, dass zumindest drei voneinander beabstandete sensorseitige Lager vorgesehen sind, dass zumindest drei voneinander beabstandete tragstrukturseitige Lager vorgesehen sind, dass zumindest drei längenveränderbare Stellantriebseinheiten vorgesehen sind, wobei jede der Stellantriebseinheiten zwischen einem zugeordneten sensorseitigen Lager und einem zugeordneten tragstrukturseitigen Lager vorgesehen ist und dass das mittlere Lager derart ausgebildet ist, dass es den Sensor um den kinematischen Schwenkmittelpunkt um drei Raumachsen schwenkbar an der Tragstruktur lagert.An advantageous development of the holder according to the invention is characterized in that at least three spaced-apart sensor side bearings are provided that at least three spaced support structure side bearings are provided that at least three variable length actuator units are provided, each of the actuator units between an associated sensor-side bearing and a associated bearing structure side bearing is provided and that the middle bearing is designed such that it supports the sensor about the kinematic pivot center about three spatial axes pivotally mounted on the support structure.
Diese vorteilhafte Weiterbildung der Halterung gestattet es zusätzlich, den Sensor gegenüber der Tragstruktur um die dritte Raumachse zu schwenken. Damit ist es möglich, bei einem Sensor, der als Radarantenne ausgebildet ist oder eineThis advantageous development of the holder additionally makes it possible to pivot the sensor relative to the support structure about the third spatial axis. This makes it possible for a sensor that is designed as a radar antenna or a
Radarantenne aufweist, den Sensor nicht nur nachzuführen, sondern außerdem die die Polarisationsebene der Antenne stets in Bezug auf das Ziel konstant ausgerichtet zu halten. Dies trifft natürlich auch für andere Arten von Sensoren zu, die vorzugsweise in einer konstanten Ausrichtung auf das Ziel gehalten werden sollen, was beispielsweise auch für bildgebende Sensoren im Wellenlängenbereich des sichtbaren Lichts oder in einem anderen Wellenlängenbereich zutrifft.Radar antenna has to not only track the sensor, but also keep the polarization plane of the antenna always aligned with respect to the target constant. Of course, this also applies to other types of sensors, which are preferably to be held in a constant alignment with the target, which also applies, for example, to imaging sensors in the field Wavelength range of visible light or in another wavelength range applies.
Wird eine derartige Halterung beispielsweise in einem Flugzeug eingesetzt, so können gemäß dieser vorteilhaften Weiterbildung sowohl Bewegungen desIf such a holder is used, for example, in an aircraft, then according to this advantageous development, both movements of the
Flugzeugs um die Nickachse (Querachse) und um die Gierachse (Hochachse), als auch Bewegungen des Flugzeugs um dessen Rollachse (Längsachse) kompensiert werden. In entsprechender Weise können auch Bewegungen des Sensorziels kompensiert werden.Aircraft around the pitch axis (transverse axis) and the yaw axis (vertical axis), as well as movements of the aircraft to be compensated for its roll axis (longitudinal axis). Similarly, movements of the sensor target can be compensated.
Vorzugsweise weisen die sensorseitigen Lager jeweils einen kinematischen Mittelpunkt auf, um den das jeweilige Lager eine Schwenkbewegung um drei Raumachsen zulässt. Die sensorseitigen Lager sind dazu vorzugsweise als kugelgelenkartige Lager ausgebildet.Preferably, the sensor-side bearings each have a kinematic center, by which the respective bearing permits a pivoting movement about three spatial axes. The sensor-side bearings are preferably designed as ball-joint-like bearings.
In einer weiteren bevorzugten Ausführungsform sind die kinematischen Lagermittelpunkte der sensorseitigen Lager in einer gemeinsamen Ebene gelegen.In a further preferred embodiment, the kinematic bearing centers of the sensor-side bearings are located in a common plane.
Vorteilhaft ist auch, wenn die tragstrukturseitigen Lager jeweils einen kinematischen Lagermittelpunkt aufweisen, um den das jeweilige Lager eine Schwenkbewegung um drei Raumachsen zulässt. Auch hier sind die tragstrukturseitigen Lager bevorzugt als kugelgelenkartige Lager ausgebildet.It is also advantageous if the supporting-structure-side bearings each have a kinematic bearing center about which the respective bearing permits a pivoting movement about three spatial axes. Again, the support structure side bearing are preferably designed as ball-joint-like bearings.
Vorzugsweise sind die kinematischen Lagermittelpunkte der tragstrukturseitigen Lager in einer gemeinsamen Ebene gelegen.Preferably, the kinematic bearing centers of the bearing structure side bearings are located in a common plane.
Weiter vorteilhaft ist es, wenn der kinematische Schwenkmittelpunkt des mittleren Lagers in der Ebene der kinematischen Lagermittelpunkte der sensorseitigen Lager oder in der Ebene der kinematischen Lagermittelpunkte der tragstrukturseitigen Lager gelegen ist. Vorteilhafterweise weist der Sensor eine Sende- und/oder Empfangsantenne auf. In einer besonders bevorzugten Ausführungsform der Erfindung ist der Sensor als Radarsensor ausgebildet und weist beispielsweise eine Radarantenne auf. Die Erfindung ist jedoch nicht auf einen Radarsensor beschränkt, sondern die erfindungsgemäße Halterung ist auch für andere Sensoren, beispielsweise bildgebende Sensoren oder andere Arten von Antennen oder beispielsweise auch für ein Echolot geeignet. Dabei ist die Erfindung nicht darauf beschränkt, dass der Sensor einen Empfänger oder eine Antenne davon aufweist oder darstellt, sondern er ist ein ausrichtbares Funktionselement, das gemäß der Definition des Begriffs "Sensor" in dieser Anmeldung von einer Sendeeinrichtung oder einer Antenne davon gebildet sein kann oder diese aufweisen kann oder eine Kombination aus Sende- und Empfangseinrichtung oder diesbezüglichen Antennen darstellen kann. Als Sendeeinrichtung in diesem Sinn ist zum Beispiel auch ein Energiestrahler (zum Beispiel ein Laserstrahler) einer Strahlenwaffe zu verstehen.It is also advantageous if the kinematic pivot center of the central bearing is located in the plane of the kinematic bearing centers of the sensor-side bearing or in the plane of the kinematic bearing centers of the bearing structure side bearing. Advantageously, the sensor has a transmitting and / or receiving antenna. In a particularly preferred embodiment of the invention, the sensor is designed as a radar sensor and has, for example, a radar antenna. However, the invention is not limited to a radar sensor, but the holder according to the invention is also suitable for other sensors, such as imaging sensors or other types of antennas or, for example, for a depth sounder. In this case, the invention is not limited to that the sensor has or represents a receiver or an antenna thereof, but it is an alignable functional element, which can be formed according to the definition of the term "sensor" in this application by a transmitting device or an antenna thereof or this may comprise or may represent a combination of transmitting and receiving device or related antennas. As a transmitting device in this sense, for example, an energy radiator (for example, a laser emitter) to understand a beam weapon.
Bevorzugte Ausführungsbeispiele der Erfindung mit zusätzlichen Ausgestaltungsdetails und weiteren Vorteilen sind nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben und erläutert.Preferred embodiments of the invention with additional design details and other advantages are described and explained in more detail below with reference to the accompanying drawings.
KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS
Es zeigt:It shows:
Fig. 1 eine erste Ausführungsform der erfindungsgemäßen Halterung;Fig. 1 shows a first embodiment of the holder according to the invention;
Fig. 1 A einen das mittlere Lager darstellenden vergrößerten Ausschnitt aus Fig. 1 ; Fig. 2A bis 2D die erfindungsgemäße Halterung gemäß Anspruch 1 in vier unterschiedlichen Schwenkpositionen;FIG. 1A shows an enlarged detail of FIG. 1, illustrating the middle bearing; FIG. 2A to 2D, the holder according to the invention according to claim 1 in four different pivot positions.
Fig. 3 eine zweite Ausführungsform der vorliegenden Erfindung;Fig. 3 shows a second embodiment of the present invention;
Fig. 4 unterschiedliche Einsatzbedingungen für die Halterung gemäß der in Fig. 3 dargestellten zweiten Ausführungsform.Fig. 4 different conditions of use for the holder according to the second embodiment shown in Fig. 3.
DARSTELLUNG VON BEVORZUGTEN AUSFÜHRUNGSBEISPIELENPRESENTATION OF PREFERRED EMBODIMENTS
Fig. 1 zeigt eine erste Ausführungsform der erfindungsgemäßen Halterung 1 , die einen Sensor 2 an einer Tragstruktur 3 haltert. Eine sensorseitige Stützplatte 10 ist dazu mit einer Sensorrückwand 20 des Sensors 2 verbunden.1 shows a first embodiment of the holder 1 according to the invention, which supports a sensor 2 on a support structure 3. A sensor-side support plate 10 is for this purpose connected to a sensor rear wall 20 of the sensor 2.
Die sensorseitige Stützplatte 10 der Halterung 1 weist zwei voneinander beabstandete sensorseitige Lager 22, 24 auf, an denen Stellantriebseinheiten 4, 5 gelenkig angebracht sind. Die sensorseitigen Lager 22, 24 sind kugelgelenkartig ausgebildet und ermöglichen so eine relative Verschwenkung der jeweiligen Stellantriebseinheit 4, 5 bezüglich der sensorseitigen Stützplatte 10 in alle Richtungen um einen Lagermittelpunkt.The sensor-side support plate 10 of the holder 1 has two spaced-apart sensor-side bearings 22, 24, on which actuator units 4, 5 are articulated. The sensor-side bearings 22, 24 are designed ball-joint-like and thus allow a relative pivoting of the respective actuator unit 4, 5 with respect to the sensor-side support plate 10 in all directions about a bearing center.
Die sensorseitige Stützplatte 10 weist weiterhin ein mittleres oder zentrales Lager 7 auf, welches die sensorseitige Stützplatte 10 an einem Lagerbock 12 um zwei rechtwinklig zueinander verlaufende Raumachsen X, Y lagert.The sensor-side support plate 10 further comprises a central or central bearing 7, which supports the sensor-side support plate 10 on a bearing block 12 about two mutually perpendicular spatial axes X, Y.
Der Lagerbock 12 ist an einer tragstrukturseitigen Stützplatte 14 vorgesehen, die ihrerseits an der Tragstruktur 3 angebracht ist.The bearing block 12 is provided on a support structure-side support plate 14, which in turn is attached to the support structure 3.
Die tragstrukturseitige Stützplatte 14 weist zwei voneinander beabstandete tragstrukturseitige Lager 32, 34 auf, mittels derer die Stellantriebseinheiten 4 bzw. 5 an der tragstrukturseitigen Stützplatte 14 kugelgelenkartig um einen jeweiligen Lagermittelpunkt schwenkbar gelagert sind.The support structure-side support plate 14 has two spaced-apart support structure side bearings 32, 34, by means of which the actuator units 4 and 5 are pivotally mounted on the support structure side support plate 14 pivotally about a respective bearing center point.
Die Stellantriebseinheiten 4, 5 weisen jeweils einen äußeren Gehäusekörper 40, 50 sowie einen inneren Gehäusekörper 42, 52 auf. Der jeweils innereThe actuator units 4, 5 each have an outer housing body 40, 50 and an inner housing body 42, 52. The inner one
Gehäusekörper 42, 52 ist im zugeordneten äußeren Gehäusekörper 40, 50 längsverschiebbar aufgenommen. Das freie Ende des inneren Gehäusekörpers 42, 52 ist mittels des zugeordneten sensorseitigen Lagers 22, 24 an der sensorseitigen Stützplatte 10, wie bereits beschrieben, gelenkig gelagert. Das jeweils freie Ende des äußeren Gehäusekörpers 40, 50 ist mittels des zugeordneten tragstrukturseitigen Lagers 32, 34 auf bereits beschriebene Weise an der tragstrukturseitigen Stützplatte 14 gelenkig gelagert.Housing body 42, 52 is received in the associated outer housing body 40, 50 longitudinally displaceable. The free end of the inner housing body 42, 52 is articulated by means of the associated sensor-side bearing 22, 24 on the sensor-side support plate 10, as already described. The respective free end of the outer housing body 40, 50 is mounted by means of the associated support structure side bearing 32, 34 in the manner already described on the support structure side support plate 14 articulated.
Die Stellantriebseinheiten 4, 5 weisen jeweils einen — nicht gezeigten — Stellantrieb auf, der eine axiale Relatiwerschiebung zwischen dem jeweiligen äußeren Gehäusekörper 40, 50 und dem jeweiligen inneren Gehäusekörper 42, 52 bewirkt. Beispielsweise können die Stellantriebseinheiten 4, 5 einen bekannten Zahnstangenantrieb, Schneckenwellenantrieb oder einen anderen Translationsantrieb aufweisen. Für besonders schnelle axiale Relativbewegungen ist es vorteilhaft, einen Linearantrieb vorzusehen.The actuator units 4, 5 each have a - not shown - actuator, which causes an axial Relatiwerschiebung between the respective outer housing body 40, 50 and the respective inner housing body 42, 52. For example, the actuator units 4, 5 may have a known rack drive, worm drive or another translation drive. For particularly fast axial relative movements, it is advantageous to provide a linear drive.
Im gezeigten Beispiel der Fig. 1 ist erkennbar, dass die Lagermittelpunkte der sensorseitigen Lager 22, 24 und der Lagermittelpunkt des mittleren Lagers 7 in einer gemeinsamen Ebene liegen. Um zu ermöglichen, dass mittels der Stellantriebseinheiten 4, 5 eine Verschwenkung des Sensors 2 gegenüber der Tragstruktur 3 durchgeführt werden kann, muss zumindest eines der sensorseitigen Lager 22, 24 von der ersten Achse X und zumindest das zweite der Lager 24, 22 von der Achse Y seitlich beanstandet sein.In the example shown in FIG. 1, it can be seen that the bearing center points of the sensor-side bearings 22, 24 and the bearing center of the central bearing 7 lie in a common plane. In order to make it possible to pivot the sensor 2 relative to the support structure 3 by means of the actuator units 4, 5, at least one of the sensor-side bearings 22, 24 must be from the first axis X and at least the second of the bearings 24, 22 must be from the axis Y be laterally criticized.
Wie in Fig. 1A dargestellt ist, ist das mittlere Lager 7 als Kreuzgelenk ausgebildet, wodurch eine kardanische Lagerung entsteht, die ein Verschwenken um einen kinematischen Schwenkpunkt herum ermöglicht, wobei der Schwenkpunkt durch den Schnittpunkt der Achsen X und Y definiert ist. Die Verschwenkung um den Schwenkpunkt erfolgt durch eine Längenverstellung zumindest einer der Stellantriebseinheiten 4, 5, wodurch der Abstand zwischen dem jeweils einer Stellantriebseinheit zugeordneten sensorseitigen Lager 22, 24 und dem dieser Stellantriebseinheit zugeordneten tragstrukturseitigen Lager 32, 34 verkürzt oder verlängert wird.As shown in Fig. 1A, the central bearing 7 is formed as a universal joint, whereby a gimbal bearing is formed, which pivot about a kinematic pivot point, the pivot point being defined by the intersection of the X and Y axes. The pivoting about the pivot point is effected by a length adjustment of at least one of the actuator units 4, 5, whereby the distance between each associated with an actuator unit associated sensor side bearing 22, 24 and this actuator unit associated support structure side bearing 32, 34 is shortened or extended.
Diese Verschwenkbarkeit des Sensors 2 relativ zur Tragstruktur 3 um den Schwenkpunkt des mittleren Lagers 7 in beliebige Richtungen zeigen die Fig. 2A bis 2D. Darin zeigt Fig. 2A eine Position bei der der Sensor 2 nach oben geschwenkt ist. Fig. 2B zeigt eine Stellung, in der der Sensor 2 (in Blickrichtung Z) nach unten rechts geschwenkt ist, und Fig. 2C eine Stellung, in der der Sensor 2 nach unten links geschwenkt ist. Fig. 2D zeigt eine Stellung, in der der Sensor 2 direkt nach unten geschwenkt ist.This pivotability of the sensor 2 relative to the support structure 3 about the pivot point of the central bearing 7 in any direction, Figs. 2A to 2D. Therein, FIG. 2A shows a position in which the sensor 2 is pivoted upward. Fig. 2B shows a position in which the sensor 2 (in the direction Z) is pivoted to the bottom right, and Fig. 2C, a position in which the sensor 2 is pivoted to the bottom left. Fig. 2D shows a position in which the sensor 2 is pivoted directly downwards.
Eine alternative Ausführungsform der vorliegenden Erfindung ist in Fig. 3 dargestellt. Auch hier weist die Haltung 1' eine sensorseitige Stützplatte 10 auf, die mit dem Sensor 2 verbunden ist und die über ein mittleres Lager 8 mit einem Lagerbock 12 verbunden ist, der auf einer tragstrukturseitigen Stützplatte 14 angebracht ist, mittels welcher die gesamte Halterung an der Tragstruktur 3 angebracht ist.An alternative embodiment of the present invention is shown in FIG. Again, the attitude 1 'on a sensor-side support plate 10 which is connected to the sensor 2 and which is connected via a central bearing 8 with a bearing block 12 which is mounted on a support structure-side support plate 14, by means of which the entire support on the Support structure 3 is attached.
Das mittlere Lager 8 ist jedoch im Gegensatz zur Ausführung der Fig. 1 bei der in Fig. 3 gezeigten Ausführungsform der Erfindung als Kugelgelenk ausgebildet, sodass dieses mittlere Lager 8 den Sensor 2 um den kinematischen Schwenkmittelpunkt des mittleren Lagers um drei Raumachsen X, Y, Z schwenkbar an der Tragstruktur 3 lagert. Der kinematische Schwenkmittelpunkt dieses kugelgelenkartigen mittleren Lagers 8 ist der Schnittpunkt der drei Raumachsen X, Y, Z. Die Halterung 11 umfasst drei Stellantriebseinheiten 4, 5, 6, die in der gleichen Weise aufgebaut sind wie die in Verbindung mit der Fig. 1 beschriebenen Stellantriebseinheiten 4, 5 und die auf die gleiche Weise mittels sensorseitiger Lager 22, 24, 26 und tragstrukturseitiger Lager 32, 34, 36 an der sensorseitigen Stützplatte 10 bzw. an der tragstrukturseitigen Stützplatte 14 kugelgelenkartig gelagert sind. Die drei sensorseitigen Lager 22, 24, 26 bilden auf der sensorseitigen Stützplatte 10 die Ecken eines Dreiecks, wobei das kugelgelenkartige mittlere Lager 8 im Inneren des Dreiecks gelegen ist. Sowohl die Lagermittelpunkte der sensorseitigen Lager 22, 24, 26, als auch der Schwenkpunkt des mittleren Lagers 8 liegen in einer gemeinsamen Ebene. Die Anbringung des mittleren Lagers 8 in der Mitte des Sensors 2 bewirkt, dass beim Rotieren des Sensors 2 Massenkräfte über einen zentralen Rotationspunkt, nämlich den Lagermittelpunkt des mittleren Lagers 8, eingeleitet werden und so Unwuchten reduziert oder sogar verhindert werden.However, in contrast to the embodiment of FIG. 1, the middle bearing 8 is embodied as a ball joint in the embodiment of the invention shown in FIG. 3, so that this middle bearing 8 surrounds the sensor 2 about the kinematic pivot center of the middle bearing about three spatial axes X, Y, Z pivotally mounted on the support structure 3. The kinematic pivot center of this ball joint-like central bearing 8 is the intersection of the three spatial axes X, Y, Z. The holder 1 1 comprises three actuator units 4, 5, 6, which are constructed in the same manner as described in connection with FIG. 1 actuator units 4, 5 and in the same way by means of sensor-side bearings 22, 24, 26 and support structure side Bearings 32, 34, 36 are mounted on the sensor-side support plate 10 and on the support structure-side support plate 14 ball joint-like manner. The three sensor-side bearings 22, 24, 26 form on the sensor-side support plate 10, the corners of a triangle, wherein the ball joint-like central bearing 8 is located in the interior of the triangle. Both the bearing centers of the sensor-side bearings 22, 24, 26, and the pivot point of the central bearing 8 lie in a common plane. The attachment of the central bearing 8 in the center of the sensor 2 causes when rotating the sensor 2 mass forces via a central point of rotation, namely the bearing center of the central bearing 8, are introduced and so imbalances can be reduced or even prevented.
Das jeweils andere Ende der Stellantriebseinheit 4, 5, 6 ist mittels jeweils eines kugelgelenkartig ausgebildeten tragstrukturseitigen Lagers 32, 34, 36 an der tragstrukturseitigen Stützplatte 14 auf die gleiche Weise gelagert, wie dies in Verbindung mit der Ausführungsform der Fig. 1 beschrieben worden ist. Auch die tragstrukturseitigen Lager 32, 34, 36 bilden die Ecken eines Dreiecks, wobei die Längsachse Z durch dieses Dreieck hindurch läuft. Auch wenn im gezeigten Beispiel die tragstrukturseitigen Lager 32, 34, 36 in einer gemeinsamen Ebene liegen, so ist dies nicht zwingend funktionsnotwendig.The respective other end of the actuator unit 4, 5, 6 is mounted by means of a respective ball-joint-like support structure side bearing 32, 34, 36 on the support structure side support plate 14 in the same manner as has been described in connection with the embodiment of FIG. Also, the support structure side bearings 32, 34, 36 form the corners of a triangle, wherein the longitudinal axis Z passes through this triangle. Although in the example shown, the support structure side bearings 32, 34, 36 are in a common plane, so this is not necessarily functional.
Der Vorteil der in Fig. 3 dargestellten Halterung 1 liegt darin, dass der Sensor 2 mit dieser Halterung nicht nur um die beiden Raumachsen X, Y verschwenkt werden kann, wie dies beim Ausführungsbeispiel der Fig. 1 der Fall ist, sondern dass der Sensor 2 mittels der Halterung 11 auch um die Längsachse Z herum schwenkbar ist. Betrachtet man als Beispiel die Anbringung des Sensors 2 mittels der Halterung 1' an einer Tragstruktur 3, die Bestandteil eines Luftfahrzeugs ist, dann entspricht die Längsachse Z der Rollachse (Längsachse) des Luftfahrzeugs oder verläuft zumindest parallel zu dieser. Die vertikale Achse X verläuft parallel zur Gierachse (Hochachse) des Luftfahrzeugs und die Querachse Y verläuft parallel zur Nickachse (Querachse) des Luftfahrzeugs. In diesem Fall können mittels der Halterung 1' Nickbewegungen des Luftfahrzeugs durch Verschwenkung des Sensors 2 um die Achse Y kompensiert werden.The advantage of the holder 1 shown in Fig. 3 is that the sensor 2 can be pivoted with this holder not only about the two spatial axes X, Y, as is the case in the embodiment of FIG. 1, but that the sensor by means of the holder 1 1 is also pivotable about the longitudinal axis Z around. Considering as an example the attachment of the sensor 2 by means of the holder 1 'on a support structure 3, which is part of an aircraft, then corresponds to the longitudinal axis Z of the roll axis (longitudinal axis) of the aircraft or at least parallel to this. The vertical axis X is parallel to the yaw axis (vertical axis) of the aircraft and the transverse axis Y is parallel to the pitch axis (transverse axis) of the aircraft. In this case, pitch movements of the aircraft can be compensated for by pivoting the sensor 2 about the axis Y by means of the holder 1 '.
Gierbewegungen des Luftfahrzeugs können kompensiert werden, indem der Sensor 2 um die vertikale Achse X geschwenkt wird, und Rollbewegungen des Luftfahrzeugs können durch eine Verschwenkung des Sensors 2 um die Längsachse Z kompensiert werden. Dadurch ist es nicht nur möglich, ein Nicken und Gieren des Luftfahrzeugs so zu kompensieren, dass die orthogonale Sensorachse M des Sensors 2 auf ein Ziel T eingestellt wird und durch Kompensation der Nick- und Gier-Bewegungen des Luftfahrzeugs nachgeführt wird, sondern es ist außerdem möglich, dass Rollbewegungen des Luftfahrzeugs durch ein Verdrehen des Sensors 2 um die Achse Z kompensiert werden, so dass sich der Sensor 2 gegenüber dem Ziel T nicht um die Sensorachse M verdreht. Dies ist beispielsweise vorteilhaft bei Sensoren, die eine vorgegebene Polarisationsebene aufweisen. Durch die in Fig. 3 dargestellte Halterung 1' bleibt die Polarisationsebene des Sensors 2 in Bezug auf das Ziel T auch dann raumstabil, wenn das Luftfahrzeug eine Rollbewegung um die Längsachse Z durchführt.Yaw movements of the aircraft can be compensated by the sensor 2 is pivoted about the vertical axis X, and rolling movements of the aircraft can be compensated by a pivoting of the sensor 2 about the longitudinal axis Z. Thereby, not only is it possible to compensate for pitching and yawing of the aircraft such that the sensor orthogonal axis M of the sensor 2 is set to a target T and is tracked by compensating for the pitching and yawing movements of the aircraft, but it is also possible that rolling movements of the aircraft are compensated by a rotation of the sensor 2 about the axis Z, so that the sensor 2 with respect to the target T is not rotated about the sensor axis M. This is advantageous, for example, in the case of sensors which have a predetermined polarization plane. By the holder 1 'shown in Fig. 3, the polarization plane of the sensor 2 with respect to the target T remains stable even when the aircraft performs a rolling motion about the longitudinal axis Z.
Diese Vorteile der Ausführungsform gemäß Fig. 3 werden anhand der Darstellung in Fig. 4 deutlich. Dort sind unterschiedliche Fluglagen eines Luftfahrzeugs 9 gezeigt. In der Darstellung A ist die Längsachse Z des Luftfahrzeugs unmittelbar auf das Ziel T ausgerichtet. Eine Kompensation von Nick- oder Gier-Bewegungen des Luftfahrzeugs ist in diesem Fall nicht erforderlich. Das Luftfahrzeug kann jedoch um seine Längsachse Z rollen, wie diese durch den Pfeil a symbolisiert ist. Diese Rollbewegung kann, wie bereits beschrieben worden ist, durch Verschwenkung des Sensors 2 um die Luftfahrzeuglängsachse Z kompensiert werden. Die Darstellung B zeigt ein Luftfahrzeug 9, dessen Längsachse Z nicht mehr auf das Ziel T, welches sich inzwischen ebenfalls von der ursprünglichen Position fortbewegt hat, wie die gestrichelte Linie zeigt, weist. Das Luftfahrzeug 9 hat zudem in dieser Position in Bezug zur Richtung z auf das Ziel eine Gierbewegung, um den Winkel ß durchgeführt. Der Gierwinkel ß kann jedoch durch entsprechende Verschwenkung des Sensors 2 mittels der Halterung Y um die Achse X kompensiert werden. Zudem kann das Luftfahrzeug 9 auch in der bei B gezeigten Position eine Rollbewegung durchführen, wie durch den Pfeil b gezeigt ist; auch diese Rollbewegung wird von der Halterung 11 durch Rotation des Sensors 2 um die Achse Z kompensiert.These advantages of the embodiment of FIG. 3 will be apparent from the illustration in Fig. 4. There are shown different attitudes of an aircraft 9. In illustration A, the longitudinal axis Z of the aircraft is aligned directly with the target T. A compensation of pitch or yaw movements of the aircraft is not required in this case. However, the aircraft can roll about its longitudinal axis Z, as symbolized by the arrow a. As has already been described, this rolling movement can be compensated by pivoting the sensor 2 about the aircraft longitudinal axis Z. The illustration B shows an aircraft 9 whose longitudinal axis Z no longer points to the target T, which has meanwhile also moved away from the original position, as shown by the dashed line. The aircraft 9 also has in this position with respect to the direction z on the target a yaw motion, performed by the angle ß. However, the yaw angle β can be compensated for by pivoting the sensor 2 by means of the holder Y about the axis X. In addition, the aircraft 9 can also perform a rolling movement in the position shown at B, as shown by the arrow b; This rolling movement is compensated by the holder 1 1 by rotation of the sensor 2 about the axis Z.
Schließlich zeigt die Darstellung C des Luftfahrzeugs 9 in Fig. 4 noch eine weitere Ortsveränderung des Ziels T, wobei davon ausgegangen wird, dass das Flugzeug seine in C gezeigt Flugrichtung und Fluglage nicht ändert. Zunächst hatte der Sensor 2 des Luftfahrzeugs 9 das Ziel T in der durch den Pfeil Ci dargestellten Richtung angepeilt. Das Ziel T hat daraufhin entlang der gestrichelten Pfeillinie seine Position verändert, wobei durch gesteuerte Verschwenkung des Sensors 2 um die Achsen X und Y eine Nachführung der auf das Ziel T gerichteten Peilung erfolgt, wie durch den Pfeil C2 dargestellt ist.Finally, the illustration C of the aircraft 9 in FIG. 4 shows a further change in the location of the destination T, assuming that the aircraft does not change its flight direction and attitude shown in FIG. First, the sensor 2 of the aircraft 9 had targeted the target T in the direction represented by the arrow Ci. The target T has thereupon changed its position along the dashed arrow line, whereby by controlled pivoting of the sensor 2 about the axes X and Y a tracking of the bearing directed to the target T bearing takes place, as shown by the arrow C 2 .
Selbst wenn das Flugzeug bei dieser Nachführung der Peilrichtung eine Rollbewegung durchführt, die durch den Pfeil c symbolisiert ist, wird die Peilung zum bewegten Ziel T nicht verloren und auch die Polarisationsebene E des Sensors 2 ändert sich in Bezug auf das bewegte Ziel T nicht.Even if the aircraft in this tracking of the bearing direction performs a rolling motion, which is symbolized by the arrow c, the bearing to the moving target T is not lost and the polarization plane E of the sensor 2 does not change with respect to the moving target T.
Die erfindungsgemäße Halterung gestattet damit sowohl eine Kompensation der Position des Ziels, auf welches der Sensor ausgerichtet ist, auch dann, wenn sich das Ziel bewegt. Darüber hinaus gestattet die erfindungsgemäße Halterung auch eine Kompensation der Position und der Lage des Sensors, falls dieser an einem sich bewegenden Träger (Flugzeug, Schiff, Landfahrzeug oder Raumfahrzeug) angebracht ist. In der Weiterbildung gemäß Fig. 3 ist es sogar möglich, eine Relativbewegung zwischen Sensor und Sensorziel um die Sensorachse zu verhindern, auch wenn der Träger (oder auch das Sensorziel) eine Rollbewegung um die entsprechende Längsachse durchführt, sodass ein unerwünschtes Verschwenken der Polarisationsebene um die Verbindungsachse M zwischen Sensor und Sensorziel vermieden wird.The holder of the invention thus allows both a compensation of the position of the target, to which the sensor is aligned, even if the target moves. In addition, the holder according to the invention also allows a compensation of the position and the position of the sensor, if it is attached to a moving carrier (aircraft, ship, land vehicle or spacecraft). In the development according to FIG. 3, it is even possible to have a Relative movement between the sensor and the sensor target to prevent the sensor axis, even if the carrier (or the sensor target) performs a rolling movement about the respective longitudinal axis, so that an undesired pivoting of the plane of polarization about the connecting axis M between the sensor and sensor target is avoided.
Bezugszeichen in den Ansprüchen, der Beschreibung und den Zeichnungen dienen lediglich dem besseren Verständnis der Erfindung und sollen den Schutzumfang nicht einschränken. Reference signs in the claims, the description and the drawings are only for the better understanding of the invention and are not intended to limit the scope.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Es bezeichnen:They denote:
1 Halterung1 bracket
1' Halterung1 'bracket
2 Sensor2 sensor
3 Tragstruktur3 supporting structure
4 Stellantriebseinheiten4 actuator units
5 Stellantriebseinheiten5 actuator units
6 Stellantriebseinheiten6 actuator units
7 mittleres Lager (Kreuzgelenk)7 middle bearing (universal joint)
8 mittleres Lager (Kugelgelenk)8 middle bearing (ball joint)
9 Luftfahrzeug9 aircraft
10 sensorseitige Stützplatte10 sensor-side support plate
12 Lagerbock12 bearing block
14 tragstrukturseitige Stützplatte14 support structure side support plate
20 Sensorrückwand20 sensor back wall
22 sensorseitige Lager22 sensor-side bearings
24 sensorseitige Lager24 sensor-side bearings
26 sensorseitige Lager26 sensor-side bearings
30 Tragstrukturbasis30 supporting structure base
32 tragstrukturseitige Lager32 load-bearing bearings
34 tragstrukturseitige Lager34 load-bearing bearings
36 tragstrukturseitige Lager36 load-bearing bearings
40 äußerer Gehäusekörper40 outer housing body
42 innerer Gehäusekörper42 inner housing body
50 äußerer Gehäusekörper50 outer housing body
52 innerer Gehäusekörper T Sensorziel52 inner housing body T sensor target
M VerbindungsachseM connection axis
X RaumachseX space axis
Y RaumachseY space axis
Z Raumachse Z space axis

Claims

Patentansprüche claims
1. Halterung (1 ) für einen bewegbaren Sensor (2), der auf ein Sensorziel (T) ausrichtbar ist, an einer Tragstruktur (3), mit zumindest zwei voneinander beabstandeten sensorseitigen LagernA holder (1) for a movable sensor (2), which can be aligned with a sensor target (T), on a support structure (3), with at least two sensor-side bearings spaced apart from one another
(22, 24; 26); zumindest zwei voneinander beabstandeten tragstrukturseitigen(22, 24; 26); at least two spaced support structure side
Lagern (32, 34; 36); - zumindest zwei längenveränderbaren Stellantriebseinheiten (4, 5; 6), wobei jede der Stellantriebseinheiten (4, 5; 6) zwischen einem zugeordneten sensorseitigen Lager (22, 24; 26) und einem zugeordneten tragstrukturseitigen Lager (32, 34; 36) vorgesehen ist, und - einem mittleren Lager (7; 8), das derart ausgebildet ist, dass es denStoring (32, 34, 36); - At least two variable-length actuator units (4, 5, 6), wherein each of the actuator units (4, 5, 6) between an associated sensor-side bearing (22, 24, 26) and an associated support structure side bearing (32, 34, 36) is provided , and - a middle bearing (7; 8), which is designed such that it
Sensor (2) um einen kinematischen Schwenkmittelpunkt um zumindest zwei Raumachsen (X, Y; Z) schwenkbar an derSensor (2) about a kinematic pivot center about at least two spatial axes (X, Y; Z) pivotally mounted on the
Tragstruktur (3) lagert.Supporting structure (3) stores.
2. Halterung nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest drei voneinander beabstandete sensorseitige Lager2. Holder according to claim 1, characterized in that at least three spaced-apart sensor-side bearing
(22, 24, 26) vorgesehen sind; dass zumindest drei voneinander beabstandete tragstrukturseitige Lager (32, 34, 36) vorgesehen sind; dass zumindest drei längenveränderbare Stellantriebseinheiten (4, 5, 6) vorgesehen sind, wobei jede der Stellantriebseinheiten (4, 5, 6) zwischen einem zugeordneten sensorseitigen Lager (22, 24, 26) und einem zugeordneten tragstrukturseitigen Lager (32, 34, 36) vorgesehen ist, und dass das mittlere Lager (8) derart ausgebildet ist, das es den Sensor (2) um den kinematischen Schwenkmittelpunkt um drei Raumachsen (X, Y, Z) schwenkbar an der Tragstruktur (3) lagert.(22, 24, 26) are provided; that at least three spaced support structure side bearings (32, 34, 36) are provided; in that at least three variable-length actuator units (4, 5, 6) are provided, each of the actuator units (4, 5, 6) being connected between an associated sensor-side bearing (22, 24, 26) and an associated bearing-structure-side bearing (32, 34, 36). is provided, and in that the middle bearing (8) is designed in such a way that it supports the sensor (2) pivotably around the three-dimensional center axis (X, Y, Z) about the three-dimensional pivot axis about the kinematic pivoting center on the support structure (3).
3. Halterung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die sensorseitigen Lager (22, 24, 26) jeweils einen kinematischen Lagermittelpunkt aufweisen, um den das jeweilige Lager eine Schwenkbewegung um drei Raumachsen zulässt.3. Holder according to claim 1 or 2, characterized in that the sensor-side bearings (22, 24, 26) each have a kinematic bearing center by which the respective bearing allows a pivoting movement about three spatial axes.
4. Halterung nach Anspruch 3, dadurch gekennzeichnet, dass die sensorseitigen Lager (22, 24, 26) als kugelgelenkartige Lager ausgebildet sind.4. Holder according to claim 3, characterized in that the sensor-side bearings (22, 24, 26) are designed as ball-joint-like bearings.
5. Halterung nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass die kinematischen Lagermittelpunkte der sensorseitigen Lager (22, 24, 26) in einer gemeinsamen Ebene gelegen sind.5. Holder according to claim 2, 3 or 4, characterized in that the kinematic bearing centers of the sensor-side bearings (22, 24, 26) are located in a common plane.
6. Halterung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die tragstrukturseitigen Lager (32, 34, 36) jeweils einen kinematischen Lagermittelpunkt aufweisen, um den das jeweilige Lager eine Schwenkbewegung um drei Raumachsen zulässt.6. Holder according to one of the preceding claims, characterized in that the support structure side bearing (32, 34, 36) each have a kinematic bearing center, by which the respective bearing allows a pivoting movement about three spatial axes.
7. Halterung nach Anspruch 6, dadurch gekennzeichnet, dass die tragstrukturseitigen Lager (32, 34, 36) als kugelgelenkartige Lager ausgebildet sind. 7. Holder according to claim 6, characterized in that the support structure side bearing (32, 34, 36) are formed as ball-joint-like bearings.
8. Halterung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die kinematischen Lagermittelpunkte der tragstrukturseitigen Lager (32, 34, 36) in einer gemeinsamen Ebene gelegen sind.8. Holder according to claim 6 or 7, characterized in that the kinematic bearing centers of the support structure side bearing (32, 34, 36) are located in a common plane.
9. Halterung nach Anspruch 5 oder 8, dadurch gekennzeichnet, dass der kinematische Schwenkmittelpunkt des mittleren Lagers (7; 8) in der Ebene der kinematischen Lagermittelpunkte der sensorseitigen Lager9. Holder according to claim 5 or 8, characterized in that the kinematic pivot center of the central bearing (7; 8) in the plane of the kinematic bearing centers of the sensor-side bearing
(22, 24, 26) oder in der Ebene der tragstrukturseitigen Lager (32, 34, 36) gelegen ist.(22, 24, 26) or in the plane of the support structure side bearing (32, 34, 36) is located.
10. Halterung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (2) eine Sende- und/oder Empfangsantenne, vorzugsweise eine Radarantenne, aufweist. 10. Holder according to one of the preceding claims, characterized in that the sensor (2) has a transmitting and / or receiving antenna, preferably a radar antenna.
EP10735182A 2009-06-23 2010-06-21 Holder for a movable sensor Withdrawn EP2446505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009030239A DE102009030239A1 (en) 2009-06-23 2009-06-23 Holder for a movable sensor
PCT/DE2010/000711 WO2010149140A1 (en) 2009-06-23 2010-06-21 Holder for a movable sensor

Publications (1)

Publication Number Publication Date
EP2446505A1 true EP2446505A1 (en) 2012-05-02

Family

ID=42969769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10735182A Withdrawn EP2446505A1 (en) 2009-06-23 2010-06-21 Holder for a movable sensor

Country Status (7)

Country Link
US (1) US8847845B2 (en)
EP (1) EP2446505A1 (en)
JP (1) JP2012531144A (en)
KR (1) KR20120138617A (en)
DE (1) DE102009030239A1 (en)
RU (1) RU2012101942A (en)
WO (1) WO2010149140A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895836B2 (en) 2011-10-19 2014-11-25 King Saud University Dual axis solar tracker apparatus and method
DE102011119392A1 (en) * 2011-11-24 2013-05-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Adjustable mounting device for sensors
EP2608313B1 (en) * 2011-12-23 2019-02-13 MacDonald, Dettwiler and Associates Corporation Antenna pointing system
US9172128B2 (en) * 2011-12-23 2015-10-27 Macdonald, Dettwiler And Associates Corporation Antenna pointing system
US8866695B2 (en) * 2012-02-23 2014-10-21 Andrew Llc Alignment stable adjustable antenna mount
US9376221B1 (en) * 2012-10-31 2016-06-28 The Boeing Company Methods and apparatus to point a payload at a target
FR3028099B1 (en) * 2014-10-29 2016-12-23 Thales Sa DEVICE FOR ORIENTATION OF A MOBILE ELEMENT OF THE ANTENNA PLATE TYPE
JP6495452B2 (en) * 2015-07-07 2019-04-03 古野電気株式会社 antenna
CN105465567A (en) * 2015-12-25 2016-04-06 无锡信大气象传感网科技有限公司 Pitching mounting frame for detector
ITUB20159411A1 (en) * 2015-12-28 2017-06-28 Stellar Project S R L COMPACT STABILIZED AIMING SYSTEM
US11067665B2 (en) 2016-06-24 2021-07-20 Bae Systems Pic Aircraft radar assembly
GB201611020D0 (en) * 2016-06-24 2016-08-10 Bae Systems Plc Aircraft radar assembly
US10215861B2 (en) * 2016-07-26 2019-02-26 Toyota Motor Engineering & Manufacturing North America, Inc. Track for vehicle environment sensors
CN106595586B (en) * 2016-12-13 2019-04-05 卢易扬 Table top can be towards the monitor station of any direction free inclination
CN108773331B (en) * 2018-04-20 2020-06-30 中国北方车辆研究所 Novel nested formula platform mechanism
US10556553B2 (en) * 2018-05-15 2020-02-11 Veoneer Us, Inc. Vehicle camera mounting interfaces
CN113169439A (en) * 2018-10-17 2021-07-23 空中客车防务及航天股份有限公司 Articulated mechanism and articulated pointing system comprising said mechanism
US11495872B2 (en) * 2019-07-03 2022-11-08 Commscope Technologies Llc Single point heavy duty monopole platform
DE102020000669A1 (en) 2020-01-31 2021-08-05 Mbda Deutschland Gmbh Alignment platform, sensor system, aircraft and method for operating an alignment platform
US11644375B2 (en) * 2020-09-03 2023-05-09 GM Global Technology Operations LLC Insertion force measurement system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251819A (en) * 1978-07-24 1981-02-17 Ford Aerospace & Communications Corp. Variable support apparatus
US4360182A (en) * 1980-06-25 1982-11-23 The United States Of America As Represented By The Secretary Of The Navy High-agility reflector support and drive system
US4415130A (en) * 1981-01-12 1983-11-15 Westinghouse Electric Corp. Missile system with acceleration induced operational energy
US4550319A (en) * 1982-09-22 1985-10-29 Rca Corporation Reflector antenna mounted in thermal distortion isolation
DE3308076A1 (en) * 1983-03-08 1984-09-20 Diehl GmbH & Co, 8500 Nürnberg Platform with servo motors
EP0266026A1 (en) * 1986-08-01 1988-05-04 HER MAJESTY THE QUEEN in right of New Zealand Department of Scientific and Industrial Research Tracking antenna mount
US5200758A (en) * 1989-10-05 1993-04-06 Lockheed Missiles & Space Company, Inc. System for controlling the radiation pattern of an antenna
US5351060A (en) * 1991-02-25 1994-09-27 Bayne Gerald A Antenna
DE59601469D1 (en) * 1995-10-04 1999-04-22 Austrian Aerospace Ges M B H DRIVE DEVICE FOR ADJUSTING COMPONENTS OF A SATELLITE
JP2003133824A (en) * 2001-10-29 2003-05-09 Tasada Kosakusho:Kk Antenna apparatus for satellite communication
CN100533856C (en) * 2003-01-30 2009-08-26 住友电气工业株式会社 Lens antenna assembly
US20090050191A1 (en) * 2007-08-22 2009-02-26 Sol Focus, Inc. System and Method for Solar Tracking
EP2232633A4 (en) * 2007-11-26 2014-03-12 Powerwave Technologies Inc Single drive variable azimuth and beam tilt antenna for wireless network
US8350204B2 (en) * 2007-12-12 2013-01-08 Mark Moser Light source tracker
CA2709284C (en) * 2007-12-12 2012-10-30 Mark K. Moser Light source tracker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010149140A1 *

Also Published As

Publication number Publication date
US8847845B2 (en) 2014-09-30
RU2012101942A (en) 2013-07-27
KR20120138617A (en) 2012-12-26
JP2012531144A (en) 2012-12-06
WO2010149140A1 (en) 2010-12-29
US20120119973A1 (en) 2012-05-17
DE102009030239A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
EP2446505A1 (en) Holder for a movable sensor
EP2344833B1 (en) Mortar
DE60107510T2 (en) Alignment device and on-board alignment system
DE102004030659A1 (en) mover
DE202012011054U1 (en) aircraft
DE2410255C2 (en) Cross rudder system for a rocket
WO2019011919A1 (en) Navigation satellite, in particular for a medium earth orbit
EP3203580A1 (en) Antenna system with two antennas
DE60008103T2 (en) MOMENTS POSITION CONTROL
EP2467634B1 (en) Holding device for a displaceble sensor
EP3858559B1 (en) Alignment platform, sensor system, aircraft and method for operating an alignment platform
DE102011106489B4 (en) Load carrier for an aircraft
DE69915870T2 (en) LOOKING ORIENTATION ARRANGEMENT FOR SENSORS
DE2702340C3 (en) Ship antenna
DE3943550C1 (en) Servo actuation systems
EP0515888B1 (en) Support and pointing arrangement for antennes or telescopes
DE60300352T2 (en) Device for fastening a landing gear to an aircraft structure
DE3030375A1 (en) Remote controlled surveillance helicopter - has skid mounted camera cage elastically slung from unmanned fuselage
EP0357940A1 (en) Equilibrating device for a gun, especially a heavy-calibre gun
DE1263115B (en) Ship radar system
DE102004008644B4 (en) Cardan bearings and its use
DE3308076C2 (en)
DE102021101423B3 (en) Pivoting mechanism for communication units
DE2534768C3 (en) Stabilizing base
DE3602100A1 (en) Actuating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN