EP3203580A1 - Antenna system with two antennas - Google Patents

Antenna system with two antennas Download PDF

Info

Publication number
EP3203580A1
EP3203580A1 EP17158712.4A EP17158712A EP3203580A1 EP 3203580 A1 EP3203580 A1 EP 3203580A1 EP 17158712 A EP17158712 A EP 17158712A EP 3203580 A1 EP3203580 A1 EP 3203580A1
Authority
EP
European Patent Office
Prior art keywords
antenna
axis
positioning
positioning system
pivot bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17158712.4A
Other languages
German (de)
French (fr)
Other versions
EP3203580B1 (en
Inventor
Jörg Oppenländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lisa Draexlmaier GmbH
Original Assignee
Lisa Draexlmaier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lisa Draexlmaier GmbH filed Critical Lisa Draexlmaier GmbH
Publication of EP3203580A1 publication Critical patent/EP3203580A1/en
Application granted granted Critical
Publication of EP3203580B1 publication Critical patent/EP3203580B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the invention relates to an antenna system with two antennas, each with a positioning system, in particular for use on vehicles, e.g. Aircraft.
  • the low-profile flat-panel antennas required for the communication of aircraft with satellites are subject to particular space-constrained requirements with regard to the positioning of an antenna aperture in the direction of a satellite.
  • Positioning systems for antennas on mobile carriers have the task of optimally aligning the antenna during the spatial movement of the mobile carrier to a target, typically a target antenna, which is located, for example, on a satellite.
  • a target antenna typically a target antenna, which is located, for example, on a satellite.
  • a permanent radio link must be reliably maintained even with rapid movement of the carrier.
  • the wireless communication system uses electromagnetic waves of linear polarization, then the problem arises in 2-axis systems that, as the antenna rotates, the planes of polarization generally rotate so that the polarization plane of the target antenna is no longer aligned with the plane of polarization of the antenna itself on the positioning system matches.
  • a third axis can be introduced which allows rotation of the antenna about the beam axis regardless of the azimuth and elevation axis.
  • Such a 3-axis system then forms a complete orthogonal system and allows optimal polarization tracking.
  • the known 3-axis positioning systems for parabolic antennas can not be used for low-profile antennas, since due to the shape of the antenna aperture and the low installation space no independent rotation about the beam axis is possible, or the angular range in which such a rotation is possible, strong is restricted.
  • the polarization tracking is therefore carried out electronically or electromechanically in the signal processing path, so that no third mechanical axis is needed.
  • Such 2-axis positioning systems with separate polarization tracking 20 are particularly in hull-mounted low-profile antennas on aircraft or Vehicles used.
  • the antenna systems are characterized by the fact that the antenna apertures only have a very small height (typically less than 20 cm) in order to keep the air resistance as small as possible.
  • the antenna apertures are usually rectangular.
  • An example of such a positioning system according to the prior art is in FIG. 1 shown.
  • the additional problem arises that the antenna diagram changes spatially when the antenna rotates about elevation or azimuth axis with respect to the target antenna and its surroundings, since the antenna diagram is non-rotationally symmetrical Antennas is also not rotationally symmetric.
  • the antenna aperture with its azimuth axis always lies in the aircraft plane.
  • the aircraft level is typically a tangential plane to the earth's surface. If the aircraft position and satellite position are not of the same geographical length, then the antenna aperture, when directed at the satellite, will always be twisted by a certain angle, which depends on the geographic length, with respect to the plane of the Clarke orbit.
  • the main ray with respect to the tangent to the geostationary orbit at the location of the target satellite is the maximum width and it may lead to unauthorized irradiation of neighboring satellites.
  • the positioning system according to the invention for an antenna aperture, in particular a low-profile antenna, a bracket, on which the antenna aperture is rotatably mounted along a first axis.
  • the bracket is in turn attached to a second axis in a second pivot bearing, which is rotatably mounted on a third axis on a positioning platform.
  • the positioner platform itself is mounted in the vehicle or the third pivot bearing is rigidly connected to the vehicle.
  • the described positioning system is used in an antenna system with a first and a second antenna, at least one of which has a positioning system described above and which use a common positioning platform. This only insignificantly more space is required because both antennas can be mounted under a common radome.
  • maximum flexibility is maintained for both antennas, which opens up numerous fields of application.
  • the three axes A, B, C of the positioning system form one of the antennas, advantageously both antennas, then a complete orthogonal system, that it always allows the antenna aperture 1 to be aligned with a target antenna even in an installation space which is limited in its height, in the optimum manner adapted to the circumstances.
  • the rotatable bracket allows movement about the second axis and provides spacing of the antenna aperture from the positioner platform so that its movement about the second axis through the position platform can be unrestrained.
  • the bracket for attaching the antenna aperture may be two-armed or comprise only one arm, which then attaches more to the geometric center or the center of mass of the antenna aperture.
  • the first axis to the second axis, and the second axis to the third axis form an oblique angle, i. are deviating from the right angle.
  • the oblique arrangement of the axes is the preferred case for general installation space volumes.
  • a right-angled arrangement is more of a special case.
  • most space volumes of aircraft antennas are at least piecewise cylindrical (then preferably right-angled arrangement of the axes).
  • skew-angled arrangements are typically used in sphere volume or sphere section volume. This is usually due to the fact that the system can then be better balanced in terms of weight.
  • the 3-axes of a positioning system according to the invention do not correspond to the generic azimuth, elevation and antenna beam axes ("skew axes").
  • the generic axes can be recovered by a unitary transformation. This results in the angular settings with respect to the three axes of the invention Positioning system from the generic azimuth, elevation and skew angles clearly by a corresponding unitary rotation in 3-dimensional space. At right angles, this transformation is easier to do, but angles different from one another in a perpendicular arrangement of the axes can also be taken into account in order to achieve a better mass balance.
  • the attachment of the antenna aperture with the bracket takes place on two opposite sides of the antenna aperture.
  • the hanger has two arms. This allows the antenna aperture between the arms of the arms to spin without continuing to apply in height. This is the case in particular if the fastening of the antenna aperture takes place on its narrow sides via a respective first pivot bearing and is driven for example via a direct drive.
  • a holder secures the second rotary bearing to a third rotary bearing and the third rotary bearing is arranged on the positioning platform. This gives the antenna aperture a sufficient height above the positioner platform to make slight pivotal movements about the second axis. It is helpful if the antenna aperture has an oval or stepped oval shape, preferably with a height to width ratio of 1: ⁇ 4.
  • the overall height can be reduced further if a third drive is arranged perpendicular to the positioning platform and drives the third pivot bearing via a toothed ring arranged below the positioning platform.
  • the antenna is then covered by a radome, which has a bowl shape and builds up in operation only low aerodynamic resistances.
  • a rotational movement about the first axis and / or a rotational movement of the bracket on the second axis can be performed by means of a linear actuator.
  • a substantially centrally arranged high-frequency rotary feedthrough is integrated, which conducts high-frequency signals from and to the antenna aperture, preferably for two high-frequency channels. This supports the full 360 ° rotation of this pivot bearing.
  • the high-frequency rotary feedthrough integrated into the third rotary bearing can thus also be encapsulated more easily and protected against ingress of moisture.
  • two or more separate slip ring pairs for the power supply of the drives of the other moving parts and for control purposes are preferably integrated into the third pivot bearing.
  • Flexible coaxial conductors are suitable for the other high-frequency connections to the antenna aperture, since typically the second rotary bearing and the first rotary bearing execute only very limited rotations and the flexible coaxial conductors can easily follow these movements.
  • the two antennas can advantageously develop the following application scenarios.
  • Either the first antenna in the Ka band and the second antenna in the Ku band can be operated.
  • the preferred one can be selected.
  • the other antenna then has no function in operation and only rotates with.
  • both antennas are operated parallel to each other in the same frequency band, so for example in Ka-band or Ku-band or X-band.
  • Ka-band or Ku-band or X-band In most positions of the aircraft from equator to northern latitudes of 48 ° the elevation angle of the antenna to a geostationary satellite near the equator is only up to 30 °.
  • both antennas can simultaneously align themselves with the satellite and operate in parallel. This improves the signal-to-noise ratio and the transmitted data rate can be increased.
  • Another advantageous use of the antenna system relates to a synchronization of both antennas.
  • a symmetrical arrangement of both antennas about the third axis of rotation brings a synchronous movement of both antennas also around the first and second rotation axis (so-called butterfly operation) additionally the advantage that no additional angular momentum act on the antenna system and forces on the engine and transmission are minimized.
  • FIG. 3 shows the front view of the antenna aperture 1 at an elevation angle 0 ° and a typical movement volume limitation through a radome 18.
  • FIG. 4 shows how by a mechanical restriction, such as a stop 21, the angular range of rotation about the second axis can be limited, so that the antenna aperture 1 does not leave the movement volume.
  • Figures 5 to 8 show different alignment scenarios, which show that the movement of the positioning system can be realized in a very small volume of movement.
  • the orientation of the aperture in FIG. 5 represents, for example, a situation in which the antenna is located below the equator, but the longitude of the position of the antenna and that of the target satellite is different.
  • the antenna aperture can not be aligned with its long axis parallel to the equator, but only with its narrow axis.
  • the main antenna beam is then very wide and there are typically several satellites in the beam.
  • the antenna When received, the antenna then receives the signals from several satellites simultaneously resulting in undesirable interference and significant degradation of the signal from the target satellite.
  • the transmission power typically the transmission power must be greatly reduced, because otherwise neighboring satellites of the target satellite would be irradiated, which is not allowed by regulation.
  • the antenna aperture optimally, namely aligned with its long axis parallel to the equator.
  • the elevation angle of the satellite then corresponds here to the angle about the second axis B (about 20 °) and no longer the angle about the first axis A, which is then 90 ° here.
  • the azimuth angle of the target satellite in this special case corresponds to the angle about the third axis C.
  • FIGS. 6 to 8 For example, further alignment possibilities are shown, which can all be realized within the same installation space.
  • ⁇ ', ⁇ ' and ⁇ can be chosen so that the angle forming the long main axis of the antenna aperture and the tangent to the geostationary orbit at the location of the target satellite is minimized. This always ensures that the antenna aperture is optimally aligned with respect to its antenna pattern under the boundary condition of the limited movement volume on the target satellites.
  • Such arrangements can the available volume of movement z. B., if it is not a simple cylinder volume (ie, for example, a truncated cone volume, a Rotationsellipsoidvolumen or a volume with constrictions), even better exploit. Also, to minimize the moment of inertia, ie to minimize the dynamic loading of the axles during operation, it may be more favorable if the planes of motion are not vertical stand on each other. The coordinate system that can be assigned to the axes is then skew-angled. The arrangement works as long as the vectors forming the coordinate system are linearly independent of each other in three-dimensional space.
  • Such a positioning system is then characterized by having three axes which are arranged such that an antenna aperture is mounted on a first axis which lies in a plane which is perpendicular to the main beam direction and can be rotated about this axis, the first axis is attached to a second axis, the second axis is attached to a third axis, and the axes are interconnected such that the plane passing through the second axis when rotating about the first axis and the plane which the first axis Rotation about the second axis passes through an angle that is non-zero, and the plane which sweeps the second axis in rotation about the third axis and which forms the plane that sweeps the third axis in rotation about the second axis does not is zero.
  • FIG. 9 A preferred realization is in FIG. 9 outlined.
  • the antenna aperture 1 is on two opposite narrow sides, each with a first pivot bearing 2 on a U-shaped, substantially centered (for apertures with an inhomogeneous mass distribution, the bracket may be slightly different from the geometric center, but in terms of mass due to the weighting mounted centrally) mounted bracket 3 with two arms attached.
  • the stator of the pivot bearing 2 is located in each case on the bracket 3 and the rotor on the respective side of the antenna aperture 1 (not shown separately), so that the antenna aperture 1 about the first axis, which passes through the two first pivot bearing 2 in the bracket. 3 can be turned. Since at the in FIG. 9 shown flat antenna aperture the main beam direction perpendicular to the aperture surface (Aperturebene), the first axis lies in a plane which is perpendicular to the main beam direction.
  • the bracket 3 is attached to the side which does not intersect the first axis, with a second pivot bearing 4 to a holder 5, wherein the rotor of the second pivot bearing 4 on the bracket 3 and the stator is on the holder 5 (not shown separately ).
  • the holder 5 is fixed by means of a Positionierer disorder 6 on the rotor of a third pivot bearing 7.
  • the stator of the third pivot bearing 7 is typically rigidly connected to the structure of the mobile carrier of the antenna system.
  • the third pivot bearing 7 is designed so that it has an opening in the middle, in which high-frequency rotary unions and slip ring rotary unions can be accommodated.
  • FIG. 10 exemplifies a structure of such a third, encapsulated pivot bearing 7 in cross section.
  • the third pivot bearing 7 consists of a stator 12 and a rotor 10, which are connected by a bearing 11.
  • the bearing 11 may for example be designed as a polymer bearing, ball bearings, or needle roller bearings.
  • a high frequency rotary leadthrough 8 is mounted in the rotation axis of the rotary bearing 7.
  • the stator of the high-frequency rotary feedthrough 8 with its connections 8b (in this example with two channels) is connected to the stator 12 of the rotary bearing 7.
  • the rotor of the high-frequency rotary feedthrough 8 with its connections 8a is connected to the rotor 10 of the rotary bearing 7.
  • slip rings 9a, 9b with their connections for the power supply and control of the drives are provided in the center of the rotary bearing 7, the connections 9a to the rotor 10 and the connections 9b to the stator 12 of the rotary feedthrough 7.
  • Abrasive bodies 13 thereby ensure a galvanic contact between the terminals of the rotor 10 and those of the stator 12.
  • each channel is split into 2 subchannels. Thus, only half of the current flows through the (critical) grinding bodies. Often a decomposition in> 2 sub-channels is made.
  • the signal is also routed via the slip rings.
  • typical slip ring configurations have approx. 8 - 32 channels. Of these, about 4 - 6 are for the power supply, often one for the ground connection extra, and the rest for control purposes.
  • the three axes of the positioning system are each equipped with a motor drive, so that the inclination angle can be adjusted separately about the axes for each axis.
  • the motors are preferably electric motors, in particular brushless electric motors.
  • the drive for rotation about the third axis is preferably mounted on the Positionierwhere 6, as this makes the most efficient use of space, and equipped with a gear that allows a very precise alignment.
  • the drive 15 for rotation about the third axis is advantageously mounted vertically on the positioning platform 6 and its gear meshes with a ring gear 19 (see FIG FIG. 3 ) located on the underside of the positioning platform 6.
  • This arrangement has the advantage that by appropriate design of the ring gear 19 very high angular resolutions can be achieved.
  • a drive motor can be coupled directly with a resolver (angular resolution sensor) in a compact design.
  • the drive 16 for rotation about the second axis can be designed as a direct drive "direct drive”. That no gear is required here because the axle can be driven directly.
  • a drive motor 17 for rotation about the first axis may be mounted in or on the bracket.
  • a belt transmission or a rod transmission for driving the first axis.
  • a direct drive can be used.
  • linear actuators 14 can also be used for rotation about the second and first axes. This is schematically in FIG. 12 shown.
  • the lifting body of the linear actuator 14 is fixed to the bracket 3, the base on the Positionierermann 6.
  • the angular position of the bracket 3 about the second axis B can be easily adjusted. Since in typical arrangements, the angular range about the second axis B is only up to ⁇ 20 °, no motor with gear is required. This represents a great simplification of the arrangement.
  • the angular position about the first axis can be accomplished with a linear actuator. Again, the required angular range in typical arrangements is only 0 ° to 90 °. Also, arrangements with multiple actuators for each axis are conceivable.
  • FIG. 13 shows an inventive antenna system with a first antenna 31 and a second antenna 32, which use a common positioning platform 6.
  • the positioning systems of both antennas 31, 32 are preferably according to the variants of the FIGS. 2 to 12 designed. However, both antennas 31, 32 need not be identical. So it is also possible to use other positioning mechanisms, eg as in FIG. 1 , It However, care should be taken to ensure that the weight and arrangement of the antennas are such that no imbalance occurs when the positioning platform 6 moves about the third axis.
  • the antennas can be designed with respect to their aperture for the same frequency band, in particular X-band, Ka-band or Ku-band.
  • the dimensioning of the aperture is for example in WO2010 / 124867A1 and WO2014 / 005699A1 described.
  • both antennas 31, 32 can be aligned and operated in parallel with the satellite.
  • the signal currents via both antennas 31, 32 are then combined in a transceiver, not shown, in the case of reception and divided in the transmission case.
  • the first antenna in the Ka band and the second antenna in the Ku band can be operated.
  • the antennas which are different in terms of the aperture are preferably matched to one another in terms of weight and weight distribution.
  • both antennas 31, 32 In the desired symmetrical arrangement with respect to weight and center of gravity of both antennas 31, 32 about the third axis of rotation brings a synchronous movement of both antennas 31, 32 also around the first and second axis of rotation (so-called butterfly operation) additional advantages. Regardless of whether both antennas 31, 32 are in operation, hangers and pivot bearings for the first and second axes of rotation of both antennas 31, 32 substantially synchronously. This minimizes the load on the engine and transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

Die Erfindung betrifft ein Antennensystem mit zwei Antennen, die jeweils ein Positionierungssystem für eine Antennenapertur mit einem Bügel, an dem die Antennenapertur entlang einer ersten Achse drehbar befestigt ist. Der Bügel ist wiederum an einer zweiten Achse in einem zweiten Drehlager befestigt, welches ist an einer dritten Achse drehbar auf einer Positioniererplattform gelagert ist. Die drei Achsen des Positionierungssystems bilden dann ein vollständiges Orthogonalsystem, dass es erlaubt, die Antennenapertur auch in einem in seiner Höhe beschränkten Bauraum immer in der den Gegebenheiten angepassten optimalen Weise auf eine Zielantenne auszurichten. Beide Positionierungssysteme nutzen eine gemeinsame Positionierungsplattform.The invention relates to an antenna system with two antennas, each having a positioning system for an antenna aperture with a bracket on which the antenna aperture is rotatably mounted along a first axis. The bracket is in turn secured to a second axis in a second pivot bearing which is rotatably mounted on a positioner platform on a third axis. The three axes of the positioning system then form a complete orthogonal system that allows the antenna aperture always to be aligned with a target antenna in the optimum manner adapted to the circumstances even in a space limited in its height. Both positioning systems use a common positioning platform.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung betrifft ein Antennensystem mit zwei Antennen, mit jeweils einem Positionierungssystem, insbesondere für eine Anwendung auf Fahrzeugen, z.B. Flugzeugen. Die bei der Kommunikation von Flugzeugen mit Satelliten benötigten niederprofilen Flachantennen ("low-profile flat-panel antennas") unterliegen besonderen räumlich beengten Anforderungen bezüglich Positionierung einer Antennenapertur in Richtung eines Satelliten.The invention relates to an antenna system with two antennas, each with a positioning system, in particular for use on vehicles, e.g. Aircraft. The low-profile flat-panel antennas required for the communication of aircraft with satellites are subject to particular space-constrained requirements with regard to the positioning of an antenna aperture in the direction of a satellite.

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION

Positionierungssysteme für Antennen auf mobilen Trägern, wie etwa Fahrzeugen, Flugzeugen oder Schiffen haben die Aufgabe, die Antenne während der räumlichen Bewegung des mobilen Trägers immer optimal auf ein Ziel, typischerweise eine Zielantenne, welche sich zum Beispiel auf einem Satelliten befindet, auszurichten. In vielen Fällen muss dabei eine permanente Richtfunkverbindung auch bei schneller Bewegung des Trägers zuverlässig aufrechterhalten werden.Positioning systems for antennas on mobile carriers, such as vehicles, aircraft or ships, have the task of optimally aligning the antenna during the spatial movement of the mobile carrier to a target, typically a target antenna, which is located, for example, on a satellite. In many cases, a permanent radio link must be reliably maintained even with rapid movement of the carrier.

Um diese Aufgabe zu lösen, werden in vielen Anwendungen sogenannte 2-Achsen Positionierungssysteme verwendet, siehe dazu auch JP H06-252625 A , mit denen die Antenne in Azimut und Elevation unabhängig gedreht werden kann. Die zwei Achsen solcher Systeme bilden dabei ein Orthogonalsystem und erlauben damit die Ausrichtung der Antenne auf jeden beliebigen Punkt im dreidimensionalen Raum.To solve this problem, so-called 2-axis positioning systems are used in many applications, see also JP H06-252625 A with which the antenna can be rotated independently in azimuth and elevation. The two axes such systems form an orthogonal system and thus allow the orientation of the antenna to any point in three-dimensional space.

Arbeitet das drahtlose Kommunikationssystem mit elektromagnetischen Wellen linearer Polarisation, dann tritt bei 2-Achsen Systemen das Problem auf, dass bei Drehung der Antenne sich die Polarisationsebenen im Allgemeinen mit drehen, so dass die Polarisationsebene der Zielantenne nicht mehr mit der Polarisationsebene der Antenne, die sich auf dem Positionierungssystem befindet, übereinstimmt.If the wireless communication system uses electromagnetic waves of linear polarization, then the problem arises in 2-axis systems that, as the antenna rotates, the planes of polarization generally rotate so that the polarization plane of the target antenna is no longer aligned with the plane of polarization of the antenna itself on the positioning system matches.

Um dieses Problem zu lösen kann bei kugelsymmetrischen Bewegungsvolumen (wie z.B. bei Parabolantennen) eine dritte Achse eingeführt werden, die unabhängig von der Azimut und der Elevationsachse die Drehung der Antenne um die Strahlachse erlaubt. Ein solches 3-Achsen System bildet dann ein vollständiges Orthogonalsystem und erlaubt eine optimale Polarisationsnachführung.To solve this problem, in spherically symmetric motion volumes (such as parabolic antennas), a third axis can be introduced which allows rotation of the antenna about the beam axis regardless of the azimuth and elevation axis. Such a 3-axis system then forms a complete orthogonal system and allows optimal polarization tracking.

Die bekannten 3-Achsen Positionierungssysteme für Parabolantennen lassen sich für Niederprofil-Antennen allerdings nicht verwenden, da auf Grund der Form der Antennenapertur und des niedrigen Bauraumes keine unabhängige Drehung um die Strahlachse möglich ist, oder der Winkelbereich in dem eine solche Drehung möglich ist, stark eingeschränkt ist.However, the known 3-axis positioning systems for parabolic antennas can not be used for low-profile antennas, since due to the shape of the antenna aperture and the low installation space no independent rotation about the beam axis is possible, or the angular range in which such a rotation is possible, strong is restricted.

Bei Niederprofil-Antennen, welche zwei orthogonale lineare Polarisationen unterstützen, erfolgt die Polarisationsnachführung daher elektronisch oder elektromechanisch im Signalverarbeitungspfad, so dass keine dritte mechanische Achse benötigt wird.In low-profile antennas, which support two orthogonal linear polarizations, the polarization tracking is therefore carried out electronically or electromechanically in the signal processing path, so that no third mechanical axis is needed.

Solche 2-Achsen Positionierungssysteme mit separater Polarisationsnachführung 20 werden insbesondere bei rumpfmontierten Niederprofil-Antennen auf Flugzeugen oder Fahrzeugen verwendet. Die Antennensysteme zeichnen sich dadurch aus, dass die Antennenaperturen nur eine sehr geringe Höhe besitzen (typischerweise kleiner als 20cm) um den Luftwiderstand so klein wie möglich zu halten. Die Antennenaperturen sind meist rechteckig. Ein Beispiel eines solchen Positionierungssystems nach dem Stand der Technik ist in Figur 1 dargestellt.Such 2-axis positioning systems with separate polarization tracking 20 are particularly in hull-mounted low-profile antennas on aircraft or Vehicles used. The antenna systems are characterized by the fact that the antenna apertures only have a very small height (typically less than 20 cm) in order to keep the air resistance as small as possible. The antenna apertures are usually rectangular. An example of such a positioning system according to the prior art is in FIG. 1 shown.

Bei nicht rotationssymmetrischen Antennenaperturen auf Positionierungssystemen mit zwei Achsen A, C tritt nun allerdings das zusätzliche Problem auf, dass sich das Antennendiagramm bei Drehung der Antenne um Elevations- oder Azimutachse in Bezug auf die Zielantenne und deren Umgebung räumlich ändert, da das Antennendiagram nicht-rotationssymmetrischer Antennen ebenfalls nicht rotationssymmetrisch ist.However, with non-rotationally symmetrical antenna apertures on positioning systems with two axes A, C, the additional problem arises that the antenna diagram changes spatially when the antenna rotates about elevation or azimuth axis with respect to the target antenna and its surroundings, since the antenna diagram is non-rotationally symmetrical Antennas is also not rotationally symmetric.

Es tritt, insbesondere bei Anwendungen auf mobilen Trägern wie Flugzeugen, welche große geographische Entfernungen zurücklegen können, bei der Kommunikation mit Satelliten deshalb das Problem des "geographischen Skew" auf.Therefore, especially in applications on mobile carriers such as airplanes, which can cover large geographical distances, the problem of "geographic skew" in the communication with satellites occurs.

Dieses Problem ist dadurch bedingt, dass bei einem 2-Achsen Positionierungssystem die Antennenapertur mit ihrer Azimutachse immer in der Flugzeugebene liegt. Die Flugzeugebene ist typischerweise eine Tangentialebene zur Erdoberfläche. Sind nun Flugzeugposition und Satellitenposition nicht auf der gleichen geographischen Länge, dann ist die Antennenapertur, wenn sie auf den Satelliten gerichtet ist, immer um einen bestimmten Winkel, der von der geographischen Länge abhängt, gegenüber der Ebene des Clarke-Orbits, verdreht.This problem is due to the fact that in a 2-axis positioning system, the antenna aperture with its azimuth axis always lies in the aircraft plane. The aircraft level is typically a tangential plane to the earth's surface. If the aircraft position and satellite position are not of the same geographical length, then the antenna aperture, when directed at the satellite, will always be twisted by a certain angle, which depends on the geographic length, with respect to the plane of the Clarke orbit.

Da die Breite des Hauptstrahls von Niederprofil-Antennenaperturen mit zunehmender Drehung um die Strahlachse (ausgehend von der Azimut-Normallage) immer mehr zunimmt, muss die spektrale Leistungsdichte im Sendebetrieb der Antenne im FSS ("Fixed Satellite Service") sukzessive reduziert werden, um einen regulatorisch konformen Betrieb weiterhin zu gewährleisten.Since the width of the main beam of low-profile antenna apertures with increasing rotation about the beam axis (starting from the azimuth normal position) increases more and more, the spectral power density in the transmission mode of Antenna in the FSS ("Fixed Satellite Service") be successively reduced in order to continue to ensure a regulatory compliant operation.

Der schlechteste Fall tritt im FSS ein, wenn sich der mobile Träger unter oder in der Nähe des Äquators befindet. Dann ist der Hauptstrahl bezüglich der Tangente an den geostationären Orbit am Ort des Zielsatelliten maximal breit und es kann zur unerlaubten Bestrahlung von Nachbarsatelliten kommen.The worst case occurs in the FSS when the mobile carrier is below or near the equator. Then, the main ray with respect to the tangent to the geostationary orbit at the location of the target satellite is the maximum width and it may lead to unauthorized irradiation of neighboring satellites.

Auch im Empfang ergeben sich dann erhebliche Probleme, weil zusammen mit den Signalen des Zielsatelliten die Signale benachbarter Satelliten empfangen werden und über das Antennendiagram so gut wie keine Diskriminierung mehr stattfindet. Die Signale der benachbarten Satelliten wirken dann als Störsignale (Rauschen), die dem Nutzsignal überlagert sind und dieses korrumpieren. Die empfangbare Datenrate nimmt in diesem Fall stark ab.Also in the reception then arise considerable problems, because together with the signals of the target satellites, the signals of neighboring satellites are received and the antenna diagram as well as no discrimination takes place. The signals of the adjacent satellites then act as noise (noise), which are superimposed on the useful signal and corrupt it. The receivable data rate decreases sharply in this case.

Beides, Reduzierung der spektralen Leistungsdichte des Sendesignals und Interferenz benachbarter Satelliten im Empfangssignal, führt dazu, dass Niederprofil-Antennen auf 2-Achsen Positionierungssystemen in der Nähe des Äquators im FSS nicht, oder nur mit erheblichem Performanceverlust, betrieben werden können.Both, reducing the spectral power density of the transmitted signal and interference of adjacent satellites in the received signal, means that low-profile antennas on 2-axis positioning systems near the equator can not be operated in the FSS, or only with considerable performance loss.

In der Patentliteratur, US 2014/225768 A1 , US 7 095 376 B1 und US 2011/068989 A1 sind Positionierungssysteme beschrieben, die die Notwendigkeit der Drehung um drei Achsen thematisieren und die minimal notwendigen Drehwinkel angeben.In the patent literature, US 2014/225768 A1 . US Pat. No. 7,095,376 B1 and US 2011/068989 A1 are described positioning systems that address the need for rotation about three axes and specify the minimum necessary rotation angle.

Aus US 2007/146222 A1 sind unterschiedliche Aperturformen entnehmbar und der Hinweis, dass auch mehrere Aperturen zu einer größeren Apertur durch synchrone Ausrichtung zusammengefasst werden können und sich gemeinsam bewegen. Die Einsatzmöglichkeiten dieser Antenne sind jedoch begrenzt.Out US 2007/146222 A1 different aperture shapes are removable and the indication that even multiple apertures can be combined into a larger aperture by synchronous alignment and move together. The applications of this antenna are limited.

BESCHREIBUNG DER ERFINDUNGDESCRIPTION OF THE INVENTION

Es ist eine Aufgabe der Erfindung, die vorgenannten Schwierigkeiten bei der Nutzung und Positionierung von mehreren Antennen zu überwinden.It is an object of the invention to overcome the aforementioned difficulties in the use and positioning of multiple antennas.

Die Aufgabe wird mit einem Antennensystem mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sind in den weiteren Patentansprüchen aufgeführt.The object is achieved with an antenna system having the features of claim 1. Advantageous embodiments of the device are listed in the further claims.

Dazu enthält das erfindungsgemäße Positionierungssystem für eine Antennenapertur, insbesondere einer Niederprofil-Antenne, einen Bügel, an dem die Antennenapertur entlang einer ersten Achse drehbar befestigt ist. Der Bügel ist wiederum an einer zweiten Achse in einem zweiten Drehlager befestigt, welches an einer dritten Achse drehbar auf einer Positioniererplattform gelagert ist. Die Positioniererplattform selbst ist im Fahrzeug gelagert bzw. das dritte Drehlager ist starr mit dem Fahrzeug verbunden. Das geschilderte Positionierungssystem wird in einem Antennensystem mit einer ersten und einer zweiten Antenne einsetzt, von denen zumindest eine ein oben geschildertes Positionierungssystem aufweist und die eine gemeinsame Positionierungsplattform nutzen. Damit wird nur unerheblich mehr Bauraum benötigt, da beide Antennen unter einem gemeinsamen Radom angebracht werden können. Damit bleibt bis auf die Rotation um die dritte Achse für beide Antennen eine maximale Flexibilität erhalten, die zahlreiche Anwendungsfelder erschließt.For this purpose, the positioning system according to the invention for an antenna aperture, in particular a low-profile antenna, a bracket, on which the antenna aperture is rotatably mounted along a first axis. The bracket is in turn attached to a second axis in a second pivot bearing, which is rotatably mounted on a third axis on a positioning platform. The positioner platform itself is mounted in the vehicle or the third pivot bearing is rigidly connected to the vehicle. The described positioning system is used in an antenna system with a first and a second antenna, at least one of which has a positioning system described above and which use a common positioning platform. This only insignificantly more space is required because both antennas can be mounted under a common radome. Thus, with the exception of the rotation around the third axis, maximum flexibility is maintained for both antennas, which opens up numerous fields of application.

Nach Figur 2 bilden die drei Achsen A, B, C des Positionierungssystems einer der Antennen, vorteilhafterweise beider Antennen, dann ein vollständiges Orthogonalsystem, dass es erlaubt, die Antennenapertur 1 auch in einem in seiner Höhe beschränkten Bauraum immer in der den Gegebenheiten angepassten optimalen Weise auf eine Zielantenne auszurichten.To FIG. 2 the three axes A, B, C of the positioning system form one of the antennas, advantageously both antennas, then a complete orthogonal system, that it always allows the antenna aperture 1 to be aligned with a target antenna even in an installation space which is limited in its height, in the optimum manner adapted to the circumstances.

Der drehbare Bügel ermöglicht die Bewegung um die zweite Achse und schafft eine Beabstandung der Antennenapertur von der Positioniererplattform, so dass deren Bewegung um die zweite Achse durch die Positionsplattform ungehemmt erfolgen kann. Der Bügel zur Befestigung der Antennenapertur kann zweiarmig sein oder nur einen Arm umfassen, der dann eher an der geometrische Mitte oder dem Masseschwerpunkt der Antennenapertur ansetzt.The rotatable bracket allows movement about the second axis and provides spacing of the antenna aperture from the positioner platform so that its movement about the second axis through the position platform can be unrestrained. The bracket for attaching the antenna aperture may be two-armed or comprise only one arm, which then attaches more to the geometric center or the center of mass of the antenna aperture.

Nach einer vorteilhaften Weiterbildung der Erfindung bilden die erste Achse zur zweiten Achse, sowie die zweite Achse zur dritten Achse einen schiefen Winkel, d.h. sind vom rechten Winkel abweichend. Die schiefwinkelige Anordnung der Achsen ist für allgemeine Bauraumvolumen der Vorzugsfall. Eine rechtwinkelige Anordnung ist eher ein Sonderfall. In der Praxis sind die meisten Bauraumvolumen von Flugzeugantennen allerdings jedenfalls stückweise zylinderförmig (dann bevorzugt rechtwinklige Anordnung der Achsen). In Kugelvolumen oder Kugelabschnittsvolumen kommen jedoch typischerweise schiefwinkelige Anordnungen zur Anwendung. Das ist meist dadurch bedingt, dass das System dann gewichtsmäßig besser ausbalanciert werden kann.According to an advantageous embodiment of the invention, the first axis to the second axis, and the second axis to the third axis form an oblique angle, i. are deviating from the right angle. The oblique arrangement of the axes is the preferred case for general installation space volumes. A right-angled arrangement is more of a special case. In practice, however, most space volumes of aircraft antennas are at least piecewise cylindrical (then preferably right-angled arrangement of the axes). However, skew-angled arrangements are typically used in sphere volume or sphere section volume. This is usually due to the fact that the system can then be better balanced in terms of weight.

Im Gegensatz zu den bislang bekannten 3-Achsen Positionierungssystemen entsprechen die 3-Achsen eines erfindungsgemäßen Positionierungssystems nicht den generischen Azimut-, Elevations- und Antennenstrahlachsen ("Skew-Achsen"). Da die drei Achsen eines erfindungsgemäßen Positionierungssystems jedoch ein vollständiges Orthogonalsystem darstellen, können die generischen Achsen durch eine unitäre Transformation wiedergewonnen werden. Damit ergeben sich die Winkeleinstellungen bezüglich der drei Achsen des erfindungsgemäßen Positionierungssystems aus den generischen Azimut-, Elevations- und Skew-Winkeln eindeutig durch eine entsprechende unitäre Drehung im 3-dimensionalen Raum. Bei rechten Winkeln ist diese Transformation einfacher zu vollziehen, es können jedoch auch von einer senkrechten Anordnung der Achsen zueinander abweichende Winkel berücksichtigt werden, um eine bessere Massebalance zu erzielen.In contrast to the previously known 3-axis positioning systems, the 3-axes of a positioning system according to the invention do not correspond to the generic azimuth, elevation and antenna beam axes ("skew axes"). However, since the three axes of a positioning system according to the invention represent a complete orthogonal system, the generic axes can be recovered by a unitary transformation. This results in the angular settings with respect to the three axes of the invention Positioning system from the generic azimuth, elevation and skew angles clearly by a corresponding unitary rotation in 3-dimensional space. At right angles, this transformation is easier to do, but angles different from one another in a perpendicular arrangement of the axes can also be taken into account in order to achieve a better mass balance.

Im Allgemeinen erfordert eine einfache generische Drehung um die Azimutachse (Azimutdrehung) allerdings eine simultane Drehung um alle drei Achsen des erfindungsgemäßen Positionierungssystems. Gleiches gilt für generische Elevations- und Skew-Drehungen. Die notwendige Koordinatentransformation kann jedoch in einfacher Weise algorithmisch implementiert werden.In general, however, simple generic rotation about the azimuth axis (azimuth rotation) requires simultaneous rotation about all three axes of the positioning system of the present invention. The same applies to generic elevation and skew rotations. However, the necessary coordinate transformation can be implemented algorithmically in a simple manner.

Im Vergleich zu den bislang bekannten 3-Achsen Positionierungssystemen, welche aus generischen Achsen aufgebaut sind, hat ein erfindungsgemäßes Positionierungssystem eine Reihe von wesentlichen Vorteilen:

  • 1. Bedingt durch die neuartige Anordnung der Achsen, ist der Winkelbereich in dem um die zweite Achse gedreht werden muss, stark beschränkt. Vorteilhafterweise kann der Winkelbereich der Bewegung um die zweite Achse auf ca. ±20° beschränkt werden. Der Hauptanteil einer Skew-Drehung, deren generischer Winkelbereich ±90° ist, wird durch eine Drehung um die dritte Achse erreicht. Da der Winkelbereich der dritten Achse n x 360° (n = ∞) ist (vergl. generische Azimutdrehung), stellt dies eine erhebliche Vereinfachung der Mechanik dar.
  • 2. Bei einer generischen Anordnung der drei Achsen (nicht erfindungsgemäß) ist der typischerweise erforderliche Winkelbereich für die Azimutdrehung n x 360° (n = ∞), für die Elevationsdrehung 0° bis 90° und für die Skew-Drehung -90° bis +90°. In einem in der Höhe beschränkten Bauraum kann dann nur durch die Software-Steuerung verhindert werden, dass die Antennenapertur das Bauraumvolumen nicht verlässt, also z.B. an ein aerodynamisches Radom anstößt. Mechanische Sperren ("hard-stops") können nicht implementiert werden. Andernfalls könnte die Antenne nicht mehr optimal ausgerichtet werden. Aus Sicherheitsgründen wäre eine reine Software-Definition des Bewegungsvolumens ("swept volume") jedoch äußerst kritisch.
    Eine erfindungsgemäße Anordnung der Achsen erlaubt hingegen die Implementierung einer mechanischen Sperre (Anschlag), die den Winkelbereich um die zweite Achse einschränkt. Damit kann selbst bei Versagen der Steuerung zuverlässig ausgeschlossen werden, dass die Antennenapertur das definierte Bewegungsvolumen verlässt.
  • 3) Insbesondere für Flugzeugantennen sind die Anforderungen an die Vibrationsfestigkeit sehr hoch. Wie sich durch numerische Simulationen gezeigt hat, ist eine erfindungsgemäße Anordnung erheblich toleranter gegenüber Vibrationen, als die bekannten generischen Anordnungen. Dies ermöglicht es Antennenaperturen zu verwenden, welche ein wesentlich geringeres Gewicht besitzen, da sehr viel weniger strukturelle Vorkehrungen erforderlich sind. Auch Antennenaperturen in Leichtbauweise, z.B. mit Aluminium oder Carbonfasern, sind mit erfindungsgemäßen Positionierungssystemen jetzt möglich. Wenn die Antennenapertur leichter ist, dann muss das Positionierungssystem im Betrieb weniger Kräfte aufnehmen und kann daher ebenfalls gewichtsmäßig leichter ausgelegt werden. Insgesamt ergeben sich durch leichtere Antenennaperturen und leichtere Positionierungssysteme erhebliche Gewichtsvorteile gegenüber bekannten Systemen.
  • 4) Die Anordnung der Achsen bei erfindungsgemäßen Positionierungssystemen erlaubt erheblich kompaktere Bauformen. Da der erforderliche Winkelbereich um die zweite Achse relativ klein ist und sich der zugehörige Winkel im Betrieb nur langsam ändert, sind die erforderlichen Getriebe und Motoren wenig aufwändig. Zudem durchstreicht die Antennenapertur im Betrieb einen erheblich kleineren Bereich des Bauraumvolumens als bei generischen Anordnungen. Dies ermöglicht es zusätzlich notwendige Funktionsmodule, wie Antennensteuerungsbox oder Polarisationsnachführungselektronik, ohne Probleme auf einer typischen Positioniererplattform unterzubringen.
Compared to the previously known 3-axis positioning systems, which are constructed from generic axes, a positioning system according to the invention has a number of significant advantages:
  • 1. Due to the novel arrangement of the axes, the angular range in which must be rotated about the second axis, severely limited. Advantageously, the angular range of the movement about the second axis can be limited to approximately ± 20 °. The majority of a skew rotation whose generic angular range is ± 90 ° is achieved by rotation about the third axis. Since the angular range of the third axis is nx 360 ° (n = ∞) (see generic azimuth rotation), this represents a considerable simplification of the mechanics.
  • 2. For a generic arrangement of the three axes (not according to the invention), the azimuth rotation typically required angular range is nx 360 ° (n = ∞), 0 ° to 90 ° for the elevation rotation and -90 ° to +90 for the skew rotation °. In a limited space then space can Only be prevented by the software control that the antenna aperture does not leave the installation space volume, for example, abuts an aerodynamic radome. Mechanical locks ("hard stops") can not be implemented. Otherwise, the antenna could no longer be optimally aligned. For security reasons, a pure software definition of the movement volume ("swept volume") would be extremely critical.
    An arrangement of the axes according to the invention, however, allows the implementation of a mechanical barrier (stop), which limits the angular range about the second axis. Thus, it can be reliably ruled out even in case of failure of the control that the antenna aperture leaves the defined volume of movement.
  • 3) Especially for aircraft antennas, the requirements for vibration resistance are very high. As has been shown by numerical simulations, an arrangement according to the invention is considerably more tolerant of vibrations than the known generic arrangements. This makes it possible to use antenna apertures, which have a much lower weight, since much less structural precautions are required. Antenna apertures in lightweight construction, for example with aluminum or carbon fibers, are now possible with positioning systems according to the invention. If the antenna aperture is lighter, then the positioning system will need to absorb less force during operation and therefore may also be lighter in weight. Overall, lighter antenna apertures and lighter positioning systems provide significant weight advantages over known systems.
  • 4) The arrangement of the axes in positioning systems according to the invention allows much more compact designs. Because the required angle range around the second Axis is relatively small and the associated angle changes slowly in operation, the necessary gear and motors are inexpensive. In addition, during operation, the antenna aperture covers a considerably smaller area of the installation space volume than in the case of generic arrangements. This additionally allows necessary functional modules, such as antenna control box or polarization tracking electronics, to be accommodated without problems on a typical positioning platform.

Vorzugsweise erfolgt die Befestigung der Antennenapertur mit dem Bügel an zwei gegenüberliegenden Seiten der Antennenapertur. Der Bügel hat dazu zwei Arme. Damit kann die Antennenapertur zwischen den Bügelarmen durchdrehen ohne in der Höhe weiter aufzutragen. Dies ist insbesondere der Fall, wenn die Befestigung der Antennenapertur an deren Schmalseiten über jeweils ein erstes Drehlager erfolgt und beispielsweise über einen Direktantrieb angetrieben wird.Preferably, the attachment of the antenna aperture with the bracket takes place on two opposite sides of the antenna aperture. The hanger has two arms. This allows the antenna aperture between the arms of the arms to spin without continuing to apply in height. This is the case in particular if the fastening of the antenna aperture takes place on its narrow sides via a respective first pivot bearing and is driven for example via a direct drive.

Weitere vorteilhafte Ausgestaltungen sehen vor, dass eine Halterung das zweite Drehlager an einem dritten Drehlager befestigt und das dritte Drehlager auf der Positioniererplattform angeordnet ist. Damit erhält die Antennenapertur eine ausreichende Höhe über der Positioniererplattform um geringfügige Schwenkbewegungen um die zweite Achse auszuführen. Unterstützend ist dabei, wenn die Antennenapertur eine ovale oder abgestuft ovale Form hat, bevorzugt mit einem Höhen- zu Breitenverhältnis von 1 : ≥4.Further advantageous embodiments provide that a holder secures the second rotary bearing to a third rotary bearing and the third rotary bearing is arranged on the positioning platform. This gives the antenna aperture a sufficient height above the positioner platform to make slight pivotal movements about the second axis. It is helpful if the antenna aperture has an oval or stepped oval shape, preferably with a height to width ratio of 1: ≥4.

Die Bauhöhe kann weiter reduziert werden, wenn ein dritter Antrieb senkrecht zur Positioniererplattform angeordnet ist und über einen unter der Positioniererplattform angeordneten Zahnkranz das dritte Drehlager antreibt. Die Antenne ist dann von einem Radom abdeckbar, das eine Schüsselform hat und im Betrieb nur geringe aerodynamische Widerstände aufbaut.The overall height can be reduced further if a third drive is arranged perpendicular to the positioning platform and drives the third pivot bearing via a toothed ring arranged below the positioning platform. The antenna is then covered by a radome, which has a bowl shape and builds up in operation only low aerodynamic resistances.

Alternativ zu Antrieben an den Drehlagern kann eine Drehbewegung um die erste Achse und/oder eine Drehbewegung des Bügels auf der zweiten Achse mittels eines Linearaktuators ausgeführt werden.As an alternative to drives on the rotary bearings, a rotational movement about the first axis and / or a rotational movement of the bracket on the second axis can be performed by means of a linear actuator.

Durch die eingeschränkten Bewegungsszenarien für die ersten Drehlager und das zweite Drehlager eignen sich diese für einen Antrieb durch einen Direktantrieb, der kein Getriebe erfordert und damit weiter Gewicht spart.Due to the limited motion scenarios for the first pivot bearing and the second pivot bearing, these are suitable for a drive by a direct drive, which requires no gear and thus further saves weight.

In das dritte Drehlager wird vorteilhafterweise eine im Wesentlichen mittig angeordnete Hochfrequenzdrehdurchführung integriert, die hochfrequente Signale von und zur Antennenapertur leitet, vorzugsweise für zwei Hochfrequenzkanäle. Damit wird die volle 360° Drehung dieses Drehlagers unterstützt. Die in das dritte Drehlager integrierte Hochfrequenzdrehdurchführung kann damit auch leichter verkapselt und gut gegen einen Feuchtigkeitseintritt geschützt werden. Bevorzugt werden in das dritte Drehlager zudem zwei oder mehr getrennte Schleifringpaare für die Stromversorgung der Antriebe der weiteren beweglichen Teile und für Steuerungszwecke integriert. Für die übrigen Hochfrequenzverbindungen zur Antennenapertur eignen sich flexible Koaxialleiter, da typischerweise das zweite Drehlager und das erste Drehlager nur sehr eingeschränkte Drehungen ausführen und die flexiblen Koaxialleiter diesen Bewegungen leicht folgen können.In the third pivot bearing advantageously a substantially centrally arranged high-frequency rotary feedthrough is integrated, which conducts high-frequency signals from and to the antenna aperture, preferably for two high-frequency channels. This supports the full 360 ° rotation of this pivot bearing. The high-frequency rotary feedthrough integrated into the third rotary bearing can thus also be encapsulated more easily and protected against ingress of moisture. In addition, two or more separate slip ring pairs for the power supply of the drives of the other moving parts and for control purposes are preferably integrated into the third pivot bearing. Flexible coaxial conductors are suitable for the other high-frequency connections to the antenna aperture, since typically the second rotary bearing and the first rotary bearing execute only very limited rotations and the flexible coaxial conductors can easily follow these movements.

Es hat sich als vorteilhaft herausgestellt, wenn der Antrieb an den Drehlagern mittels bürstenloser Elektromotoren erfolgt.It has proven to be advantageous if the drive takes place on the pivot bearings by means of brushless electric motors.

Durch die festgestellten geringeren Vibrationen ist es möglich Aluminium- oder gar Kohlefaserstrukturen bei der Halterung und/oder dem Bügel etc. zu nutzen, die einen weiteren Gewichtsvorteil mit sich bringen.Due to the observed lower vibrations, it is possible to use aluminum or even carbon fiber structures in the holder and / or the bracket, etc., which bring a further weight advantage.

Die zwei Antennen können vorteilhafterweise folgende Anwendungsszenarien erschließen.The two antennas can advantageously develop the following application scenarios.

Entweder kann die erste Antenne im Ka-Band und die zweite Antenne im Ku-Band betrieben werden. Damit kann je nach Verfügbarkeit oder Kosten der Satellitenverbindung im Ka- oder Ku-Band die jeweils bevorzugte ausgewählt werden. Die jeweils andere Antenne hat dann im Betrieb keine Funktion und dreht nur mit.Either the first antenna in the Ka band and the second antenna in the Ku band can be operated. Thus, depending on the availability or cost of the satellite connection in the Ka or Ku band, the preferred one can be selected. The other antenna then has no function in operation and only rotates with.

Oder beide Antennen werden parallel zueinander im gleichen Frequenzband, also beispielsweise im Ka-Band oder Ku-Band oder X-Band betrieben. In den meisten Positionen des Flugzeugs von Äquator bis in nördliche Breiten von 48° beträgt der Elevationswinkel der Antenne zu einem geostationären Satelliten in Äquatornähe nur bis zu 30°. Somit können sich auch beide Antennen gleichzeitig auf den Satelliten ausrichten und parallel betrieben werden. Damit verbessert sich das Signal/Rausch-Verhältnis und die übertragene Datenrate kann erhöht werden.Or both antennas are operated parallel to each other in the same frequency band, so for example in Ka-band or Ku-band or X-band. In most positions of the aircraft from equator to northern latitudes of 48 ° the elevation angle of the antenna to a geostationary satellite near the equator is only up to 30 °. Thus, both antennas can simultaneously align themselves with the satellite and operate in parallel. This improves the signal-to-noise ratio and the transmitted data rate can be increased.

Eine weitere vorteilhafte Nutzung des Antennensystems betrifft einen Gleichlauf beider Antennen. Bei einer symmetrischen Anordnung beider Antennen um die dritte Drehachse bringt eine synchrone Bewegung beider Antennen auch um die erste und zweite Drehachse (sogenannter Butterfly-Betrieb) zusätzlich den Vorteil, dass keine zusätzlichen Drehimpulse auf das Antennensystem wirken und Kräfte auf Motor und Getriebe minimiert werden.Another advantageous use of the antenna system relates to a synchronization of both antennas. In a symmetrical arrangement of both antennas about the third axis of rotation brings a synchronous movement of both antennas also around the first and second rotation axis (so-called butterfly operation) additionally the advantage that no additional angular momentum act on the antenna system and forces on the engine and transmission are minimized.

Darüber hinaus sind weitere Vorteile und Merkmale der vorliegenden Erfindung aus der folgenden Beschreibung bevorzugter Ausführungsformen ersichtlich. Die dort beschriebenen Merkmale können alleinstehend oder in Kombination mit einem oder mehreren der oben erwähnten Merkmale umgesetzt werden, insofern sich die Merkmale nicht widersprechen. Die folgende Beschreibung der bevorzugten Ausführungsformen erfolgt dabei unter Bezugnahme auf die begleitenden Zeichnungen.In addition, other advantages and features of the present invention will become apparent from the following description of preferred embodiments. The features described therein may be implemented alone or in combination with one or more of the features mentioned above insofar as the features are not contradictory. The following description of the preferred Embodiments are made with reference to the accompanying drawings.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

  • Figur 1 zeigt ein Positionierungssystem nach dem Stand der Technik. FIG. 1 shows a positioning system according to the prior art.
  • Figur 2 zeigt ein erfindungsgemäßes Positionierungssystem mit drei Achsen. FIG. 2 shows an inventive positioning system with three axes.
  • Figuren 3 und 4 zeigen ein erfindungsgemäßes Positionierungssystem unter einem Radom. Figures 3 and 4 show a positioning system according to the invention under a radome.
  • Figuren 5 bis 8 zeigen ein erfindungsgemäßes Positionierungssystem in unterschiedlichen Positionen der Antennenapertur. FIGS. 5 to 8 show a positioning system according to the invention in different positions of the antenna aperture.
  • Figur 9 zeigt die Anordnung der Drehlager eines erfindungsgemäßen Positionierungssystems. FIG. 9 shows the arrangement of the pivot bearing of a positioning system according to the invention.
  • Figur 10 zeigt eine Hochfrequenzdurchführung am dritten Drehlager. FIG. 10 shows a high-frequency feedthrough at the third pivot bearing.
  • Figur 11 zeigt ein erfindungsgemäßes Positionierungssystem mit Direktantrieben. FIG. 11 shows an inventive positioning system with direct drives.
  • Figur 12 zeigt die Nutzung eines Linearaktuators. FIG. 12 shows the use of a linear actuator.
  • Figur 13 zeigt ein Antennensystem mit zwei Antennen. FIG. 13 shows an antenna system with two antennas.
AUSFÜHRUNGSBEISPIELEEMBODIMENTS

Figur 3 zeigt die Frontansicht der Antennenapertur 1 bei einem Elevationswinkel 0° und eine typische Bewegungsvolumenbegrenzung durch ein Radom 18. Figur 4 zeigt wie durch eine mechanische Beschränkung, z.B. einen Anschlag 21, der Winkelbereich der Drehung um die zweite Achse eingegrenzt werden kann, so dass die Antennenapertur 1 das Bewegungsvolumen nicht verlässt. FIG. 3 shows the front view of the antenna aperture 1 at an elevation angle 0 ° and a typical movement volume limitation through a radome 18. FIG. 4 shows how by a mechanical restriction, such as a stop 21, the angular range of rotation about the second axis can be limited, so that the antenna aperture 1 does not leave the movement volume.

In Abbildungen 5 bis 8 sind verschiedene Ausrichtungsszenarien dargestellt, die zeigen, dass sich die Bewegung des Positionierungssystems in einem sehr kleinen Bewegungsvolumen realisieren lässt. Die Ausrichtung der Apertur in Figur 5 stellt z.B. eine Situation dar, in der sich die Antenne unter dem Äquator befindet, der Längengrad der Position der Antenne und der des Zielsatelliten sich jedoch unterscheidet. In einer solchen Situation kann mit einem 2-Achsen-Positionierer die Antennenapertur nicht mit ihrer langen Achse parallel zum Äquator ausgerichtet werden, sondern nur mit ihrer schmalen Achse. Der Antennenhauptstrahl ist dann jedoch sehr breit und es liegen typischerweise mehrere Satelliten im Strahl. Im Empfangsfall empfängt die Antenne dann die Signale mehrerer Satelliten gleichzeitig was zu einer unerwünschten Überlagerung und zu einer signifikanten Degradation des Signals vom Zielsatelliten führt. Im Sendefall muss typischerweise die Sendeleistung stark reduziert werden, weil sonst Nachbarsatelliten des Zielsatelliten mit bestrahlt werden würden, was regulatorisch nicht erlaubt ist.Figures 5 to 8 show different alignment scenarios, which show that the movement of the positioning system can be realized in a very small volume of movement. The orientation of the aperture in FIG. 5 represents, for example, a situation in which the antenna is located below the equator, but the longitude of the position of the antenna and that of the target satellite is different. In such a situation, with a 2-axis positioner, the antenna aperture can not be aligned with its long axis parallel to the equator, but only with its narrow axis. However, the main antenna beam is then very wide and there are typically several satellites in the beam. When received, the antenna then receives the signals from several satellites simultaneously resulting in undesirable interference and significant degradation of the signal from the target satellite. In the transmission case typically the transmission power must be greatly reduced, because otherwise neighboring satellites of the target satellite would be irradiated, which is not allowed by regulation.

Wie in Figur 5 dargestellt kann mit einem erfindungsgemäßen Positionierungssystem mit Hilfe der Achse B auch in einer solchen Situation die Antennenapertur optimal, nämlich mit ihrer langen Achse parallel zum Äquator, ausgerichtet werden. Der Elevationswinkel des Satelliten entspricht dann hier dem Winkel um die zweite Achse B (ca. 20°) und nicht mehr dem Winkel um die erste Achse A, der hier dann 90° beträgt. Der Azimutwinkel des Zielsatelliten entspricht in diesem Spezialfall dem Winkel um die dritte Achse C.As in FIG. 5 shown with a positioning system according to the invention with the aid of the axis B in such a situation, the antenna aperture optimally, namely aligned with its long axis parallel to the equator. The elevation angle of the satellite then corresponds here to the angle about the second axis B (about 20 °) and no longer the angle about the first axis A, which is then 90 ° here. The azimuth angle of the target satellite in this special case corresponds to the angle about the third axis C.

In den Figuren 6 bis 8 sind beispielhaft weitere Ausrichtungsmöglichkeiten dargestellt, welche sich alle innerhalb desselben Bauraumes realisieren lassen. Wie oben beschrieben ergibt sich in diesen allgemeinen Fällen die Ausrichtung auf einen Zielsatelliten mit Azimutwinkel α und Elevationswinkel β durch eine Drehung α' um die Achse C, eine Drehung β' um die Achse A und eine Drehung σ um die Achse B, so dass α = α(α', β', σ) und β = β(α', β', σ) gilt. Da dieses Gleichungssystem überbestimmt ist, können α', β' und σ zudem so gewählt werden, dass der Winkel den die lange Hauptachse der Antennenapertur und die Tangente an den geostationären Orbit am Ort des Zielsatelliten bilden, minimiert wird. Damit ist immer gewährleistet, dass die Antennenapertur bezüglich ihres Antennendiagramms unter der Randbedingung des begrenzten Bewegungsvolumens optimal auf den Zielsatelliten ausgerichtet ist.In the FIGS. 6 to 8 For example, further alignment possibilities are shown, which can all be realized within the same installation space. As described above, in these general cases, the orientation to a target satellite with azimuth angle α and elevation angle β results from a rotation α 'about the axis C, a rotation β' about the axis A and a rotation σ about the axis B, such that α = α (α ', β', σ) and β = β (α ', β', σ). Moreover, since this system of equations is overdetermined, α ', β' and σ can be chosen so that the angle forming the long main axis of the antenna aperture and the tangent to the geostationary orbit at the location of the target satellite is minimized. This always ensures that the antenna aperture is optimally aligned with respect to its antenna pattern under the boundary condition of the limited movement volume on the target satellites.

Wie aus diesen Figuren ersichtlich, ist es zur optimalen Ausnutzung des zur Verfügung stehenden Bewegungsvolumens oft vorteilhaft keine genau rechteckigen Antennenaperturen zu verwenden. Ovale oder abgestufte Formfaktoren passen sich insbesondere aeronautischen Radomen besser an.As can be seen from these figures, it is often advantageous not to use exactly rectangular antenna apertures for optimum utilization of the available movement volume. Oval or graded shape factors adapt better to aeronautical radomes in particular.

Bei bestimmten Aperturformen oder Formen des Bewegungsvolumens kann es außerdem vorteilhaft sein, wenn die jeweiligen Ebenen, welche die Achsen bei Drehung um die jeweils nächste Achse durchstreichen, und diese nächste Achse nicht senkrecht aufeinander stehen.For certain aperture shapes or shapes of the movement volume, it may also be advantageous if the respective planes which cross the axes when rotating about the respective next axis and this next axis are not perpendicular to one another.

Solche Anordnungen können das zur Verfügung stehenden Bewegungsvolumen z. B. dann, wenn es sich nicht um ein einfaches Zylindervolumen (also z.B. um ein Kegelstumpfvolumen, ein Rotationsellipsoidvolumen oder um ein Volumen mit Einschnürungen) handelt, noch besser ausnutzen. Auch kann es zur Minimierung des Trägheitsmoments, d.h. zu Minimierung der dynamischen Belastung der Achsen im Betrieb, günstiger sein, wenn die Bewegungsebenen nicht senkrecht aufeinander stehen. Das den Achsen zuordenbare Koordinatensystem ist dann schiefwinkelig. Die Anordnung funktioniert solange die Vektoren, welche das Koordinatensystem bilden, im dreidimensionalen Raum voneinander linear unabhängig sind.Such arrangements can the available volume of movement z. B., if it is not a simple cylinder volume (ie, for example, a truncated cone volume, a Rotationsellipsoidvolumen or a volume with constrictions), even better exploit. Also, to minimize the moment of inertia, ie to minimize the dynamic loading of the axles during operation, it may be more favorable if the planes of motion are not vertical stand on each other. The coordinate system that can be assigned to the axes is then skew-angled. The arrangement works as long as the vectors forming the coordinate system are linearly independent of each other in three-dimensional space.

Ein solches Positionierungssystem zeichnet sich dann dadurch aus, dass es drei Achsen besitzt, welche derart angeordnet sind, dass eine Antennenapertur an einer ersten Achse angebracht ist, welche in einer Ebene liegt, die senkrecht zur Hauptstrahlrichtung steht, und um diese Achse gedreht werden kann, die erste Achse an einer zweiten Achse angebracht ist, die zweite Achse an einer dritten Achse angebracht ist, und die Achsen derart miteinander verbunden sind, dass die Ebene welche die zweite Achse bei Drehung um die erste Achse durchstreicht und die Ebene welche die erste Achse bei Drehung um die zweite Achse durchstreicht einen Winkel bilden, der nicht null ist, und die Ebene welche die zweite Achse bei Drehung um die dritte Achse durchstreicht und die Ebene, die die dritte Achse bei Drehung um die zweite Achse durchstreicht einen Winkel bilden, der nicht null ist.Such a positioning system is then characterized by having three axes which are arranged such that an antenna aperture is mounted on a first axis which lies in a plane which is perpendicular to the main beam direction and can be rotated about this axis, the first axis is attached to a second axis, the second axis is attached to a third axis, and the axes are interconnected such that the plane passing through the second axis when rotating about the first axis and the plane which the first axis Rotation about the second axis passes through an angle that is non-zero, and the plane which sweeps the second axis in rotation about the third axis and which forms the plane that sweeps the third axis in rotation about the second axis does not is zero.

Eine bevorzugte Realisierung ist in Figur 9 skizziert. Die Antennenapertur 1 ist an zwei gegenüber liegenden Schmalseiten mit jeweils einem ersten Drehlager 2 an einem U-förmigen, im Wesentlichen mittig (für Aperturen mit einer inhomogenen Massenverteilung kann der Bügel wegen der Gewichtsaustarierung auch leicht abweichend von der geometrischen Mitte, jedoch in Bezüglich der Masse mittig angebracht werden) gelagerten Bügel 3 mit zwei Armen angebracht. Der Stator der Drehlager 2 befindet sich jeweils auf dem Bügel 3 und der Rotor an der jeweiligen Seite der Antennenapertur 1 (nicht gesondert dargestellt), so dass die Antennenapertur 1 um die erste Achse, welche durch die beiden ersten Drehlager 2 geht, im Bügel 3 gedreht werden kann. Da bei der in Figur 9 dargestellten flachen Antennenapertur die Hauptstrahlrichtung senkrecht zur Aperturfläche (Aperturebene) ist, liegt die erste Achse in einer Ebene, welche senkrecht zur Hauptstrahlrichtung steht.A preferred realization is in FIG. 9 outlined. The antenna aperture 1 is on two opposite narrow sides, each with a first pivot bearing 2 on a U-shaped, substantially centered (for apertures with an inhomogeneous mass distribution, the bracket may be slightly different from the geometric center, but in terms of mass due to the weighting mounted centrally) mounted bracket 3 with two arms attached. The stator of the pivot bearing 2 is located in each case on the bracket 3 and the rotor on the respective side of the antenna aperture 1 (not shown separately), so that the antenna aperture 1 about the first axis, which passes through the two first pivot bearing 2 in the bracket. 3 can be turned. Since at the in FIG. 9 shown flat antenna aperture the main beam direction perpendicular to the aperture surface (Aperturebene), the first axis lies in a plane which is perpendicular to the main beam direction.

Der Bügel 3 ist an der Seite, welche die erste Achse nicht schneidet, mit einem zweiten Drehlager 4 an einer Halterung 5 befestigt, wobei der Rotor des zweiten Drehlagers 4 sich am Bügel 3 und der Stator sich an der Halterung 5 befindet (nicht gesondert dargestellt). Die Halterung 5 ist mit Hilfe einer Positioniererplattform 6 am Rotor eines dritten Drehlagers 7 befestigt. Der Stator des dritten Drehlagers 7 ist typischerweise mit der Struktur des mobilen Trägers des Antennensystems starr verbunden.The bracket 3 is attached to the side which does not intersect the first axis, with a second pivot bearing 4 to a holder 5, wherein the rotor of the second pivot bearing 4 on the bracket 3 and the stator is on the holder 5 (not shown separately ). The holder 5 is fixed by means of a Positioniererplattform 6 on the rotor of a third pivot bearing 7. The stator of the third pivot bearing 7 is typically rigidly connected to the structure of the mobile carrier of the antenna system.

In einer bevorzugten Ausführungsform ist das dritte Drehlager 7 so ausgelegt, dass es in der Mitte eine Öffnung besitzt, in welcher Hochfrequenz-Drehdurchführungen und Schleifring-Drehdurchführungen untergebracht werden können. Figur 10 skizziert beispielhaft einen Aufbau eines solchen dritten, verkapselten Drehlagers 7 im Querschnitt.In a preferred embodiment, the third pivot bearing 7 is designed so that it has an opening in the middle, in which high-frequency rotary unions and slip ring rotary unions can be accommodated. FIG. 10 exemplifies a structure of such a third, encapsulated pivot bearing 7 in cross section.

Das dritte Drehlager 7 besteht aus einem Stator 12 und einem Rotor 10, welche durch ein Lager 11 verbunden sind. Das Lager 11 kann z.B. als Polymerlager, Kugellager, oder Nadellager ausgeführt sein. Eine Hochfrequenzdrehdurchführung 8 ist in der Drehachse des Drehlagers 7 angebracht. Der Stator der Hochfrequenzdrehdurchführung 8 mit seinen Anschlüssen 8b (hier z.B. mit zwei Kanälen) ist mit dem Stator 12 des Drehlagers 7 verbunden. Der Rotor der Hochfrequenzdrehdurchführung 8 mit seinen Anschlüssen 8a ist mit dem Rotor 10 des Drehlagers 7 verbunden. Neben der Hochfrequenzdrehdurchführung 8 sind im Zentrum des Drehlagers 7 Schleifringe 9a, 9b mit ihren Anschlüssen für die Stromversorgung und Steuerung der Antriebe vorhanden, wobei die Anschlüsse 9a zum Rotor 10 und die Anschlüsse 9b zum Stator 12 der Drehdurchführung 7 gehören. Schleifkörper 13 sorgen dabei für einen galvanischen Kontakt zwischen den Anschlüssen des Rotors 10 und denen des Stators 12.The third pivot bearing 7 consists of a stator 12 and a rotor 10, which are connected by a bearing 11. The bearing 11 may for example be designed as a polymer bearing, ball bearings, or needle roller bearings. A high frequency rotary leadthrough 8 is mounted in the rotation axis of the rotary bearing 7. The stator of the high-frequency rotary feedthrough 8 with its connections 8b (in this example with two channels) is connected to the stator 12 of the rotary bearing 7. The rotor of the high-frequency rotary feedthrough 8 with its connections 8a is connected to the rotor 10 of the rotary bearing 7. In addition to the high-frequency rotary feedthrough 8, slip rings 9a, 9b with their connections for the power supply and control of the drives are provided in the center of the rotary bearing 7, the connections 9a to the rotor 10 and the connections 9b to the stator 12 of the rotary feedthrough 7. Abrasive bodies 13 thereby ensure a galvanic contact between the terminals of the rotor 10 and those of the stator 12.

Dargestellt sind beispielhaft 3 Schleifringpaare für 3 Kanäle. Um die Strombelastung zu verringern, ist jeder Kanal in 2-Subkanäle zerlegt. Damit fließt durch die (kritischen) Schleifkörper jeweils nur die Hälfte des Stroms. Oft wird auch eine Zerlegung in > 2 Sub-Kanäle vorgenommen.
Die Signalführung erfolgt ebenfalls über die Schleifringe. Je nach Anforderung haben typische Schleifringkonfigurationen ca. 8 - 32 Kanäle. Davon sind ca. 4 - 6 für die Stromversorgung, oft einer für die Masseverbindung extra, und der Rest für Steuerungszwecke.
Illustrated are 3 pairs of slip rings for 3 channels. To reduce the current load, each channel is split into 2 subchannels. Thus, only half of the current flows through the (critical) grinding bodies. Often a decomposition in> 2 sub-channels is made.
The signal is also routed via the slip rings. Depending on requirements, typical slip ring configurations have approx. 8 - 32 channels. Of these, about 4 - 6 are for the power supply, often one for the ground connection extra, and the rest for control purposes.

Die drei Achsen des Positionierungssystems sind mit jeweils einem Motorantrieb ausgestattet, so dass der Neigungswinkel um die Achsen für jede Achse getrennt eingestellt werden kann. Die Motoren sind bevorzugt Elektromotoren, insbesondere bürstenlose Elektromotoren.The three axes of the positioning system are each equipped with a motor drive, so that the inclination angle can be adjusted separately about the axes for each axis. The motors are preferably electric motors, in particular brushless electric motors.

Der Antrieb für eine Drehung um die dritte Achse ist bevorzugt auf der Positioniererplattform 6 angebracht, da dies den Bauraum am effizientesten ausnutzt, und mit einem Getriebe ausgestattet, das eine sehr exakte Ausrichtung erlaubt.The drive for rotation about the third axis is preferably mounted on the Positionierplattform 6, as this makes the most efficient use of space, and equipped with a gear that allows a very precise alignment.

Wie in Figur 11 beispielhaft dargestellt, ist der Antrieb 15 für eine Drehung um die dritte Achse vorteilhafterweise senkrecht stehend auf der Positioniererplattform 6 angebracht und sein Getriebe greift in einen Zahnkranz 19 (siehe Figur 3) der sich auf der Unterseite der Positioniererplattform 6 befindet. Diese Anordnung hat den Vorteil, dass durch entsprechende Auslegung des Zahnkranzes 19 sehr hohe Winkelauflösungen erreicht werden können. Zudem kann ein Antriebsmotor direkt mit einem Resolver (Winkelauflösungssensor) in kompakter Bauweise gekoppelt werden.As in FIG. 11 shown by way of example, the drive 15 for rotation about the third axis is advantageously mounted vertically on the positioning platform 6 and its gear meshes with a ring gear 19 (see FIG FIG. 3 ) located on the underside of the positioning platform 6. This arrangement has the advantage that by appropriate design of the ring gear 19 very high angular resolutions can be achieved. In addition, a drive motor can be coupled directly with a resolver (angular resolution sensor) in a compact design.

Der Antrieb 16 für eine Drehung um die zweite Achse kann als Direktantrieb "direct drive" ausgelegt werden. D.h. hier ist kein Getriebe erforderlich, weil die Achse direkt angetrieben werden kann.The drive 16 for rotation about the second axis can be designed as a direct drive "direct drive". That no gear is required here because the axle can be driven directly.

Ein Antriebsmotor 17 für die Drehung um die erste Achse kann im oder am Bügel angebracht werden. Um das Bewegungssvolumen durch den Antrieb 17 nicht einzuschränken, ist es hier vorteilhaft ein Riemengetriebe oder ein Stangengetriebe zum Antrieb der ersten Achse zu verwenden. Alternativ kann auch ein Direktantrieb verwendet werden.A drive motor 17 for rotation about the first axis may be mounted in or on the bracket. In order not to restrict the volume of movement by the drive 17, it is advantageous here to use a belt transmission or a rod transmission for driving the first axis. Alternatively, a direct drive can be used.

An Stelle von Elektromotoren können zur Drehung um die zweite und erste Achse auch Linearaktuatoren 14 verwendet werden. Dies ist schematisch in Figur 12 dargestellt. Der Hubkörper des Linearaktuators 14 ist am Bügel 3 befestigt, die Basis auf der Positioniererplattform 6. Auch mit dieser Anordnung kann die Winkelstellung des Bügels 3 um die zweite Achse B in einfacher Weise eingestellt werden. Da in typischen Anordnungen der Winkelbereich um die zweite Achse B nur bis ca. ±20° beträgt, ist kein Motor mit Getriebe erforderlich. Dies stellt eine starke Vereinfachung der Anordnung dar.Instead of electric motors, linear actuators 14 can also be used for rotation about the second and first axes. This is schematically in FIG. 12 shown. The lifting body of the linear actuator 14 is fixed to the bracket 3, the base on the Positioniererplattform 6. Also with this arrangement, the angular position of the bracket 3 about the second axis B can be easily adjusted. Since in typical arrangements, the angular range about the second axis B is only up to ± 20 °, no motor with gear is required. This represents a great simplification of the arrangement.

In gleicher Weise kann die Winkelstellung um die erste Achse mit einem Linearaktuator bewerkstelligt werden. Auch hier ist der erforderliche Winkelbereich in typischen Anordnungen nur 0° bis 90°. Auch Anordnungen mit mehreren Aktuatoren für jede Achse sind denkbar.Similarly, the angular position about the first axis can be accomplished with a linear actuator. Again, the required angular range in typical arrangements is only 0 ° to 90 °. Also, arrangements with multiple actuators for each axis are conceivable.

Figur 13 zeigt ein erfindungsgemäßes Antennensystem mit einer ersten Antenne 31 und einer zweiten Antenne 32, die eine gemeinsame Positionierungsplattform 6 nutzen. Die Positionierungssysteme beider Antennen 31, 32 sind bevorzugt entsprechend der Varianten nach den Figuren 2 bis 12 ausgestaltet. Beide Antennen 31, 32 müssen jedoch nicht baugleich sein. So ist es auch denkbar andere Positionierungsmechanismen zu nutzen, z.B. wie in Figur 1. Es sollte jedoch darauf geachtet werden, dass Gewicht und Anordnung der Antennen so gewählt werden, dass bei einer Bewegung der Positionierungsplattform 6 um die dritte Achse keine Unwucht entsteht. FIG. 13 shows an inventive antenna system with a first antenna 31 and a second antenna 32, which use a common positioning platform 6. The positioning systems of both antennas 31, 32 are preferably according to the variants of the FIGS. 2 to 12 designed. However, both antennas 31, 32 need not be identical. So it is also possible to use other positioning mechanisms, eg as in FIG. 1 , It However, care should be taken to ensure that the weight and arrangement of the antennas are such that no imbalance occurs when the positioning platform 6 moves about the third axis.

Die Antennen können bezüglich ihrer Apertur für das gleiche Frequenzband, insbesondere X-Band, Ka-Band oder Ku-Band, ausgelegt werden. Die Dimensionierung der Apertur ist beispielsweise in WO2010/124867A1 und WO2014/005699A1 beschrieben. In diesem Fall können bei bestimmten Winkelszenarien zum Satelliten beide Antennen 31, 32 parallel auf den Satelliten ausgerichtet und betrieben werden. Die Signalströme über beide Antennen 31, 32 werden dann in einer nicht dargestellten Sende-/Empfangseinrichtung im Empfangsfall kombiniert und im Sendefall aufgeteilt.The antennas can be designed with respect to their aperture for the same frequency band, in particular X-band, Ka-band or Ku-band. The dimensioning of the aperture is for example in WO2010 / 124867A1 and WO2014 / 005699A1 described. In this case, in certain angular satellite scenarios, both antennas 31, 32 can be aligned and operated in parallel with the satellite. The signal currents via both antennas 31, 32 are then combined in a transceiver, not shown, in the case of reception and divided in the transmission case.

Alternativ dazu kann die erste Antenne im Ka-Band und die zweite Antenne im Ku-Band betrieben werden. Damit kann je nach Verfügbarkeit oder Kosten der Satellitenverbindung im Ka- oder Ku-Band die jeweils günstigere bezüglich Leistung und Kosten ausgewählt werden. Hierbei ist zu beachten, dass die dann bezüglich der Apertur unterschiedlichen Antennen vorzugweise in Gewicht und Gewichtsverteilung aneinander angeglichen werden.Alternatively, the first antenna in the Ka band and the second antenna in the Ku band can be operated. Thus, depending on the availability or cost of the satellite connection in Ka- or Ku-band the more favorable in terms of performance and costs can be selected. It should be noted that the antennas which are different in terms of the aperture are preferably matched to one another in terms of weight and weight distribution.

Bei der angestrebten symmetrischen Anordnung bezüglich Gewicht und Gewichtsschwerpunkte beider Antennen 31, 32 um die dritte Drehachse bringt eine synchrone Bewegung beider Antennen 31, 32 auch um die erste und zweite Drehachse (sogenannter Butterfly-Betrieb) zusätzliche Vorteile. Unabhängig davon, ob beide Antennen 31, 32 in Betrieb sind, schwenken Bügel und Drehlager für die erste und zweite Drehachse beider Antennen 31, 32 im Wesentlichen synchron. Damit werden die Belastungen für Motor und Getriebe minimiert. Bezugszeichenliste erste Achse A zweite Achse B dritte Achse C Antennenapertur 1 erstes Drehlager 2 Bügel 3 zweites Drehlager 4 Halterung 5 Positioniererplattform 6 drittes Drehlager 7 Hochfrequenzdrehdurchführung 8 Schleifringpaare 9a, 9b Rotor 10 Lager 11 Stator 12 Schleifkörper 13 Linearaktuators 14 Antrieb für dritte Achse 15 Antrieb für zweite Achse 16 Direktantrieb für erste Achse 17 Radom 18 Zahnkranz 19 Modul zur Polarisationsnachführung 20 Anschlag 21 Erste Antenne 31 Zweite Antenne 32 In the desired symmetrical arrangement with respect to weight and center of gravity of both antennas 31, 32 about the third axis of rotation brings a synchronous movement of both antennas 31, 32 also around the first and second axis of rotation (so-called butterfly operation) additional advantages. Regardless of whether both antennas 31, 32 are in operation, hangers and pivot bearings for the first and second axes of rotation of both antennas 31, 32 substantially synchronously. This minimizes the load on the engine and transmission. <B> LIST OF REFERENCES </ b> first axis A second axis B third axis C antenna aperture 1 first pivot bearing 2 hanger 3 second pivot bearing 4 bracket 5 Positioniererplattform 6 third pivot 7 RF rotary union 8th Slip ring pairs 9a, 9b rotor 10 camp 11 stator 12 abrasives 13 linear actuator 14 Drive for third axis 15 Drive for second axis 16 Direct drive for first axis 17 Radom 18 sprocket 19 Module for polarization tracking 20 attack 21 First antenna 31 Second antenna 32

Claims (22)

Antennensystem mit einer ersten und einer zweiten Antenne (31, 32), die jeweils ein Positionierungssystem aufweisen, wobei das Positionierungssystem für eine jeweilige Antennenapertur (1), derart ausgestaltet ist, dass • die Antennenapertur (1) entlang einer ersten Achse (A) drehbar an einem Bügel (3) befestigt ist, • der Bügel (3) an einer zweiten Achse (B) an einem zweiten Drehlager (4) befestigt ist, • das zweite Drehlager (4) an einer dritten Achse (C) drehbar auf einer Positionierplattform (6) gelagert ist. wobei beide Positionierungssysteme eine gemeinsame Positionierungsplattform (6) nutzen.Antenna system having a first and a second antenna (31, 32), each having a positioning system, wherein the positioning system for a respective antenna aperture (1), is designed such that The antenna aperture (1) is rotatably attached to a bracket (3) along a first axis (A), The bracket (3) is fastened on a second axle (B) to a second rotary bearing (4), • The second pivot bearing (4) on a third axis (C) is rotatably mounted on a positioning platform (6). both positioning systems using a common positioning platform (6). Antennensystem nach Anspruch 1, wobei die erste Achse (A) des Positionierungssystems in einer Ebene liegt, die senkrecht zu einer Hauptstrahlrichtung steht.An antenna system according to claim 1, wherein the first axis (A) of the positioning system lies in a plane which is perpendicular to a main radiation direction. Antennensystem nach Anspruch 1 oder 2, wobei die Ebene des Positionierungssystems, welche die erste Achse (A) bei Drehung um die zweite Achse (B) durchstreicht, senkrecht zur zweiten Achse (B) steht, und die zweite Achse (B) an einer dritten Achse (C) derart angebracht ist, dass die Ebene, welche die zweite Achse (B) bei einer Drehung um die dritte Achse (C) überstreicht, senkrecht zur dritten Achse (C) steht.An antenna system according to claim 1 or 2, wherein the plane of the positioning system which passes through the first axis (A) when rotating about the second axis (B) is perpendicular to the second axis (B), and the second axis (B) is at a third one Axis (C) is mounted such that the plane which sweeps the second axis (B) in rotation about the third axis (C), is perpendicular to the third axis (C). Antennensystem nach einem der Ansprüche 1 bis 3, wobei die erste Achse (A) des Positionierungssystems zur zweiten Achse (B), sowie die zweite Achse (B) zur dritten Achse (C) einen schiefen, von der Senkrechten abweichenden Winkel bilden.Antenna system according to one of claims 1 to 3, wherein the first axis (A) of the positioning system to the second axis (B), and the second axis (B) to the third axis (C) form an oblique, deviating from the vertical angle. Antennensystem nach einem der vorherigen Ansprüche, wobei die Befestigung der Antennenapertur (1) des Positionierungssystems mit dem Bügel (3) an zwei gegenüberliegenden Seiten der Antennenapertur (1) erfolgt.Antenna system according to one of the preceding claims, wherein the attachment of the antenna aperture (1) of the Positioning system with the bracket (3) on two opposite sides of the antenna aperture (1). Antennensystem nach Anspruch 5, wobei die Befestigung der Antennenapertur (1) des Positionierungssystems an deren Schmalseiten über jeweils ein erstes Drehlager (2) erfolgt.Antenna system according to claim 5, wherein the fastening of the antenna aperture (1) of the positioning system takes place at its narrow sides via a respective first pivot bearing (2). Antennensystem nach einem der vorherigen Ansprüche, wobei eine Halterung (5) des Positionierungssystems das zweite Drehlager (4) an einem dritten Drehlager (7) befestigt und das dritte Drehlager auf der Positioniererplattform (6) angeordnet ist.Antenna system according to one of the preceding claims, wherein a holder (5) of the positioning system, the second pivot bearing (4) attached to a third pivot bearing (7) and the third pivot bearing on the positioning platform (6) is arranged. Antennensystem nach Anspruch 7, wobei
ein dritter Antrieb (15) des Positionierungssystems senkrecht zur Positioniererplattform (6) angeordnet ist und über einen unter der Positioniererplattform (6) angeordneten Zahnkranz (19) das dritte Drehlager (7) antreibt.
An antenna system according to claim 7, wherein
a third drive (15) of the positioning system is arranged perpendicular to the positioning platform (6) and drives the third pivot bearing (7) via a toothed ring (19) arranged below the positioning platform (6).
Antennensystem nach einem der vorherigen Ansprüche, wobei die Antennenapertur (1) des Positionierungssystems eine ovale oder abgestuft ovale Form hat.Antenna system according to one of the preceding claims, wherein the antenna aperture (1) of the positioning system has an oval or stepped oval shape. Antennensystem nach einem der vorherigen Ansprüche, wobei das ersten Drehlager (2) des Positionierungssystems auf eine Drehung von 0 bis 90° begrenzt sind.Antenna system according to one of the preceding claims, wherein the first pivot bearing (2) of the positioning system are limited to a rotation of 0 to 90 °. Antennensystem nach einem der vorherigen Ansprüche, wobei das dritte Drehlager (7) des Positionierungssystems eine Drehung um 0 bis 360° zulässt.Antenna system according to one of the preceding claims, wherein the third pivot bearing (7) of the positioning system allows a rotation of 0 to 360 °. Antennensystem nach einem der vorherigen Ansprüche, wobei das zweite Drehlager (4) des Positionierungssystems mit mindestens einem Anschlag versehen ist, der die Drehbewegung des Bügels (3) auf der zweiten Achse (B) auf kleiner +/- 90°, vorzugsweise kleiner +/- 45°, vorzugsweise kleiner +/- 20° begrenzt.Antenna system according to one of the preceding claims, wherein the second pivot bearing (4) of the positioning system is provided with at least one stop, the rotational movement of the bracket (3) on the second axis (B) to less than +/- 90 °, preferably less + / - 45 °, preferably less than +/- 20 ° limited. Antennensystem nach einem der vorherigen Ansprüche, wobei eine Drehbewegung der Antennenapertur (1) des Positionierungssystems um die erste Achse (A) und/oder eine Drehbewegung des Bügels (3) auf der zweiten Achse (B) mittels eines Linearaktuators (14) ausgeführt wird.Antenna system according to one of the preceding claims, wherein a rotational movement of the antenna aperture (1) of the positioning system about the first axis (A) and / or a rotational movement of the bracket (3) on the second axis (B) by means of a linear actuator (14) is performed. Antennensystem nach einem der vorherigen Ansprüche, wobei die Drehung der Antennenapertur (1) des Positionierungssystems im ersten Drehlager (2) und/oder im zweiten Drehlager (4) über einen Direktantrieb (17, 16) angetrieben wird.Antenna system according to one of the preceding claims, wherein the rotation of the antenna aperture (1) of the positioning system in the first pivot bearing (2) and / or in the second pivot bearing (4) via a direct drive (17, 16) is driven. Antennensystem nach einem der vorherigen Ansprüche, wobei zumindest das dritte Drehlager (7) des Positionierungssystems im Wesentlichen mittig mit einer Hochfrequenzdrehdurchführung (8) versehen ist, die hochfrequente Signale von und zur Antennenapertur (1) leitet, vorzugsweise werden zwei Hochfrequenzkanäle bereitstellt.Antenna system according to one of the preceding claims, wherein at least the third pivot bearing (7) of the positioning system is substantially centrally provided with a high-frequency rotary feedthrough (8) which conducts high-frequency signals from and to the antenna aperture (1), preferably two high-frequency channels are provided. Antennensystem nach Anspruch 15, wobei das dritte Drehlager (7) des Positionierungssystems mindestens zwei getrennte Schleifringpaare (9a, 9b) umfasst und die Stromversorgung und/oder die Steuerung von Antrieben der ersten und zweiten Drehlager (2, 4) sicherstellt.Antenna system according to claim 15, wherein the third pivot bearing (7) of the positioning system comprises at least two separate slip ring pairs (9a, 9b) and ensures the power supply and / or the control of drives of the first and second pivot bearings (2, 4). Antennensystem nach einem der vorherigen Ansprüche, wobei eine Übertragung hochfrequenter Signale von der Antennenapertur (1) des Positionierungssystems zu einer Hochfrequenzdrehdurchführung (8) im dritten Drehlager (7) über flexible Koaxialleiter erfolgt.Antenna system according to one of the preceding claims, wherein a transmission of high-frequency signals from the antenna aperture (1) of the positioning system to a high-frequency rotary feedthrough (8) in the third rotary bearing (7) via flexible coaxial. Antennensystem nach Anspruch 17, wobei die Hochfrequenzdrehdurchführung (8) und die Schleifringpaare (9) des Positionierungssystems im dritten Drehlager (7) verkapselt sind.Antenna system according to claim 17, wherein the high-frequency rotary leadthrough (8) and the slip ring pairs (9) of the positioning system are encapsulated in the third rotary bearing (7). Antennensystem nach einem der vorherigen Ansprüche, wobei der Antrieb (15, 16, 17) an den Drehlagern (2, 4, 7) des Positionierungssystems mittels bürstenloser Elektromotoren erfolgt.Antenna system according to one of the preceding claims, wherein the drive (15, 16, 17) on the pivot bearings (2, 4, 7) of the positioning system by means of brushless electric motors. Antennensystem nach Anspruch 1, wobei die erste Antenne (31) im Ka-Band und die zweite Antenne (32) im Ku-Band betrieben werden.An antenna system according to claim 1, wherein the first antenna (31) is operated in the Ka band and the second antenna (32) is operated in the Ku band. Antennensystem nach Anspruch 1, wobei beide Antennen (31, 32) im Ka-Band oder Ku-Band betrieben werden.Antenna system according to claim 1, wherein both antennas (31, 32) are operated in Ka band or Ku band. Antennensystem nach einem der Ansprüche 20 bis 21, wobei beide Antennen (31, 32) entlang der ersten und zweiten Achse (A, B) im Wesentlichen zueinander synchron bewegt werden.An antenna system according to any one of claims 20 to 21, wherein both antennas (31, 32) are moved substantially synchronously with each other along the first and second axes (A, B).
EP17158712.4A 2015-02-06 2016-01-21 Antenna system with two antennas Active EP3203580B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015101721.0A DE102015101721A1 (en) 2015-02-06 2015-02-06 Positioning system for antennas
EP16152165.3A EP3054529B1 (en) 2015-02-06 2016-01-21 Positioning system for antennas and antenna system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16152165.3A Division EP3054529B1 (en) 2015-02-06 2016-01-21 Positioning system for antennas and antenna system
EP16152165.3A Division-Into EP3054529B1 (en) 2015-02-06 2016-01-21 Positioning system for antennas and antenna system

Publications (2)

Publication Number Publication Date
EP3203580A1 true EP3203580A1 (en) 2017-08-09
EP3203580B1 EP3203580B1 (en) 2018-09-26

Family

ID=55177883

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17158712.4A Active EP3203580B1 (en) 2015-02-06 2016-01-21 Antenna system with two antennas
EP16152165.3A Active EP3054529B1 (en) 2015-02-06 2016-01-21 Positioning system for antennas and antenna system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16152165.3A Active EP3054529B1 (en) 2015-02-06 2016-01-21 Positioning system for antennas and antenna system

Country Status (5)

Country Link
US (1) US10290937B2 (en)
EP (2) EP3203580B1 (en)
CN (1) CN105870571B (en)
DE (1) DE102015101721A1 (en)
ES (1) ES2729653T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760825B2 (en) * 2016-11-11 2020-09-23 三菱重工業株式会社 Radar equipment and aircraft
DE102017112552A1 (en) 2017-06-07 2018-12-13 Lisa Dräxlmaier GmbH ANTENNA WITH SEVERAL SINGLE RADIATORS
CN107425256B (en) * 2017-07-04 2020-01-14 上海宇航系统工程研究所 High-positioning-precision unfolding and locking mechanism of satellite-borne parabolic antenna
CN107819196B (en) * 2017-09-25 2020-05-29 上海卫星工程研究所 Three-dimensional pointing to ground data transmission antenna layout system with performance constraint
FR3079281B1 (en) * 2018-03-22 2020-03-20 Thales POSITIONING DEVICE
CN112298056B (en) * 2020-10-12 2024-03-15 长春通视光电技术股份有限公司 Vehicle-mounted radar pitching angle swinging mechanism
FR3130124B1 (en) * 2021-12-09 2023-12-08 Univ Franche Comte Orientation device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383081A (en) * 1966-07-25 1968-05-14 Navy Usa Support for planar array antenna
JPH06252625A (en) 1993-02-24 1994-09-09 Sanwa Seiki Co Ltd On-vehicle antenna system for tracking geostationary satellite
EP0982797A1 (en) * 1998-01-13 2000-03-01 Mitsubishi Denki Kabushiki Kaisha Antenna system
US20060114164A1 (en) * 2004-11-29 2006-06-01 Elta Systems Ltd. Phased array planar antenna and a method thereof
US7095376B1 (en) 2004-11-30 2006-08-22 L3 Communications Corporation System and method for pointing and control of an antenna
US20070146222A1 (en) 2005-10-16 2007-06-28 Starling Advanced Communications Ltd. Low profile antenna
WO2010124867A1 (en) 2009-04-30 2010-11-04 Qest Quantenelektronische Systeme Gmbh Broadband antenna system for satellite communication
US20110068989A1 (en) 2009-09-22 2011-03-24 Cory Zephir Bousquet Antenna System with Three Degrees of Freedom
US20110241971A1 (en) * 2010-03-31 2011-10-06 Terri Bateman Apparatus and system for a double gimbal stabilization platform
WO2014005699A1 (en) 2012-07-03 2014-01-09 Qest Quantenelektronische Systeme Gmbh Antenna system for broadband satellite communication in the ghz frequency range, comprising a feeding arrangement
US20140225768A1 (en) 2013-02-12 2014-08-14 Panasonic Avionics Corporation Optimization of Low Profile Antenna(s) for Equatorial Operation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034643A (en) * 1997-03-28 2000-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Directional beam antenna device and directional beam controlling apparatus
US6911949B2 (en) * 2002-10-21 2005-06-28 Orbit Communication Ltd. Antenna stabilization system for two antennas

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383081A (en) * 1966-07-25 1968-05-14 Navy Usa Support for planar array antenna
JPH06252625A (en) 1993-02-24 1994-09-09 Sanwa Seiki Co Ltd On-vehicle antenna system for tracking geostationary satellite
EP0982797A1 (en) * 1998-01-13 2000-03-01 Mitsubishi Denki Kabushiki Kaisha Antenna system
US20060114164A1 (en) * 2004-11-29 2006-06-01 Elta Systems Ltd. Phased array planar antenna and a method thereof
US7095376B1 (en) 2004-11-30 2006-08-22 L3 Communications Corporation System and method for pointing and control of an antenna
US20070146222A1 (en) 2005-10-16 2007-06-28 Starling Advanced Communications Ltd. Low profile antenna
WO2010124867A1 (en) 2009-04-30 2010-11-04 Qest Quantenelektronische Systeme Gmbh Broadband antenna system for satellite communication
US20110068989A1 (en) 2009-09-22 2011-03-24 Cory Zephir Bousquet Antenna System with Three Degrees of Freedom
US20110241971A1 (en) * 2010-03-31 2011-10-06 Terri Bateman Apparatus and system for a double gimbal stabilization platform
WO2014005699A1 (en) 2012-07-03 2014-01-09 Qest Quantenelektronische Systeme Gmbh Antenna system for broadband satellite communication in the ghz frequency range, comprising a feeding arrangement
US20140225768A1 (en) 2013-02-12 2014-08-14 Panasonic Avionics Corporation Optimization of Low Profile Antenna(s) for Equatorial Operation

Also Published As

Publication number Publication date
EP3203580B1 (en) 2018-09-26
ES2729653T3 (en) 2019-11-05
US20160233579A1 (en) 2016-08-11
EP3054529A1 (en) 2016-08-10
CN105870571A (en) 2016-08-17
DE102015101721A1 (en) 2016-08-11
US10290937B2 (en) 2019-05-14
EP3054529B1 (en) 2019-04-17
CN105870571B (en) 2020-09-25

Similar Documents

Publication Publication Date Title
EP3054529B1 (en) Positioning system for antennas and antenna system
EP0027643B1 (en) Directional antenna arrangement for a jammer tracking a target equipped with radar
DE69400372T2 (en) Orientable antenna with preservation of the polarization axes
DE69838846T2 (en) ANTENNA TERMINAL FOR COMMUNICATION SYSTEMS
DE3853319T2 (en) On-board antenna and system for mechanically controlling the antenna.
DE102008008675B4 (en) Radar device for a missile, in particular for a drone
DE602004011001T2 (en) Lens antenna device
DE10335216B4 (en) In the area of an outer surface of an aircraft arranged phased array antenna
DE102016219737A1 (en) antenna device
DE112005003573T5 (en) A phased array radar antenna having a reduced seek time and methods of using the same
DE2702340C3 (en) Ship antenna
EP2467634B1 (en) Holding device for a displaceble sensor
DE602005006434T2 (en) ANTENNA MODULE AND METHOD FOR SATELLITE TRACKING
DE69817373T2 (en) AERIAL FOR LOW ORBIT SATELLITES
DE112009003183T5 (en) Method, device and system for tracking a subreflector of a reflector antenna
DE69124275T2 (en) Fine alignment system for focusing a reflector antenna
DE3244225A1 (en) Arrangement for positioning appliances such as antennas, solar generators, etc.
EP0920072B1 (en) Electronically scanned phased-array antenna for a satellite radio terminal
DE102021101423B3 (en) Pivoting mechanism for communication units
EP2118963B1 (en) Array for influencing the radiation characteristics of a reflector antenna, particularly a centrally focused reflector antenna
WO2010009685A1 (en) Integrated dual band antenna and method for aeronautical satellite communication
DE69724550T2 (en) Arrangement for satellite reception with a planar antenna group
WO2019101453A1 (en) Antenna system for a vehicle
DE1298160B (en) Cassegrain antenna for very short electromagnetic waves
EP1505407B1 (en) Air-defense system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3054529

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180131

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3054529

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1047114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002115

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002115

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1047114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 9