EP2444161B1 - Atomizing nozzle for two substances - Google Patents

Atomizing nozzle for two substances Download PDF

Info

Publication number
EP2444161B1
EP2444161B1 EP11195368.3A EP11195368A EP2444161B1 EP 2444161 B1 EP2444161 B1 EP 2444161B1 EP 11195368 A EP11195368 A EP 11195368A EP 2444161 B1 EP2444161 B1 EP 2444161B1
Authority
EP
European Patent Office
Prior art keywords
annular gap
compressed gas
atomizing nozzle
mixing chamber
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11195368.3A
Other languages
German (de)
French (fr)
Other versions
EP2444161A1 (en
Inventor
Dieter Wurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2444161A1 publication Critical patent/EP2444161A1/en
Application granted granted Critical
Publication of EP2444161B1 publication Critical patent/EP2444161B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber

Definitions

  • the invention relates to a two-component atomizing nozzle for spraying a liquid with the aid of a compressed gas having a mixing chamber, a liquid inlet opening into the mixing chamber, a compressed gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, wherein an annular gap surrounding the outlet opening is provided for the exit of compressed gas and wherein the outlet opening is formed by means of a circumferential wall, whose extreme end forms an outlet edge, and wherein the annular gap is arranged in the region of the outlet edge.
  • a two-fluid nozzle is known in which first a tubular flow profile is to be formed within the nozzle, wherein in the interior of the tubular airfoil, the air is guided.
  • the tubular flow profile is achieved by introducing a partial flow into the liquid passage of the nozzle, said partial flow of the air after generating the tubular flow profile is then guided into its interior.
  • Compressed gas should escape from an annular space in the region of the outlet opening, which then breaks up the walls of the tube-like flow profile produced in drops.
  • the two-fluid nozzle described thus represents a two-fluid nozzle with external mixing, since a decomposition of the drops takes place only outside the nozzle.
  • FIG. 1 shows a dual-fluid nozzle with internal mixing according to the prior art.
  • a fundamental problem with such nozzles results from the fact that the walls of the mixing chamber 7 are wetted with liquid.
  • the liquid which wets the wall in the mixing chamber 7 is driven by the shear stress and pressure forces as liquid film 20 to the nozzle mouth. It is plausible to assume that the walls are blown dry towards the nozzle mouth due to high flow velocity of the gas phase and that only very fine droplets are formed from the liquid film.
  • the theoretical and experimental work of one of the inventors see the attached bibliography, has shown that liquid films on walls can still exist as stable films without dripping even when the gas flow which drives the liquid films to the nozzle orifice reaches supersonic speed. And this is also the reason why it is possible to use liquid film cooling in rocket thrusters.
  • a liquid is introduced parallel to a central longitudinal axis 24 in the direction of arrow 1.
  • the liquid is passed through a lance tube 2 extending concentrically to the central longitudinal axis 24 and enters a mixing chamber 7 at a liquid inlet 10.
  • the lance tube 2 and the mixing chamber 7 are concentrically surrounded by an annular chamber 6, which is formed by means of a further lance tube 4 for the supply of the compressed gas to the two-fluid nozzle.
  • this annular chamber 6 compressed gas is introduced according to the arrow 15.
  • a with respect to the central longitudinal axis 24 radial peripheral wall of the mixing chamber 7 has a plurality of compressed gas inlets 5, which are arranged radially to the central longitudinal axis 24. Through these compressed gas inlets 5, compressed gas can enter the mixing chamber 7 at right angles to the liquid jet entering through the liquid inlet 10, so that a liquid / air mixture is formed in the mixing chamber 7.
  • Adjoining the mixing chamber 7 is a frusto-conical constriction 3, which forms a convergent outlet section, followed by a frustum-shaped extension 9 after a narrowest cross section 14, which forms a divergent outlet section.
  • the frusto-conical enlargement 9 ends at the outlet opening or the nozzle mouth 8.
  • a Zweistoffzerstäubungsdüse be provided, in which a uniformly fine droplet spectrum can be achieved both in the edge region and in the jet core.
  • a two-component atomizing nozzle for spraying a liquid with the aid of a compressed gas with a mixing chamber, a liquid inlet opening into the mixing chamber, a pressurized gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, an annular gap surrounding the outlet opening for exiting high-pressure compressed gas Speed is provided, with the outlet opening is formed by a circumferential wall, the extreme end of which forms an outlet edge and wherein the annular gap is arranged in the region of the outlet edge, wherein the mixing chamber, the liquid inlet and the compressed gas inlet are formed and arranged such that a liquid film on the wall of the nozzle mouth exists and the Annular gap and the trailing edge are formed so that the compressed gas exits directly in the region of the trailing edge at high speed from the annular gap and the liquid film at the trailing edge to a very thin liquid lamella and then breaks this up into fine droplets.
  • the volume of a drop having a diameter reduced by a factor of three is only one-seventeenth of a large drop. Without entering into the well-known relationships, it should be clear to the person skilled in the art that this results in considerable advantages in terms of the required construction volume of evaporative coolers or resulting from sorption eg for the flue gas cleaning. With the additional annular gap atomization, therefore, a much finer droplet spectrum can be generated with the same expenditure of energy.
  • the annular gap air quantity 10% to 40% of the total atomizing air quantity.
  • the total pressure of the air in the annular gap is advantageously 1.5 bar to 2.5 bar absolute.
  • the total pressure of the air in the annular gap would advantageously have to be so high that, when expanding to the pressure level in the vessel, approximately sound velocity is achieved.
  • the compressed gas emerging from the annular gap at high speed can escape directly in the region of the outlet edge and thereby reliably ensure that a liquid film is drawn out at the nozzle mouth to form a very thin liquid lamella, which is then divided into fine droplets.
  • the annular gap is formed between the outlet edge and an outer annular gap wall.
  • annular gap wall edge is formed by an annular gap wall edge and the annular gap wall edge is arranged in the outflow direction after the trailing edge.
  • the annular gap wall edge is arranged between 5% and 20% of the diameter of the outlet opening to the outlet edge.
  • control means and / or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas opening into the mixing chamber through the compressed gas inlet can be set independently of one another.
  • Separate pipes for pressurizing the mixing chamber and for pressurizing the annular gap with compressed gas offer advantages in that the pressure in a gap air chamber upstream of the annular gap is then independent of the pressure of the atomizing gas, which is supplied to the mixing chamber, can be specified. This is then in view of the own energy requirement of importance when compressors with different back pressure or steam networks with matching different pressures in a system are available. In general, however, only a compressed gas network with a single pressure will be available. In this case, for example, pressure reducers can be used.
  • the annular gap air volume is adjusted via separate valves, regardless of the core jet air quantity, which is introduced into the mixing chamber.
  • the mixing chamber is at least partially surrounded by an annular chamber for supplying the compressed gas, and a gap air chamber connected upstream of the annular gap is in flow communication with the annular chamber.
  • the configuration of the two-component atomizing nozzle can then be simplified by removing the atomizing gas supplied to the annular gap from the annular space from which the mixing chamber is supplied with atomizing gas.
  • the flow connection is formed, for example, by means of bores in a partition wall between annular chamber and gap air chamber, which are suitable to be dimensioned in cross-section, also in relation to the bores forming a compressed gas inlet into the mixing chamber.
  • an outlet opening and the annular gap at least partially surrounding Schleierluftdüse is provided.
  • Schleierluftdüse leads to a further improvement of the spray pattern of the Zweistoffzerstäubungsdüse according to the invention, in particular backflow vortex can be avoided by which drops and dust-containing gas are mixed together and lead to disturbing deposits on the nozzle mouth.
  • the veiling air nozzle has a void air ring gap surrounding the outlet opening and the annular gap, whose outlet area is much larger than an exit area of the annular gap.
  • the Schleierluftdüse is fed with compressed gas, the pressure of which is substantially lower than a pressure of the annular gap supplied compressed gas.
  • means are provided for imparting a twist about a central longitudinal axis of the nozzle to a mixture of compressed gas and liquid in the mixing chamber.
  • the compressed gas inlet has at least one first inlet bore opening into the mixing chamber, which is oriented tangentially to a circle about a central longitudinal axis of the nozzle in order to generate a twist in a first direction.
  • a swirl can be generated in the mixing chamber in a simple and less clog-sensitive manner.
  • a plurality of, in particular four, first inlet bores are provided in a first plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.
  • At least one second inlet bore which is aligned tangentially to a circle about the central longitudinal axis of the nozzle to generate a twist in a second direction, is provided parallel to the central longitudinal axis of the first inlet bore.
  • a plurality of, in particular four, second inlet bores are provided in a second plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.
  • At least three planes spaced apart parallel to the central longitudinal axis are provided with inlet bores, the inlet bores of successive planes generating an oppositely directed twist.
  • FIG. 2 shows a Zweowoffzerstäubungsdüse 30 according to the invention according to a first preferred embodiment.
  • the Zweistoffzäubäubdüse 30 according to the invention at least as regards the introduction of the liquid and the compressed gas into the mixing chamber and the shape of the nozzle subsequent to the mixing chamber, similar to the known nozzle according to Fig. 1 built up.
  • a liquid to be atomized is fed in the direction of an arrow 32 via an inner lance tube 34 running parallel to a central longitudinal axis 36 of the nozzle 30 and reaches a liquid inlet 38, which has a reduced cross-section with respect to the tube 34.
  • the liquid After passing through the liquid inlet 38, the liquid then passes in the form of a concentric to the central longitudinal axis 36 extending liquid jet in the cylindrical and concentric with the central longitudinal axis 36 arranged mixing chamber 40.
  • the tube 34 and the mixing chamber 40 are surrounded by an annular chamber 42, which through the gap between a outer lance tube 43 and the inner lance tube 34 is formed and in the direction of an arrow 44 pressurized gas, such as compressed air, is introduced.
  • a concentric with the central longitudinal axis 36 extending peripheral wall of the mixing chamber 40 has a plurality of inlet openings 46a, 46b, 46c, all together form a compressed gas inlet into the mixing chamber 40, so for supplying the so-called core air.
  • the compressed gas inlet openings 46 are arranged offset in the direction of the central longitudinal axis 36 as well as in the circumferential direction. As a result, compressed gas is introduced into the mixing chamber 40 in different layers. The exact arrangement of the compressed gas inlet openings 46 will be described below with reference to the Fig. 4 to 7 explained.
  • a frusto-conical constriction 48 is provided, which forms a convergent outlet part and which, after passing through a narrowest cross-section, again merges into a frusto-conical enlargement with a smaller opening angle, which forms a divergent outlet part.
  • the divergent exit part terminates at an exit opening 52 or a nozzle mouth.
  • the outlet opening 52 is formed by a peripheral outlet edge 54, which forms the downstream end of the outlet part.
  • the frustoconical constriction 48 and the frusto-conical extension 50 are surrounded by a funnel-like component 56, so that an annular gap air chamber 58 is formed between the funnel-like component 56 and an outer wall of the outlet part.
  • This annular gap air chamber 58 is supplied by means of a plurality of inlet bores 60 from the annular chamber 42 with compressed gas.
  • the lower end of the funnel-shaped component 56 is formed by an annular gap wall edge 62, which runs around the outlet opening 52. Between the annular gap wall edge 62 and the outlet edge 54, an annular gap 64 surrounding the outlet opening 52 is formed, which thus annularly surrounds the outlet opening 52.
  • annular gap 64 in the representation of the Fig. 2a shown enlarged again, compressed gas exits at high speed.
  • a liquid film 66 which forms on an inner wall of the conical enlargement 50, is drawn out at the exit opening 52 of this divergent nozzle exit part into a very thin liquid lamella 68, which disintegrates into small drops.
  • Experimental investigations by the inventors have shown that in this way the maximum droplet size of the two-component atomizing nozzle 30 in relation to the nozzle according to the prior art Fig. 1 same energy consumption can be reduced to about one third.
  • the annular gap air quantity is between 10% and 40% of the total atomizing air quantity.
  • the annular gap outlet edge 62 protrudes slightly in the flow direction with respect to the outlet edge 54.
  • the annular gap outlet edge 62 protrudes beyond the outlet edge 54 by 5% to 20% of the diameter of the outlet opening 52.
  • the annular gap air chamber 58 can be supplied with compressed gas from a separate line.
  • the holes 60 are closed and compressed gas is introduced from a separate line directly into the annular gap air chamber 58.
  • FIG. 3 shows another binary atomizing nozzle 70 according to a second preferred embodiment of the invention.
  • the two-component atomizing nozzle 70 with the exception of an additional Schleierluftdüse 72 is equal to the Zweistoffzäubungsdüse 30 of Fig. 2 so that on an in depth explanation of the basic operation is omitted and the same components are provided with the same reference numerals.
  • the funnel-shaped component 56 is surrounded in the two-component atomizing nozzle 70 by a further component 74, which is constructed in principle tubular, forms a further lance tube and narrows in the direction of the outlet opening 52 to a funnel-like.
  • a Schleierluftringspalt 76 is formed between the component 74 and the component 56.
  • the Schleierluftspalt 76 ends approximately at the height of the outlet opening 52 and a lower, circumferential edge of the component 74 is disposed at the same height as the annular gap wall edge 62.
  • a cross-sectional area of the Schleuf Kunststoffspalts formed thereby is significantly larger than the annular gap 64, so that in the Schleierlufteintechnischtechnisch, can be.
  • the nozzle nozzle or the outlet opening 52 annularly enclosing Schleierluftdüse 72 can be energetically charged with low pressure air, which is supplied according to an arrow 78.
  • the two-component atomizing nozzle 30 and the two-component atomizing nozzle 70 of the Fig. 2 or 3 can be arranged at the lower end of a so-called sputtering lance, which projects into a process space.
  • FIG. 4 shows a sectional sectional view of the two-component atomizing nozzle 30 of Fig. 2 .
  • sectional planes which are designated I, II and III.
  • the bores for forming the compressed gas inlet openings 46a, 46b, 46c are each aligned tangentially to a circle around the central longitudinal axis 36 of the nozzle.
  • the thus twisted beam is centered thereby in the mixing chamber 40 and in the convergent outlet part and in the divergent outlet part of the nozzle 30, 70 automatically.
  • the tangential orientation of the compressed gas inlet openings 46a is based on the sectional view of Fig. 5 to recognize more precisely.
  • four holes in the plane I are uniformly spaced from each other in the circumferential direction, which form a flow connection of the annular chamber 42 in the mixing chamber 40. All of these bores are arranged tangentially to an imaginary circle 80 about the central longitudinal axis 36 of the nozzle.
  • an imaginary circle 80 about the central longitudinal axis 36 of the nozzle.
  • the presentation of the Fig. 6 shows the arrangement of four holes to form the Druckgaseinlassö réelleen 46 b in the plane II.
  • the Druckgaseinlouö réelleen 46 b are also arranged tangentially to a circle about the central longitudinal axis 36 of the nozzle, but such that in the plane II, a flow about the central longitudinal axis 36 in the clockwise direction results.
  • the pressurized gas inlet ports 46c in the plane III are as Fig. 7 can be seen, again arranged equal to the compressed gas inlet openings 46a in the plane I, so that in the plane III again a flow around the central longitudinal axis 36 results in the counterclockwise direction.
  • the invention is therefore intended to impose counter-rotating swirl directions in the different planes I, II, III of the supply air bores.
  • the first inlet air bore plane I counted from the liquid inlet is left-handed
  • the second bore plane II is right-handed
  • the third bore plane is again left-handed. Due to the opposite directions of twist in the different planes I, II, III, strongly pronounced shear layers are produced in the mixing chamber 40, which contribute to the formation of particularly fine drops.
  • the two-component atomizing nozzles 30, 70 can be optimized in that the massive liquid jet entering the mixing chamber is split even before the interaction with the atomizing air. This can be done in a different, conventional manner, for example by providing impact plates, swirl inserts and the like.

Landscapes

  • Nozzles (AREA)

Description

Die Erfindung betrifft eine Zweistoffzerstäubungsdüse zum Versprühen einer Flüssigkeit unter Zuhilfenahme eines Druckgases mit einer Mischkammer, einem in die Mischkammer mündenden Flüssigkeitseinlass, einem in die Mischkammer mündenden Druckgaseinlass und einer Austrittsöffnung stromabwärts der Mischkammer, wobei ein die Austrittsöffnung umgebender Ringspalt zum Austreten von Druckgas vorgesehen ist und wobei die Austrittsöffnung mittels einer umlaufenden Wandung gebildet ist, deren äußerstes Ende eine Austrittskante bildet, und wobei der Ringspalt im Bereich der Austrittskante angeordnet ist.The invention relates to a two-component atomizing nozzle for spraying a liquid with the aid of a compressed gas having a mixing chamber, a liquid inlet opening into the mixing chamber, a compressed gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, wherein an annular gap surrounding the outlet opening is provided for the exit of compressed gas and wherein the outlet opening is formed by means of a circumferential wall, whose extreme end forms an outlet edge, and wherein the annular gap is arranged in the region of the outlet edge.

Aus der internationalen Patentveröffentlichung WO 2004/096446 ist eine gattungsgemäße Zweistoffzerstäubungsdüse bekannt. Ein Geleit-Gasstrahl tritt aus einem die Austrittsöffnung der Düse umgebenden Spalt aus, um zu vermeiden, dass ein aus der Austrittsöffnung der Düse austretender Gas-Tropfen-Strahl abgebremst wird. Im Austritt der Düse sollen sich der Anfangsdurchmesser des Gas-Tropfen-Strahls und der Durchmesser des Geleit-Gasstrahls stark unterscheiden. Zielsetzung der dort beschriebenen Zweistoffzerstäubungsdüse ist, mittels des Geleit-Gasstrahl eine Abbremsung des Gas-Tropfen-Strahls bis in eine bestimmte Entfernung zu vermeiden, um so die Reichweite des Gas-Tropfen-Strahls zu erhöhen.From the international patent publication WO 2004/096446 is a generic Zweistoffzerstäubungsdüse known. A convection gas jet emerges from a gap surrounding the outlet opening of the nozzle in order to prevent a gas-droplet jet issuing from the outlet opening of the nozzle from being decelerated. In the exit of the nozzle, the initial diameter of the gas-droplet jet and the diameter of the convection gas jet should differ greatly. The objective of the two-component atomizing nozzle described therein is to prevent a deceleration of the gas-droplet jet to a certain distance by means of the convection gas jet so as to increase the range of the gas-droplet jet.

Aus der deutschen Offenlegungsschrift DE 200 59 27 ist eine Zweistoffdüse bekannt, bei der innerhalb der Düse zunächst ein schlauchförmiges Strömungsprofil gebildet werden soll, wobei im Innenraum des schlauchförmigen Strömungsprofils die Luft geführt wird. Das schlauchförmige Strömungsprofil wird durch Einleiten eines Teilstroms in den Flüssigkeitskanal der Düse erreicht, wobei dieser Teilstrom der Luft nach Erzeugen des schlauchförmigen Strömungsprofils dann in dessen Innenraum geführt wird. Aus einem Ringraum soll im Bereich der Austrittsöffnung Druckgas austreten, das dann die Wände des erzeugten schlauchartigen Strömungsprofils in Tropfen zerlegt. Die beschriebene Zweistoffdüse stellt dadurch eine Zweistoffdüse mit Außenmischung dar, da eine Zerlegung der Tropfen erst außerhalb der Düse erfolgt.From the German patent application DE 200 59 27 is a two-fluid nozzle is known in which first a tubular flow profile is to be formed within the nozzle, wherein in the interior of the tubular airfoil, the air is guided. The tubular flow profile is achieved by introducing a partial flow into the liquid passage of the nozzle, said partial flow of the air after generating the tubular flow profile is then guided into its interior. Compressed gas should escape from an annular space in the region of the outlet opening, which then breaks up the walls of the tube-like flow profile produced in drops. The two-fluid nozzle described thus represents a two-fluid nozzle with external mixing, since a decomposition of the drops takes place only outside the nozzle.

In der US-Patentschrift US 1,451,063 ist eine Ölbrennerdüse beschrieben, bei der Öl unter Zuhilfenahme von Druckluft zerstäubt werden soll. Die beschriebene Düse weist eine Mischzone auf, in deren Wand zahlreiche Luftaustrittsöffnungen vorgesehen sind. Die Luftaustrittsöffnungen in der die Mischzone umgebenden Innenwand verhindern die Bildung eines Flüssigkeitsfilms auf dieser Innenwand.In the US patent US 1,451,063 an oil burner nozzle is described in which oil is to be atomized with the aid of compressed air. The described nozzle has a mixing zone, in whose wall numerous air outlet openings are provided. The air outlet openings in the inner wall surrounding the mixing zone prevent the formation of a liquid film on this inner wall.

In vielen verfahrenstechnischen Anlagen werden Flüssigkeiten in einem Gas verteilt. Dabei ist es häufig von entscheidender Bedeutung, dass die Flüssigkeit in möglichst feinen Tropfen versprüht wird. Je feiner die Tropfen sind, umso größer ist die spezifische Tropfenoberfläche. Daraus können sich erhebliche verfahrenstechnische Vorteile ergeben. So hängen beispielsweise die Größe eines Reaktionsbehälters und seiner Herstellungskosten erheblich von der mittleren Tropfengröße ab. Aber vielfach ist es keinesfalls ausreichend, dass die mittlere Tropfengröße einen bestimmten Grenzwert unterschreitet. Schon einige wenige wesentlich größere Tropfen können zu erheblichen Betriebsstörungen führen. Dies ist insbesondere dann der Fall, wenn die Tropfen aufgrund ihrer Größe nicht schnell genug verdunsten, so dass noch Tropfen oder auch teigige Partikel in nachfolgenden Komponenten, z.B. auf Gewebefilterschläuchen oder Gebläseschaufeln, abgeschieden werden und zu Betriebsstörungen durch Inkrustierungen oder Korrosion führen.In many process plants, liquids are distributed in a gas. It is often of crucial importance that the liquid is sprayed in fine drops as possible. The finer the drops, the larger the specific drop surface. This can result in considerable procedural advantages. For example, the size of a reaction vessel and its manufacturing costs are significantly dependent on the average droplet size. But in many cases it is by no means sufficient for the mean drop size to fall below a certain limit. Even a few much larger drops can lead to significant disruption. This is especially the case if the drops do not evaporate fast enough due to their size, so that even drops or even doughy particles in subsequent components, e.g. on fabric filter hoses or fan blades, and cause malfunction due to incrustation or corrosion.

Um Flüssigkeiten fein zu versprühen, kommen entweder Hochdruckeinstoffdüsen oder Mitteldruckzweistoffdüsen zum Einsatz. Ein Vorteil von Zweistoffdüsen liegt darin, dass sie relativ große Strömungsquerschnitte aufweisen, so dass auch grobpartikelhaltige Flüssigkeiten versprüht werden können.To spray liquids finely, either high-pressure single-fluid nozzles or medium-pressure twin fluid nozzles are used. An advantage of two-fluid nozzles is that they have relatively large flow cross-sections have, so that even coarse particle-containing liquids can be sprayed.

Die Darstellung der Fig. 1 zeigt eine Zweistoffdüse mit Innenmischung nach dem Stand der Technik. Ein grundsätzliches Problem resultiert bei solchen Düsen daraus, dass die Wände der Mischkammer 7 mit Flüssigkeit benetzt sind. Die Flüssigkeit, welche die Wand in der Mischkammer 7 benetzt, wird von den Schubspannungs- und den Druckkräften als Flüssigkeitsfilm 20 zum Düsenmund hingetrieben. Man ist versucht anzunehmen, dass die Wände zum Düsenmund hin infolge hoher Strömungsgeschwindigkeit der Gasphase trocken geblasen werden und dass dabei aus dem Flüssigkeitsfilm nur sehr feine Tropfen gebildet werden. Theoretische und experimentelle Arbeiten eines der Erfinder, siehe das angefügte Literaturverzeichnis, haben jedoch gezeigt, dass Flüssigkeitsfilme auf Wänden selbst dann noch als stabile Filme ohne Tropfenbildung existent sein können, wenn die Gasströmung, welche die Flüssigkeitsfilme zum Düsenmund treibt, Überschallgeschwindigkeit erreicht. Und dies ist ja auch der Grund dafür, dass es möglich ist, in Raketenschubdüsen eine Flüssigkeitsfilmkühlung anzuwenden.The presentation of the Fig. 1 shows a dual-fluid nozzle with internal mixing according to the prior art. A fundamental problem with such nozzles results from the fact that the walls of the mixing chamber 7 are wetted with liquid. The liquid which wets the wall in the mixing chamber 7 is driven by the shear stress and pressure forces as liquid film 20 to the nozzle mouth. It is tempting to assume that the walls are blown dry towards the nozzle mouth due to high flow velocity of the gas phase and that only very fine droplets are formed from the liquid film. However, the theoretical and experimental work of one of the inventors, see the attached bibliography, has shown that liquid films on walls can still exist as stable films without dripping even when the gas flow which drives the liquid films to the nozzle orifice reaches supersonic speed. And this is also the reason why it is possible to use liquid film cooling in rocket thrusters.

Die Flüssigkeitsfilme 20, die von der Gasströmung zum Düsenmund 8 getrieben werden, können aufgrund der Adhäsionskräfte sogar um eine scharfe Kante am Düsenmund herumwandern. Sie bilden an der Außenseite des Düsenmundes 8 einen Wasserwulst 12. Von diesem Wasserwulst 12 lösen sich Randtropfen 13 ab, deren Durchmesser ein Vielfaches des mittleren Durchmessers der Tropfen im Strahlkern oder Kernstrahl 21 beträgt. Und obwohl diese großen Randtropfen nur einen kleinen Massenanteil beitragen, sind sie letztlich bestimmend für die Abmessungen eines Behälters, in welchem beispielsweise die Temperatur eines Gases durch Verdampfungskühlung von 350°C auf 120°C abgesenkt werden soll, ohne dass es zu einem Eintrag von Tropfen in ein nachgeschaltetes Gebläse oder nachgeschaltete Gewebefilter kommt.The liquid films 20, which are driven by the gas flow to the nozzle orifice 8, can even move around a sharp edge on the nozzle orifice due to the adhesive forces. They form a water bead 12 on the outside of the nozzle orifice 8. From this water bead 12, edge drops 13 detach whose diameter is a multiple of the mean diameter of the drops in the jet core or core jet 21. And although these large edge drops contribute only a small mass fraction, they are ultimately determinative of the dimensions of a container in which, for example, the temperature of a gas to be lowered by evaporative cooling from 350 ° C to 120 ° C, without causing an entry of drops in a downstream fan or downstream fabric filter comes.

In die in Fig. 1 dargestellte Düse nach dem Stand der Technik wird eine Flüssigkeit parallel zu einer Mittellängsachse 24 in Richtung des Pfeiles 1 eingeleitet. Die Flüssigkeit wird durch ein konzentrisch zur Mittellängsachse 24 verlaufendes Lanzenrohr 2 geführt und tritt an einem Flüssigkeitseinlass 10 in eine Mischkammer 7 ein. Das Lanzenrohr 2 und die Mischkammer 7 werden konzentrisch von einer Ringkammer 6 umgeben, die mittels eines weiteren Lanzenrohrs 4 für die Zuleitung des Druckgases zur Zweistoffdüse gebildet ist. In diese Ringkammer 6 wird Druckgas gemäß dem Pfeil 15 eingeführt. Eine in Bezug auf die Mittellängsachse 24 radiale Umfangswand der Mischkammer 7 weist mehrere Druckgaseinlässe 5 auf, die radial zur Mittellängsachse 24 angeordnet sind. Durch diese Druckgaseinlässe 5 kann Druckgas im rechten Winkel zu dem durch den Flüssigkeitseinlass 10 eintretenden Flüssigkeitsstrahl in die Mischkammer 7 eintreten, so dass in der Mischkammer 7 ein Flüssigkeit/Luftgemisch gebildet wird. An die Mischkammer 7 schließt sich eine kegelstumpfförmige Verengung 3 an, die einen konvergenten Austrittsabschnitt bildet, auf die nach einem engsten Querschnitt 14 wiederum eine kegelstumpfförmige Erweiterung 9 folgt, die einen divergenten Austrittsabschnitt bildet. Die kegelstumpfförmige Erweiterung 9 endet an der Austrittsöffnung oder dem Düsenmund 8.In the in Fig. 1 A nozzle according to the prior art, a liquid is introduced parallel to a central longitudinal axis 24 in the direction of arrow 1. The liquid is passed through a lance tube 2 extending concentrically to the central longitudinal axis 24 and enters a mixing chamber 7 at a liquid inlet 10. The lance tube 2 and the mixing chamber 7 are concentrically surrounded by an annular chamber 6, which is formed by means of a further lance tube 4 for the supply of the compressed gas to the two-fluid nozzle. In this annular chamber 6 compressed gas is introduced according to the arrow 15. A with respect to the central longitudinal axis 24 radial peripheral wall of the mixing chamber 7 has a plurality of compressed gas inlets 5, which are arranged radially to the central longitudinal axis 24. Through these compressed gas inlets 5, compressed gas can enter the mixing chamber 7 at right angles to the liquid jet entering through the liquid inlet 10, so that a liquid / air mixture is formed in the mixing chamber 7. Adjoining the mixing chamber 7 is a frusto-conical constriction 3, which forms a convergent outlet section, followed by a frustum-shaped extension 9 after a narrowest cross section 14, which forms a divergent outlet section. The frusto-conical enlargement 9 ends at the outlet opening or the nozzle mouth 8.

Mit der Erfindung soll eine Zweistoffzerstäubungsdüse bereitgestellt werden, bei der ein gleichmäßig feines Tropfenspektrum sowohl im Randbereich als auch im Strahlkern erzielt werden kann.With the invention, a Zweistoffzerstäubungsdüse be provided, in which a uniformly fine droplet spectrum can be achieved both in the edge region and in the jet core.

Erfindungsgemäß ist hierzu eine Zweistoffzerstäubungsdüse zum Versprühen einer Flüssigkeit unter Zuhilfenahme eines Druckgases mit einer Mischkammer, einem in die Mischkammer mündenden Flüssigkeitseinlass, einem in die Mischkammer mündenden Druckgaseinlass und einer Austrittsöffnung stromabwärts der Mischkammer vorgesehen, wobei ein die Austrittsöffnung umgebender Ringspalt zum Austreten von Druckgas mit hoher Geschwindigkeit vorgesehen ist, wobei die Austrittsöffnung mittels einer umlaufenden Wandung gebildet ist, deren äußerstes Ende eine Austrittskante bildet und wobei der Ringspalt im Bereich der Austrittskante angeordnet ist, wobei die Mischkammer, der Flüssigkeitseinlass und der Druckgaseinlass so ausgebildet und angeordnet sind, dass ein Flüssigkeitsfilm an der Wandung des Düsenmundes existiert und der Ringspalt und die Austrittskante so ausgebildet sind, dass das Druckgas unmittelbar im Bereich der Austrittskante mit hoher Geschwindigkeit aus dem Ringspalt austritt und den Flüssigkeitsfilm an der Austrittskante zu einer sehr dünnen Flüssigkeitslamelle auszieht und diese dann in feine Tropfen zerteilt.According to the invention, a two-component atomizing nozzle is provided for spraying a liquid with the aid of a compressed gas with a mixing chamber, a liquid inlet opening into the mixing chamber, a pressurized gas inlet opening into the mixing chamber and an outlet opening downstream of the mixing chamber, an annular gap surrounding the outlet opening for exiting high-pressure compressed gas Speed is provided, with the outlet opening is formed by a circumferential wall, the extreme end of which forms an outlet edge and wherein the annular gap is arranged in the region of the outlet edge, wherein the mixing chamber, the liquid inlet and the compressed gas inlet are formed and arranged such that a liquid film on the wall of the nozzle mouth exists and the Annular gap and the trailing edge are formed so that the compressed gas exits directly in the region of the trailing edge at high speed from the annular gap and the liquid film at the trailing edge to a very thin liquid lamella and then breaks this up into fine droplets.

Durch Vorsehen des die Austrittsöffnung umgebenden Ringspaltes, der mit Zerstäubungsgas, z.B. Luft oder Wasserdampf, beaufschlagt wird, wird ein Flüssigkeitsfilm an der Wandung des Düsenmundes, insbesondere des divergenten Austrittsabschnitts zu einer sehr dünnen Flüssigkeitslamelle ausgezogen, die in kleine Tropfen zerfällt. Auf diese Weise kann die Bildung großer Tropfen aus Wandflüssigkeitsfilmen im Düsenaustrittsbereich verhindert bzw. auf ein erträgliches Maß reduziert werden und gleichzeitig kann das feine Tropfenspektrum im Strahlkern erhalten werden, ohne dass hierfür der Druckgasverbrauch der Zweistoffdüse bzw. der hiermit verknüpfte Eigenenergiebedarf erhöht werden müsste. Experimentelle Untersuchungen der Erfinder haben gezeigt, dass durch Vorsehen eines Ringspaltes die maximale Tropfengröße bei gleichem Energieaufwand auf ca. ein Drittel reduziert werden kann. Dies mag als geringer Effekt eingestuft werden. Es ist aber zu bedenken, dass das Volumen eines Tropfens mit einem um den Faktor 3 reduzierten Durchmesser nur ein Siebenundzwanzigstel des großen Tropfens beträgt. Ohne hier in die allbekannten Zusammenhänge einzusteigen, sollte dem Fachmann klar sein, dass hieraus erhebliche Vorteile bezüglich des erforderlichen Bauvolumens von Verdampfungskühlern bzw. von Sorptionsanlagen z.B. für die Rauchgasreinigung resultieren. Mit der zusätzlichen Ringspaltverdüsung kann also bei gleichem Energieaufwand ein wesentlich feineres Tropfenspektrum erzeugt werden. Vorteilhafterweise beträgt die Ringspaltluftmenge 10% bis 40% der Gesamtzerstäubungsluftmenge. Bei verfahrenstechnischen Anlagen, bei denen in Behälter oder Kanäle eingedüst wird, die näherungsweise auf dem Druck der Umgebung liegen (1bar), beträgt der Totaldruck der Luft im Ringspalt vorteilhafterweise 1,5 bar bis 2,5 bar absolut. Der Totaldruck der Luft im Ringspalt müsste vorteilhafterweise so hoch sein, dass bei Expansion auf das Druckniveau im Behälter näherungsweise Schallgeschwindigkeit erreicht wird.By providing the annular gap surrounding the outlet opening, which is acted upon by atomizing gas, for example air or steam, a liquid film on the wall of the nozzle mouth, in particular of the divergent outlet portion is pulled out to a very thin liquid lamella which disintegrates into small drops. In this way, the formation of large drops of wall liquid films in the nozzle exit region can be prevented or reduced to an acceptable level and at the same time the fine droplet spectrum in the jet core can be obtained without the need to increase the pressure gas consumption of the two-fluid nozzle or the associated own energy demand. Experimental investigations by the inventors have shown that by providing an annular gap, the maximum droplet size can be reduced to about one third with the same expenditure of energy. This may be considered a minor effect. It should be noted, however, that the volume of a drop having a diameter reduced by a factor of three is only one-seventeenth of a large drop. Without entering into the well-known relationships, it should be clear to the person skilled in the art that this results in considerable advantages in terms of the required construction volume of evaporative coolers or resulting from sorption eg for the flue gas cleaning. With the additional annular gap atomization, therefore, a much finer droplet spectrum can be generated with the same expenditure of energy. Advantageously the annular gap air quantity 10% to 40% of the total atomizing air quantity. In process engineering plants, in which is injected into containers or channels, which are approximately at the pressure of the environment (1bar), the total pressure of the air in the annular gap is advantageously 1.5 bar to 2.5 bar absolute. The total pressure of the air in the annular gap would advantageously have to be so high that, when expanding to the pressure level in the vessel, approximately sound velocity is achieved.

Das aus dem Ringspalt mit hoher Geschwindigkeit austretende Druckgas kann unmittelbar im Bereich der Austrittskante austreten und dadurch zuverlässig dafür sorgen, dass ein Flüssigkeitsfilm am Düsenmund zu einer sehr dünnen Flüssigkeitslamelle ausgezogen wird, die dann in feine Tropfen zerteilt wird.The compressed gas emerging from the annular gap at high speed can escape directly in the region of the outlet edge and thereby reliably ensure that a liquid film is drawn out at the nozzle mouth to form a very thin liquid lamella, which is then divided into fine droplets.

In Weiterbildung der Erfindung ist der Ringspalt zwischen der Austrittskante und einer äußeren Ringspaltwandung gebildet.In a development of the invention, the annular gap is formed between the outlet edge and an outer annular gap wall.

Auf diese Weise kann die Austrittskante selbst zur Bildung des Ringspaltes verwendet werden. Dies vereinfacht den Aufbau der erfindungsgemäßen Zweistoffzerstäubungsdüse.In this way, the trailing edge itself can be used to form the annular gap. This simplifies the structure of the two-component atomizing nozzle according to the invention.

In Weiterbildung der Erfindung ist ein äußeres Ende der Ringspaltwandung durch eine Ringspaltwandungskante gebildet und die Ringspaltwandungskante ist in Ausströmrichtung gesehen nach der Austrittskante angeordnet. Vorteilhafterweise ist die Ringspaltwandungskante zwischen 5% und 20% des Durchmessers der Austrittsöffnung nach der Austrittskante angeordnet.In a further development of the invention, an outer end of the annular gap wall is formed by an annular gap wall edge and the annular gap wall edge is arranged in the outflow direction after the trailing edge. Advantageously, the annular gap wall edge is arranged between 5% and 20% of the diameter of the outlet opening to the outlet edge.

Auf diese Weise lässt sich die Entstehung grober Flüssigkeitstropfen an der Berandung der Austrittsöffnung besonders zuverlässig verhindern.In this way, the formation of coarse drops of liquid at the boundary of the outlet opening can be prevented particularly reliably.

In Weiterbildung der Erfindung sind Steuermittel und/oder wenigstens zwei Druckgasquellen vorgesehen, so dass ein Druck des dem Ringspalt zugeführten Druckgases und ein Druck des durch den Druckgaseinlass in die Mischkammer mündenden Druckgases unabhängig voneinander einstellbar ist.In a further development of the invention, control means and / or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas opening into the mixing chamber through the compressed gas inlet can be set independently of one another.

Getrennte Rohrleitungen zur Beaufschlagung der Mischkammer mit Druckgas und zur Beaufschlagung des Ringspaltes mit Druckgas bieten insofern Vorteile, als der Druck in einer dem Ringspalt vorgeschalteten Spaltluftkammer dann unabhängig vom Druck des Zerstäubungsgases, das der Mischkammer zugeleitet wird, vorgegeben werden kann. Dies ist dann im Hinblick auf den Eigenenergiebedarf von Bedeutung, wenn Kompressoren mit unterschiedlichem Gegendruck bzw. Dampfnetze mit passenden unterschiedlichen Drücken in einer Anlage zur Verfügung stehen. In der Regel wird jedoch nur ein Druckgasnetz mit einem einzigen Druck verfügbar sein. In diesem Fall können beispielsweise Druckminderer verwendet werden. Bei Versorgung des Ringspaltes über eine getrennte Leitung mit Druckgas wird die Ringspaltluftmenge über getrennte Ventile unabhängig von der Kernstrahlluftmenge, die in die Mischkammer eingeleitet wird, eingestellt.Separate pipes for pressurizing the mixing chamber and for pressurizing the annular gap with compressed gas offer advantages in that the pressure in a gap air chamber upstream of the annular gap is then independent of the pressure of the atomizing gas, which is supplied to the mixing chamber, can be specified. This is then in view of the own energy requirement of importance when compressors with different back pressure or steam networks with matching different pressures in a system are available. In general, however, only a compressed gas network with a single pressure will be available. In this case, for example, pressure reducers can be used. When supplying the annular gap via a separate line with compressed gas, the annular gap air volume is adjusted via separate valves, regardless of the core jet air quantity, which is introduced into the mixing chamber.

In Weiterbildung der Erfindung ist die Mischkammer von einer Ringkammer zum Zuführen des Druckgases wenigstens abschnittsweise umgeben und eine dem Ringspalt vorgeschaltete Spaltluftkammer steht mit der Ringkammer in Strömungsverbindung.In a further development of the invention, the mixing chamber is at least partially surrounded by an annular chamber for supplying the compressed gas, and a gap air chamber connected upstream of the annular gap is in flow communication with the annular chamber.

Wenn nur ein Gasnetz mit einem einzigen Druck verfügbar ist, ist es notwendig, das dem Ringspalt zugeführte Zerstäubungsgas demselben Netz zu entnehmen. Die Konfiguration der Zweistoffzerstäubungsdüse kann dann dadurch vereinfacht werden, dass man das dem Ringspalt zugeführte Zerstäubungsgas aus dem Ringraum entnimmt, aus dem die Mischkammer mit Zerstäubungsgas gespeist wird. Durch eine geeignete Bemessung der Strömungsverbindung zwischen Ringkammer und Spaltluftkammer kann der Energiebedarf der erfindungsgemäßen Düse minimiert werden. Die Strömungsverbindung wird beispielsweise mittels Bohrungen in einer Trennwand zwischen Ringkammer und Spaltluftkammer gebildet, die im Querschnitt, auch im Verhältnis zu den einen Druckgaseinlass in die Mischkammer bildenden Bohrungen, geeignet zu bemessen sind.If only a single pressure gas network is available, it is necessary to remove the atomizing gas supplied to the same gap in the annular gap. The configuration of the two-component atomizing nozzle can then be simplified by removing the atomizing gas supplied to the annular gap from the annular space from which the mixing chamber is supplied with atomizing gas. By suitable dimensioning of the flow connection between the annular chamber and the gap air chamber, the energy requirement of the nozzle according to the invention can be minimized. The flow connection is formed, for example, by means of bores in a partition wall between annular chamber and gap air chamber, which are suitable to be dimensioned in cross-section, also in relation to the bores forming a compressed gas inlet into the mixing chamber.

In Weiterbildung der Erfindung ist eine die Austrittsöffnung und den Ringspalt wenigstens abschnittsweise umgebende Schleierluftdüse vorgesehen.In a further development of the invention, an outlet opening and the annular gap at least partially surrounding Schleierluftdüse is provided.

Das Vorsehen einer Schleierluftdüse führt zu einer weiteren Verbesserung des Sprühbildes der erfindungsgemäßen Zweistoffzerstäubungsdüse, insbesondere können Rückstromwirbel vermieden werden, durch welche Tropfen und staubhaltiges Gas miteinander vermischt werden und zu störenden Ablagen am Düsenmund führen.The provision of a Schleierluftdüse leads to a further improvement of the spray pattern of the Zweistoffzerstäubungsdüse according to the invention, in particular backflow vortex can be avoided by which drops and dust-containing gas are mixed together and lead to disturbing deposits on the nozzle mouth.

In Weiterbildung der Erfindung weist die Schleierluftdüse einen die Austrittsöffnung und den Ringspalt umgebenden Schleierluftringspalt auf, dessen Austrittsfläche sehr viel größer ist als eine Austrittsfläche des Ringspalts. Vorteilhafterweise wird die Schleierluftdüse mit Druckgas gespeist, dessen Druck wesentlich geringer ist als ein Druck des dem Ringspalt zugeführten Druckgases.In a development of the invention, the veiling air nozzle has a void air ring gap surrounding the outlet opening and the annular gap, whose outlet area is much larger than an exit area of the annular gap. Advantageously, the Schleierluftdüse is fed with compressed gas, the pressure of which is substantially lower than a pressure of the annular gap supplied compressed gas.

Auf diese Weise kann die Schleierluftdüse, die den Düsenmund ringförmig umschließt, energiesparend mit Luft geringen Druckes beaufschlagt sein. Dies ist deshalb sehr wichtig, weil der Schleierluftringspalt der Schleierluftdüse zur Vermeidung eines Rückstromwirbels sehr viel größer bemessen sein muss als der Ringspalt für die Flüssigkeitsfilmzerstäubung.In this way, the Schleierluftdüse, which surrounds the nozzle mouth annular, energy-saving be subjected to low pressure air. This is very important because the Schleierluftringspalt the Schleierluftdüse to avoid a backflow vortex must be sized much larger than the annular gap for liquid film atomization.

In Weiterbildung der Erfindung sind Mittel vorgesehen, um einem Gemisch aus Druckgas und Flüssigkeit in der Mischkammer einen Drall um eine Mittellängsachse der Düse aufzuprägen.In a development of the invention, means are provided for imparting a twist about a central longitudinal axis of the nozzle to a mixture of compressed gas and liquid in the mixing chamber.

Dadurch, dass es mit der erfindungsgemäßen Zweistoffzerstäubungsdüse durch die zusätzliche Ringspaltzerstäubung möglich ist, den Flüssigkeitsfilm, der im Düsenaustrittsteil auf der Innenwand existiert, am Düsenmund zu kleinen Tropfen zu versprühen, bieten sich weitere interessante Ansatzpunkte für die Düsengestaltung. Insbesondere ist es hiermit zulässig, der Zweiphasenströmung in der Mischkammer und somit auch im Austrittsteil der Düse einen Drall aufzuprägen. Dadurch werden zwar etwas mehr Tropfen auf die Innenwand des Austrittsteils geschleudert. Aber dies ist wegen der sehr effizienten Ringspaltverdüsung nicht schädlich. Ein Vorteil der Verdrallung liegt darin, dass sich eine verdrallte Strömung in der Mischkammer und im Austrittsteil eher zentrisch symmetrisch einstellt. Dies ist mit herkömmlichen Zweistoffdüsen mit Innenmischung kaum zu erreichen und hat bisher dazu geführt, dass bereichsweise am Düsenmund besonders viele große Tropfen gebildet wurden. Im Ergebnis kann die mittlere Tropfengröße durch Verdrallung des Kernstrahls erheblich reduziert werden.The fact that it is possible with the Zweistoffzäubäubdüse invention by the additional annular gap atomization, the liquid film that exists in the nozzle exit part on the inner wall to spray on the nozzle mouth to small drops, there are more interesting starting points for the nozzle design. In particular, it is hereby permissible to impart a twist to the two-phase flow in the mixing chamber and thus also in the outlet part of the nozzle. As a result, a few more drops are thrown onto the inner wall of the outlet part. But this is not harmful because of the very efficient annular gap atomization. An advantage of the twisting is that a twisted flow in the mixing chamber and in the outlet part tends to be centrically symmetrical. This can hardly be achieved with conventional two-substance nozzles with internal mixing and has hitherto led to the fact that in particular at the nozzle mouth, in particular, many large drops have been formed. As a result, the mean droplet size can be significantly reduced by twisting the core beam.

In Weiterbildung der Erfindung weist der Druckgaseinlass wenigstens eine in die Mischkammer mündende erste Einlassbohrung auf, die tangential zu einem Kreis um eine Mittellängsachse der Düse zur Erzeugung eines Dralls in einer ersten Richtung ausgerichtet ist.In a further development of the invention, the compressed gas inlet has at least one first inlet bore opening into the mixing chamber, which is oriented tangentially to a circle about a central longitudinal axis of the nozzle in order to generate a twist in a first direction.

Durch Vorsehen tangentialer Einlassbohrungen kann auf einfache und wenig verstopfungsempfindliche Weise ein Drall in der Mischkammer erzeugt werden.By providing tangential inlet bores, a swirl can be generated in the mixing chamber in a simple and less clog-sensitive manner.

In Weiterbildung der Erfindung sind in einer ersten Ebene senkrecht zur Mittellängsachse und in Umfangsrichtung beabstandet mehrere, insbesondere vier, erste Einlassbohrungen vorgesehen.In a further development of the invention, a plurality of, in particular four, first inlet bores are provided in a first plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.

Durch gleichmäßig voneinander beabstandete Anordnung solcher tangentialer Einlassbohrungen lässt sich ein deutlicher Drall in der Mischkammer erzielen.By uniformly spaced arrangement of such tangential inlet bores, a significant twist in the mixing chamber can be achieved.

In Weiterbildung der Erfindung ist parallel zur Mittellängsachse von der ersten Einlassbohrung beabstandet wenigstens eine zweite Einlassbohrung vorgesehen, die tangential zu einem Kreis um die Mittellängsachse der Düse zur Erzeugung eines Dralls in einer zweiten Richtung ausgerichtet ist.In a further development of the invention, at least one second inlet bore, which is aligned tangentially to a circle about the central longitudinal axis of the nozzle to generate a twist in a second direction, is provided parallel to the central longitudinal axis of the first inlet bore.

Auf diese Weise können in den unterschiedlichen Ebenen der Einlass-oder Zuluftbohrung gegenläufige Drallrichtungen in der Mischkammer aufgeprägt werden. Durch gegenläufige Drallrichtungen werden in der Mischkammer stark ausgeprägte Scherschichten erzeugt, die zur Bildung besonders feiner Tropfen beitragen.In this way, opposing swirl directions can be impressed in the mixing chamber in the different levels of the inlet or Zuluftbohrung. By opposite directions of twisting strongly pronounced shear layers are generated in the mixing chamber, which contribute to the formation of very fine drops.

In Weiterbildung der Erfindung sind in einer zweiten Ebene senkrecht zur Mittellängsachse und in Umfangsrichtung beabstandet mehrere, insbesondere vier, zweite Einlassbohrungen vorgesehen.In a further development of the invention, a plurality of, in particular four, second inlet bores are provided in a second plane perpendicular to the central longitudinal axis and spaced apart in the circumferential direction.

In Weiterbildung der Erfindung sind wenigstens drei parallel zur Mittellängsachse voneinander beabstandete Ebenen mit Einlassbohrungen vorgesehen, wobei die Einlassbohrungen aufeinanderfolgender Ebenen einen entgegengesetzt gerichteten Drall erzeugen.In a development of the invention, at least three planes spaced apart parallel to the central longitudinal axis are provided with inlet bores, the inlet bores of successive planes generating an oppositely directed twist.

Beispielsweise kann eine vom Flüssigkeitseintritt her gezählte erste Ebene linksdrehende Einlassbohrungen, die zweite Ebene rechtsdrehende Einlassbohrungen und die dritte Ebene wieder linksdrehende Einlassbohrungen aufweisen. Durch die gegenläufigen Drallrichtungen werden in der Mischkammer stark ausgeprägte Scherschichten erzeugt, die zur Bildung besonders feiner Tropfen beitragen.For example, a counted from the liquid inlet forth first level left-hand inlet holes, the second level right-handed inlet holes and the third level again left-handed inlet holes. Due to the opposite directions of twist, pronounced shear layers are produced in the mixing chamber, which contribute to the formation of particularly fine drops.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungsformen im Zusammenhang mit den Zeichnungen. Dabei können Einzelmerkmale der einzelnen dargestellten Ausführungsformen in beliebiger Weise miteinander kombiniert werden, ohne den Rahmen der Erfindung zu überschreiten. In den Zeichnungen zeigen:

Fig. 1
eine Zweistoffzerstäubungsdüse gemäß dem Stand der Technik,
Fig. 2
eine Zweistoffzerstäubungsdüse gemäß einer ersten Ausführungsform der Erfindung,
Fig. 2a
eine vergrößerte Einzelheit der Fig. 2,
Fig. 3
eine Schnittansicht einer Zweistoffzerstäubungsdüse gemäß einer zweiten bevorzugten Ausführungsform der Erfindung,
Fig. 4
eine abschnittsweise Schnittansicht der Düse der Fig. 2, in der unterschiedliche Schnittebenen markiert sind,
Fig. 5
eine Schnittansicht auf die Ebene I der Fig. 4,
Fig. 6
eine Schnittansicht auf die Ebene II der Fig. 4 und
Fig. 7
eine Schnittansicht auf die Ebene III der Fig. 4.
Further features and advantages of the invention will become apparent from the claims and the following description of preferred embodiments in conjunction with the drawings. In this case, individual features of the individual embodiments illustrated can be combined with one another in any desired manner, without exceeding the scope of the invention. In the drawings show:
Fig. 1
a two-part atomizing nozzle according to the prior art,
Fig. 2
a two-part atomizing nozzle according to a first embodiment of the invention,
Fig. 2a
an enlarged detail of Fig. 2 .
Fig. 3
a sectional view of a two-atomizing nozzle according to a second preferred embodiment of the invention,
Fig. 4
a sectional sectional view of the nozzle of Fig. 2 in which different cutting planes are marked,
Fig. 5
a sectional view on the level I of Fig. 4 .
Fig. 6
a sectional view on the level II of Fig. 4 and
Fig. 7
a sectional view of the level III of Fig. 4 ,

Die Schnittansicht der Fig. 2 zeigt eine erfindungsgemäße Zweistoffzerstäubungsdüse 30 gemäß einer ersten bevorzugten Ausführungsform. Die Zweistoffzerstäubungsdüse 30 gemäß der Erfindung ist, jedenfalls was die Einleitung der Flüssigkeit und des Druckgases in die Mischkammer sowie die Formgebung der Düse anschließend an die Mischkammer angeht, ähnlich zu der bekannten Düse gemäß Fig. 1 aufgebaut. Eine zu zerstäubende Flüssigkeit wird in Richtung eines Pfeiles 32 über ein parallel zu einer Mittellängsachse 36 der Düse 30 verlaufendes inneres Lanzenrohr 34 zugeführt und gelangt zu einem Flüssigkeitseinlass 38, der gegenüber dem Rohr 34 einen verringerten Querschnitt aufweist. Nach Passieren des Flüssigkeitseinlasses 38 gelangt die Flüssigkeit dann in Form eines konzentrisch zur Mittellängsachse 36 verlaufenden Flüssigkeitsstrahles in die zylindrische und konzentrisch zur Mittellängsachse 36 angeordnete Mischkammer 40. Das Rohr 34 und die Mischkammer 40 sind von einer Ringkammer 42 umgeben, die durch den Zwischenraum zwischen einem äußeren Lanzenrohr 43 und dem inneren Lanzenrohr 34 gebildet ist und in die in Richtung eines Pfeiles 44 Druckgas, beispielsweise Druckluft, eingeleitet wird. Eine konzentrisch zur Mittellängsachse 36 verlaufende Umfangswandung der Mischkammer 40 weist mehrere Einlassöffnungen 46a, 46b, 46c auf, die alle zusammen einen Druckgaseinlass in die Mischkammer 40 bilden, also zur Zuführung der sogenannten Kernluft. Die Druckgaseinlassöffnungen 46 sind in Richtung der Mittellängsachse 36 sowie auch in Umfangsrichtung versetzt zueinander angeordnet. Dadurch wird Druckgas in unterschiedlichen Schichten in die Mischkammer 40 eingeleitet. Die genaue Anordnung der Druckgaseinlassöffnungen 46 wird nachfolgend noch anhand der Fig. 4 bis 7 erläutert.The sectional view of Fig. 2 shows a Zweowoffzerstäubungsdüse 30 according to the invention according to a first preferred embodiment. The Zweistoffzäubäubdüse 30 according to the invention, at least as regards the introduction of the liquid and the compressed gas into the mixing chamber and the shape of the nozzle subsequent to the mixing chamber, similar to the known nozzle according to Fig. 1 built up. A liquid to be atomized is fed in the direction of an arrow 32 via an inner lance tube 34 running parallel to a central longitudinal axis 36 of the nozzle 30 and reaches a liquid inlet 38, which has a reduced cross-section with respect to the tube 34. After passing through the liquid inlet 38, the liquid then passes in the form of a concentric to the central longitudinal axis 36 extending liquid jet in the cylindrical and concentric with the central longitudinal axis 36 arranged mixing chamber 40. The tube 34 and the mixing chamber 40 are surrounded by an annular chamber 42, which through the gap between a outer lance tube 43 and the inner lance tube 34 is formed and in the direction of an arrow 44 pressurized gas, such as compressed air, is introduced. A concentric with the central longitudinal axis 36 extending peripheral wall of the mixing chamber 40 has a plurality of inlet openings 46a, 46b, 46c, all together form a compressed gas inlet into the mixing chamber 40, so for supplying the so-called core air. The compressed gas inlet openings 46 are arranged offset in the direction of the central longitudinal axis 36 as well as in the circumferential direction. As a result, compressed gas is introduced into the mixing chamber 40 in different layers. The exact arrangement of the compressed gas inlet openings 46 will be described below with reference to the Fig. 4 to 7 explained.

Anschließend an die Mischkammer 40 ist eine kegelstumpfförmige Verengung 48 vorgesehen, die einen konvergenten Austrittsteil bildet und die nach Passieren eines engsten Querschnittes wieder in eine kegelstumpfförmige Erweiterung mit geringerem Öffnungswinkel übergeht, die einen divergenten Austrittsteil bildet. Der divergente Austrittsteil endet an einer Austrittsöffnung 52 oder einem Düsenmund. Die Austrittsöffnung 52 wird durch eine umlaufende Austrittskante 54 gebildet, die das in Strömungsrichtung abwärts gelegene Ende des Austrittsteils bildet.Subsequent to the mixing chamber 40, a frusto-conical constriction 48 is provided, which forms a convergent outlet part and which, after passing through a narrowest cross-section, again merges into a frusto-conical enlargement with a smaller opening angle, which forms a divergent outlet part. The divergent exit part terminates at an exit opening 52 or a nozzle mouth. The outlet opening 52 is formed by a peripheral outlet edge 54, which forms the downstream end of the outlet part.

Die kegelstumpfförmige Verengung 48 und die kegelstumpfförmige Erweiterung 50 sind von einem trichterartigen Bauteil 56 umgeben, so dass zwischen dem trichterartigen Bauteil 56 und einer Außenwand des Austrittsteils eine Ringspaltluftkammer 58 gebildet ist. Diese Ringspaltluftkammer 58 wird mittels mehrerer Einlassbohrungen 60 aus der Ringkammer 42 mit Druckgas versorgt. Ein in der Darstellung der Fig. 2 unteres Ende des trichterförmigen Bauteils 56 ist durch eine Ringspaltwandungskante 62 gebildet, die um die Austrittsöffnung 52 umläuft. Zwischen der Ringspaltwandungskante 62 und der Austrittskante 54 ist ein die Austrittsöffnung 52 umgebender Ringspalt 64 gebildet, der damit die Austrittsöffnung 52 ringförmig umgibt.The frustoconical constriction 48 and the frusto-conical extension 50 are surrounded by a funnel-like component 56, so that an annular gap air chamber 58 is formed between the funnel-like component 56 and an outer wall of the outlet part. This annular gap air chamber 58 is supplied by means of a plurality of inlet bores 60 from the annular chamber 42 with compressed gas. One in the presentation of the Fig. 2 The lower end of the funnel-shaped component 56 is formed by an annular gap wall edge 62, which runs around the outlet opening 52. Between the annular gap wall edge 62 and the outlet edge 54, an annular gap 64 surrounding the outlet opening 52 is formed, which thus annularly surrounds the outlet opening 52.

Durch diesen Ringspalt 64, der in der Darstellung der Fig. 2a noch einmal vergrößert dargestellt ist, tritt Druckgas mit hoher Geschwindigkeit aus. Auf diese Weise wird ein Flüssigkeitsfilm 66, der sich an einer Innenwandung der kegelförmigen Erweiterung 50 ausbildet, an der Austrittsöffnung 52 dieses divergenten Düsenaustrittsteiles zu einer sehr dünnen Flüssigkeitslamelle 68 ausgezogen, die in kleine Tropfen zerfällt. Experimentelle Untersuchungen der Erfinder haben gezeigt, dass auf diese Weise die maximale Tropfengröße der Zweistoffzerstäubungsdüse 30 bei gegenüber der Düse nach dem Stand der Technik gemäß Fig. 1 gleichen Energieaufwand auf ca. ein Drittel reduziert werden kann. Die Ringspaltluftmenge beträgt zwischen 10% und 40% der Gesamtzerstäubungsluftmenge.Through this annular gap 64, in the representation of the Fig. 2a shown enlarged again, compressed gas exits at high speed. In this way, a liquid film 66, which forms on an inner wall of the conical enlargement 50, is drawn out at the exit opening 52 of this divergent nozzle exit part into a very thin liquid lamella 68, which disintegrates into small drops. Experimental investigations by the inventors have shown that in this way the maximum droplet size of the two-component atomizing nozzle 30 in relation to the nozzle according to the prior art Fig. 1 same energy consumption can be reduced to about one third. The annular gap air quantity is between 10% and 40% of the total atomizing air quantity.

Wie den Darstellungen der Fig. 2 und 2a zu entnehmen ist, ragt die Ringspaltaustrittskante 62 gegenüber der Austrittskante 54 in Strömungsrichtung etwas vor. Indem man also die äußere Ringspaltdüse etwas über den Düsenmund der Zentraldüse hinausragen lässt wird eine weitere Verbessung der Zerstäubung sowie ein Schutz der scharfen Austrittskante 54 erzielt. Vorteilhafterweise ragt die Ringspaltaustrittskante 62 um 5% bis 20% des Durchmessers der Austrittsöffnung 52 über die Austrittskante 54 hinaus.As the representations of Fig. 2 and 2a can be seen, the annular gap outlet edge 62 protrudes slightly in the flow direction with respect to the outlet edge 54. Thus, by letting the outer annular gap nozzle protrude slightly beyond the nozzle mouth of the central nozzle, a further improvement of the atomization and protection of the sharp exit edge 54 is achieved. Advantageously, the annular gap outlet edge 62 protrudes beyond the outlet edge 54 by 5% to 20% of the diameter of the outlet opening 52.

Abweichend von der Ausführungsform der Zerstäubungsdüse 30 kann die Ringspaltluftkammer 58 mit Druckgas aus einer separaten Leitung versorgt werden. Hierzu werden beispielsweise die Bohrungen 60 verschlossen und es wird Druckgas aus einer separaten Leitung unmittelbar in die Ringspaltluftkammer 58 eingeleitet.Notwithstanding the embodiment of the atomizing nozzle 30, the annular gap air chamber 58 can be supplied with compressed gas from a separate line. For this purpose, for example, the holes 60 are closed and compressed gas is introduced from a separate line directly into the annular gap air chamber 58.

Die Schnittansicht der Fig. 3 zeigt eine weitere Zweistoffzerstäubungsdüse 70 gemäß einer zweiten bevorzugten Ausführungsform der Erfindung. Die Zweistoffzerstäubungsdüse 70 ist mit Ausnahme einer zusätzlichen Schleierluftdüse 72 gleich zu der Zweistoffzerstäubungsdüse 30 der Fig. 2 aufgebaut, so dass auf eine eingehende Erläuterung der grundsätzlichen Funktionsweise verzichtet wird und gleiche Bauteile mit den gleichen Bezugsziffern versehen werden.The sectional view of Fig. 3 shows another binary atomizing nozzle 70 according to a second preferred embodiment of the invention. The two-component atomizing nozzle 70, with the exception of an additional Schleierluftdüse 72 is equal to the Zweistoffzäubungsdüse 30 of Fig. 2 so that on an in depth explanation of the basic operation is omitted and the same components are provided with the same reference numerals.

Das trichterförmige Bauteil 56 ist bei der Zweistoffzerstäubungsdüse 70 von einem weiteren Bauteil 74 umgeben, das prinzipiell rohrförmig aufgebaut ist, ein weiteres Lanzenrohr bildet und sich in Richtung auf die Austrittsöffnung 52 zu trichterartig verengt. Auf diese Weise ist zwischen dem Bauteil 74 und dem Bauteil 56 ein Schleierluftringspalt 76 gebildet. Der Schleierluftspalt 76 endet etwa auf Höhe der Austrittsöffnung 52 und eine untere, umlaufende Kante des Bauteils 74 ist auf gleicher Höhe angeordnet wie die Ringspaltwandungskante 62. Eine Querschnittsfläche des dadurch gebildeten Schleierluftspalts ist aber deutlich größer als der Ringspalt 64, damit bei der Schleierlufteinleitung Rückstromwirbel vermieden werden können. Die den Düsenmund oder die Austrittsöffnung 52 ringförmig umschließende Schleierluftdüse 72 kann energiesparend mit Luft geringen Drucks beaufschlagt sein, die gemäß einem Pfeil 78 zugeführt wird.The funnel-shaped component 56 is surrounded in the two-component atomizing nozzle 70 by a further component 74, which is constructed in principle tubular, forms a further lance tube and narrows in the direction of the outlet opening 52 to a funnel-like. In this way, a Schleierluftringspalt 76 is formed between the component 74 and the component 56. The Schleierluftspalt 76 ends approximately at the height of the outlet opening 52 and a lower, circumferential edge of the component 74 is disposed at the same height as the annular gap wall edge 62. A cross-sectional area of the Schleufluftspalts formed thereby is significantly larger than the annular gap 64, so that in the Schleierlufteinleitung Rückstromwirbel avoided can be. The nozzle nozzle or the outlet opening 52 annularly enclosing Schleierluftdüse 72 can be energetically charged with low pressure air, which is supplied according to an arrow 78.

Die Zweistoffzerstäubungsdüse 30 und die Zweistoffzerstäubungsdüse 70 der Fig. 2 bzw. 3 können am unteren Ende einer sogenannten Zerstäubungslanze angeordnet sein, die in einen Prozessraum hineinragt.The two-component atomizing nozzle 30 and the two-component atomizing nozzle 70 of the Fig. 2 or 3 can be arranged at the lower end of a so-called sputtering lance, which projects into a process space.

Die Darstellung der Fig. 4 zeigt eine abschnittsweise Schnittansicht der Zweistoffzerstäubungsdüse 30 der Fig. 2. Durch die verschiedenen Ebenen mit Druckgaseinlassöffnungen 46a, 46b, 46c sind Schnittebenen gelegt, die mit I, II bzw. III bezeichnet sind.The presentation of the Fig. 4 shows a sectional sectional view of the two-component atomizing nozzle 30 of Fig. 2 , Through the various levels with compressed gas inlet openings 46a, 46b, 46c are placed sectional planes, which are designated I, II and III.

Dadurch, dass es mit der erfindungsgemäßen Zweistoffzerstäubungsdüse 30, 70 mit zusätzlicher Ringspaltzerstäubung möglich ist, den Flüssigkeitsfilm 66, der im divergenten Düsenaustrittsteil 50 auf der Innenwand existiert, am Düsenmund zu kleinen Tropfen zu versprühen, bieten sich weitere interessante Ansatzpunkte für die Düsengestaltung. Insbesondere ist es zulässig, der Zweiphasenströmung in der Mischkammer 40 und somit auch im Austrittsteil 48, 50 der Düse 30, 70 einen Drall aufzuprägen. Dadurch werden zwar etwas mehr Tropfen auf die Innenwand des Austrittsteils geschleudert. Aber dies ist wegen der sehr effizienten zusätzlichen Ringspaltverdüsung nicht schädlich. Ein Vorteil der Verdrallung liegt darin, dass sich eine verdrallte Strömung in der Mischkammer 40 und im Austrittsteil 48, 50 eher zentrisch symmetrisch einstellt. Dies ist mit herkömmlichen Zweistoffdüsen kaum zu erreichen und hat bisher dazu geführt, dass solche Düsen zum "Spucken" neigen, indem bereichsweise am Düsenmund besonders viele große Tropfen gebildet wurden. Bisher waren die Mittellinien der Zuluftbohrungen 5 der konventionellen Düse gemäß Fig. 1 auf die Mittellängsachse 24 der Zweistoffdüse gerichtet. Man ist geneigt anzunehmen, dass daraus eine zentrisch symmetrische Strömungskonfiguration resultieren müsse. Dies ist jedoch nicht der Fall; vielmehr reichen schon kleinste Störungen in der Flüssigkeits- bzw. Luftzufuhr zur Mischkammer aus, den Strahl seitlich ausweichen zu lassen.Because it is possible with the Zweistoffzerstäubungsdüse 30, 70 according to the invention with additional annular gap atomization, the liquid film 66, which exists in the divergent nozzle outlet part 50 on the inner wall to spray on the nozzle mouth to small drops, there are further interesting starting points for the nozzle design. In particular, it is permissible for the two-phase flow in the mixing chamber 40 and thus also in the outlet part 48, 50 of the nozzle 30, 70 impart a twist. As a result, a few more drops are thrown onto the inner wall of the outlet part. But this is not harmful because of the very efficient additional annular gap atomization. An advantage of the twisting is that a twisted flow in the mixing chamber 40 and in the outlet part 48, 50 sets rather centrally symmetrical. This can hardly be achieved with conventional two-fluid nozzles and has hitherto led to such nozzles being prone to "spitting", in that particularly large drops have been formed in regions at the nozzle mouth. So far, the centerlines of the Zuluftbohrungen 5 were the conventional nozzle according to Fig. 1 directed to the central longitudinal axis 24 of the two-fluid nozzle. One is inclined to assume that this would result in a centrically symmetrical flow configuration. This is not the case; Rather, even the smallest disturbances in the liquid or air supply to the mixing chamber suffice to allow the jet to escape laterally.

Erfindungsgemäß ist dahingegen vorgesehen, die Bohrungen zur Bildung der Druckgaseinlassöffnungen 46a, 46b, 46c jeweils tangential zu einem Kreis um die Mittellängsachse 36 der Düse auszurichten. Der somit verdrallte Strahl zentriert sich dadurch in der Mischkammer 40 sowie im konvergenten Austrittsteil und im divergenten Austrittsteil der Düse 30, 70 selbsttätig.In contrast, according to the invention, the bores for forming the compressed gas inlet openings 46a, 46b, 46c are each aligned tangentially to a circle around the central longitudinal axis 36 of the nozzle. The thus twisted beam is centered thereby in the mixing chamber 40 and in the convergent outlet part and in the divergent outlet part of the nozzle 30, 70 automatically.

Die tangentiale Ausrichtung der Druckgaseinlassöffnungen 46a ist anhand der Schnittansicht der Fig. 5 genauer zu erkennen. Insgesamt sind in Umfangsrichtung gleichmäßig voneinander beabstandet vier Bohrungen in der Ebene I angeordnet, die eine Strömungsverbindung von der Ringkammer 42 in die Mischkammer 40 bilden. Alle diese Bohrungen sind tangential zu einem gedachten Kreis 80 um die Mittellängsachse 36 der Düse angeordnet. Dadurch bildet sich in der Ebene I ein Drall aus, der mittels eines Kreispfeiles gegen den Uhrzeigersinn in der Darstellung der Fig. 5 angedeutet ist.The tangential orientation of the compressed gas inlet openings 46a is based on the sectional view of Fig. 5 to recognize more precisely. Overall, four holes in the plane I are uniformly spaced from each other in the circumferential direction, which form a flow connection of the annular chamber 42 in the mixing chamber 40. All of these bores are arranged tangentially to an imaginary circle 80 about the central longitudinal axis 36 of the nozzle. As a result, in the plane I forms a twist, which by means of a circular arrow in the counterclockwise direction in the representation of Fig. 5 is indicated.

Die Darstellung der Fig. 6 zeigt die Anordnung von vier Bohrungen zur Bildung der Druckgaseinlassöffnungen 46b in der Ebene II. Die Druckgaseinlassöffnungen 46b sind ebenfalls tangential zu einem Kreis um die Mittellängsachse 36 der Düse angeordnet, jedoch so, dass sich in der Ebene II eine Strömung um die Mittellängsachse 36 im Uhrzeigersinn ergibt.The presentation of the Fig. 6 shows the arrangement of four holes to form the Druckgaseinlassöffnungen 46 b in the plane II. The Druckgaseinlaßöffnungen 46 b are also arranged tangentially to a circle about the central longitudinal axis 36 of the nozzle, but such that in the plane II, a flow about the central longitudinal axis 36 in the clockwise direction results.

Die Druckgaseinlassöffnungen 46c in der Ebene III sind, wie Fig. 7 zu entnehmen ist, wieder gleich zu den Druckgaseinlassöffnungen 46a in der Ebene I angeordnet, so dass sich in der Ebene III wieder eine Strömung um die Mittellängsachse 36 entgegen dem Uhrzeigersinn ergibt.The pressurized gas inlet ports 46c in the plane III are as Fig. 7 can be seen, again arranged equal to the compressed gas inlet openings 46a in the plane I, so that in the plane III again a flow around the central longitudinal axis 36 results in the counterclockwise direction.

Gemäß der Erfindung ist es also vorgesehen, in den unterschiedlichen Ebenen I, II, III der Zuluftbohrungen gegenläufige Drallrichtungen aufzuprägen. So ist die vom Flüssigkeitseintritt her gezählte erste Zuluftbohrungsebene I linksdrehend, die zweite Bohrungsebene II rechtsdrehend und die dritte Bohrungsebene wieder linksdrehend angeordnet. Durch die gegenläufigen Drallrichtungen in den unterschiedlichen Ebenen I, II, III werden in der Mischkammer 40 stark ausgeprägte Scherschichten erzeugt, die zur Bildung besonders feiner Tropfen beitragen.According to the invention, it is therefore intended to impose counter-rotating swirl directions in the different planes I, II, III of the supply air bores. Thus, the first inlet air bore plane I counted from the liquid inlet is left-handed, the second bore plane II is right-handed, and the third bore plane is again left-handed. Due to the opposite directions of twist in the different planes I, II, III, strongly pronounced shear layers are produced in the mixing chamber 40, which contribute to the formation of particularly fine drops.

Weiterhin können die Zweistoffzerstäubungsdüsen 30, 70 dadurch optimiert werden, dass der in die Mischkammer eintretende massive Flüssigkeitsstrahl schon vor der Wechselwirkung mit der Zerstäubungsluft zerteilt wird. Dies kann auf verschiedene, an und für sich konventionelle Art und Weise geschehen, beispielsweise durch Vorsehen von Aufpralltellern, Dralleinsätzen und dergleichen.Furthermore, the two-component atomizing nozzles 30, 70 can be optimized in that the massive liquid jet entering the mixing chamber is split even before the interaction with the atomizing air. This can be done in a different, conventional manner, for example by providing impact plates, swirl inserts and the like.

Literaturverzeichnisbibliography

11
Wurz, D.E. Flow behaviour of thin water films under the effect of a co-current air flow of moderate to high subsonic velocities; effect of the film on the air flow Proceedings of the Third International Conference on Rain Erosion and Associated Phenomena, England, Elvetham Hall, Bd. 2, S. 727-750, 11-13 August (1970) Published by A.A. Fyall and R.B. King, Royal Aircraft Establishment, Engl and Wurz, DE Flow behavior of thin water films under the effect of a co-current air flow of moderate to high subsonic velocities; Effects of the Film on the Airflow Proceedings of the Third International Conference on Rain Erosion and Associated Phenomena, England, Elvetham Hall, Vol. 2, pp. 727-750, 11-13 August (1970) Published by AA Fyall and RB King , Royal Aircraft Establishment, Engl and
22
Wurz, D.E. Experimentelle Untersuchung des Strömungsverhaltens dünner Wasser filme und deren Rückwirkung auf einen gleichgerichteten Luftstrom mäßiger bis hoher Unterschallgeschwindigkeit Dissertation, Karlsruhe (1971 ) Wurz, DE Experimental investigation of the flow behavior of thin water films and their reaction to a rectified air flow of moderate to high subsonic velocity Dissertation, Karlsruhe (1971 )
33
Wurz, D.E. Flow behaviour of thin water films under the effect of a co-current air flow of moderate supersonic velocities Proceedings of the Fourth International Conference on Rain Erosion and Associated Phenomena, Germany, Meersburg, Bd. 1, S. 295-318, 08-10 May (1974) Edited by A.A. Fyall and R.B. King, Royal Aircraft Establishment, Engl and Wurz, DE Flow behavior of thin water films under the effect of a co-current air flow of moderate supersonic velocities Proceedings of the Fourth International Conference on Rain Erosion and Associated Phenomena, Germany, Meersburg, Vol. 1, pp. 295-318, 08-10 May (1974) Edited by AA Fyall and RB King, Royal Aircraft Establishment, Engl and
44
Wurz, D.E. Experimental investigation into the flow behaviour of thin water films; Effect on a co-current air flow of moderate to high supersonic velocities. Pressure distribution at the surface of a rigid wavy reference structure. XII Biennial Fluid Dynamics Symposium "Advanced Problems and Methods in Fluid Dynamics", Bialowieza, Polen, 1975 Archives of Mechanics, 28, 5-6, S. 969-987, Warschau (1976 ) Wurz, DE Experimental investigation into the flow of thin water films; Effect on a co-current air flow of moderate to high supersonic velocities. Pressure distribution at the surface of a rigid wavy reference structure. XII Biennial Fluid Dynamics Symposium "Advanced Problems and Methods in Fluid Dynamics", Bialowieza, Poland, 1975 Archives of Mechanics, 28, 5-6, pp. 969-987, Warsaw (1976 )
55
Wurz, D.E. Flüssigkeitsfilmströmung unter Einwirkung einer Überschall-Luftströmung Habilitationsschrift, Karlsruhe (1977 ) Wurz, DE Liquid Film Flow Under the Effect of a Supersonic Air Flow Habilitationsschrift, Karlsruhe (1977 )
66
Wurz, D.E. Subsonic and supersonic gas liquid film flow Paper No. 78-1130, AIAA-11-th Fluid and Plasma Dynamics Conference, Seattle, Washington (USA), 10-12 July (1978 ) Wurz, DE Subsonic and supersonic gas liquid film flow paper no. 78-1130, AIAA-11-th Fluid and Plasma Dynamics Conference, Seattle, Washington (USA), 10-12 July (1978 )
77
Reske, R., D.E. Wurz Droplet impingement on walls and wavy water films Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase-Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 ) Reske, R., DE Root Droplet impingement on walls and wavy water films Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 )
88th
Sill, K.H., D.E. Wurz Experimental and theoretical investigation of shear driven evaporating liquid films Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase-Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 ) Sill, KH, DE Wurz Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 )
99
Wurz, D.E. The subsonic-supersonic controverse of the shear-driven liquid film flow Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase-Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 ) Wurz, DE The subsonic-supersonic controversy of the shear-driven liquid film flow Colloquium EUROMECH 162; Stability and Evaporation of Thin Liquid Films in Two-Phase Flow; Palace of Jablonna, Poland, 20-23 Sept. (1982 )

Claims (15)

  1. Two-substance atomizing nozzle for spraying a liquid with the aid of a compressed gas, comprising a mixing chamber (40), a liquid inlet (38) opening out into the mixing chamber (40), a compressed gas inlet (46a, 46b, 46c) opening out into the mixing chamber (40) and an outlet opening (52) downstream of the mixing chamber (40), characterized in that the mixing chamber (40), the liquid inlet (38) and the compressed gas inlet (46a, 46b, 46c) are configured and arranged such that a liquid film is present on the wall of the nozzle mouth, wherein an annular gap (64) surrounding the outlet opening (52) is provided for discharging of compressed gas, wherein the outlet opening (52) is formed by means of a peripheral wall, the outermost end of which forms an outlet edge (54), wherein the annular gap (64) is arranged in the region of the outlet edge (54), and wherein the annular gap (64) and the outlet edge (54) are configured and arranged such that compressed gas is discharged at high speed from the annular gap (64) directly in the region of the outlet edge (54) and distends the liquid film on the outlet edge (54) to a very thin liquid lamella and then atomizes said lamella to fine droplets.
  2. Two-substance atomizing nozzle according to Claim 1, characterized in that the annular gap (64) is formed between the outlet edge (54) and an outer annular gap wall.
  3. Two-substance atomizing nozzle according to Claim 2, characterized in that an outer end of the annular gap wall is formed by an annular gap wall edge (62) and in that the annular gap wall edge (62) is arranged after the outlet edge (54), as seen in the outflow direction.
  4. Two-substance atomizing nozzle according to Claim 3, characterized in that the annular gap wall edge (62) is arranged downstream of the outlet edge (54) by between 5 % and 20 % of the diameter of the outlet opening (52).
  5. Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that control means and/or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas entering the mixing chamber through the compressed gas inlet can be set independently of each other.
  6. Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that the mixing chamber (40) is surrounded at least in certain portions by an annular chamber (42) for supplying the compressed gas and in that a gap air chamber (58) arranged upstream of the annular gap (64) is connected in terms of flow to the annular chamber (42).
  7. Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that a veil-of-air nozzle (72) which surrounds the outlet opening (52) and the annular gap (64) at least in certain portions is provided.
  8. Two-substance atomizing nozzle according to Claim 7, characterized in that the veil-of-air nozzle (72) has a veil-of-air annular gap which surrounds the outlet opening (52) and the annular gap (64) and the outlet area of which is larger than an outlet area of the annular gap.
  9. Two-substance atomizing nozzle according to Claim 7 or 8, characterized in that control means and/or at least two compressed gas sources are provided, so that a pressure of the compressed gas supplied to the veil-of-air nozzle (72) is essentially lower than a pressure of the compressed gas supplied to the annular gap (64).
  10. Two-substance atomizing nozzle according to at least one of the preceding claims, characterized in that means (46a, 46b, 46c) are provided to impart a swirl about a center longitudinal axis (36) of the nozzle (30; 70) to a mixture of compressed gas and liquid in the mixing chamber (40).
  11. Two-substance atomizing nozzle according to Claim 10, characterized in that the compressed gas inlet (46a, 46b, 46c) has at least a first inlet bore, which opens into the mixing chamber (40) and is aligned tangentially in relation to a circle (80) around a center longitudinal axis (36) of the nozzle (30; 70), to produce a swirl in a first direction.
  12. Two-substance atomizing nozzle according to Claim 11, characterized in that a number of first inlet bores, in particular four, are provided in a first plane (I) perpendicularly in relation to the center longitudinal axis (36) and spaced apart in the circumferential direction.
  13. Two-substance atomizing nozzle according to Claim 11 or 12, characterized in that at least a second inlet bore, which is aligned tangentially in relation to a circle around the center longitudinal axis (36) of the nozzle (30; 70), is provided parallel to the center longitudinal axis (36) and at a distance from the first inlet bore, to produce a swirl in a second direction.
  14. Two-substance atomizing nozzle according to Claim 13, characterized in that a number of second inlet bores, in particular four, are provided in a second plane (II) perpendicularly in relation to the center longitudinal axis (36) and spaced apart in the circumferential direction.
  15. Two-substance atomizing nozzle according to at least one of Claims 11 to 14, characterized in that at least three planes (I, II, III) with inlet bores are provided, spaced apart and parallel to the center longitudinal axis, the inlet bores of successive planes (I, II, III) producing an oppositely directed swirl.
EP11195368.3A 2005-10-07 2006-10-06 Atomizing nozzle for two substances Active EP2444161B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005048489A DE102005048489A1 (en) 2005-10-07 2005-10-07 Two-fluid nozzle with annular gap atomization
EP06792384.7A EP1931478B1 (en) 2005-10-07 2006-10-06 Atomizing nozzle for two substances

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP06792384.7A Division EP1931478B1 (en) 2005-10-07 2006-10-06 Atomizing nozzle for two substances
EP06792384.7A Division-Into EP1931478B1 (en) 2005-10-07 2006-10-06 Atomizing nozzle for two substances

Publications (2)

Publication Number Publication Date
EP2444161A1 EP2444161A1 (en) 2012-04-25
EP2444161B1 true EP2444161B1 (en) 2015-12-16

Family

ID=37502711

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11195368.3A Active EP2444161B1 (en) 2005-10-07 2006-10-06 Atomizing nozzle for two substances
EP06792384.7A Active EP1931478B1 (en) 2005-10-07 2006-10-06 Atomizing nozzle for two substances

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06792384.7A Active EP1931478B1 (en) 2005-10-07 2006-10-06 Atomizing nozzle for two substances

Country Status (8)

Country Link
US (1) US8028934B2 (en)
EP (2) EP2444161B1 (en)
CN (1) CN101287555B (en)
DE (1) DE102005048489A1 (en)
ES (1) ES2421923T3 (en)
PL (1) PL1931478T3 (en)
RU (1) RU2441710C2 (en)
WO (1) WO2007042210A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009147A1 (en) 2006-02-24 2007-08-30 Wurz, Dieter, Prof. Dr.-Ing. Dual nozzle has mixing chamber, and ring is arranged by secondary air nozzles around mouth of main nozzle
WO2008001301A2 (en) * 2006-06-27 2008-01-03 Koninklijke Philips Electronics N.V. Sprayhead apparatus for generating a gas-assisted droplet spray for use in oral cleaning
DE102007044272A1 (en) * 2007-09-17 2009-04-02 Wurz, Dieter, Prof. Dr.-Ing. Multi-hole or bundle head nozzle with and without compressed air support
US7731100B2 (en) * 2008-08-12 2010-06-08 Walsh Jr William Arthur Joining the mixing and variable gas atomizing of reactive chemicals in flue gas cleaning systems for removal of sulfur oxides, nitrogen oxides and mercury
DE102008057295A1 (en) 2008-11-14 2010-05-20 Venjakob Maschinenbau Gmbh & Co. Kg annular die
DE102010030195B4 (en) 2009-06-20 2020-09-10 Werner & Pfleiderer Lebensmitteltechnik Gmbh Cooling device for food and nozzle devices therefor
CN101940897B (en) * 2009-07-09 2012-05-30 中国石油化工股份有限公司 Gas-liquid distributor
CN101940900B (en) * 2009-07-09 2012-05-30 中国石油化工股份有限公司 Impact gas-liquid distributor
US8336788B2 (en) * 2009-08-07 2012-12-25 Nelson Irrigation Corporation Dripless rotary sprinkler and related method
DE102010015497A1 (en) * 2010-04-16 2011-10-20 Dieter Wurz Externally mixing multi-fluid nozzle for minimal internal heat transfer
CN102019252B (en) * 2010-06-01 2013-02-20 陈尚文 Gas atomizing and spraying device
GB2488144B (en) * 2011-02-17 2014-01-15 Kelda Showers Ltd Shower head
CN103608121B (en) * 2011-06-22 2017-09-01 凯尔达淋浴设备有限公司 Shower head and shower bath
CN102274807A (en) * 2011-08-05 2011-12-14 长沙理工大学 Spray cooling nozzle for grinding processing
DE102011119076B4 (en) * 2011-11-21 2014-06-26 Automatik Plastics Machinery Gmbh Apparatus and method for depressurizing a fluid containing granules therein
US9074969B2 (en) 2012-04-18 2015-07-07 Cooper Environmental Services Llc Sample fluid stream probe
CN103008299A (en) * 2012-11-30 2013-04-03 北京七星华创电子股份有限公司 Gas-liquid two-phase spray cleaning device and cleaning method
CN103062766B (en) * 2012-12-31 2015-06-03 河南中烟工业有限责任公司 Isobaric type diesel combustor
DE102013203339A1 (en) * 2013-02-28 2014-08-28 Lechler Gmbh Two-fluid nozzle and method for spraying a liquid-gas mixture
CN104096432B (en) * 2013-04-12 2016-12-28 张灵样 Mist dust remover
CN103506234B (en) * 2013-09-27 2016-03-16 中节能六合天融环保科技有限公司 A kind of SNCR denitrating flue gas spray gun two-chamber hybrid double-layer spray technology
DE102014003877A1 (en) * 2014-03-19 2015-09-24 Dieter Wurz Method and device for on-line cleaning of two-substance nozzles
US10226778B2 (en) * 2014-06-30 2019-03-12 Carbonxt, Inc. Systems, lances, nozzles, and methods for powder injection resulting in reduced agglomeration
CA2963017C (en) * 2014-10-09 2021-07-27 Spraying Systems Manufacturing Europe Gmbh Pneumatic atomizing nozzle
US9746397B2 (en) 2015-07-20 2017-08-29 Cooper Environmental Services Llc Sample fluid stream probe gas sheet nozzle
EP3341132B1 (en) 2015-08-28 2021-10-06 Regents of the University of Minnesota Nozzles and methods of mixing fluid flows
CN105457796A (en) * 2016-01-07 2016-04-06 浙江泰来环保科技有限公司 Smoke deacidification atomizer
CN106335789A (en) * 2016-08-29 2017-01-18 镇江飞利达电站设备有限公司 Novel auxiliary blower
CN106362271A (en) * 2016-08-29 2017-02-01 名高医疗器械(昆山)有限公司 Medicine sprayer
DE102016123814A1 (en) * 2016-12-08 2018-06-14 Air Liquide Deutschland Gmbh Arrangement and method for treating a surface
CN107307467A (en) * 2017-07-31 2017-11-03 黑龙江烟草工业有限责任公司 Tobacco shred feeding device
US11027295B2 (en) * 2017-09-08 2021-06-08 David T. Gunn Spray applicator
EP3731974A1 (en) * 2017-12-28 2020-11-04 PPG Architectural Finishes, Inc. Pneumatic material spray gun
WO2019241488A1 (en) * 2018-06-14 2019-12-19 Regents Of The University Of Minnesota Counterflow mixer and atomizer
NL2025098B1 (en) * 2020-03-11 2021-09-22 Future Cleaning Tech B V Spraying system for delivering cleaning foam
DE102020213179A1 (en) * 2020-10-19 2022-04-21 Glatt Gesellschaft Mit Beschränkter Haftung Nozzle for spraying substances and method for controlling or regulating the nozzle
CN114682405A (en) * 2020-12-31 2022-07-01 大连理工大学 Internal rotational flow cross hole injector
CN114682404A (en) * 2020-12-31 2022-07-01 大连理工大学 External rotational flow cross hole ejector
CN114682403A (en) * 2020-12-31 2022-07-01 大连理工大学 Inner rotational flow and outer jet flow cross hole injector
CN113198632B (en) * 2021-04-08 2022-05-06 成都工业职业技术学院 Automobile paint spraying device
DE102021112492A1 (en) 2021-05-12 2022-11-17 MTU Aero Engines AG Air humidification device, method for operating an air humidification device and system, having at least one air humidification device
KR102549725B1 (en) * 2021-10-05 2023-06-30 조은영 Diaphragm Pump with Multiple Discharging Pipes
CN114273099B (en) * 2021-12-27 2023-04-28 苏州新维度微纳科技有限公司 Atomization spraying structure of nano-imprinting glue by high-pressure gas
CN114950758B (en) * 2022-06-02 2023-04-28 重庆大学 Atomizing shape-adjustable nozzle based on multiple synchronous compression technology

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1451063A (en) 1923-04-10 Burner
DE203004C (en) *
FR1125303A (en) 1954-05-27 1956-10-29 Pressure-fed oil burner, especially for heating furnaces
GB1304684A (en) 1969-02-11 1973-01-24
DE2005972C3 (en) * 1970-02-10 1982-06-16 Basf Ag, 6700 Ludwigshafen Atomizer head
US4341347A (en) * 1980-05-05 1982-07-27 S. C. Johnson & Son, Inc. Electrostatic spraying of liquids
JPH0763606B2 (en) * 1991-10-18 1995-07-12 フロイント産業株式会社 Coating equipment
CN2127976Y (en) * 1992-05-13 1993-03-10 北京航空航天大学 Two-phase flow air bulb atomization nozzle
GB9326367D0 (en) * 1993-12-23 1994-02-23 Rolls Royce Plc Fuel injection apparatus
US5681162A (en) * 1996-09-23 1997-10-28 Nabors, Jr.; James K. Low pressure atomizer
US5899387A (en) * 1997-09-19 1999-05-04 Spraying Systems Co. Air assisted spray system
US5964418A (en) * 1997-12-13 1999-10-12 Usbi Co. Spray nozzle for applying metal-filled solventless resin coating and method
US6161778A (en) * 1999-06-11 2000-12-19 Spraying Systems Co. Air atomizing nozzle assembly with improved air cap
FR2827198B1 (en) 2001-07-10 2004-04-30 Air Liquide SPRAYING DEVICE AND IMPLEMENTATION METHOD
FI114198B (en) 2002-06-24 2004-09-15 Medimaker Oy Ltd Method and system for imaging the organ
US6863228B2 (en) * 2002-09-30 2005-03-08 Delavan Inc. Discrete jet atomizer
AU2003291973A1 (en) * 2002-12-20 2004-07-14 Lifecycle Pharma A/S A self-cleaning spray nozzle
RU2243036C1 (en) 2003-04-17 2004-12-27 Закрытое акционерное общество "СИЛЭН" Method to form a gas-drop jet and a device for its realization

Also Published As

Publication number Publication date
PL1931478T3 (en) 2013-10-31
RU2441710C2 (en) 2012-02-10
EP1931478B1 (en) 2013-05-15
DE102005048489A1 (en) 2007-04-19
EP2444161A1 (en) 2012-04-25
CN101287555A (en) 2008-10-15
US8028934B2 (en) 2011-10-04
EP1931478A1 (en) 2008-06-18
CN101287555B (en) 2013-09-18
US20090166448A1 (en) 2009-07-02
ES2421923T3 (en) 2013-09-06
RU2008117344A (en) 2009-11-20
WO2007042210A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
EP2444161B1 (en) Atomizing nozzle for two substances
EP1986788B1 (en) Two-component nozzle with secondary air nozzles arranged in circular form
DE3131070C2 (en)
EP2190587B1 (en) Multi-hole or cluster nozzle
EP2347180A1 (en) Two-component nozzle, bundle nozzle and method for atomizing fluids
DE3116660C2 (en) Multi-component atomizer nozzle
WO2007080084A1 (en) Two-component nozzle
EP0990801B1 (en) Method for isothermal compression of air and nozzle arrangement for carrying out the method
EP3042724B1 (en) Method for generating a spray jet and dual material nozzle
DE2645142A1 (en) METHOD FOR GENERATING MIXED AND ATOMIZED FLUIDA AND DEVICE FOR CARRYING OUT THE METHOD
EP2555858A1 (en) Spray system and method for spraying a secondary fluid into a primary fluid
DE102007034549A1 (en) Compressed air-supported two-fluid nozzle for atomization of liquid, has mixing chamber in which liquid and primary atomization compressed air directly contact with each other at entrance
DE10319582B4 (en) Binary spray nozzle
EP1380348B1 (en) Spraying apparatus and method for generating a liquid-gas mixture
EP2186572A1 (en) Ring split nozzle
DE19854382B4 (en) Method and device for atomizing liquid fuel for a firing plant
DE102010012555A1 (en) Dual-material internal mixing nozzle assembly and method for atomizing a liquid
DE102010012554A1 (en) Dual-material internal mixing nozzle assembly and method for atomizing a liquid
DE1625244C3 (en) Device for atomizing a liquid
DE19855069A1 (en) Liquid fuel preparation unit for burners has hollow cavity inside lance shaped for enlarged volume flow to control air flow
DE1625244B2 (en) DEVICE FOR SPRAYING A LIQUID

Legal Events

Date Code Title Description
AC Divisional application: reference to earlier application

Ref document number: 1931478

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1164782

Country of ref document: HK

17P Request for examination filed

Effective date: 20121023

17Q First examination report despatched

Effective date: 20130506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1931478

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 765266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014671

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160416

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014671

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

26N No opposition filed

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161006

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161006

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161006

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1164782

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061006

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180924

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20181029

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 765266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201022

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221020

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231019

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031