EP3203580A1 - Antenna system with two antennas - Google Patents
Antenna system with two antennas Download PDFInfo
- Publication number
- EP3203580A1 EP3203580A1 EP17158712.4A EP17158712A EP3203580A1 EP 3203580 A1 EP3203580 A1 EP 3203580A1 EP 17158712 A EP17158712 A EP 17158712A EP 3203580 A1 EP3203580 A1 EP 3203580A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- axis
- positioning
- positioning system
- pivot bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims 1
- 230000010287 polarization Effects 0.000 description 10
- 238000009434 installation Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/02—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
- H01Q3/08—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/125—Means for positioning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
Definitions
- the invention relates to an antenna system with two antennas, each with a positioning system, in particular for use on vehicles, e.g. Aircraft.
- the low-profile flat-panel antennas required for the communication of aircraft with satellites are subject to particular space-constrained requirements with regard to the positioning of an antenna aperture in the direction of a satellite.
- Positioning systems for antennas on mobile carriers have the task of optimally aligning the antenna during the spatial movement of the mobile carrier to a target, typically a target antenna, which is located, for example, on a satellite.
- a target antenna typically a target antenna, which is located, for example, on a satellite.
- a permanent radio link must be reliably maintained even with rapid movement of the carrier.
- the wireless communication system uses electromagnetic waves of linear polarization, then the problem arises in 2-axis systems that, as the antenna rotates, the planes of polarization generally rotate so that the polarization plane of the target antenna is no longer aligned with the plane of polarization of the antenna itself on the positioning system matches.
- a third axis can be introduced which allows rotation of the antenna about the beam axis regardless of the azimuth and elevation axis.
- Such a 3-axis system then forms a complete orthogonal system and allows optimal polarization tracking.
- the known 3-axis positioning systems for parabolic antennas can not be used for low-profile antennas, since due to the shape of the antenna aperture and the low installation space no independent rotation about the beam axis is possible, or the angular range in which such a rotation is possible, strong is restricted.
- the polarization tracking is therefore carried out electronically or electromechanically in the signal processing path, so that no third mechanical axis is needed.
- Such 2-axis positioning systems with separate polarization tracking 20 are particularly in hull-mounted low-profile antennas on aircraft or Vehicles used.
- the antenna systems are characterized by the fact that the antenna apertures only have a very small height (typically less than 20 cm) in order to keep the air resistance as small as possible.
- the antenna apertures are usually rectangular.
- An example of such a positioning system according to the prior art is in FIG. 1 shown.
- the additional problem arises that the antenna diagram changes spatially when the antenna rotates about elevation or azimuth axis with respect to the target antenna and its surroundings, since the antenna diagram is non-rotationally symmetrical Antennas is also not rotationally symmetric.
- the antenna aperture with its azimuth axis always lies in the aircraft plane.
- the aircraft level is typically a tangential plane to the earth's surface. If the aircraft position and satellite position are not of the same geographical length, then the antenna aperture, when directed at the satellite, will always be twisted by a certain angle, which depends on the geographic length, with respect to the plane of the Clarke orbit.
- the main ray with respect to the tangent to the geostationary orbit at the location of the target satellite is the maximum width and it may lead to unauthorized irradiation of neighboring satellites.
- the positioning system according to the invention for an antenna aperture, in particular a low-profile antenna, a bracket, on which the antenna aperture is rotatably mounted along a first axis.
- the bracket is in turn attached to a second axis in a second pivot bearing, which is rotatably mounted on a third axis on a positioning platform.
- the positioner platform itself is mounted in the vehicle or the third pivot bearing is rigidly connected to the vehicle.
- the described positioning system is used in an antenna system with a first and a second antenna, at least one of which has a positioning system described above and which use a common positioning platform. This only insignificantly more space is required because both antennas can be mounted under a common radome.
- maximum flexibility is maintained for both antennas, which opens up numerous fields of application.
- the three axes A, B, C of the positioning system form one of the antennas, advantageously both antennas, then a complete orthogonal system, that it always allows the antenna aperture 1 to be aligned with a target antenna even in an installation space which is limited in its height, in the optimum manner adapted to the circumstances.
- the rotatable bracket allows movement about the second axis and provides spacing of the antenna aperture from the positioner platform so that its movement about the second axis through the position platform can be unrestrained.
- the bracket for attaching the antenna aperture may be two-armed or comprise only one arm, which then attaches more to the geometric center or the center of mass of the antenna aperture.
- the first axis to the second axis, and the second axis to the third axis form an oblique angle, i. are deviating from the right angle.
- the oblique arrangement of the axes is the preferred case for general installation space volumes.
- a right-angled arrangement is more of a special case.
- most space volumes of aircraft antennas are at least piecewise cylindrical (then preferably right-angled arrangement of the axes).
- skew-angled arrangements are typically used in sphere volume or sphere section volume. This is usually due to the fact that the system can then be better balanced in terms of weight.
- the 3-axes of a positioning system according to the invention do not correspond to the generic azimuth, elevation and antenna beam axes ("skew axes").
- the generic axes can be recovered by a unitary transformation. This results in the angular settings with respect to the three axes of the invention Positioning system from the generic azimuth, elevation and skew angles clearly by a corresponding unitary rotation in 3-dimensional space. At right angles, this transformation is easier to do, but angles different from one another in a perpendicular arrangement of the axes can also be taken into account in order to achieve a better mass balance.
- the attachment of the antenna aperture with the bracket takes place on two opposite sides of the antenna aperture.
- the hanger has two arms. This allows the antenna aperture between the arms of the arms to spin without continuing to apply in height. This is the case in particular if the fastening of the antenna aperture takes place on its narrow sides via a respective first pivot bearing and is driven for example via a direct drive.
- a holder secures the second rotary bearing to a third rotary bearing and the third rotary bearing is arranged on the positioning platform. This gives the antenna aperture a sufficient height above the positioner platform to make slight pivotal movements about the second axis. It is helpful if the antenna aperture has an oval or stepped oval shape, preferably with a height to width ratio of 1: ⁇ 4.
- the overall height can be reduced further if a third drive is arranged perpendicular to the positioning platform and drives the third pivot bearing via a toothed ring arranged below the positioning platform.
- the antenna is then covered by a radome, which has a bowl shape and builds up in operation only low aerodynamic resistances.
- a rotational movement about the first axis and / or a rotational movement of the bracket on the second axis can be performed by means of a linear actuator.
- a substantially centrally arranged high-frequency rotary feedthrough is integrated, which conducts high-frequency signals from and to the antenna aperture, preferably for two high-frequency channels. This supports the full 360 ° rotation of this pivot bearing.
- the high-frequency rotary feedthrough integrated into the third rotary bearing can thus also be encapsulated more easily and protected against ingress of moisture.
- two or more separate slip ring pairs for the power supply of the drives of the other moving parts and for control purposes are preferably integrated into the third pivot bearing.
- Flexible coaxial conductors are suitable for the other high-frequency connections to the antenna aperture, since typically the second rotary bearing and the first rotary bearing execute only very limited rotations and the flexible coaxial conductors can easily follow these movements.
- the two antennas can advantageously develop the following application scenarios.
- Either the first antenna in the Ka band and the second antenna in the Ku band can be operated.
- the preferred one can be selected.
- the other antenna then has no function in operation and only rotates with.
- both antennas are operated parallel to each other in the same frequency band, so for example in Ka-band or Ku-band or X-band.
- Ka-band or Ku-band or X-band In most positions of the aircraft from equator to northern latitudes of 48 ° the elevation angle of the antenna to a geostationary satellite near the equator is only up to 30 °.
- both antennas can simultaneously align themselves with the satellite and operate in parallel. This improves the signal-to-noise ratio and the transmitted data rate can be increased.
- Another advantageous use of the antenna system relates to a synchronization of both antennas.
- a symmetrical arrangement of both antennas about the third axis of rotation brings a synchronous movement of both antennas also around the first and second rotation axis (so-called butterfly operation) additionally the advantage that no additional angular momentum act on the antenna system and forces on the engine and transmission are minimized.
- FIG. 3 shows the front view of the antenna aperture 1 at an elevation angle 0 ° and a typical movement volume limitation through a radome 18.
- FIG. 4 shows how by a mechanical restriction, such as a stop 21, the angular range of rotation about the second axis can be limited, so that the antenna aperture 1 does not leave the movement volume.
- Figures 5 to 8 show different alignment scenarios, which show that the movement of the positioning system can be realized in a very small volume of movement.
- the orientation of the aperture in FIG. 5 represents, for example, a situation in which the antenna is located below the equator, but the longitude of the position of the antenna and that of the target satellite is different.
- the antenna aperture can not be aligned with its long axis parallel to the equator, but only with its narrow axis.
- the main antenna beam is then very wide and there are typically several satellites in the beam.
- the antenna When received, the antenna then receives the signals from several satellites simultaneously resulting in undesirable interference and significant degradation of the signal from the target satellite.
- the transmission power typically the transmission power must be greatly reduced, because otherwise neighboring satellites of the target satellite would be irradiated, which is not allowed by regulation.
- the antenna aperture optimally, namely aligned with its long axis parallel to the equator.
- the elevation angle of the satellite then corresponds here to the angle about the second axis B (about 20 °) and no longer the angle about the first axis A, which is then 90 ° here.
- the azimuth angle of the target satellite in this special case corresponds to the angle about the third axis C.
- FIGS. 6 to 8 For example, further alignment possibilities are shown, which can all be realized within the same installation space.
- ⁇ ', ⁇ ' and ⁇ can be chosen so that the angle forming the long main axis of the antenna aperture and the tangent to the geostationary orbit at the location of the target satellite is minimized. This always ensures that the antenna aperture is optimally aligned with respect to its antenna pattern under the boundary condition of the limited movement volume on the target satellites.
- Such arrangements can the available volume of movement z. B., if it is not a simple cylinder volume (ie, for example, a truncated cone volume, a Rotationsellipsoidvolumen or a volume with constrictions), even better exploit. Also, to minimize the moment of inertia, ie to minimize the dynamic loading of the axles during operation, it may be more favorable if the planes of motion are not vertical stand on each other. The coordinate system that can be assigned to the axes is then skew-angled. The arrangement works as long as the vectors forming the coordinate system are linearly independent of each other in three-dimensional space.
- Such a positioning system is then characterized by having three axes which are arranged such that an antenna aperture is mounted on a first axis which lies in a plane which is perpendicular to the main beam direction and can be rotated about this axis, the first axis is attached to a second axis, the second axis is attached to a third axis, and the axes are interconnected such that the plane passing through the second axis when rotating about the first axis and the plane which the first axis Rotation about the second axis passes through an angle that is non-zero, and the plane which sweeps the second axis in rotation about the third axis and which forms the plane that sweeps the third axis in rotation about the second axis does not is zero.
- FIG. 9 A preferred realization is in FIG. 9 outlined.
- the antenna aperture 1 is on two opposite narrow sides, each with a first pivot bearing 2 on a U-shaped, substantially centered (for apertures with an inhomogeneous mass distribution, the bracket may be slightly different from the geometric center, but in terms of mass due to the weighting mounted centrally) mounted bracket 3 with two arms attached.
- the stator of the pivot bearing 2 is located in each case on the bracket 3 and the rotor on the respective side of the antenna aperture 1 (not shown separately), so that the antenna aperture 1 about the first axis, which passes through the two first pivot bearing 2 in the bracket. 3 can be turned. Since at the in FIG. 9 shown flat antenna aperture the main beam direction perpendicular to the aperture surface (Aperturebene), the first axis lies in a plane which is perpendicular to the main beam direction.
- the bracket 3 is attached to the side which does not intersect the first axis, with a second pivot bearing 4 to a holder 5, wherein the rotor of the second pivot bearing 4 on the bracket 3 and the stator is on the holder 5 (not shown separately ).
- the holder 5 is fixed by means of a Positionierer disorder 6 on the rotor of a third pivot bearing 7.
- the stator of the third pivot bearing 7 is typically rigidly connected to the structure of the mobile carrier of the antenna system.
- the third pivot bearing 7 is designed so that it has an opening in the middle, in which high-frequency rotary unions and slip ring rotary unions can be accommodated.
- FIG. 10 exemplifies a structure of such a third, encapsulated pivot bearing 7 in cross section.
- the third pivot bearing 7 consists of a stator 12 and a rotor 10, which are connected by a bearing 11.
- the bearing 11 may for example be designed as a polymer bearing, ball bearings, or needle roller bearings.
- a high frequency rotary leadthrough 8 is mounted in the rotation axis of the rotary bearing 7.
- the stator of the high-frequency rotary feedthrough 8 with its connections 8b (in this example with two channels) is connected to the stator 12 of the rotary bearing 7.
- the rotor of the high-frequency rotary feedthrough 8 with its connections 8a is connected to the rotor 10 of the rotary bearing 7.
- slip rings 9a, 9b with their connections for the power supply and control of the drives are provided in the center of the rotary bearing 7, the connections 9a to the rotor 10 and the connections 9b to the stator 12 of the rotary feedthrough 7.
- Abrasive bodies 13 thereby ensure a galvanic contact between the terminals of the rotor 10 and those of the stator 12.
- each channel is split into 2 subchannels. Thus, only half of the current flows through the (critical) grinding bodies. Often a decomposition in> 2 sub-channels is made.
- the signal is also routed via the slip rings.
- typical slip ring configurations have approx. 8 - 32 channels. Of these, about 4 - 6 are for the power supply, often one for the ground connection extra, and the rest for control purposes.
- the three axes of the positioning system are each equipped with a motor drive, so that the inclination angle can be adjusted separately about the axes for each axis.
- the motors are preferably electric motors, in particular brushless electric motors.
- the drive for rotation about the third axis is preferably mounted on the Positionierwhere 6, as this makes the most efficient use of space, and equipped with a gear that allows a very precise alignment.
- the drive 15 for rotation about the third axis is advantageously mounted vertically on the positioning platform 6 and its gear meshes with a ring gear 19 (see FIG FIG. 3 ) located on the underside of the positioning platform 6.
- This arrangement has the advantage that by appropriate design of the ring gear 19 very high angular resolutions can be achieved.
- a drive motor can be coupled directly with a resolver (angular resolution sensor) in a compact design.
- the drive 16 for rotation about the second axis can be designed as a direct drive "direct drive”. That no gear is required here because the axle can be driven directly.
- a drive motor 17 for rotation about the first axis may be mounted in or on the bracket.
- a belt transmission or a rod transmission for driving the first axis.
- a direct drive can be used.
- linear actuators 14 can also be used for rotation about the second and first axes. This is schematically in FIG. 12 shown.
- the lifting body of the linear actuator 14 is fixed to the bracket 3, the base on the Positionierermann 6.
- the angular position of the bracket 3 about the second axis B can be easily adjusted. Since in typical arrangements, the angular range about the second axis B is only up to ⁇ 20 °, no motor with gear is required. This represents a great simplification of the arrangement.
- the angular position about the first axis can be accomplished with a linear actuator. Again, the required angular range in typical arrangements is only 0 ° to 90 °. Also, arrangements with multiple actuators for each axis are conceivable.
- FIG. 13 shows an inventive antenna system with a first antenna 31 and a second antenna 32, which use a common positioning platform 6.
- the positioning systems of both antennas 31, 32 are preferably according to the variants of the FIGS. 2 to 12 designed. However, both antennas 31, 32 need not be identical. So it is also possible to use other positioning mechanisms, eg as in FIG. 1 , It However, care should be taken to ensure that the weight and arrangement of the antennas are such that no imbalance occurs when the positioning platform 6 moves about the third axis.
- the antennas can be designed with respect to their aperture for the same frequency band, in particular X-band, Ka-band or Ku-band.
- the dimensioning of the aperture is for example in WO2010 / 124867A1 and WO2014 / 005699A1 described.
- both antennas 31, 32 can be aligned and operated in parallel with the satellite.
- the signal currents via both antennas 31, 32 are then combined in a transceiver, not shown, in the case of reception and divided in the transmission case.
- the first antenna in the Ka band and the second antenna in the Ku band can be operated.
- the antennas which are different in terms of the aperture are preferably matched to one another in terms of weight and weight distribution.
- both antennas 31, 32 In the desired symmetrical arrangement with respect to weight and center of gravity of both antennas 31, 32 about the third axis of rotation brings a synchronous movement of both antennas 31, 32 also around the first and second axis of rotation (so-called butterfly operation) additional advantages. Regardless of whether both antennas 31, 32 are in operation, hangers and pivot bearings for the first and second axes of rotation of both antennas 31, 32 substantially synchronously. This minimizes the load on the engine and transmission.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
Die Erfindung betrifft ein Antennensystem mit zwei Antennen, die jeweils ein Positionierungssystem für eine Antennenapertur mit einem Bügel, an dem die Antennenapertur entlang einer ersten Achse drehbar befestigt ist. Der Bügel ist wiederum an einer zweiten Achse in einem zweiten Drehlager befestigt, welches ist an einer dritten Achse drehbar auf einer Positioniererplattform gelagert ist. Die drei Achsen des Positionierungssystems bilden dann ein vollständiges Orthogonalsystem, dass es erlaubt, die Antennenapertur auch in einem in seiner Höhe beschränkten Bauraum immer in der den Gegebenheiten angepassten optimalen Weise auf eine Zielantenne auszurichten. Beide Positionierungssysteme nutzen eine gemeinsame Positionierungsplattform.The invention relates to an antenna system with two antennas, each having a positioning system for an antenna aperture with a bracket on which the antenna aperture is rotatably mounted along a first axis. The bracket is in turn secured to a second axis in a second pivot bearing which is rotatably mounted on a positioner platform on a third axis. The three axes of the positioning system then form a complete orthogonal system that allows the antenna aperture always to be aligned with a target antenna in the optimum manner adapted to the circumstances even in a space limited in its height. Both positioning systems use a common positioning platform.
Description
Die Erfindung betrifft ein Antennensystem mit zwei Antennen, mit jeweils einem Positionierungssystem, insbesondere für eine Anwendung auf Fahrzeugen, z.B. Flugzeugen. Die bei der Kommunikation von Flugzeugen mit Satelliten benötigten niederprofilen Flachantennen ("low-profile flat-panel antennas") unterliegen besonderen räumlich beengten Anforderungen bezüglich Positionierung einer Antennenapertur in Richtung eines Satelliten.The invention relates to an antenna system with two antennas, each with a positioning system, in particular for use on vehicles, e.g. Aircraft. The low-profile flat-panel antennas required for the communication of aircraft with satellites are subject to particular space-constrained requirements with regard to the positioning of an antenna aperture in the direction of a satellite.
Positionierungssysteme für Antennen auf mobilen Trägern, wie etwa Fahrzeugen, Flugzeugen oder Schiffen haben die Aufgabe, die Antenne während der räumlichen Bewegung des mobilen Trägers immer optimal auf ein Ziel, typischerweise eine Zielantenne, welche sich zum Beispiel auf einem Satelliten befindet, auszurichten. In vielen Fällen muss dabei eine permanente Richtfunkverbindung auch bei schneller Bewegung des Trägers zuverlässig aufrechterhalten werden.Positioning systems for antennas on mobile carriers, such as vehicles, aircraft or ships, have the task of optimally aligning the antenna during the spatial movement of the mobile carrier to a target, typically a target antenna, which is located, for example, on a satellite. In many cases, a permanent radio link must be reliably maintained even with rapid movement of the carrier.
Um diese Aufgabe zu lösen, werden in vielen Anwendungen sogenannte 2-Achsen Positionierungssysteme verwendet, siehe dazu auch
Arbeitet das drahtlose Kommunikationssystem mit elektromagnetischen Wellen linearer Polarisation, dann tritt bei 2-Achsen Systemen das Problem auf, dass bei Drehung der Antenne sich die Polarisationsebenen im Allgemeinen mit drehen, so dass die Polarisationsebene der Zielantenne nicht mehr mit der Polarisationsebene der Antenne, die sich auf dem Positionierungssystem befindet, übereinstimmt.If the wireless communication system uses electromagnetic waves of linear polarization, then the problem arises in 2-axis systems that, as the antenna rotates, the planes of polarization generally rotate so that the polarization plane of the target antenna is no longer aligned with the plane of polarization of the antenna itself on the positioning system matches.
Um dieses Problem zu lösen kann bei kugelsymmetrischen Bewegungsvolumen (wie z.B. bei Parabolantennen) eine dritte Achse eingeführt werden, die unabhängig von der Azimut und der Elevationsachse die Drehung der Antenne um die Strahlachse erlaubt. Ein solches 3-Achsen System bildet dann ein vollständiges Orthogonalsystem und erlaubt eine optimale Polarisationsnachführung.To solve this problem, in spherically symmetric motion volumes (such as parabolic antennas), a third axis can be introduced which allows rotation of the antenna about the beam axis regardless of the azimuth and elevation axis. Such a 3-axis system then forms a complete orthogonal system and allows optimal polarization tracking.
Die bekannten 3-Achsen Positionierungssysteme für Parabolantennen lassen sich für Niederprofil-Antennen allerdings nicht verwenden, da auf Grund der Form der Antennenapertur und des niedrigen Bauraumes keine unabhängige Drehung um die Strahlachse möglich ist, oder der Winkelbereich in dem eine solche Drehung möglich ist, stark eingeschränkt ist.However, the known 3-axis positioning systems for parabolic antennas can not be used for low-profile antennas, since due to the shape of the antenna aperture and the low installation space no independent rotation about the beam axis is possible, or the angular range in which such a rotation is possible, strong is restricted.
Bei Niederprofil-Antennen, welche zwei orthogonale lineare Polarisationen unterstützen, erfolgt die Polarisationsnachführung daher elektronisch oder elektromechanisch im Signalverarbeitungspfad, so dass keine dritte mechanische Achse benötigt wird.In low-profile antennas, which support two orthogonal linear polarizations, the polarization tracking is therefore carried out electronically or electromechanically in the signal processing path, so that no third mechanical axis is needed.
Solche 2-Achsen Positionierungssysteme mit separater Polarisationsnachführung 20 werden insbesondere bei rumpfmontierten Niederprofil-Antennen auf Flugzeugen oder Fahrzeugen verwendet. Die Antennensysteme zeichnen sich dadurch aus, dass die Antennenaperturen nur eine sehr geringe Höhe besitzen (typischerweise kleiner als 20cm) um den Luftwiderstand so klein wie möglich zu halten. Die Antennenaperturen sind meist rechteckig. Ein Beispiel eines solchen Positionierungssystems nach dem Stand der Technik ist in
Bei nicht rotationssymmetrischen Antennenaperturen auf Positionierungssystemen mit zwei Achsen A, C tritt nun allerdings das zusätzliche Problem auf, dass sich das Antennendiagramm bei Drehung der Antenne um Elevations- oder Azimutachse in Bezug auf die Zielantenne und deren Umgebung räumlich ändert, da das Antennendiagram nicht-rotationssymmetrischer Antennen ebenfalls nicht rotationssymmetrisch ist.However, with non-rotationally symmetrical antenna apertures on positioning systems with two axes A, C, the additional problem arises that the antenna diagram changes spatially when the antenna rotates about elevation or azimuth axis with respect to the target antenna and its surroundings, since the antenna diagram is non-rotationally symmetrical Antennas is also not rotationally symmetric.
Es tritt, insbesondere bei Anwendungen auf mobilen Trägern wie Flugzeugen, welche große geographische Entfernungen zurücklegen können, bei der Kommunikation mit Satelliten deshalb das Problem des "geographischen Skew" auf.Therefore, especially in applications on mobile carriers such as airplanes, which can cover large geographical distances, the problem of "geographic skew" in the communication with satellites occurs.
Dieses Problem ist dadurch bedingt, dass bei einem 2-Achsen Positionierungssystem die Antennenapertur mit ihrer Azimutachse immer in der Flugzeugebene liegt. Die Flugzeugebene ist typischerweise eine Tangentialebene zur Erdoberfläche. Sind nun Flugzeugposition und Satellitenposition nicht auf der gleichen geographischen Länge, dann ist die Antennenapertur, wenn sie auf den Satelliten gerichtet ist, immer um einen bestimmten Winkel, der von der geographischen Länge abhängt, gegenüber der Ebene des Clarke-Orbits, verdreht.This problem is due to the fact that in a 2-axis positioning system, the antenna aperture with its azimuth axis always lies in the aircraft plane. The aircraft level is typically a tangential plane to the earth's surface. If the aircraft position and satellite position are not of the same geographical length, then the antenna aperture, when directed at the satellite, will always be twisted by a certain angle, which depends on the geographic length, with respect to the plane of the Clarke orbit.
Da die Breite des Hauptstrahls von Niederprofil-Antennenaperturen mit zunehmender Drehung um die Strahlachse (ausgehend von der Azimut-Normallage) immer mehr zunimmt, muss die spektrale Leistungsdichte im Sendebetrieb der Antenne im FSS ("Fixed Satellite Service") sukzessive reduziert werden, um einen regulatorisch konformen Betrieb weiterhin zu gewährleisten.Since the width of the main beam of low-profile antenna apertures with increasing rotation about the beam axis (starting from the azimuth normal position) increases more and more, the spectral power density in the transmission mode of Antenna in the FSS ("Fixed Satellite Service") be successively reduced in order to continue to ensure a regulatory compliant operation.
Der schlechteste Fall tritt im FSS ein, wenn sich der mobile Träger unter oder in der Nähe des Äquators befindet. Dann ist der Hauptstrahl bezüglich der Tangente an den geostationären Orbit am Ort des Zielsatelliten maximal breit und es kann zur unerlaubten Bestrahlung von Nachbarsatelliten kommen.The worst case occurs in the FSS when the mobile carrier is below or near the equator. Then, the main ray with respect to the tangent to the geostationary orbit at the location of the target satellite is the maximum width and it may lead to unauthorized irradiation of neighboring satellites.
Auch im Empfang ergeben sich dann erhebliche Probleme, weil zusammen mit den Signalen des Zielsatelliten die Signale benachbarter Satelliten empfangen werden und über das Antennendiagram so gut wie keine Diskriminierung mehr stattfindet. Die Signale der benachbarten Satelliten wirken dann als Störsignale (Rauschen), die dem Nutzsignal überlagert sind und dieses korrumpieren. Die empfangbare Datenrate nimmt in diesem Fall stark ab.Also in the reception then arise considerable problems, because together with the signals of the target satellites, the signals of neighboring satellites are received and the antenna diagram as well as no discrimination takes place. The signals of the adjacent satellites then act as noise (noise), which are superimposed on the useful signal and corrupt it. The receivable data rate decreases sharply in this case.
Beides, Reduzierung der spektralen Leistungsdichte des Sendesignals und Interferenz benachbarter Satelliten im Empfangssignal, führt dazu, dass Niederprofil-Antennen auf 2-Achsen Positionierungssystemen in der Nähe des Äquators im FSS nicht, oder nur mit erheblichem Performanceverlust, betrieben werden können.Both, reducing the spectral power density of the transmitted signal and interference of adjacent satellites in the received signal, means that low-profile antennas on 2-axis positioning systems near the equator can not be operated in the FSS, or only with considerable performance loss.
In der Patentliteratur,
Aus
Es ist eine Aufgabe der Erfindung, die vorgenannten Schwierigkeiten bei der Nutzung und Positionierung von mehreren Antennen zu überwinden.It is an object of the invention to overcome the aforementioned difficulties in the use and positioning of multiple antennas.
Die Aufgabe wird mit einem Antennensystem mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sind in den weiteren Patentansprüchen aufgeführt.The object is achieved with an antenna system having the features of
Dazu enthält das erfindungsgemäße Positionierungssystem für eine Antennenapertur, insbesondere einer Niederprofil-Antenne, einen Bügel, an dem die Antennenapertur entlang einer ersten Achse drehbar befestigt ist. Der Bügel ist wiederum an einer zweiten Achse in einem zweiten Drehlager befestigt, welches an einer dritten Achse drehbar auf einer Positioniererplattform gelagert ist. Die Positioniererplattform selbst ist im Fahrzeug gelagert bzw. das dritte Drehlager ist starr mit dem Fahrzeug verbunden. Das geschilderte Positionierungssystem wird in einem Antennensystem mit einer ersten und einer zweiten Antenne einsetzt, von denen zumindest eine ein oben geschildertes Positionierungssystem aufweist und die eine gemeinsame Positionierungsplattform nutzen. Damit wird nur unerheblich mehr Bauraum benötigt, da beide Antennen unter einem gemeinsamen Radom angebracht werden können. Damit bleibt bis auf die Rotation um die dritte Achse für beide Antennen eine maximale Flexibilität erhalten, die zahlreiche Anwendungsfelder erschließt.For this purpose, the positioning system according to the invention for an antenna aperture, in particular a low-profile antenna, a bracket, on which the antenna aperture is rotatably mounted along a first axis. The bracket is in turn attached to a second axis in a second pivot bearing, which is rotatably mounted on a third axis on a positioning platform. The positioner platform itself is mounted in the vehicle or the third pivot bearing is rigidly connected to the vehicle. The described positioning system is used in an antenna system with a first and a second antenna, at least one of which has a positioning system described above and which use a common positioning platform. This only insignificantly more space is required because both antennas can be mounted under a common radome. Thus, with the exception of the rotation around the third axis, maximum flexibility is maintained for both antennas, which opens up numerous fields of application.
Nach
Der drehbare Bügel ermöglicht die Bewegung um die zweite Achse und schafft eine Beabstandung der Antennenapertur von der Positioniererplattform, so dass deren Bewegung um die zweite Achse durch die Positionsplattform ungehemmt erfolgen kann. Der Bügel zur Befestigung der Antennenapertur kann zweiarmig sein oder nur einen Arm umfassen, der dann eher an der geometrische Mitte oder dem Masseschwerpunkt der Antennenapertur ansetzt.The rotatable bracket allows movement about the second axis and provides spacing of the antenna aperture from the positioner platform so that its movement about the second axis through the position platform can be unrestrained. The bracket for attaching the antenna aperture may be two-armed or comprise only one arm, which then attaches more to the geometric center or the center of mass of the antenna aperture.
Nach einer vorteilhaften Weiterbildung der Erfindung bilden die erste Achse zur zweiten Achse, sowie die zweite Achse zur dritten Achse einen schiefen Winkel, d.h. sind vom rechten Winkel abweichend. Die schiefwinkelige Anordnung der Achsen ist für allgemeine Bauraumvolumen der Vorzugsfall. Eine rechtwinkelige Anordnung ist eher ein Sonderfall. In der Praxis sind die meisten Bauraumvolumen von Flugzeugantennen allerdings jedenfalls stückweise zylinderförmig (dann bevorzugt rechtwinklige Anordnung der Achsen). In Kugelvolumen oder Kugelabschnittsvolumen kommen jedoch typischerweise schiefwinkelige Anordnungen zur Anwendung. Das ist meist dadurch bedingt, dass das System dann gewichtsmäßig besser ausbalanciert werden kann.According to an advantageous embodiment of the invention, the first axis to the second axis, and the second axis to the third axis form an oblique angle, i. are deviating from the right angle. The oblique arrangement of the axes is the preferred case for general installation space volumes. A right-angled arrangement is more of a special case. In practice, however, most space volumes of aircraft antennas are at least piecewise cylindrical (then preferably right-angled arrangement of the axes). However, skew-angled arrangements are typically used in sphere volume or sphere section volume. This is usually due to the fact that the system can then be better balanced in terms of weight.
Im Gegensatz zu den bislang bekannten 3-Achsen Positionierungssystemen entsprechen die 3-Achsen eines erfindungsgemäßen Positionierungssystems nicht den generischen Azimut-, Elevations- und Antennenstrahlachsen ("Skew-Achsen"). Da die drei Achsen eines erfindungsgemäßen Positionierungssystems jedoch ein vollständiges Orthogonalsystem darstellen, können die generischen Achsen durch eine unitäre Transformation wiedergewonnen werden. Damit ergeben sich die Winkeleinstellungen bezüglich der drei Achsen des erfindungsgemäßen Positionierungssystems aus den generischen Azimut-, Elevations- und Skew-Winkeln eindeutig durch eine entsprechende unitäre Drehung im 3-dimensionalen Raum. Bei rechten Winkeln ist diese Transformation einfacher zu vollziehen, es können jedoch auch von einer senkrechten Anordnung der Achsen zueinander abweichende Winkel berücksichtigt werden, um eine bessere Massebalance zu erzielen.In contrast to the previously known 3-axis positioning systems, the 3-axes of a positioning system according to the invention do not correspond to the generic azimuth, elevation and antenna beam axes ("skew axes"). However, since the three axes of a positioning system according to the invention represent a complete orthogonal system, the generic axes can be recovered by a unitary transformation. This results in the angular settings with respect to the three axes of the invention Positioning system from the generic azimuth, elevation and skew angles clearly by a corresponding unitary rotation in 3-dimensional space. At right angles, this transformation is easier to do, but angles different from one another in a perpendicular arrangement of the axes can also be taken into account in order to achieve a better mass balance.
Im Allgemeinen erfordert eine einfache generische Drehung um die Azimutachse (Azimutdrehung) allerdings eine simultane Drehung um alle drei Achsen des erfindungsgemäßen Positionierungssystems. Gleiches gilt für generische Elevations- und Skew-Drehungen. Die notwendige Koordinatentransformation kann jedoch in einfacher Weise algorithmisch implementiert werden.In general, however, simple generic rotation about the azimuth axis (azimuth rotation) requires simultaneous rotation about all three axes of the positioning system of the present invention. The same applies to generic elevation and skew rotations. However, the necessary coordinate transformation can be implemented algorithmically in a simple manner.
Im Vergleich zu den bislang bekannten 3-Achsen Positionierungssystemen, welche aus generischen Achsen aufgebaut sind, hat ein erfindungsgemäßes Positionierungssystem eine Reihe von wesentlichen Vorteilen:
- 1. Bedingt durch die neuartige Anordnung der Achsen, ist der Winkelbereich in dem um die zweite Achse gedreht werden muss, stark beschränkt. Vorteilhafterweise kann der Winkelbereich der Bewegung um die zweite Achse auf ca. ±20° beschränkt werden. Der Hauptanteil einer Skew-Drehung, deren generischer Winkelbereich ±90° ist, wird durch eine Drehung um die dritte Achse erreicht. Da der Winkelbereich der dritten Achse n x 360° (n = ∞) ist (vergl. generische Azimutdrehung), stellt dies eine erhebliche Vereinfachung der Mechanik dar.
- 2. Bei einer generischen Anordnung der drei Achsen (nicht erfindungsgemäß) ist der typischerweise erforderliche Winkelbereich für die Azimutdrehung n x 360° (n = ∞), für die Elevationsdrehung 0° bis 90° und für die Skew-Drehung -90° bis +90°. In einem in der Höhe beschränkten Bauraum kann dann nur durch die Software-Steuerung verhindert werden, dass die Antennenapertur das Bauraumvolumen nicht verlässt, also z.B. an ein aerodynamisches Radom anstößt. Mechanische Sperren ("hard-stops") können nicht implementiert werden. Andernfalls könnte die Antenne nicht mehr optimal ausgerichtet werden. Aus Sicherheitsgründen wäre eine reine Software-Definition des Bewegungsvolumens ("swept volume") jedoch äußerst kritisch.
Eine erfindungsgemäße Anordnung der Achsen erlaubt hingegen die Implementierung einer mechanischen Sperre (Anschlag), die den Winkelbereich um die zweite Achse einschränkt. Damit kann selbst bei Versagen der Steuerung zuverlässig ausgeschlossen werden, dass die Antennenapertur das definierte Bewegungsvolumen verlässt. - 3) Insbesondere für Flugzeugantennen sind die Anforderungen an die Vibrationsfestigkeit sehr hoch. Wie sich durch numerische Simulationen gezeigt hat, ist eine erfindungsgemäße Anordnung erheblich toleranter gegenüber Vibrationen, als die bekannten generischen Anordnungen. Dies ermöglicht es Antennenaperturen zu verwenden, welche ein wesentlich geringeres Gewicht besitzen, da sehr viel weniger strukturelle Vorkehrungen erforderlich sind. Auch Antennenaperturen in Leichtbauweise, z.B. mit Aluminium oder Carbonfasern, sind mit erfindungsgemäßen Positionierungssystemen jetzt möglich. Wenn die Antennenapertur leichter ist, dann muss das Positionierungssystem im Betrieb weniger Kräfte aufnehmen und kann daher ebenfalls gewichtsmäßig leichter ausgelegt werden. Insgesamt ergeben sich durch leichtere Antenennaperturen und leichtere Positionierungssysteme erhebliche Gewichtsvorteile gegenüber bekannten Systemen.
- 4) Die Anordnung der Achsen bei erfindungsgemäßen Positionierungssystemen erlaubt erheblich kompaktere Bauformen. Da der erforderliche Winkelbereich um die zweite Achse relativ klein ist und sich der zugehörige Winkel im Betrieb nur langsam ändert, sind die erforderlichen Getriebe und Motoren wenig aufwändig. Zudem durchstreicht die Antennenapertur im Betrieb einen erheblich kleineren Bereich des Bauraumvolumens als bei generischen Anordnungen. Dies ermöglicht es zusätzlich notwendige Funktionsmodule, wie Antennensteuerungsbox oder Polarisationsnachführungselektronik, ohne Probleme auf einer typischen Positioniererplattform unterzubringen.
- 1. Due to the novel arrangement of the axes, the angular range in which must be rotated about the second axis, severely limited. Advantageously, the angular range of the movement about the second axis can be limited to approximately ± 20 °. The majority of a skew rotation whose generic angular range is ± 90 ° is achieved by rotation about the third axis. Since the angular range of the third axis is nx 360 ° (n = ∞) (see generic azimuth rotation), this represents a considerable simplification of the mechanics.
- 2. For a generic arrangement of the three axes (not according to the invention), the azimuth rotation typically required angular range is nx 360 ° (n = ∞), 0 ° to 90 ° for the elevation rotation and -90 ° to +90 for the skew rotation °. In a limited space then space can Only be prevented by the software control that the antenna aperture does not leave the installation space volume, for example, abuts an aerodynamic radome. Mechanical locks ("hard stops") can not be implemented. Otherwise, the antenna could no longer be optimally aligned. For security reasons, a pure software definition of the movement volume ("swept volume") would be extremely critical.
An arrangement of the axes according to the invention, however, allows the implementation of a mechanical barrier (stop), which limits the angular range about the second axis. Thus, it can be reliably ruled out even in case of failure of the control that the antenna aperture leaves the defined volume of movement. - 3) Especially for aircraft antennas, the requirements for vibration resistance are very high. As has been shown by numerical simulations, an arrangement according to the invention is considerably more tolerant of vibrations than the known generic arrangements. This makes it possible to use antenna apertures, which have a much lower weight, since much less structural precautions are required. Antenna apertures in lightweight construction, for example with aluminum or carbon fibers, are now possible with positioning systems according to the invention. If the antenna aperture is lighter, then the positioning system will need to absorb less force during operation and therefore may also be lighter in weight. Overall, lighter antenna apertures and lighter positioning systems provide significant weight advantages over known systems.
- 4) The arrangement of the axes in positioning systems according to the invention allows much more compact designs. Because the required angle range around the second Axis is relatively small and the associated angle changes slowly in operation, the necessary gear and motors are inexpensive. In addition, during operation, the antenna aperture covers a considerably smaller area of the installation space volume than in the case of generic arrangements. This additionally allows necessary functional modules, such as antenna control box or polarization tracking electronics, to be accommodated without problems on a typical positioning platform.
Vorzugsweise erfolgt die Befestigung der Antennenapertur mit dem Bügel an zwei gegenüberliegenden Seiten der Antennenapertur. Der Bügel hat dazu zwei Arme. Damit kann die Antennenapertur zwischen den Bügelarmen durchdrehen ohne in der Höhe weiter aufzutragen. Dies ist insbesondere der Fall, wenn die Befestigung der Antennenapertur an deren Schmalseiten über jeweils ein erstes Drehlager erfolgt und beispielsweise über einen Direktantrieb angetrieben wird.Preferably, the attachment of the antenna aperture with the bracket takes place on two opposite sides of the antenna aperture. The hanger has two arms. This allows the antenna aperture between the arms of the arms to spin without continuing to apply in height. This is the case in particular if the fastening of the antenna aperture takes place on its narrow sides via a respective first pivot bearing and is driven for example via a direct drive.
Weitere vorteilhafte Ausgestaltungen sehen vor, dass eine Halterung das zweite Drehlager an einem dritten Drehlager befestigt und das dritte Drehlager auf der Positioniererplattform angeordnet ist. Damit erhält die Antennenapertur eine ausreichende Höhe über der Positioniererplattform um geringfügige Schwenkbewegungen um die zweite Achse auszuführen. Unterstützend ist dabei, wenn die Antennenapertur eine ovale oder abgestuft ovale Form hat, bevorzugt mit einem Höhen- zu Breitenverhältnis von 1 : ≥4.Further advantageous embodiments provide that a holder secures the second rotary bearing to a third rotary bearing and the third rotary bearing is arranged on the positioning platform. This gives the antenna aperture a sufficient height above the positioner platform to make slight pivotal movements about the second axis. It is helpful if the antenna aperture has an oval or stepped oval shape, preferably with a height to width ratio of 1: ≥4.
Die Bauhöhe kann weiter reduziert werden, wenn ein dritter Antrieb senkrecht zur Positioniererplattform angeordnet ist und über einen unter der Positioniererplattform angeordneten Zahnkranz das dritte Drehlager antreibt. Die Antenne ist dann von einem Radom abdeckbar, das eine Schüsselform hat und im Betrieb nur geringe aerodynamische Widerstände aufbaut.The overall height can be reduced further if a third drive is arranged perpendicular to the positioning platform and drives the third pivot bearing via a toothed ring arranged below the positioning platform. The antenna is then covered by a radome, which has a bowl shape and builds up in operation only low aerodynamic resistances.
Alternativ zu Antrieben an den Drehlagern kann eine Drehbewegung um die erste Achse und/oder eine Drehbewegung des Bügels auf der zweiten Achse mittels eines Linearaktuators ausgeführt werden.As an alternative to drives on the rotary bearings, a rotational movement about the first axis and / or a rotational movement of the bracket on the second axis can be performed by means of a linear actuator.
Durch die eingeschränkten Bewegungsszenarien für die ersten Drehlager und das zweite Drehlager eignen sich diese für einen Antrieb durch einen Direktantrieb, der kein Getriebe erfordert und damit weiter Gewicht spart.Due to the limited motion scenarios for the first pivot bearing and the second pivot bearing, these are suitable for a drive by a direct drive, which requires no gear and thus further saves weight.
In das dritte Drehlager wird vorteilhafterweise eine im Wesentlichen mittig angeordnete Hochfrequenzdrehdurchführung integriert, die hochfrequente Signale von und zur Antennenapertur leitet, vorzugsweise für zwei Hochfrequenzkanäle. Damit wird die volle 360° Drehung dieses Drehlagers unterstützt. Die in das dritte Drehlager integrierte Hochfrequenzdrehdurchführung kann damit auch leichter verkapselt und gut gegen einen Feuchtigkeitseintritt geschützt werden. Bevorzugt werden in das dritte Drehlager zudem zwei oder mehr getrennte Schleifringpaare für die Stromversorgung der Antriebe der weiteren beweglichen Teile und für Steuerungszwecke integriert. Für die übrigen Hochfrequenzverbindungen zur Antennenapertur eignen sich flexible Koaxialleiter, da typischerweise das zweite Drehlager und das erste Drehlager nur sehr eingeschränkte Drehungen ausführen und die flexiblen Koaxialleiter diesen Bewegungen leicht folgen können.In the third pivot bearing advantageously a substantially centrally arranged high-frequency rotary feedthrough is integrated, which conducts high-frequency signals from and to the antenna aperture, preferably for two high-frequency channels. This supports the full 360 ° rotation of this pivot bearing. The high-frequency rotary feedthrough integrated into the third rotary bearing can thus also be encapsulated more easily and protected against ingress of moisture. In addition, two or more separate slip ring pairs for the power supply of the drives of the other moving parts and for control purposes are preferably integrated into the third pivot bearing. Flexible coaxial conductors are suitable for the other high-frequency connections to the antenna aperture, since typically the second rotary bearing and the first rotary bearing execute only very limited rotations and the flexible coaxial conductors can easily follow these movements.
Es hat sich als vorteilhaft herausgestellt, wenn der Antrieb an den Drehlagern mittels bürstenloser Elektromotoren erfolgt.It has proven to be advantageous if the drive takes place on the pivot bearings by means of brushless electric motors.
Durch die festgestellten geringeren Vibrationen ist es möglich Aluminium- oder gar Kohlefaserstrukturen bei der Halterung und/oder dem Bügel etc. zu nutzen, die einen weiteren Gewichtsvorteil mit sich bringen.Due to the observed lower vibrations, it is possible to use aluminum or even carbon fiber structures in the holder and / or the bracket, etc., which bring a further weight advantage.
Die zwei Antennen können vorteilhafterweise folgende Anwendungsszenarien erschließen.The two antennas can advantageously develop the following application scenarios.
Entweder kann die erste Antenne im Ka-Band und die zweite Antenne im Ku-Band betrieben werden. Damit kann je nach Verfügbarkeit oder Kosten der Satellitenverbindung im Ka- oder Ku-Band die jeweils bevorzugte ausgewählt werden. Die jeweils andere Antenne hat dann im Betrieb keine Funktion und dreht nur mit.Either the first antenna in the Ka band and the second antenna in the Ku band can be operated. Thus, depending on the availability or cost of the satellite connection in the Ka or Ku band, the preferred one can be selected. The other antenna then has no function in operation and only rotates with.
Oder beide Antennen werden parallel zueinander im gleichen Frequenzband, also beispielsweise im Ka-Band oder Ku-Band oder X-Band betrieben. In den meisten Positionen des Flugzeugs von Äquator bis in nördliche Breiten von 48° beträgt der Elevationswinkel der Antenne zu einem geostationären Satelliten in Äquatornähe nur bis zu 30°. Somit können sich auch beide Antennen gleichzeitig auf den Satelliten ausrichten und parallel betrieben werden. Damit verbessert sich das Signal/Rausch-Verhältnis und die übertragene Datenrate kann erhöht werden.Or both antennas are operated parallel to each other in the same frequency band, so for example in Ka-band or Ku-band or X-band. In most positions of the aircraft from equator to northern latitudes of 48 ° the elevation angle of the antenna to a geostationary satellite near the equator is only up to 30 °. Thus, both antennas can simultaneously align themselves with the satellite and operate in parallel. This improves the signal-to-noise ratio and the transmitted data rate can be increased.
Eine weitere vorteilhafte Nutzung des Antennensystems betrifft einen Gleichlauf beider Antennen. Bei einer symmetrischen Anordnung beider Antennen um die dritte Drehachse bringt eine synchrone Bewegung beider Antennen auch um die erste und zweite Drehachse (sogenannter Butterfly-Betrieb) zusätzlich den Vorteil, dass keine zusätzlichen Drehimpulse auf das Antennensystem wirken und Kräfte auf Motor und Getriebe minimiert werden.Another advantageous use of the antenna system relates to a synchronization of both antennas. In a symmetrical arrangement of both antennas about the third axis of rotation brings a synchronous movement of both antennas also around the first and second rotation axis (so-called butterfly operation) additionally the advantage that no additional angular momentum act on the antenna system and forces on the engine and transmission are minimized.
Darüber hinaus sind weitere Vorteile und Merkmale der vorliegenden Erfindung aus der folgenden Beschreibung bevorzugter Ausführungsformen ersichtlich. Die dort beschriebenen Merkmale können alleinstehend oder in Kombination mit einem oder mehreren der oben erwähnten Merkmale umgesetzt werden, insofern sich die Merkmale nicht widersprechen. Die folgende Beschreibung der bevorzugten Ausführungsformen erfolgt dabei unter Bezugnahme auf die begleitenden Zeichnungen.In addition, other advantages and features of the present invention will become apparent from the following description of preferred embodiments. The features described therein may be implemented alone or in combination with one or more of the features mentioned above insofar as the features are not contradictory. The following description of the preferred Embodiments are made with reference to the accompanying drawings.
-
Figur 1 zeigt ein Positionierungssystem nach dem Stand der Technik.FIG. 1 shows a positioning system according to the prior art. -
Figur 2 zeigt ein erfindungsgemäßes Positionierungssystem mit drei Achsen.FIG. 2 shows an inventive positioning system with three axes. -
Figuren 3 und4 zeigen ein erfindungsgemäßes Positionierungssystem unter einem Radom.Figures 3 and4 show a positioning system according to the invention under a radome. -
Figuren 5 bis 8 zeigen ein erfindungsgemäßes Positionierungssystem in unterschiedlichen Positionen der Antennenapertur.FIGS. 5 to 8 show a positioning system according to the invention in different positions of the antenna aperture. -
Figur 9 zeigt die Anordnung der Drehlager eines erfindungsgemäßen Positionierungssystems.FIG. 9 shows the arrangement of the pivot bearing of a positioning system according to the invention. -
Figur 10 zeigt eine Hochfrequenzdurchführung am dritten Drehlager.FIG. 10 shows a high-frequency feedthrough at the third pivot bearing. -
Figur 11 zeigt ein erfindungsgemäßes Positionierungssystem mit Direktantrieben.FIG. 11 shows an inventive positioning system with direct drives. -
Figur 12 zeigt die Nutzung eines Linearaktuators.FIG. 12 shows the use of a linear actuator. -
Figur 13 zeigt ein Antennensystem mit zwei Antennen.FIG. 13 shows an antenna system with two antennas.
In Abbildungen 5 bis 8 sind verschiedene Ausrichtungsszenarien dargestellt, die zeigen, dass sich die Bewegung des Positionierungssystems in einem sehr kleinen Bewegungsvolumen realisieren lässt. Die Ausrichtung der Apertur in
Wie in
In den
Wie aus diesen Figuren ersichtlich, ist es zur optimalen Ausnutzung des zur Verfügung stehenden Bewegungsvolumens oft vorteilhaft keine genau rechteckigen Antennenaperturen zu verwenden. Ovale oder abgestufte Formfaktoren passen sich insbesondere aeronautischen Radomen besser an.As can be seen from these figures, it is often advantageous not to use exactly rectangular antenna apertures for optimum utilization of the available movement volume. Oval or graded shape factors adapt better to aeronautical radomes in particular.
Bei bestimmten Aperturformen oder Formen des Bewegungsvolumens kann es außerdem vorteilhaft sein, wenn die jeweiligen Ebenen, welche die Achsen bei Drehung um die jeweils nächste Achse durchstreichen, und diese nächste Achse nicht senkrecht aufeinander stehen.For certain aperture shapes or shapes of the movement volume, it may also be advantageous if the respective planes which cross the axes when rotating about the respective next axis and this next axis are not perpendicular to one another.
Solche Anordnungen können das zur Verfügung stehenden Bewegungsvolumen z. B. dann, wenn es sich nicht um ein einfaches Zylindervolumen (also z.B. um ein Kegelstumpfvolumen, ein Rotationsellipsoidvolumen oder um ein Volumen mit Einschnürungen) handelt, noch besser ausnutzen. Auch kann es zur Minimierung des Trägheitsmoments, d.h. zu Minimierung der dynamischen Belastung der Achsen im Betrieb, günstiger sein, wenn die Bewegungsebenen nicht senkrecht aufeinander stehen. Das den Achsen zuordenbare Koordinatensystem ist dann schiefwinkelig. Die Anordnung funktioniert solange die Vektoren, welche das Koordinatensystem bilden, im dreidimensionalen Raum voneinander linear unabhängig sind.Such arrangements can the available volume of movement z. B., if it is not a simple cylinder volume (ie, for example, a truncated cone volume, a Rotationsellipsoidvolumen or a volume with constrictions), even better exploit. Also, to minimize the moment of inertia, ie to minimize the dynamic loading of the axles during operation, it may be more favorable if the planes of motion are not vertical stand on each other. The coordinate system that can be assigned to the axes is then skew-angled. The arrangement works as long as the vectors forming the coordinate system are linearly independent of each other in three-dimensional space.
Ein solches Positionierungssystem zeichnet sich dann dadurch aus, dass es drei Achsen besitzt, welche derart angeordnet sind, dass eine Antennenapertur an einer ersten Achse angebracht ist, welche in einer Ebene liegt, die senkrecht zur Hauptstrahlrichtung steht, und um diese Achse gedreht werden kann, die erste Achse an einer zweiten Achse angebracht ist, die zweite Achse an einer dritten Achse angebracht ist, und die Achsen derart miteinander verbunden sind, dass die Ebene welche die zweite Achse bei Drehung um die erste Achse durchstreicht und die Ebene welche die erste Achse bei Drehung um die zweite Achse durchstreicht einen Winkel bilden, der nicht null ist, und die Ebene welche die zweite Achse bei Drehung um die dritte Achse durchstreicht und die Ebene, die die dritte Achse bei Drehung um die zweite Achse durchstreicht einen Winkel bilden, der nicht null ist.Such a positioning system is then characterized by having three axes which are arranged such that an antenna aperture is mounted on a first axis which lies in a plane which is perpendicular to the main beam direction and can be rotated about this axis, the first axis is attached to a second axis, the second axis is attached to a third axis, and the axes are interconnected such that the plane passing through the second axis when rotating about the first axis and the plane which the first axis Rotation about the second axis passes through an angle that is non-zero, and the plane which sweeps the second axis in rotation about the third axis and which forms the plane that sweeps the third axis in rotation about the second axis does not is zero.
Eine bevorzugte Realisierung ist in
Der Bügel 3 ist an der Seite, welche die erste Achse nicht schneidet, mit einem zweiten Drehlager 4 an einer Halterung 5 befestigt, wobei der Rotor des zweiten Drehlagers 4 sich am Bügel 3 und der Stator sich an der Halterung 5 befindet (nicht gesondert dargestellt). Die Halterung 5 ist mit Hilfe einer Positioniererplattform 6 am Rotor eines dritten Drehlagers 7 befestigt. Der Stator des dritten Drehlagers 7 ist typischerweise mit der Struktur des mobilen Trägers des Antennensystems starr verbunden.The
In einer bevorzugten Ausführungsform ist das dritte Drehlager 7 so ausgelegt, dass es in der Mitte eine Öffnung besitzt, in welcher Hochfrequenz-Drehdurchführungen und Schleifring-Drehdurchführungen untergebracht werden können.
Das dritte Drehlager 7 besteht aus einem Stator 12 und einem Rotor 10, welche durch ein Lager 11 verbunden sind. Das Lager 11 kann z.B. als Polymerlager, Kugellager, oder Nadellager ausgeführt sein. Eine Hochfrequenzdrehdurchführung 8 ist in der Drehachse des Drehlagers 7 angebracht. Der Stator der Hochfrequenzdrehdurchführung 8 mit seinen Anschlüssen 8b (hier z.B. mit zwei Kanälen) ist mit dem Stator 12 des Drehlagers 7 verbunden. Der Rotor der Hochfrequenzdrehdurchführung 8 mit seinen Anschlüssen 8a ist mit dem Rotor 10 des Drehlagers 7 verbunden. Neben der Hochfrequenzdrehdurchführung 8 sind im Zentrum des Drehlagers 7 Schleifringe 9a, 9b mit ihren Anschlüssen für die Stromversorgung und Steuerung der Antriebe vorhanden, wobei die Anschlüsse 9a zum Rotor 10 und die Anschlüsse 9b zum Stator 12 der Drehdurchführung 7 gehören. Schleifkörper 13 sorgen dabei für einen galvanischen Kontakt zwischen den Anschlüssen des Rotors 10 und denen des Stators 12.The third pivot bearing 7 consists of a
Dargestellt sind beispielhaft 3 Schleifringpaare für 3 Kanäle. Um die Strombelastung zu verringern, ist jeder Kanal in 2-Subkanäle zerlegt. Damit fließt durch die (kritischen) Schleifkörper jeweils nur die Hälfte des Stroms. Oft wird auch eine Zerlegung in > 2 Sub-Kanäle vorgenommen.
Die Signalführung erfolgt ebenfalls über die Schleifringe. Je nach Anforderung haben typische Schleifringkonfigurationen ca. 8 - 32 Kanäle. Davon sind ca. 4 - 6 für die Stromversorgung, oft einer für die Masseverbindung extra, und der Rest für Steuerungszwecke.Illustrated are 3 pairs of slip rings for 3 channels. To reduce the current load, each channel is split into 2 subchannels. Thus, only half of the current flows through the (critical) grinding bodies. Often a decomposition in> 2 sub-channels is made.
The signal is also routed via the slip rings. Depending on requirements, typical slip ring configurations have approx. 8 - 32 channels. Of these, about 4 - 6 are for the power supply, often one for the ground connection extra, and the rest for control purposes.
Die drei Achsen des Positionierungssystems sind mit jeweils einem Motorantrieb ausgestattet, so dass der Neigungswinkel um die Achsen für jede Achse getrennt eingestellt werden kann. Die Motoren sind bevorzugt Elektromotoren, insbesondere bürstenlose Elektromotoren.The three axes of the positioning system are each equipped with a motor drive, so that the inclination angle can be adjusted separately about the axes for each axis. The motors are preferably electric motors, in particular brushless electric motors.
Der Antrieb für eine Drehung um die dritte Achse ist bevorzugt auf der Positioniererplattform 6 angebracht, da dies den Bauraum am effizientesten ausnutzt, und mit einem Getriebe ausgestattet, das eine sehr exakte Ausrichtung erlaubt.The drive for rotation about the third axis is preferably mounted on the
Wie in
Der Antrieb 16 für eine Drehung um die zweite Achse kann als Direktantrieb "direct drive" ausgelegt werden. D.h. hier ist kein Getriebe erforderlich, weil die Achse direkt angetrieben werden kann.The
Ein Antriebsmotor 17 für die Drehung um die erste Achse kann im oder am Bügel angebracht werden. Um das Bewegungssvolumen durch den Antrieb 17 nicht einzuschränken, ist es hier vorteilhaft ein Riemengetriebe oder ein Stangengetriebe zum Antrieb der ersten Achse zu verwenden. Alternativ kann auch ein Direktantrieb verwendet werden.A
An Stelle von Elektromotoren können zur Drehung um die zweite und erste Achse auch Linearaktuatoren 14 verwendet werden. Dies ist schematisch in
In gleicher Weise kann die Winkelstellung um die erste Achse mit einem Linearaktuator bewerkstelligt werden. Auch hier ist der erforderliche Winkelbereich in typischen Anordnungen nur 0° bis 90°. Auch Anordnungen mit mehreren Aktuatoren für jede Achse sind denkbar.Similarly, the angular position about the first axis can be accomplished with a linear actuator. Again, the required angular range in typical arrangements is only 0 ° to 90 °. Also, arrangements with multiple actuators for each axis are conceivable.
Die Antennen können bezüglich ihrer Apertur für das gleiche Frequenzband, insbesondere X-Band, Ka-Band oder Ku-Band, ausgelegt werden. Die Dimensionierung der Apertur ist beispielsweise in
Alternativ dazu kann die erste Antenne im Ka-Band und die zweite Antenne im Ku-Band betrieben werden. Damit kann je nach Verfügbarkeit oder Kosten der Satellitenverbindung im Ka- oder Ku-Band die jeweils günstigere bezüglich Leistung und Kosten ausgewählt werden. Hierbei ist zu beachten, dass die dann bezüglich der Apertur unterschiedlichen Antennen vorzugweise in Gewicht und Gewichtsverteilung aneinander angeglichen werden.Alternatively, the first antenna in the Ka band and the second antenna in the Ku band can be operated. Thus, depending on the availability or cost of the satellite connection in Ka- or Ku-band the more favorable in terms of performance and costs can be selected. It should be noted that the antennas which are different in terms of the aperture are preferably matched to one another in terms of weight and weight distribution.
Bei der angestrebten symmetrischen Anordnung bezüglich Gewicht und Gewichtsschwerpunkte beider Antennen 31, 32 um die dritte Drehachse bringt eine synchrone Bewegung beider Antennen 31, 32 auch um die erste und zweite Drehachse (sogenannter Butterfly-Betrieb) zusätzliche Vorteile. Unabhängig davon, ob beide Antennen 31, 32 in Betrieb sind, schwenken Bügel und Drehlager für die erste und zweite Drehachse beider Antennen 31, 32 im Wesentlichen synchron. Damit werden die Belastungen für Motor und Getriebe minimiert.
Claims (22)
ein dritter Antrieb (15) des Positionierungssystems senkrecht zur Positioniererplattform (6) angeordnet ist und über einen unter der Positioniererplattform (6) angeordneten Zahnkranz (19) das dritte Drehlager (7) antreibt.An antenna system according to claim 7, wherein
a third drive (15) of the positioning system is arranged perpendicular to the positioning platform (6) and drives the third pivot bearing (7) via a toothed ring (19) arranged below the positioning platform (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015101721.0A DE102015101721A1 (en) | 2015-02-06 | 2015-02-06 | Positioning system for antennas |
EP16152165.3A EP3054529B1 (en) | 2015-02-06 | 2016-01-21 | Positioning system for antennas and antenna system |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16152165.3A Division-Into EP3054529B1 (en) | 2015-02-06 | 2016-01-21 | Positioning system for antennas and antenna system |
EP16152165.3A Division EP3054529B1 (en) | 2015-02-06 | 2016-01-21 | Positioning system for antennas and antenna system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3203580A1 true EP3203580A1 (en) | 2017-08-09 |
EP3203580B1 EP3203580B1 (en) | 2018-09-26 |
Family
ID=55177883
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16152165.3A Active EP3054529B1 (en) | 2015-02-06 | 2016-01-21 | Positioning system for antennas and antenna system |
EP17158712.4A Active EP3203580B1 (en) | 2015-02-06 | 2016-01-21 | Antenna system with two antennas |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16152165.3A Active EP3054529B1 (en) | 2015-02-06 | 2016-01-21 | Positioning system for antennas and antenna system |
Country Status (5)
Country | Link |
---|---|
US (1) | US10290937B2 (en) |
EP (2) | EP3054529B1 (en) |
CN (1) | CN105870571B (en) |
DE (1) | DE102015101721A1 (en) |
ES (1) | ES2729653T3 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6760825B2 (en) * | 2016-11-11 | 2020-09-23 | 三菱重工業株式会社 | Radar equipment and aircraft |
DE102017112552A1 (en) | 2017-06-07 | 2018-12-13 | Lisa Dräxlmaier GmbH | ANTENNA WITH SEVERAL SINGLE RADIATORS |
CN107425256B (en) * | 2017-07-04 | 2020-01-14 | 上海宇航系统工程研究所 | High-positioning-precision unfolding and locking mechanism of satellite-borne parabolic antenna |
CN107819196B (en) * | 2017-09-25 | 2020-05-29 | 上海卫星工程研究所 | Three-dimensional pointing to ground data transmission antenna layout system with performance constraint |
FR3079281B1 (en) * | 2018-03-22 | 2020-03-20 | Thales | POSITIONING DEVICE |
CN112298056B (en) * | 2020-10-12 | 2024-03-15 | 长春通视光电技术股份有限公司 | Vehicle-mounted radar pitching angle swinging mechanism |
FR3130124B1 (en) * | 2021-12-09 | 2023-12-08 | Univ Franche Comte | Orientation device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383081A (en) * | 1966-07-25 | 1968-05-14 | Navy Usa | Support for planar array antenna |
JPH06252625A (en) | 1993-02-24 | 1994-09-09 | Sanwa Seiki Co Ltd | On-vehicle antenna system for tracking geostationary satellite |
EP0982797A1 (en) * | 1998-01-13 | 2000-03-01 | Mitsubishi Denki Kabushiki Kaisha | Antenna system |
US20060114164A1 (en) * | 2004-11-29 | 2006-06-01 | Elta Systems Ltd. | Phased array planar antenna and a method thereof |
US7095376B1 (en) | 2004-11-30 | 2006-08-22 | L3 Communications Corporation | System and method for pointing and control of an antenna |
US20070146222A1 (en) | 2005-10-16 | 2007-06-28 | Starling Advanced Communications Ltd. | Low profile antenna |
WO2010124867A1 (en) | 2009-04-30 | 2010-11-04 | Qest Quantenelektronische Systeme Gmbh | Broadband antenna system for satellite communication |
US20110068989A1 (en) | 2009-09-22 | 2011-03-24 | Cory Zephir Bousquet | Antenna System with Three Degrees of Freedom |
US20110241971A1 (en) * | 2010-03-31 | 2011-10-06 | Terri Bateman | Apparatus and system for a double gimbal stabilization platform |
WO2014005699A1 (en) | 2012-07-03 | 2014-01-09 | Qest Quantenelektronische Systeme Gmbh | Antenna system for broadband satellite communication in the ghz frequency range, comprising a feeding arrangement |
US20140225768A1 (en) | 2013-02-12 | 2014-08-14 | Panasonic Avionics Corporation | Optimization of Low Profile Antenna(s) for Equatorial Operation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6034643A (en) * | 1997-03-28 | 2000-03-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Directional beam antenna device and directional beam controlling apparatus |
US6911949B2 (en) * | 2002-10-21 | 2005-06-28 | Orbit Communication Ltd. | Antenna stabilization system for two antennas |
-
2015
- 2015-02-06 DE DE102015101721.0A patent/DE102015101721A1/en active Pending
-
2016
- 2016-01-21 ES ES16152165T patent/ES2729653T3/en active Active
- 2016-01-21 EP EP16152165.3A patent/EP3054529B1/en active Active
- 2016-01-21 EP EP17158712.4A patent/EP3203580B1/en active Active
- 2016-02-04 CN CN201610078102.4A patent/CN105870571B/en active Active
- 2016-02-05 US US15/017,450 patent/US10290937B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383081A (en) * | 1966-07-25 | 1968-05-14 | Navy Usa | Support for planar array antenna |
JPH06252625A (en) | 1993-02-24 | 1994-09-09 | Sanwa Seiki Co Ltd | On-vehicle antenna system for tracking geostationary satellite |
EP0982797A1 (en) * | 1998-01-13 | 2000-03-01 | Mitsubishi Denki Kabushiki Kaisha | Antenna system |
US20060114164A1 (en) * | 2004-11-29 | 2006-06-01 | Elta Systems Ltd. | Phased array planar antenna and a method thereof |
US7095376B1 (en) | 2004-11-30 | 2006-08-22 | L3 Communications Corporation | System and method for pointing and control of an antenna |
US20070146222A1 (en) | 2005-10-16 | 2007-06-28 | Starling Advanced Communications Ltd. | Low profile antenna |
WO2010124867A1 (en) | 2009-04-30 | 2010-11-04 | Qest Quantenelektronische Systeme Gmbh | Broadband antenna system for satellite communication |
US20110068989A1 (en) | 2009-09-22 | 2011-03-24 | Cory Zephir Bousquet | Antenna System with Three Degrees of Freedom |
US20110241971A1 (en) * | 2010-03-31 | 2011-10-06 | Terri Bateman | Apparatus and system for a double gimbal stabilization platform |
WO2014005699A1 (en) | 2012-07-03 | 2014-01-09 | Qest Quantenelektronische Systeme Gmbh | Antenna system for broadband satellite communication in the ghz frequency range, comprising a feeding arrangement |
US20140225768A1 (en) | 2013-02-12 | 2014-08-14 | Panasonic Avionics Corporation | Optimization of Low Profile Antenna(s) for Equatorial Operation |
Also Published As
Publication number | Publication date |
---|---|
EP3054529B1 (en) | 2019-04-17 |
CN105870571A (en) | 2016-08-17 |
EP3203580B1 (en) | 2018-09-26 |
CN105870571B (en) | 2020-09-25 |
US10290937B2 (en) | 2019-05-14 |
DE102015101721A1 (en) | 2016-08-11 |
US20160233579A1 (en) | 2016-08-11 |
EP3054529A1 (en) | 2016-08-10 |
ES2729653T3 (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3054529B1 (en) | Positioning system for antennas and antenna system | |
DE69802076T2 (en) | AERIAL SYSTEM, ESPECIALLY TO ALIGN SATELLITE IN LOW ORBIT | |
EP0027643B1 (en) | Directional antenna arrangement for a jammer tracking a target equipped with radar | |
DE69400372T2 (en) | Orientable antenna with preservation of the polarization axes | |
EP1312135B1 (en) | Arrangement and method for influencing and controlling electromagnetic alternating fields and/or antennae and antennae diagrams | |
DE69838846T2 (en) | ANTENNA TERMINAL FOR COMMUNICATION SYSTEMS | |
DE3853319T2 (en) | On-board antenna and system for mechanically controlling the antenna. | |
DE69315102T2 (en) | Gimbal vibration isolation system | |
DE102008008675B4 (en) | Radar device for a missile, in particular for a drone | |
DE602004011001T2 (en) | Lens antenna device | |
DE112005003573T5 (en) | A phased array radar antenna having a reduced seek time and methods of using the same | |
DE10335216B4 (en) | In the area of an outer surface of an aircraft arranged phased array antenna | |
DE602005006434T2 (en) | ANTENNA MODULE AND METHOD FOR SATELLITE TRACKING | |
DE102016219737A1 (en) | antenna device | |
EP2467634B1 (en) | Holding device for a displaceble sensor | |
DE2702340C3 (en) | Ship antenna | |
DE112009003183T5 (en) | Method, device and system for tracking a subreflector of a reflector antenna | |
DE69817373T2 (en) | AERIAL FOR LOW ORBIT SATELLITES | |
DE69124275T2 (en) | Fine alignment system for focusing a reflector antenna | |
DE3244225A1 (en) | Arrangement for positioning appliances such as antennas, solar generators, etc. | |
EP0920072B1 (en) | Electronically scanned phased-array antenna for a satellite radio terminal | |
DE102021101423B3 (en) | Pivoting mechanism for communication units | |
WO2010009685A1 (en) | Integrated dual band antenna and method for aeronautical satellite communication | |
WO2019101453A1 (en) | Antenna system for a vehicle | |
DE69724550T2 (en) | Arrangement for satellite reception with a planar antenna group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3054529 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180131 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180608 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3054529 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1047114 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016002115 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181227 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016002115 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20190627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190121 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160121 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1047114 Country of ref document: AT Kind code of ref document: T Effective date: 20210121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231017 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231130 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231212 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240131 Year of fee payment: 9 |