EP2444161B1 - Atomizing nozzle for two substances - Google Patents
Atomizing nozzle for two substances Download PDFInfo
- Publication number
- EP2444161B1 EP2444161B1 EP11195368.3A EP11195368A EP2444161B1 EP 2444161 B1 EP2444161 B1 EP 2444161B1 EP 11195368 A EP11195368 A EP 11195368A EP 2444161 B1 EP2444161 B1 EP 2444161B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- annular gap
- compressed gas
- atomizing nozzle
- mixing chamber
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 title claims description 17
- 239000007788 liquid Substances 0.000 claims description 63
- 238000002156 mixing Methods 0.000 claims description 62
- 241000446313 Lamella Species 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 60
- 239000012530 fluid Substances 0.000 description 14
- 238000011161 development Methods 0.000 description 12
- 238000000889 atomisation Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005514 two-phase flow Effects 0.000 description 5
- 238000011835 investigation Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0441—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
- B05B7/0458—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber
Definitions
- the invention relates to a two-component atomizing nozzle for spraying a liquid with the aid of a compressed gas having a mixing chamber, a liquid inlet opening into the mixing chamber, a compressed gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, wherein an annular gap surrounding the outlet opening is provided for the exit of compressed gas and wherein the outlet opening is formed by means of a circumferential wall, whose extreme end forms an outlet edge, and wherein the annular gap is arranged in the region of the outlet edge.
- a two-fluid nozzle is known in which first a tubular flow profile is to be formed within the nozzle, wherein in the interior of the tubular airfoil, the air is guided.
- the tubular flow profile is achieved by introducing a partial flow into the liquid passage of the nozzle, said partial flow of the air after generating the tubular flow profile is then guided into its interior.
- Compressed gas should escape from an annular space in the region of the outlet opening, which then breaks up the walls of the tube-like flow profile produced in drops.
- the two-fluid nozzle described thus represents a two-fluid nozzle with external mixing, since a decomposition of the drops takes place only outside the nozzle.
- FIG. 1 shows a dual-fluid nozzle with internal mixing according to the prior art.
- a fundamental problem with such nozzles results from the fact that the walls of the mixing chamber 7 are wetted with liquid.
- the liquid which wets the wall in the mixing chamber 7 is driven by the shear stress and pressure forces as liquid film 20 to the nozzle mouth. It is plausible to assume that the walls are blown dry towards the nozzle mouth due to high flow velocity of the gas phase and that only very fine droplets are formed from the liquid film.
- the theoretical and experimental work of one of the inventors see the attached bibliography, has shown that liquid films on walls can still exist as stable films without dripping even when the gas flow which drives the liquid films to the nozzle orifice reaches supersonic speed. And this is also the reason why it is possible to use liquid film cooling in rocket thrusters.
- a liquid is introduced parallel to a central longitudinal axis 24 in the direction of arrow 1.
- the liquid is passed through a lance tube 2 extending concentrically to the central longitudinal axis 24 and enters a mixing chamber 7 at a liquid inlet 10.
- the lance tube 2 and the mixing chamber 7 are concentrically surrounded by an annular chamber 6, which is formed by means of a further lance tube 4 for the supply of the compressed gas to the two-fluid nozzle.
- this annular chamber 6 compressed gas is introduced according to the arrow 15.
- a with respect to the central longitudinal axis 24 radial peripheral wall of the mixing chamber 7 has a plurality of compressed gas inlets 5, which are arranged radially to the central longitudinal axis 24. Through these compressed gas inlets 5, compressed gas can enter the mixing chamber 7 at right angles to the liquid jet entering through the liquid inlet 10, so that a liquid / air mixture is formed in the mixing chamber 7.
- Adjoining the mixing chamber 7 is a frusto-conical constriction 3, which forms a convergent outlet section, followed by a frustum-shaped extension 9 after a narrowest cross section 14, which forms a divergent outlet section.
- the frusto-conical enlargement 9 ends at the outlet opening or the nozzle mouth 8.
- a Zweistoffzerstäubungsdüse be provided, in which a uniformly fine droplet spectrum can be achieved both in the edge region and in the jet core.
- a two-component atomizing nozzle for spraying a liquid with the aid of a compressed gas with a mixing chamber, a liquid inlet opening into the mixing chamber, a pressurized gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, an annular gap surrounding the outlet opening for exiting high-pressure compressed gas Speed is provided, with the outlet opening is formed by a circumferential wall, the extreme end of which forms an outlet edge and wherein the annular gap is arranged in the region of the outlet edge, wherein the mixing chamber, the liquid inlet and the compressed gas inlet are formed and arranged such that a liquid film on the wall of the nozzle mouth exists and the Annular gap and the trailing edge are formed so that the compressed gas exits directly in the region of the trailing edge at high speed from the annular gap and the liquid film at the trailing edge to a very thin liquid lamella and then breaks this up into fine droplets.
- the volume of a drop having a diameter reduced by a factor of three is only one-seventeenth of a large drop. Without entering into the well-known relationships, it should be clear to the person skilled in the art that this results in considerable advantages in terms of the required construction volume of evaporative coolers or resulting from sorption eg for the flue gas cleaning. With the additional annular gap atomization, therefore, a much finer droplet spectrum can be generated with the same expenditure of energy.
- the annular gap air quantity 10% to 40% of the total atomizing air quantity.
- the total pressure of the air in the annular gap is advantageously 1.5 bar to 2.5 bar absolute.
- the total pressure of the air in the annular gap would advantageously have to be so high that, when expanding to the pressure level in the vessel, approximately sound velocity is achieved.
- the compressed gas emerging from the annular gap at high speed can escape directly in the region of the outlet edge and thereby reliably ensure that a liquid film is drawn out at the nozzle mouth to form a very thin liquid lamella, which is then divided into fine droplets.
- the annular gap is formed between the outlet edge and an outer annular gap wall.
- annular gap wall edge is formed by an annular gap wall edge and the annular gap wall edge is arranged in the outflow direction after the trailing edge.
- the annular gap wall edge is arranged between 5% and 20% of the diameter of the outlet opening to the outlet edge.
- control means and / or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas opening into the mixing chamber through the compressed gas inlet can be set independently of one another.
- Separate pipes for pressurizing the mixing chamber and for pressurizing the annular gap with compressed gas offer advantages in that the pressure in a gap air chamber upstream of the annular gap is then independent of the pressure of the atomizing gas, which is supplied to the mixing chamber, can be specified. This is then in view of the own energy requirement of importance when compressors with different back pressure or steam networks with matching different pressures in a system are available. In general, however, only a compressed gas network with a single pressure will be available. In this case, for example, pressure reducers can be used.
- the annular gap air volume is adjusted via separate valves, regardless of the core jet air quantity, which is introduced into the mixing chamber.
- the mixing chamber is at least partially surrounded by an annular chamber for supplying the compressed gas, and a gap air chamber connected upstream of the annular gap is in flow communication with the annular chamber.
- the configuration of the two-component atomizing nozzle can then be simplified by removing the atomizing gas supplied to the annular gap from the annular space from which the mixing chamber is supplied with atomizing gas.
- the flow connection is formed, for example, by means of bores in a partition wall between annular chamber and gap air chamber, which are suitable to be dimensioned in cross-section, also in relation to the bores forming a compressed gas inlet into the mixing chamber.
- an outlet opening and the annular gap at least partially surrounding Schleierluftdüse is provided.
- Schleierluftdüse leads to a further improvement of the spray pattern of the Zweistoffzerstäubungsdüse according to the invention, in particular backflow vortex can be avoided by which drops and dust-containing gas are mixed together and lead to disturbing deposits on the nozzle mouth.
- the veiling air nozzle has a void air ring gap surrounding the outlet opening and the annular gap, whose outlet area is much larger than an exit area of the annular gap.
- the Schleierluftdüse is fed with compressed gas, the pressure of which is substantially lower than a pressure of the annular gap supplied compressed gas.
- means are provided for imparting a twist about a central longitudinal axis of the nozzle to a mixture of compressed gas and liquid in the mixing chamber.
- the compressed gas inlet has at least one first inlet bore opening into the mixing chamber, which is oriented tangentially to a circle about a central longitudinal axis of the nozzle in order to generate a twist in a first direction.
- a swirl can be generated in the mixing chamber in a simple and less clog-sensitive manner.
- a plurality of, in particular four, first inlet bores are provided in a first plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.
- At least one second inlet bore which is aligned tangentially to a circle about the central longitudinal axis of the nozzle to generate a twist in a second direction, is provided parallel to the central longitudinal axis of the first inlet bore.
- a plurality of, in particular four, second inlet bores are provided in a second plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.
- At least three planes spaced apart parallel to the central longitudinal axis are provided with inlet bores, the inlet bores of successive planes generating an oppositely directed twist.
- FIG. 2 shows a Zweowoffzerstäubungsdüse 30 according to the invention according to a first preferred embodiment.
- the Zweistoffzäubäubdüse 30 according to the invention at least as regards the introduction of the liquid and the compressed gas into the mixing chamber and the shape of the nozzle subsequent to the mixing chamber, similar to the known nozzle according to Fig. 1 built up.
- a liquid to be atomized is fed in the direction of an arrow 32 via an inner lance tube 34 running parallel to a central longitudinal axis 36 of the nozzle 30 and reaches a liquid inlet 38, which has a reduced cross-section with respect to the tube 34.
- the liquid After passing through the liquid inlet 38, the liquid then passes in the form of a concentric to the central longitudinal axis 36 extending liquid jet in the cylindrical and concentric with the central longitudinal axis 36 arranged mixing chamber 40.
- the tube 34 and the mixing chamber 40 are surrounded by an annular chamber 42, which through the gap between a outer lance tube 43 and the inner lance tube 34 is formed and in the direction of an arrow 44 pressurized gas, such as compressed air, is introduced.
- a concentric with the central longitudinal axis 36 extending peripheral wall of the mixing chamber 40 has a plurality of inlet openings 46a, 46b, 46c, all together form a compressed gas inlet into the mixing chamber 40, so for supplying the so-called core air.
- the compressed gas inlet openings 46 are arranged offset in the direction of the central longitudinal axis 36 as well as in the circumferential direction. As a result, compressed gas is introduced into the mixing chamber 40 in different layers. The exact arrangement of the compressed gas inlet openings 46 will be described below with reference to the Fig. 4 to 7 explained.
- a frusto-conical constriction 48 is provided, which forms a convergent outlet part and which, after passing through a narrowest cross-section, again merges into a frusto-conical enlargement with a smaller opening angle, which forms a divergent outlet part.
- the divergent exit part terminates at an exit opening 52 or a nozzle mouth.
- the outlet opening 52 is formed by a peripheral outlet edge 54, which forms the downstream end of the outlet part.
- the frustoconical constriction 48 and the frusto-conical extension 50 are surrounded by a funnel-like component 56, so that an annular gap air chamber 58 is formed between the funnel-like component 56 and an outer wall of the outlet part.
- This annular gap air chamber 58 is supplied by means of a plurality of inlet bores 60 from the annular chamber 42 with compressed gas.
- the lower end of the funnel-shaped component 56 is formed by an annular gap wall edge 62, which runs around the outlet opening 52. Between the annular gap wall edge 62 and the outlet edge 54, an annular gap 64 surrounding the outlet opening 52 is formed, which thus annularly surrounds the outlet opening 52.
- annular gap 64 in the representation of the Fig. 2a shown enlarged again, compressed gas exits at high speed.
- a liquid film 66 which forms on an inner wall of the conical enlargement 50, is drawn out at the exit opening 52 of this divergent nozzle exit part into a very thin liquid lamella 68, which disintegrates into small drops.
- Experimental investigations by the inventors have shown that in this way the maximum droplet size of the two-component atomizing nozzle 30 in relation to the nozzle according to the prior art Fig. 1 same energy consumption can be reduced to about one third.
- the annular gap air quantity is between 10% and 40% of the total atomizing air quantity.
- the annular gap outlet edge 62 protrudes slightly in the flow direction with respect to the outlet edge 54.
- the annular gap outlet edge 62 protrudes beyond the outlet edge 54 by 5% to 20% of the diameter of the outlet opening 52.
- the annular gap air chamber 58 can be supplied with compressed gas from a separate line.
- the holes 60 are closed and compressed gas is introduced from a separate line directly into the annular gap air chamber 58.
- FIG. 3 shows another binary atomizing nozzle 70 according to a second preferred embodiment of the invention.
- the two-component atomizing nozzle 70 with the exception of an additional Schleierluftdüse 72 is equal to the Zweistoffzäubungsdüse 30 of Fig. 2 so that on an in depth explanation of the basic operation is omitted and the same components are provided with the same reference numerals.
- the funnel-shaped component 56 is surrounded in the two-component atomizing nozzle 70 by a further component 74, which is constructed in principle tubular, forms a further lance tube and narrows in the direction of the outlet opening 52 to a funnel-like.
- a Schleierluftringspalt 76 is formed between the component 74 and the component 56.
- the Schleierluftspalt 76 ends approximately at the height of the outlet opening 52 and a lower, circumferential edge of the component 74 is disposed at the same height as the annular gap wall edge 62.
- a cross-sectional area of the Schleuf Kunststoffspalts formed thereby is significantly larger than the annular gap 64, so that in the Schleierlufteintechnischtechnisch, can be.
- the nozzle nozzle or the outlet opening 52 annularly enclosing Schleierluftdüse 72 can be energetically charged with low pressure air, which is supplied according to an arrow 78.
- the two-component atomizing nozzle 30 and the two-component atomizing nozzle 70 of the Fig. 2 or 3 can be arranged at the lower end of a so-called sputtering lance, which projects into a process space.
- FIG. 4 shows a sectional sectional view of the two-component atomizing nozzle 30 of Fig. 2 .
- sectional planes which are designated I, II and III.
- the bores for forming the compressed gas inlet openings 46a, 46b, 46c are each aligned tangentially to a circle around the central longitudinal axis 36 of the nozzle.
- the thus twisted beam is centered thereby in the mixing chamber 40 and in the convergent outlet part and in the divergent outlet part of the nozzle 30, 70 automatically.
- the tangential orientation of the compressed gas inlet openings 46a is based on the sectional view of Fig. 5 to recognize more precisely.
- four holes in the plane I are uniformly spaced from each other in the circumferential direction, which form a flow connection of the annular chamber 42 in the mixing chamber 40. All of these bores are arranged tangentially to an imaginary circle 80 about the central longitudinal axis 36 of the nozzle.
- an imaginary circle 80 about the central longitudinal axis 36 of the nozzle.
- the presentation of the Fig. 6 shows the arrangement of four holes to form the Druckgaseinlassö réelleen 46 b in the plane II.
- the Druckgaseinlouö réelleen 46 b are also arranged tangentially to a circle about the central longitudinal axis 36 of the nozzle, but such that in the plane II, a flow about the central longitudinal axis 36 in the clockwise direction results.
- the pressurized gas inlet ports 46c in the plane III are as Fig. 7 can be seen, again arranged equal to the compressed gas inlet openings 46a in the plane I, so that in the plane III again a flow around the central longitudinal axis 36 results in the counterclockwise direction.
- the invention is therefore intended to impose counter-rotating swirl directions in the different planes I, II, III of the supply air bores.
- the first inlet air bore plane I counted from the liquid inlet is left-handed
- the second bore plane II is right-handed
- the third bore plane is again left-handed. Due to the opposite directions of twist in the different planes I, II, III, strongly pronounced shear layers are produced in the mixing chamber 40, which contribute to the formation of particularly fine drops.
- the two-component atomizing nozzles 30, 70 can be optimized in that the massive liquid jet entering the mixing chamber is split even before the interaction with the atomizing air. This can be done in a different, conventional manner, for example by providing impact plates, swirl inserts and the like.
Landscapes
- Nozzles (AREA)
Description
Die Erfindung betrifft eine Zweistoffzerstäubungsdüse zum Versprühen einer Flüssigkeit unter Zuhilfenahme eines Druckgases mit einer Mischkammer, einem in die Mischkammer mündenden Flüssigkeitseinlass, einem in die Mischkammer mündenden Druckgaseinlass und einer Austrittsöffnung stromabwärts der Mischkammer, wobei ein die Austrittsöffnung umgebender Ringspalt zum Austreten von Druckgas vorgesehen ist und wobei die Austrittsöffnung mittels einer umlaufenden Wandung gebildet ist, deren äußerstes Ende eine Austrittskante bildet, und wobei der Ringspalt im Bereich der Austrittskante angeordnet ist.The invention relates to a two-component atomizing nozzle for spraying a liquid with the aid of a compressed gas having a mixing chamber, a liquid inlet opening into the mixing chamber, a compressed gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, wherein an annular gap surrounding the outlet opening is provided for the exit of compressed gas and wherein the outlet opening is formed by means of a circumferential wall, whose extreme end forms an outlet edge, and wherein the annular gap is arranged in the region of the outlet edge.
Aus der internationalen Patentveröffentlichung
Aus der deutschen Offenlegungsschrift
In der US-Patentschrift
In vielen verfahrenstechnischen Anlagen werden Flüssigkeiten in einem Gas verteilt. Dabei ist es häufig von entscheidender Bedeutung, dass die Flüssigkeit in möglichst feinen Tropfen versprüht wird. Je feiner die Tropfen sind, umso größer ist die spezifische Tropfenoberfläche. Daraus können sich erhebliche verfahrenstechnische Vorteile ergeben. So hängen beispielsweise die Größe eines Reaktionsbehälters und seiner Herstellungskosten erheblich von der mittleren Tropfengröße ab. Aber vielfach ist es keinesfalls ausreichend, dass die mittlere Tropfengröße einen bestimmten Grenzwert unterschreitet. Schon einige wenige wesentlich größere Tropfen können zu erheblichen Betriebsstörungen führen. Dies ist insbesondere dann der Fall, wenn die Tropfen aufgrund ihrer Größe nicht schnell genug verdunsten, so dass noch Tropfen oder auch teigige Partikel in nachfolgenden Komponenten, z.B. auf Gewebefilterschläuchen oder Gebläseschaufeln, abgeschieden werden und zu Betriebsstörungen durch Inkrustierungen oder Korrosion führen.In many process plants, liquids are distributed in a gas. It is often of crucial importance that the liquid is sprayed in fine drops as possible. The finer the drops, the larger the specific drop surface. This can result in considerable procedural advantages. For example, the size of a reaction vessel and its manufacturing costs are significantly dependent on the average droplet size. But in many cases it is by no means sufficient for the mean drop size to fall below a certain limit. Even a few much larger drops can lead to significant disruption. This is especially the case if the drops do not evaporate fast enough due to their size, so that even drops or even doughy particles in subsequent components, e.g. on fabric filter hoses or fan blades, and cause malfunction due to incrustation or corrosion.
Um Flüssigkeiten fein zu versprühen, kommen entweder Hochdruckeinstoffdüsen oder Mitteldruckzweistoffdüsen zum Einsatz. Ein Vorteil von Zweistoffdüsen liegt darin, dass sie relativ große Strömungsquerschnitte aufweisen, so dass auch grobpartikelhaltige Flüssigkeiten versprüht werden können.To spray liquids finely, either high-pressure single-fluid nozzles or medium-pressure twin fluid nozzles are used. An advantage of two-fluid nozzles is that they have relatively large flow cross-sections have, so that even coarse particle-containing liquids can be sprayed.
Die Darstellung der
Die Flüssigkeitsfilme 20, die von der Gasströmung zum Düsenmund 8 getrieben werden, können aufgrund der Adhäsionskräfte sogar um eine scharfe Kante am Düsenmund herumwandern. Sie bilden an der Außenseite des Düsenmundes 8 einen Wasserwulst 12. Von diesem Wasserwulst 12 lösen sich Randtropfen 13 ab, deren Durchmesser ein Vielfaches des mittleren Durchmessers der Tropfen im Strahlkern oder Kernstrahl 21 beträgt. Und obwohl diese großen Randtropfen nur einen kleinen Massenanteil beitragen, sind sie letztlich bestimmend für die Abmessungen eines Behälters, in welchem beispielsweise die Temperatur eines Gases durch Verdampfungskühlung von 350°C auf 120°C abgesenkt werden soll, ohne dass es zu einem Eintrag von Tropfen in ein nachgeschaltetes Gebläse oder nachgeschaltete Gewebefilter kommt.The
In die in
Mit der Erfindung soll eine Zweistoffzerstäubungsdüse bereitgestellt werden, bei der ein gleichmäßig feines Tropfenspektrum sowohl im Randbereich als auch im Strahlkern erzielt werden kann.With the invention, a Zweistoffzerstäubungsdüse be provided, in which a uniformly fine droplet spectrum can be achieved both in the edge region and in the jet core.
Erfindungsgemäß ist hierzu eine Zweistoffzerstäubungsdüse zum Versprühen einer Flüssigkeit unter Zuhilfenahme eines Druckgases mit einer Mischkammer, einem in die Mischkammer mündenden Flüssigkeitseinlass, einem in die Mischkammer mündenden Druckgaseinlass und einer Austrittsöffnung stromabwärts der Mischkammer vorgesehen, wobei ein die Austrittsöffnung umgebender Ringspalt zum Austreten von Druckgas mit hoher Geschwindigkeit vorgesehen ist, wobei die Austrittsöffnung mittels einer umlaufenden Wandung gebildet ist, deren äußerstes Ende eine Austrittskante bildet und wobei der Ringspalt im Bereich der Austrittskante angeordnet ist, wobei die Mischkammer, der Flüssigkeitseinlass und der Druckgaseinlass so ausgebildet und angeordnet sind, dass ein Flüssigkeitsfilm an der Wandung des Düsenmundes existiert und der Ringspalt und die Austrittskante so ausgebildet sind, dass das Druckgas unmittelbar im Bereich der Austrittskante mit hoher Geschwindigkeit aus dem Ringspalt austritt und den Flüssigkeitsfilm an der Austrittskante zu einer sehr dünnen Flüssigkeitslamelle auszieht und diese dann in feine Tropfen zerteilt.According to the invention, a two-component atomizing nozzle is provided for spraying a liquid with the aid of a compressed gas with a mixing chamber, a liquid inlet opening into the mixing chamber, a pressurized gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, an annular gap surrounding the outlet opening for exiting high-pressure compressed gas Speed is provided, with the outlet opening is formed by a circumferential wall, the extreme end of which forms an outlet edge and wherein the annular gap is arranged in the region of the outlet edge, wherein the mixing chamber, the liquid inlet and the compressed gas inlet are formed and arranged such that a liquid film on the wall of the nozzle mouth exists and the Annular gap and the trailing edge are formed so that the compressed gas exits directly in the region of the trailing edge at high speed from the annular gap and the liquid film at the trailing edge to a very thin liquid lamella and then breaks this up into fine droplets.
Durch Vorsehen des die Austrittsöffnung umgebenden Ringspaltes, der mit Zerstäubungsgas, z.B. Luft oder Wasserdampf, beaufschlagt wird, wird ein Flüssigkeitsfilm an der Wandung des Düsenmundes, insbesondere des divergenten Austrittsabschnitts zu einer sehr dünnen Flüssigkeitslamelle ausgezogen, die in kleine Tropfen zerfällt. Auf diese Weise kann die Bildung großer Tropfen aus Wandflüssigkeitsfilmen im Düsenaustrittsbereich verhindert bzw. auf ein erträgliches Maß reduziert werden und gleichzeitig kann das feine Tropfenspektrum im Strahlkern erhalten werden, ohne dass hierfür der Druckgasverbrauch der Zweistoffdüse bzw. der hiermit verknüpfte Eigenenergiebedarf erhöht werden müsste. Experimentelle Untersuchungen der Erfinder haben gezeigt, dass durch Vorsehen eines Ringspaltes die maximale Tropfengröße bei gleichem Energieaufwand auf ca. ein Drittel reduziert werden kann. Dies mag als geringer Effekt eingestuft werden. Es ist aber zu bedenken, dass das Volumen eines Tropfens mit einem um den Faktor 3 reduzierten Durchmesser nur ein Siebenundzwanzigstel des großen Tropfens beträgt. Ohne hier in die allbekannten Zusammenhänge einzusteigen, sollte dem Fachmann klar sein, dass hieraus erhebliche Vorteile bezüglich des erforderlichen Bauvolumens von Verdampfungskühlern bzw. von Sorptionsanlagen z.B. für die Rauchgasreinigung resultieren. Mit der zusätzlichen Ringspaltverdüsung kann also bei gleichem Energieaufwand ein wesentlich feineres Tropfenspektrum erzeugt werden. Vorteilhafterweise beträgt die Ringspaltluftmenge 10% bis 40% der Gesamtzerstäubungsluftmenge. Bei verfahrenstechnischen Anlagen, bei denen in Behälter oder Kanäle eingedüst wird, die näherungsweise auf dem Druck der Umgebung liegen (1bar), beträgt der Totaldruck der Luft im Ringspalt vorteilhafterweise 1,5 bar bis 2,5 bar absolut. Der Totaldruck der Luft im Ringspalt müsste vorteilhafterweise so hoch sein, dass bei Expansion auf das Druckniveau im Behälter näherungsweise Schallgeschwindigkeit erreicht wird.By providing the annular gap surrounding the outlet opening, which is acted upon by atomizing gas, for example air or steam, a liquid film on the wall of the nozzle mouth, in particular of the divergent outlet portion is pulled out to a very thin liquid lamella which disintegrates into small drops. In this way, the formation of large drops of wall liquid films in the nozzle exit region can be prevented or reduced to an acceptable level and at the same time the fine droplet spectrum in the jet core can be obtained without the need to increase the pressure gas consumption of the two-fluid nozzle or the associated own energy demand. Experimental investigations by the inventors have shown that by providing an annular gap, the maximum droplet size can be reduced to about one third with the same expenditure of energy. This may be considered a minor effect. It should be noted, however, that the volume of a drop having a diameter reduced by a factor of three is only one-seventeenth of a large drop. Without entering into the well-known relationships, it should be clear to the person skilled in the art that this results in considerable advantages in terms of the required construction volume of evaporative coolers or resulting from sorption eg for the flue gas cleaning. With the additional annular gap atomization, therefore, a much finer droplet spectrum can be generated with the same expenditure of energy. Advantageously the annular
Das aus dem Ringspalt mit hoher Geschwindigkeit austretende Druckgas kann unmittelbar im Bereich der Austrittskante austreten und dadurch zuverlässig dafür sorgen, dass ein Flüssigkeitsfilm am Düsenmund zu einer sehr dünnen Flüssigkeitslamelle ausgezogen wird, die dann in feine Tropfen zerteilt wird.The compressed gas emerging from the annular gap at high speed can escape directly in the region of the outlet edge and thereby reliably ensure that a liquid film is drawn out at the nozzle mouth to form a very thin liquid lamella, which is then divided into fine droplets.
In Weiterbildung der Erfindung ist der Ringspalt zwischen der Austrittskante und einer äußeren Ringspaltwandung gebildet.In a development of the invention, the annular gap is formed between the outlet edge and an outer annular gap wall.
Auf diese Weise kann die Austrittskante selbst zur Bildung des Ringspaltes verwendet werden. Dies vereinfacht den Aufbau der erfindungsgemäßen Zweistoffzerstäubungsdüse.In this way, the trailing edge itself can be used to form the annular gap. This simplifies the structure of the two-component atomizing nozzle according to the invention.
In Weiterbildung der Erfindung ist ein äußeres Ende der Ringspaltwandung durch eine Ringspaltwandungskante gebildet und die Ringspaltwandungskante ist in Ausströmrichtung gesehen nach der Austrittskante angeordnet. Vorteilhafterweise ist die Ringspaltwandungskante zwischen 5% und 20% des Durchmessers der Austrittsöffnung nach der Austrittskante angeordnet.In a further development of the invention, an outer end of the annular gap wall is formed by an annular gap wall edge and the annular gap wall edge is arranged in the outflow direction after the trailing edge. Advantageously, the annular gap wall edge is arranged between 5% and 20% of the diameter of the outlet opening to the outlet edge.
Auf diese Weise lässt sich die Entstehung grober Flüssigkeitstropfen an der Berandung der Austrittsöffnung besonders zuverlässig verhindern.In this way, the formation of coarse drops of liquid at the boundary of the outlet opening can be prevented particularly reliably.
In Weiterbildung der Erfindung sind Steuermittel und/oder wenigstens zwei Druckgasquellen vorgesehen, so dass ein Druck des dem Ringspalt zugeführten Druckgases und ein Druck des durch den Druckgaseinlass in die Mischkammer mündenden Druckgases unabhängig voneinander einstellbar ist.In a further development of the invention, control means and / or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas opening into the mixing chamber through the compressed gas inlet can be set independently of one another.
Getrennte Rohrleitungen zur Beaufschlagung der Mischkammer mit Druckgas und zur Beaufschlagung des Ringspaltes mit Druckgas bieten insofern Vorteile, als der Druck in einer dem Ringspalt vorgeschalteten Spaltluftkammer dann unabhängig vom Druck des Zerstäubungsgases, das der Mischkammer zugeleitet wird, vorgegeben werden kann. Dies ist dann im Hinblick auf den Eigenenergiebedarf von Bedeutung, wenn Kompressoren mit unterschiedlichem Gegendruck bzw. Dampfnetze mit passenden unterschiedlichen Drücken in einer Anlage zur Verfügung stehen. In der Regel wird jedoch nur ein Druckgasnetz mit einem einzigen Druck verfügbar sein. In diesem Fall können beispielsweise Druckminderer verwendet werden. Bei Versorgung des Ringspaltes über eine getrennte Leitung mit Druckgas wird die Ringspaltluftmenge über getrennte Ventile unabhängig von der Kernstrahlluftmenge, die in die Mischkammer eingeleitet wird, eingestellt.Separate pipes for pressurizing the mixing chamber and for pressurizing the annular gap with compressed gas offer advantages in that the pressure in a gap air chamber upstream of the annular gap is then independent of the pressure of the atomizing gas, which is supplied to the mixing chamber, can be specified. This is then in view of the own energy requirement of importance when compressors with different back pressure or steam networks with matching different pressures in a system are available. In general, however, only a compressed gas network with a single pressure will be available. In this case, for example, pressure reducers can be used. When supplying the annular gap via a separate line with compressed gas, the annular gap air volume is adjusted via separate valves, regardless of the core jet air quantity, which is introduced into the mixing chamber.
In Weiterbildung der Erfindung ist die Mischkammer von einer Ringkammer zum Zuführen des Druckgases wenigstens abschnittsweise umgeben und eine dem Ringspalt vorgeschaltete Spaltluftkammer steht mit der Ringkammer in Strömungsverbindung.In a further development of the invention, the mixing chamber is at least partially surrounded by an annular chamber for supplying the compressed gas, and a gap air chamber connected upstream of the annular gap is in flow communication with the annular chamber.
Wenn nur ein Gasnetz mit einem einzigen Druck verfügbar ist, ist es notwendig, das dem Ringspalt zugeführte Zerstäubungsgas demselben Netz zu entnehmen. Die Konfiguration der Zweistoffzerstäubungsdüse kann dann dadurch vereinfacht werden, dass man das dem Ringspalt zugeführte Zerstäubungsgas aus dem Ringraum entnimmt, aus dem die Mischkammer mit Zerstäubungsgas gespeist wird. Durch eine geeignete Bemessung der Strömungsverbindung zwischen Ringkammer und Spaltluftkammer kann der Energiebedarf der erfindungsgemäßen Düse minimiert werden. Die Strömungsverbindung wird beispielsweise mittels Bohrungen in einer Trennwand zwischen Ringkammer und Spaltluftkammer gebildet, die im Querschnitt, auch im Verhältnis zu den einen Druckgaseinlass in die Mischkammer bildenden Bohrungen, geeignet zu bemessen sind.If only a single pressure gas network is available, it is necessary to remove the atomizing gas supplied to the same gap in the annular gap. The configuration of the two-component atomizing nozzle can then be simplified by removing the atomizing gas supplied to the annular gap from the annular space from which the mixing chamber is supplied with atomizing gas. By suitable dimensioning of the flow connection between the annular chamber and the gap air chamber, the energy requirement of the nozzle according to the invention can be minimized. The flow connection is formed, for example, by means of bores in a partition wall between annular chamber and gap air chamber, which are suitable to be dimensioned in cross-section, also in relation to the bores forming a compressed gas inlet into the mixing chamber.
In Weiterbildung der Erfindung ist eine die Austrittsöffnung und den Ringspalt wenigstens abschnittsweise umgebende Schleierluftdüse vorgesehen.In a further development of the invention, an outlet opening and the annular gap at least partially surrounding Schleierluftdüse is provided.
Das Vorsehen einer Schleierluftdüse führt zu einer weiteren Verbesserung des Sprühbildes der erfindungsgemäßen Zweistoffzerstäubungsdüse, insbesondere können Rückstromwirbel vermieden werden, durch welche Tropfen und staubhaltiges Gas miteinander vermischt werden und zu störenden Ablagen am Düsenmund führen.The provision of a Schleierluftdüse leads to a further improvement of the spray pattern of the Zweistoffzerstäubungsdüse according to the invention, in particular backflow vortex can be avoided by which drops and dust-containing gas are mixed together and lead to disturbing deposits on the nozzle mouth.
In Weiterbildung der Erfindung weist die Schleierluftdüse einen die Austrittsöffnung und den Ringspalt umgebenden Schleierluftringspalt auf, dessen Austrittsfläche sehr viel größer ist als eine Austrittsfläche des Ringspalts. Vorteilhafterweise wird die Schleierluftdüse mit Druckgas gespeist, dessen Druck wesentlich geringer ist als ein Druck des dem Ringspalt zugeführten Druckgases.In a development of the invention, the veiling air nozzle has a void air ring gap surrounding the outlet opening and the annular gap, whose outlet area is much larger than an exit area of the annular gap. Advantageously, the Schleierluftdüse is fed with compressed gas, the pressure of which is substantially lower than a pressure of the annular gap supplied compressed gas.
Auf diese Weise kann die Schleierluftdüse, die den Düsenmund ringförmig umschließt, energiesparend mit Luft geringen Druckes beaufschlagt sein. Dies ist deshalb sehr wichtig, weil der Schleierluftringspalt der Schleierluftdüse zur Vermeidung eines Rückstromwirbels sehr viel größer bemessen sein muss als der Ringspalt für die Flüssigkeitsfilmzerstäubung.In this way, the Schleierluftdüse, which surrounds the nozzle mouth annular, energy-saving be subjected to low pressure air. This is very important because the Schleierluftringspalt the Schleierluftdüse to avoid a backflow vortex must be sized much larger than the annular gap for liquid film atomization.
In Weiterbildung der Erfindung sind Mittel vorgesehen, um einem Gemisch aus Druckgas und Flüssigkeit in der Mischkammer einen Drall um eine Mittellängsachse der Düse aufzuprägen.In a development of the invention, means are provided for imparting a twist about a central longitudinal axis of the nozzle to a mixture of compressed gas and liquid in the mixing chamber.
Dadurch, dass es mit der erfindungsgemäßen Zweistoffzerstäubungsdüse durch die zusätzliche Ringspaltzerstäubung möglich ist, den Flüssigkeitsfilm, der im Düsenaustrittsteil auf der Innenwand existiert, am Düsenmund zu kleinen Tropfen zu versprühen, bieten sich weitere interessante Ansatzpunkte für die Düsengestaltung. Insbesondere ist es hiermit zulässig, der Zweiphasenströmung in der Mischkammer und somit auch im Austrittsteil der Düse einen Drall aufzuprägen. Dadurch werden zwar etwas mehr Tropfen auf die Innenwand des Austrittsteils geschleudert. Aber dies ist wegen der sehr effizienten Ringspaltverdüsung nicht schädlich. Ein Vorteil der Verdrallung liegt darin, dass sich eine verdrallte Strömung in der Mischkammer und im Austrittsteil eher zentrisch symmetrisch einstellt. Dies ist mit herkömmlichen Zweistoffdüsen mit Innenmischung kaum zu erreichen und hat bisher dazu geführt, dass bereichsweise am Düsenmund besonders viele große Tropfen gebildet wurden. Im Ergebnis kann die mittlere Tropfengröße durch Verdrallung des Kernstrahls erheblich reduziert werden.The fact that it is possible with the Zweistoffzäubäubdüse invention by the additional annular gap atomization, the liquid film that exists in the nozzle exit part on the inner wall to spray on the nozzle mouth to small drops, there are more interesting starting points for the nozzle design. In particular, it is hereby permissible to impart a twist to the two-phase flow in the mixing chamber and thus also in the outlet part of the nozzle. As a result, a few more drops are thrown onto the inner wall of the outlet part. But this is not harmful because of the very efficient annular gap atomization. An advantage of the twisting is that a twisted flow in the mixing chamber and in the outlet part tends to be centrically symmetrical. This can hardly be achieved with conventional two-substance nozzles with internal mixing and has hitherto led to the fact that in particular at the nozzle mouth, in particular, many large drops have been formed. As a result, the mean droplet size can be significantly reduced by twisting the core beam.
In Weiterbildung der Erfindung weist der Druckgaseinlass wenigstens eine in die Mischkammer mündende erste Einlassbohrung auf, die tangential zu einem Kreis um eine Mittellängsachse der Düse zur Erzeugung eines Dralls in einer ersten Richtung ausgerichtet ist.In a further development of the invention, the compressed gas inlet has at least one first inlet bore opening into the mixing chamber, which is oriented tangentially to a circle about a central longitudinal axis of the nozzle in order to generate a twist in a first direction.
Durch Vorsehen tangentialer Einlassbohrungen kann auf einfache und wenig verstopfungsempfindliche Weise ein Drall in der Mischkammer erzeugt werden.By providing tangential inlet bores, a swirl can be generated in the mixing chamber in a simple and less clog-sensitive manner.
In Weiterbildung der Erfindung sind in einer ersten Ebene senkrecht zur Mittellängsachse und in Umfangsrichtung beabstandet mehrere, insbesondere vier, erste Einlassbohrungen vorgesehen.In a further development of the invention, a plurality of, in particular four, first inlet bores are provided in a first plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.
Durch gleichmäßig voneinander beabstandete Anordnung solcher tangentialer Einlassbohrungen lässt sich ein deutlicher Drall in der Mischkammer erzielen.By uniformly spaced arrangement of such tangential inlet bores, a significant twist in the mixing chamber can be achieved.
In Weiterbildung der Erfindung ist parallel zur Mittellängsachse von der ersten Einlassbohrung beabstandet wenigstens eine zweite Einlassbohrung vorgesehen, die tangential zu einem Kreis um die Mittellängsachse der Düse zur Erzeugung eines Dralls in einer zweiten Richtung ausgerichtet ist.In a further development of the invention, at least one second inlet bore, which is aligned tangentially to a circle about the central longitudinal axis of the nozzle to generate a twist in a second direction, is provided parallel to the central longitudinal axis of the first inlet bore.
Auf diese Weise können in den unterschiedlichen Ebenen der Einlass-oder Zuluftbohrung gegenläufige Drallrichtungen in der Mischkammer aufgeprägt werden. Durch gegenläufige Drallrichtungen werden in der Mischkammer stark ausgeprägte Scherschichten erzeugt, die zur Bildung besonders feiner Tropfen beitragen.In this way, opposing swirl directions can be impressed in the mixing chamber in the different levels of the inlet or Zuluftbohrung. By opposite directions of twisting strongly pronounced shear layers are generated in the mixing chamber, which contribute to the formation of very fine drops.
In Weiterbildung der Erfindung sind in einer zweiten Ebene senkrecht zur Mittellängsachse und in Umfangsrichtung beabstandet mehrere, insbesondere vier, zweite Einlassbohrungen vorgesehen.In a further development of the invention, a plurality of, in particular four, second inlet bores are provided in a second plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.
In Weiterbildung der Erfindung sind wenigstens drei parallel zur Mittellängsachse voneinander beabstandete Ebenen mit Einlassbohrungen vorgesehen, wobei die Einlassbohrungen aufeinanderfolgender Ebenen einen entgegengesetzt gerichteten Drall erzeugen.In a development of the invention, at least three planes spaced apart parallel to the central longitudinal axis are provided with inlet bores, the inlet bores of successive planes generating an oppositely directed twist.
Beispielsweise kann eine vom Flüssigkeitseintritt her gezählte erste Ebene linksdrehende Einlassbohrungen, die zweite Ebene rechtsdrehende Einlassbohrungen und die dritte Ebene wieder linksdrehende Einlassbohrungen aufweisen. Durch die gegenläufigen Drallrichtungen werden in der Mischkammer stark ausgeprägte Scherschichten erzeugt, die zur Bildung besonders feiner Tropfen beitragen.For example, a counted from the liquid inlet forth first level left-hand inlet holes, the second level right-handed inlet holes and the third level again left-handed inlet holes. Due to the opposite directions of twist, pronounced shear layers are produced in the mixing chamber, which contribute to the formation of particularly fine drops.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungsformen im Zusammenhang mit den Zeichnungen. Dabei können Einzelmerkmale der einzelnen dargestellten Ausführungsformen in beliebiger Weise miteinander kombiniert werden, ohne den Rahmen der Erfindung zu überschreiten. In den Zeichnungen zeigen:
- Fig. 1
- eine Zweistoffzerstäubungsdüse gemäß dem Stand der Technik,
- Fig. 2
- eine Zweistoffzerstäubungsdüse gemäß einer ersten Ausführungsform der Erfindung,
- Fig. 2a
- eine vergrößerte Einzelheit der
Fig. 2 , - Fig. 3
- eine Schnittansicht einer Zweistoffzerstäubungsdüse gemäß einer zweiten bevorzugten Ausführungsform der Erfindung,
- Fig. 4
- eine abschnittsweise Schnittansicht der Düse der
Fig. 2 , in der unterschiedliche Schnittebenen markiert sind, - Fig. 5
- eine Schnittansicht auf die Ebene I der
Fig. 4 , - Fig. 6
- eine Schnittansicht auf die Ebene II der
Fig. 4 und - Fig. 7
- eine Schnittansicht auf die Ebene III der
Fig. 4 .
- Fig. 1
- a two-part atomizing nozzle according to the prior art,
- Fig. 2
- a two-part atomizing nozzle according to a first embodiment of the invention,
- Fig. 2a
- an enlarged detail of
Fig. 2 . - Fig. 3
- a sectional view of a two-atomizing nozzle according to a second preferred embodiment of the invention,
- Fig. 4
- a sectional sectional view of the nozzle of
Fig. 2 in which different cutting planes are marked, - Fig. 5
- a sectional view on the level I of
Fig. 4 . - Fig. 6
- a sectional view on the level II of
Fig. 4 and - Fig. 7
- a sectional view of the level III of
Fig. 4 ,
Die Schnittansicht der
Anschließend an die Mischkammer 40 ist eine kegelstumpfförmige Verengung 48 vorgesehen, die einen konvergenten Austrittsteil bildet und die nach Passieren eines engsten Querschnittes wieder in eine kegelstumpfförmige Erweiterung mit geringerem Öffnungswinkel übergeht, die einen divergenten Austrittsteil bildet. Der divergente Austrittsteil endet an einer Austrittsöffnung 52 oder einem Düsenmund. Die Austrittsöffnung 52 wird durch eine umlaufende Austrittskante 54 gebildet, die das in Strömungsrichtung abwärts gelegene Ende des Austrittsteils bildet.Subsequent to the mixing
Die kegelstumpfförmige Verengung 48 und die kegelstumpfförmige Erweiterung 50 sind von einem trichterartigen Bauteil 56 umgeben, so dass zwischen dem trichterartigen Bauteil 56 und einer Außenwand des Austrittsteils eine Ringspaltluftkammer 58 gebildet ist. Diese Ringspaltluftkammer 58 wird mittels mehrerer Einlassbohrungen 60 aus der Ringkammer 42 mit Druckgas versorgt. Ein in der Darstellung der
Durch diesen Ringspalt 64, der in der Darstellung der
Wie den Darstellungen der
Abweichend von der Ausführungsform der Zerstäubungsdüse 30 kann die Ringspaltluftkammer 58 mit Druckgas aus einer separaten Leitung versorgt werden. Hierzu werden beispielsweise die Bohrungen 60 verschlossen und es wird Druckgas aus einer separaten Leitung unmittelbar in die Ringspaltluftkammer 58 eingeleitet.Notwithstanding the embodiment of the atomizing
Die Schnittansicht der
Das trichterförmige Bauteil 56 ist bei der Zweistoffzerstäubungsdüse 70 von einem weiteren Bauteil 74 umgeben, das prinzipiell rohrförmig aufgebaut ist, ein weiteres Lanzenrohr bildet und sich in Richtung auf die Austrittsöffnung 52 zu trichterartig verengt. Auf diese Weise ist zwischen dem Bauteil 74 und dem Bauteil 56 ein Schleierluftringspalt 76 gebildet. Der Schleierluftspalt 76 endet etwa auf Höhe der Austrittsöffnung 52 und eine untere, umlaufende Kante des Bauteils 74 ist auf gleicher Höhe angeordnet wie die Ringspaltwandungskante 62. Eine Querschnittsfläche des dadurch gebildeten Schleierluftspalts ist aber deutlich größer als der Ringspalt 64, damit bei der Schleierlufteinleitung Rückstromwirbel vermieden werden können. Die den Düsenmund oder die Austrittsöffnung 52 ringförmig umschließende Schleierluftdüse 72 kann energiesparend mit Luft geringen Drucks beaufschlagt sein, die gemäß einem Pfeil 78 zugeführt wird.The funnel-shaped
Die Zweistoffzerstäubungsdüse 30 und die Zweistoffzerstäubungsdüse 70 der
Die Darstellung der
Dadurch, dass es mit der erfindungsgemäßen Zweistoffzerstäubungsdüse 30, 70 mit zusätzlicher Ringspaltzerstäubung möglich ist, den Flüssigkeitsfilm 66, der im divergenten Düsenaustrittsteil 50 auf der Innenwand existiert, am Düsenmund zu kleinen Tropfen zu versprühen, bieten sich weitere interessante Ansatzpunkte für die Düsengestaltung. Insbesondere ist es zulässig, der Zweiphasenströmung in der Mischkammer 40 und somit auch im Austrittsteil 48, 50 der Düse 30, 70 einen Drall aufzuprägen. Dadurch werden zwar etwas mehr Tropfen auf die Innenwand des Austrittsteils geschleudert. Aber dies ist wegen der sehr effizienten zusätzlichen Ringspaltverdüsung nicht schädlich. Ein Vorteil der Verdrallung liegt darin, dass sich eine verdrallte Strömung in der Mischkammer 40 und im Austrittsteil 48, 50 eher zentrisch symmetrisch einstellt. Dies ist mit herkömmlichen Zweistoffdüsen kaum zu erreichen und hat bisher dazu geführt, dass solche Düsen zum "Spucken" neigen, indem bereichsweise am Düsenmund besonders viele große Tropfen gebildet wurden. Bisher waren die Mittellinien der Zuluftbohrungen 5 der konventionellen Düse gemäß
Erfindungsgemäß ist dahingegen vorgesehen, die Bohrungen zur Bildung der Druckgaseinlassöffnungen 46a, 46b, 46c jeweils tangential zu einem Kreis um die Mittellängsachse 36 der Düse auszurichten. Der somit verdrallte Strahl zentriert sich dadurch in der Mischkammer 40 sowie im konvergenten Austrittsteil und im divergenten Austrittsteil der Düse 30, 70 selbsttätig.In contrast, according to the invention, the bores for forming the compressed
Die tangentiale Ausrichtung der Druckgaseinlassöffnungen 46a ist anhand der Schnittansicht der
Die Darstellung der
Die Druckgaseinlassöffnungen 46c in der Ebene III sind, wie
Gemäß der Erfindung ist es also vorgesehen, in den unterschiedlichen Ebenen I, II, III der Zuluftbohrungen gegenläufige Drallrichtungen aufzuprägen. So ist die vom Flüssigkeitseintritt her gezählte erste Zuluftbohrungsebene I linksdrehend, die zweite Bohrungsebene II rechtsdrehend und die dritte Bohrungsebene wieder linksdrehend angeordnet. Durch die gegenläufigen Drallrichtungen in den unterschiedlichen Ebenen I, II, III werden in der Mischkammer 40 stark ausgeprägte Scherschichten erzeugt, die zur Bildung besonders feiner Tropfen beitragen.According to the invention, it is therefore intended to impose counter-rotating swirl directions in the different planes I, II, III of the supply air bores. Thus, the first inlet air bore plane I counted from the liquid inlet is left-handed, the second bore plane II is right-handed, and the third bore plane is again left-handed. Due to the opposite directions of twist in the different planes I, II, III, strongly pronounced shear layers are produced in the mixing
Weiterhin können die Zweistoffzerstäubungsdüsen 30, 70 dadurch optimiert werden, dass der in die Mischkammer eintretende massive Flüssigkeitsstrahl schon vor der Wechselwirkung mit der Zerstäubungsluft zerteilt wird. Dies kann auf verschiedene, an und für sich konventionelle Art und Weise geschehen, beispielsweise durch Vorsehen von Aufpralltellern, Dralleinsätzen und dergleichen.Furthermore, the two-
- 11
-
Wurz, D.E. Flow behaviour of thin water films under the effect of a co-current air flow of moderate to high subsonic velocities; effect of the film on the air flow Proceedings of the Third International Conference on Rain Erosion and Associated Phenomena, England, Elvetham Hall, Bd. 2, S. 727-750, 11-13 August (1970) Published by A.A. Fyall and R.B. King, Royal Aircraft Establishment, Engl Wurz, DE Flow behavior of thin water films under the effect of a co-current air flow of moderate to high subsonic velocities; Effects of the Film on the Airflow Proceedings of the Third International Conference on Rain Erosion and Associated Phenomena, England, Elvetham Hall, Vol. 2, pp. 727-750, 11-13 August (1970) Published by AA Fyall and RB King , Royal Aircraft Establishment, Engl - 22
-
Wurz, D.E. Experimentelle Untersuchung des Strömungsverhaltens dünner Wasser filme und deren Rückwirkung auf einen gleichgerichteten Luftstrom mäßiger bis hoher Unterschallgeschwindigkeit Dissertation, Karlsruhe (1971 Wurz, DE Experimental investigation of the flow behavior of thin water films and their reaction to a rectified air flow of moderate to high subsonic velocity Dissertation, Karlsruhe (1971 - 33
-
Wurz, D.E. Flow behaviour of thin water films under the effect of a co-current air flow of moderate supersonic velocities Proceedings of the Fourth International Conference on Rain Erosion and Associated Phenomena, Germany, Meersburg, Bd. 1, S. 295-318, 08-10 May (1974) Edited by A.A. Fyall and R.B. King, Royal Aircraft Establishment, Engl Wurz, DE Flow behavior of thin water films under the effect of a co-current air flow of moderate supersonic velocities Proceedings of the Fourth International Conference on Rain Erosion and Associated Phenomena, Germany, Meersburg, Vol. 1, pp. 295-318, 08-10 May (1974) Edited by AA Fyall and RB King, Royal Aircraft Establishment, Engl - 44
-
Wurz, D.E. Experimental investigation into the flow behaviour of thin water films; Effect on a co-current air flow of moderate to high supersonic velocities. Pressure distribution at the surface of a rigid wavy reference structure. XII Biennial Fluid Dynamics Symposium "Advanced Problems and Methods in Fluid Dynamics", Bialowieza, Polen, 1975 Archives of Mechanics, 28, 5-6, S. 969-987, Warschau (1976 Wurz, DE Experimental investigation into the flow of thin water films; Effect on a co-current air flow of moderate to high supersonic velocities. Pressure distribution at the surface of a rigid wavy reference structure. XII Biennial Fluid Dynamics Symposium "Advanced Problems and Methods in Fluid Dynamics", Bialowieza, Poland, 1975 Archives of Mechanics, 28, 5-6, pp. 969-987, Warsaw (1976 - 55
-
Wurz, D.E. Flüssigkeitsfilmströmung unter Einwirkung einer Überschall-Luftströmung Habilitationsschrift, Karlsruhe (1977 Wurz, DE Liquid Film Flow Under the Effect of a Supersonic Air Flow Habilitationsschrift, Karlsruhe (1977 - 66
-
Wurz, D.E. Subsonic and supersonic gas liquid film flow Paper No. 78-1130, AIAA-11-th Fluid and Plasma Dynamics Conference, Seattle, Washington (USA), 10-12 July (1978 Wurz, DE Subsonic and supersonic gas liquid film flow paper no. 78-1130, AIAA-11-th Fluid and Plasma Dynamics Conference, Seattle, Washington (USA), 10-12 July (1978 - 77
-
Reske, R., D.E. Wurz Droplet impingement on walls and wavy water films Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase-Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 Reske, R., DE Root Droplet impingement on walls and wavy water films Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 - 88th
-
Sill, K.H., D.E. Wurz Experimental and theoretical investigation of shear driven evaporating liquid films Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase-Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 Sill, KH, DE Wurz Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 - 99
-
Wurz, D.E. The subsonic-supersonic controverse of the shear-driven liquid film flow Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase-Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 Wurz, DE The subsonic-supersonic controversy of the shear-driven liquid film flow Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982
Claims (15)
- Two-substance atomizing nozzle for spraying a liquid with the aid of a compressed gas, comprising a mixing chamber (40), a liquid inlet (38) opening out into the mixing chamber (40), a compressed gas inlet (46a, 46b, 46c) opening out into the mixing chamber (40) and an outlet opening (52) downstream of the mixing chamber (40), characterized in that the mixing chamber (40), the liquid inlet (38) and the compressed gas inlet (46a, 46b, 46c) are configured and arranged such that a liquid film is present on the wall of the nozzle mouth, wherein an annular gap (64) surrounding the outlet opening (52) is provided for discharging of compressed gas, wherein the outlet opening (52) is formed by means of a peripheral wall, the outermost end of which forms an outlet edge (54), wherein the annular gap (64) is arranged in the region of the outlet edge (54), and wherein the annular gap (64) and the outlet edge (54) are configured and arranged such that compressed gas is discharged at high speed from the annular gap (64) directly in the region of the outlet edge (54) and distends the liquid film on the outlet edge (54) to a very thin liquid lamella and then atomizes said lamella to fine droplets.
- Two-substance atomizing nozzle according to Claim 1, characterized in that the annular gap (64) is formed between the outlet edge (54) and an outer annular gap wall.
- Two-substance atomizing nozzle according to Claim 2, characterized in that an outer end of the annular gap wall is formed by an annular gap wall edge (62) and in that the annular gap wall edge (62) is arranged after the outlet edge (54), as seen in the outflow direction.
- Two-substance atomizing nozzle according to Claim 3, characterized in that the annular gap wall edge (62) is arranged downstream of the outlet edge (54) by between 5 % and 20 % of the diameter of the outlet opening (52).
- Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that control means and/or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas entering the mixing chamber through the compressed gas inlet can be set independently of each other.
- Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that the mixing chamber (40) is surrounded at least in certain portions by an annular chamber (42) for supplying the compressed gas and in that a gap air chamber (58) arranged upstream of the annular gap (64) is connected in terms of flow to the annular chamber (42).
- Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that a veil-of-air nozzle (72) which surrounds the outlet opening (52) and the annular gap (64) at least in certain portions is provided.
- Two-substance atomizing nozzle according to Claim 7, characterized in that the veil-of-air nozzle (72) has a veil-of-air annular gap which surrounds the outlet opening (52) and the annular gap (64) and the outlet area of which is larger than an outlet area of the annular gap.
- Two-substance atomizing nozzle according to Claim 7 or 8, characterized in that control means and/or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the veil-of-air nozzle (72) is essentially lower than a pressure of the compressed gas supplied to the annular gap (64).
- Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that means (46a, 46b, 46c) are provided to impart a swirl about a center longitudinal axis (36) of the nozzle (30; 70) to a mixture of compressed gas and liquid in the mixing chamber (40).
- Two-substance atomizing nozzle according to Claim 10, characterized in that the compressed gas inlet (46a, 46b, 46c) has at least a first inlet bore, which opens into the mixing chamber (40) and is aligned tangentially in relation to a circle (80) around a center longitudinal axis (36) of the nozzle (30; 70), to produce a swirl in a first direction.
- Two-substance atomizing nozzle according to Claim 11, characterized in that a number of first inlet bores, in particular four, are provided in a first plane (I) perpendicularly in relation to the center longitudinal axis (36) and spaced apart in the circumferential direction.
- Two-substance atomizing nozzle according to Claim 11 or 12, characterized in that at least a second inlet bore, which is aligned tangentially in relation to a circle around the center longitudinal axis (36) of the nozzle (30; 70), is provided parallel to the center longitudinal axis (36) and at a distance from the first inlet bore, to produce a swirl in a second direction.
- Two-substance atomizing nozzle according to Claim 13, characterized in that a number of second inlet bores, in particular four, are provided in a second plane (II) perpendicularly in relation to the center longitudinal axis (36) and spaced apart in the circumferential direction.
- Two-substance atomizing nozzle according to at least one of Claims 11 to 14, characterized in that at least three planes (I, II, III) with inlet bores are provided, spaced apart and parallel to the center longitudinal axis, the inlet bores of successive planes (I, II, III) producing an oppositely directed swirl.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005048489A DE102005048489A1 (en) | 2005-10-07 | 2005-10-07 | Two-fluid nozzle with annular gap atomization |
EP06792384.7A EP1931478B1 (en) | 2005-10-07 | 2006-10-06 | Atomizing nozzle for two substances |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06792384.7A Division EP1931478B1 (en) | 2005-10-07 | 2006-10-06 | Atomizing nozzle for two substances |
EP06792384.7A Division-Into EP1931478B1 (en) | 2005-10-07 | 2006-10-06 | Atomizing nozzle for two substances |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2444161A1 EP2444161A1 (en) | 2012-04-25 |
EP2444161B1 true EP2444161B1 (en) | 2015-12-16 |
Family
ID=37502711
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11195368.3A Active EP2444161B1 (en) | 2005-10-07 | 2006-10-06 | Atomizing nozzle for two substances |
EP06792384.7A Active EP1931478B1 (en) | 2005-10-07 | 2006-10-06 | Atomizing nozzle for two substances |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06792384.7A Active EP1931478B1 (en) | 2005-10-07 | 2006-10-06 | Atomizing nozzle for two substances |
Country Status (8)
Country | Link |
---|---|
US (1) | US8028934B2 (en) |
EP (2) | EP2444161B1 (en) |
CN (1) | CN101287555B (en) |
DE (1) | DE102005048489A1 (en) |
ES (1) | ES2421923T3 (en) |
PL (1) | PL1931478T3 (en) |
RU (1) | RU2441710C2 (en) |
WO (1) | WO2007042210A1 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006009147A1 (en) | 2006-02-24 | 2007-08-30 | Wurz, Dieter, Prof. Dr.-Ing. | Dual nozzle has mixing chamber, and ring is arranged by secondary air nozzles around mouth of main nozzle |
WO2008001301A2 (en) * | 2006-06-27 | 2008-01-03 | Koninklijke Philips Electronics N.V. | Sprayhead apparatus for generating a gas-assisted droplet spray for use in oral cleaning |
DE102007044272A1 (en) * | 2007-09-17 | 2009-04-02 | Wurz, Dieter, Prof. Dr.-Ing. | Multi-hole or bundle head nozzle with and without compressed air support |
US7731100B2 (en) * | 2008-08-12 | 2010-06-08 | Walsh Jr William Arthur | Joining the mixing and variable gas atomizing of reactive chemicals in flue gas cleaning systems for removal of sulfur oxides, nitrogen oxides and mercury |
DE102008057295A1 (en) | 2008-11-14 | 2010-05-20 | Venjakob Maschinenbau Gmbh & Co. Kg | annular die |
DE102010030195B4 (en) | 2009-06-20 | 2020-09-10 | Werner & Pfleiderer Lebensmitteltechnik Gmbh | Cooling device for food and nozzle devices therefor |
CN101940897B (en) * | 2009-07-09 | 2012-05-30 | 中国石油化工股份有限公司 | Gas-liquid distributor |
CN101940900B (en) * | 2009-07-09 | 2012-05-30 | 中国石油化工股份有限公司 | Impact gas-liquid distributor |
US8336788B2 (en) * | 2009-08-07 | 2012-12-25 | Nelson Irrigation Corporation | Dripless rotary sprinkler and related method |
DE102010015497A1 (en) * | 2010-04-16 | 2011-10-20 | Dieter Wurz | Externally mixing multi-fluid nozzle for minimal internal heat transfer |
CN102019252B (en) * | 2010-06-01 | 2013-02-20 | 陈尚文 | Gas atomizing and spraying device |
GB2488144B (en) * | 2011-02-17 | 2014-01-15 | Kelda Showers Ltd | Shower head |
CN103608121B (en) * | 2011-06-22 | 2017-09-01 | 凯尔达淋浴设备有限公司 | Shower head and shower bath |
CN102274807A (en) * | 2011-08-05 | 2011-12-14 | 长沙理工大学 | Spray cooling nozzle for grinding processing |
DE102011119076B4 (en) * | 2011-11-21 | 2014-06-26 | Automatik Plastics Machinery Gmbh | Apparatus and method for depressurizing a fluid containing granules therein |
US9074969B2 (en) | 2012-04-18 | 2015-07-07 | Cooper Environmental Services Llc | Sample fluid stream probe |
CN103008299A (en) * | 2012-11-30 | 2013-04-03 | 北京七星华创电子股份有限公司 | Gas-liquid two-phase spray cleaning device and cleaning method |
CN103062766B (en) * | 2012-12-31 | 2015-06-03 | 河南中烟工业有限责任公司 | Isobaric type diesel combustor |
DE102013203339A1 (en) * | 2013-02-28 | 2014-08-28 | Lechler Gmbh | Two-fluid nozzle and method for spraying a liquid-gas mixture |
CN104096432B (en) * | 2013-04-12 | 2016-12-28 | 张灵样 | Mist dust remover |
CN103506234B (en) * | 2013-09-27 | 2016-03-16 | 中节能六合天融环保科技有限公司 | A kind of SNCR denitrating flue gas spray gun two-chamber hybrid double-layer spray technology |
DE102014003877A1 (en) * | 2014-03-19 | 2015-09-24 | Dieter Wurz | Method and device for on-line cleaning of two-substance nozzles |
US10226778B2 (en) * | 2014-06-30 | 2019-03-12 | Carbonxt, Inc. | Systems, lances, nozzles, and methods for powder injection resulting in reduced agglomeration |
CA2963017C (en) * | 2014-10-09 | 2021-07-27 | Spraying Systems Manufacturing Europe Gmbh | Pneumatic atomizing nozzle |
US9746397B2 (en) | 2015-07-20 | 2017-08-29 | Cooper Environmental Services Llc | Sample fluid stream probe gas sheet nozzle |
EP3341132B1 (en) | 2015-08-28 | 2021-10-06 | Regents of the University of Minnesota | Nozzles and methods of mixing fluid flows |
CN105457796A (en) * | 2016-01-07 | 2016-04-06 | 浙江泰来环保科技有限公司 | Smoke deacidification atomizer |
CN106335789A (en) * | 2016-08-29 | 2017-01-18 | 镇江飞利达电站设备有限公司 | Novel auxiliary blower |
CN106362271A (en) * | 2016-08-29 | 2017-02-01 | 名高医疗器械(昆山)有限公司 | Medicine sprayer |
DE102016123814A1 (en) * | 2016-12-08 | 2018-06-14 | Air Liquide Deutschland Gmbh | Arrangement and method for treating a surface |
CN107307467A (en) * | 2017-07-31 | 2017-11-03 | 黑龙江烟草工业有限责任公司 | Tobacco shred feeding device |
US11027295B2 (en) * | 2017-09-08 | 2021-06-08 | David T. Gunn | Spray applicator |
EP3731974A1 (en) * | 2017-12-28 | 2020-11-04 | PPG Architectural Finishes, Inc. | Pneumatic material spray gun |
WO2019241488A1 (en) * | 2018-06-14 | 2019-12-19 | Regents Of The University Of Minnesota | Counterflow mixer and atomizer |
NL2025098B1 (en) * | 2020-03-11 | 2021-09-22 | Future Cleaning Tech B V | Spraying system for delivering cleaning foam |
DE102020213179A1 (en) * | 2020-10-19 | 2022-04-21 | Glatt Gesellschaft Mit Beschränkter Haftung | Nozzle for spraying substances and method for controlling or regulating the nozzle |
CN114682405A (en) * | 2020-12-31 | 2022-07-01 | 大连理工大学 | Internal rotational flow cross hole injector |
CN114682404A (en) * | 2020-12-31 | 2022-07-01 | 大连理工大学 | External rotational flow cross hole ejector |
CN114682403A (en) * | 2020-12-31 | 2022-07-01 | 大连理工大学 | Inner rotational flow and outer jet flow cross hole injector |
CN113198632B (en) * | 2021-04-08 | 2022-05-06 | 成都工业职业技术学院 | Automobile paint spraying device |
DE102021112492A1 (en) | 2021-05-12 | 2022-11-17 | MTU Aero Engines AG | Air humidification device, method for operating an air humidification device and system, having at least one air humidification device |
KR102549725B1 (en) * | 2021-10-05 | 2023-06-30 | 조은영 | Diaphragm Pump with Multiple Discharging Pipes |
CN114273099B (en) * | 2021-12-27 | 2023-04-28 | 苏州新维度微纳科技有限公司 | Atomization spraying structure of nano-imprinting glue by high-pressure gas |
CN114950758B (en) * | 2022-06-02 | 2023-04-28 | 重庆大学 | Atomizing shape-adjustable nozzle based on multiple synchronous compression technology |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1451063A (en) | 1923-04-10 | Burner | ||
DE203004C (en) * | ||||
FR1125303A (en) | 1954-05-27 | 1956-10-29 | Pressure-fed oil burner, especially for heating furnaces | |
GB1304684A (en) | 1969-02-11 | 1973-01-24 | ||
DE2005972C3 (en) * | 1970-02-10 | 1982-06-16 | Basf Ag, 6700 Ludwigshafen | Atomizer head |
US4341347A (en) * | 1980-05-05 | 1982-07-27 | S. C. Johnson & Son, Inc. | Electrostatic spraying of liquids |
JPH0763606B2 (en) * | 1991-10-18 | 1995-07-12 | フロイント産業株式会社 | Coating equipment |
CN2127976Y (en) * | 1992-05-13 | 1993-03-10 | 北京航空航天大学 | Two-phase flow air bulb atomization nozzle |
GB9326367D0 (en) * | 1993-12-23 | 1994-02-23 | Rolls Royce Plc | Fuel injection apparatus |
US5681162A (en) * | 1996-09-23 | 1997-10-28 | Nabors, Jr.; James K. | Low pressure atomizer |
US5899387A (en) * | 1997-09-19 | 1999-05-04 | Spraying Systems Co. | Air assisted spray system |
US5964418A (en) * | 1997-12-13 | 1999-10-12 | Usbi Co. | Spray nozzle for applying metal-filled solventless resin coating and method |
US6161778A (en) * | 1999-06-11 | 2000-12-19 | Spraying Systems Co. | Air atomizing nozzle assembly with improved air cap |
FR2827198B1 (en) | 2001-07-10 | 2004-04-30 | Air Liquide | SPRAYING DEVICE AND IMPLEMENTATION METHOD |
FI114198B (en) | 2002-06-24 | 2004-09-15 | Medimaker Oy Ltd | Method and system for imaging the organ |
US6863228B2 (en) * | 2002-09-30 | 2005-03-08 | Delavan Inc. | Discrete jet atomizer |
AU2003291973A1 (en) * | 2002-12-20 | 2004-07-14 | Lifecycle Pharma A/S | A self-cleaning spray nozzle |
RU2243036C1 (en) | 2003-04-17 | 2004-12-27 | Закрытое акционерное общество "СИЛЭН" | Method to form a gas-drop jet and a device for its realization |
-
2005
- 2005-10-07 DE DE102005048489A patent/DE102005048489A1/en not_active Withdrawn
-
2006
- 2006-10-06 RU RU2008117344/05A patent/RU2441710C2/en active
- 2006-10-06 US US12/083,136 patent/US8028934B2/en not_active Expired - Fee Related
- 2006-10-06 EP EP11195368.3A patent/EP2444161B1/en active Active
- 2006-10-06 EP EP06792384.7A patent/EP1931478B1/en active Active
- 2006-10-06 CN CN2006800370835A patent/CN101287555B/en not_active Expired - Fee Related
- 2006-10-06 WO PCT/EP2006/009668 patent/WO2007042210A1/en active Application Filing
- 2006-10-06 ES ES06792384T patent/ES2421923T3/en active Active
- 2006-10-06 PL PL06792384T patent/PL1931478T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
PL1931478T3 (en) | 2013-10-31 |
RU2441710C2 (en) | 2012-02-10 |
EP1931478B1 (en) | 2013-05-15 |
DE102005048489A1 (en) | 2007-04-19 |
EP2444161A1 (en) | 2012-04-25 |
CN101287555A (en) | 2008-10-15 |
US8028934B2 (en) | 2011-10-04 |
EP1931478A1 (en) | 2008-06-18 |
CN101287555B (en) | 2013-09-18 |
US20090166448A1 (en) | 2009-07-02 |
ES2421923T3 (en) | 2013-09-06 |
RU2008117344A (en) | 2009-11-20 |
WO2007042210A1 (en) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2444161B1 (en) | Atomizing nozzle for two substances | |
EP1986788B1 (en) | Two-component nozzle with secondary air nozzles arranged in circular form | |
DE3131070C2 (en) | ||
EP2190587B1 (en) | Multi-hole or cluster nozzle | |
EP2347180A1 (en) | Two-component nozzle, bundle nozzle and method for atomizing fluids | |
DE3116660C2 (en) | Multi-component atomizer nozzle | |
WO2007080084A1 (en) | Two-component nozzle | |
EP0990801B1 (en) | Method for isothermal compression of air and nozzle arrangement for carrying out the method | |
EP3042724B1 (en) | Method for generating a spray jet and dual material nozzle | |
DE2645142A1 (en) | METHOD FOR GENERATING MIXED AND ATOMIZED FLUIDA AND DEVICE FOR CARRYING OUT THE METHOD | |
EP2555858A1 (en) | Spray system and method for spraying a secondary fluid into a primary fluid | |
DE102007034549A1 (en) | Compressed air-supported two-fluid nozzle for atomization of liquid, has mixing chamber in which liquid and primary atomization compressed air directly contact with each other at entrance | |
DE10319582B4 (en) | Binary spray nozzle | |
EP1380348B1 (en) | Spraying apparatus and method for generating a liquid-gas mixture | |
EP2186572A1 (en) | Ring split nozzle | |
DE19854382B4 (en) | Method and device for atomizing liquid fuel for a firing plant | |
DE102010012555A1 (en) | Dual-material internal mixing nozzle assembly and method for atomizing a liquid | |
DE102010012554A1 (en) | Dual-material internal mixing nozzle assembly and method for atomizing a liquid | |
DE1625244C3 (en) | Device for atomizing a liquid | |
DE19855069A1 (en) | Liquid fuel preparation unit for burners has hollow cavity inside lance shaped for enlarged volume flow to control air flow | |
DE1625244B2 (en) | DEVICE FOR SPRAYING A LIQUID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AC | Divisional application: reference to earlier application |
Ref document number: 1931478 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1164782 Country of ref document: HK |
|
17P | Request for examination filed |
Effective date: 20121023 |
|
17Q | First examination report despatched |
Effective date: 20130506 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150709 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1931478 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DR. LUSUARDI AG, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 765266 Country of ref document: AT Kind code of ref document: T Effective date: 20160115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006014671 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160317 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160418 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160416 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006014671 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
26N | No opposition filed |
Effective date: 20160919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161006 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161006 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161006 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161031 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1164782 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20061006 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20180924 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20181029 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 765266 Country of ref document: AT Kind code of ref document: T Effective date: 20191006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20201022 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221020 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231019 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |