EP1986788B1 - Two-component nozzle with secondary air nozzles arranged in circular form - Google Patents

Two-component nozzle with secondary air nozzles arranged in circular form Download PDF

Info

Publication number
EP1986788B1
EP1986788B1 EP07703511A EP07703511A EP1986788B1 EP 1986788 B1 EP1986788 B1 EP 1986788B1 EP 07703511 A EP07703511 A EP 07703511A EP 07703511 A EP07703511 A EP 07703511A EP 1986788 B1 EP1986788 B1 EP 1986788B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
secondary air
component
air nozzles
mixing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07703511A
Other languages
German (de)
French (fr)
Other versions
EP1986788A1 (en
Inventor
Dieter Wurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL07703511T priority Critical patent/PL1986788T3/en
Publication of EP1986788A1 publication Critical patent/EP1986788A1/en
Application granted granted Critical
Publication of EP1986788B1 publication Critical patent/EP1986788B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/062Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
    • B05B7/066Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet with an inner liquid outlet surrounded by at least one annular gas outlet

Definitions

  • the invention relates to a two-fluid nozzle with a main nozzle, with a mixing chamber and a nozzle connected to the mixing chamber and arranged downstream of the mixing chamber, wherein secondary air nozzles are provided, which open in the region of the nozzle mouth annular.
  • US 1,451,063 shows a burner nozzle, in which a liquid fuel is introduced by means of a centrally arranged feed nozzle in a mixing space.
  • the mixing chamber is circular-cylindrical and widens in three successive stages up to an outlet opening.
  • annular secondary air nozzles open in each case.
  • the secondary air nozzles are formed as cylindrical bores and arranged so that they do not intersect a central longitudinal axis of the mixing chamber.
  • EP 0 205 739 A1 describes a nozzle for feeding mud.
  • In the area of the nozzle mouth open cylindrical nozzle holes for introducing a Zerteilermediums.
  • FIG. 1 shows by way of example a two-way nozzle 3 according to the prior art which is substantially symmetrical with respect to the axis 24.
  • the liquid to be sprayed 1 is introduced via a central lance tube 2 at the constriction 10 in the mixing chamber 7.
  • the compressed gas 15 is supplied via an outer lance tube 4 of an annular chamber 6, which surrounds the mixing chamber in an annular manner; over a certain number of holes 5, the compressed gas is introduced into the mixing chamber 7.
  • a first division of the liquid takes place in drops, so that here a drop-containing gas 9 is formed.
  • a constriction 14 Also at the outlet from the mixing chamber 7 there is a constriction 14.
  • a divergent outlet part 26 connects, which ends with the nozzle orifice 8.
  • the droplet-containing gas stream 9 formed in the mixing chamber 7 is greatly accelerated in the convergent-divergent nozzle, also called the Laval nozzle, so that here a further division of the droplets is effected.
  • Two-substance nozzles with a single exit bore of conventional design suffer from the property that the jet 21 emerging from the nozzle of droplets and atomizing air has only a small opening angle ⁇ . This has the consequence that relatively large distances or large containers are required for the drop evaporation.
  • liquid films on walls can still exist as stable films without dripping even when the gas flow which drives the liquid film to the nozzle orifice is supersonic reached. And this is also the reason why it is possible to use liquid film cooling in rocket thrusters.
  • the film flow is particularly critical in the spraying of highly viscous liquids which simultaneously have a high surface tension, for example of glycol in refrigeration dryers of natural gas pumping stations or of solid suspensions in spray absorbers.
  • the liquid films which are driven by the gas flow to the nozzle orifice 8, can even roam around a sharp edge on the nozzle orifice due to the adhesive forces; they then form on the outside of the nozzle mouth a water bead 12, see Fig. 1 , From this water bead to dissolve edge drops 13 whose diameter is a multiple of the average droplet diameter in the jet core.
  • edge drops 13 whose diameter is a multiple of the average droplet diameter in the jet core.
  • these large edge drops contribute only a small mass fraction to the overall drop load, they are ultimately determinative of the dimensions of the container in which, for example, the temperature of a gas is to be lowered by evaporative cooling from 350 ° C to 120 ° C, without causing an entry from drops to downstream components such as blowers or fabric filters.
  • Fig. 2 shows a corresponding two-fluid nozzle with annular gap atomization.
  • the annular gap air also referred to here as secondary air, is branched off via bores 19 directly from the annular chamber 6.
  • this type of nozzle suffers from the property to produce a relatively slender beam 21, with an opening angle ⁇ of about 15 °. That such nozzles in principle by a Schleieduft- or blocking air ring 25 and a Schleierluft- or Sperr Kunststoffdüse 23 may be enclosed, is known.
  • the main difference between the Blocking air 11 and the annular gap air is that the total pressure of the exiting from the annular gap 16 annular clearance air of the order of magnitude coincides with the pressure of the pressurized gas 15 for the atomization, while the pressure of the sealing air 11 is usually smaller by one or two orders of magnitude.
  • Compressed gas exits the annular gap 16 at high speed and ensures that a liquid film on the wall of the nozzle mouth, in particular of the divergent outlet section, is drawn out to a very thin liquid lamella, which then decays into small drops.
  • the annular air volume may be, for example, 10% to 40% of the total atomizing air amount.
  • the total pressure of the air in the annular gap is advantageously 1.5 bar to 2.5 bar absolute.
  • the total pressure of the air in the annular gap is advantageously so high that when it is expanded to the pressure level in the container, approximately sound velocity is achieved.
  • the outlet opening is formed by means of a peripheral wall, whose extreme end forms an outlet edge and the annular gap is arranged in the region of the outlet edge.
  • the annular gap between the exit edge and an outer annular gap wall is formed.
  • the annular gap wall edge is arranged after the trailing edge.
  • the annular gap wall edge is arranged between 5% and 20% of the diameter of the outlet opening to the outlet edge.
  • a pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas opening into the mixing chamber through the compressed gas inlet can be set independently of one another.
  • the inlet bores 5 in the mixing chamber can be aligned tangentially to a circle about a central longitudinal axis of the nozzle be to create a spin in a first direction.
  • Multiple inlet bores may be provided spaced from one another, and different inlet bores may be tangentially aligned to produce a twist in different directions, for example, opposing twist directions.
  • a two-fluid nozzle is to be provided with which a large opening angle of the spray jet can be achieved.
  • a two-substance nozzle is provided with a main nozzle, with a mixing chamber and a nozzle mouth arranged downstream of the mixing chamber, in which secondary air nozzles open out annularly in the area of the nozzle mouth and in which the secondary air nozzles between two components located in the area of the nozzle mouth Recesses are formed in at least one of the two opposing components in the region of the nozzle mouth.
  • a nozzle jet with a substantially larger opening angle ⁇ of at least approximately 30 ° to 45 ° can be produced. From the secondary air nozzles Exiting compressed air jets act on the emerging from the nozzle jet of droplets and atomizing air and expand it. At the same time, without a continuous annular gap, the advantages of the annular gap atomization according to the German patent application DE 10 2005 048 489.1 are maintained and specifically the formation of large peripheral drops is prevented.
  • the nozzle according to the invention is therefore characterized by a two-fluid nozzle with annular gap atomization according to the German patent application, not previously published DE 10 2005 048 489.1
  • the individual secondary air nozzles are arranged in a circle around the nozzle mouth around and that at several secondary air nozzles whose outlet jets touch or even overlap in the region of the nozzle mouth, so that a continuous annular beam of secondary air surrounds the nozzle mouth.
  • the imaginary projections of the secondary air bores in the plane of the nozzle mouth can overlap to form a closed, annular surface.
  • the nozzle according to the invention can thus have a geometric overlap have the secondary air holes in the mouth of the nozzle and either this overlap already takes place in the wall region of the nozzle mouth or only on an imaginary plane at the level of the nozzle mouth.
  • an annular gap atomization may also be provided.
  • a main spraying direction of the secondary air nozzles is aligned into a main spray jet emanating from the nozzle mouth.
  • the central longitudinal axes of the secondary air nozzles are arranged to a central longitudinal axis of the main nozzle at an angle ⁇ of 20 ° to 80 °.
  • the spray of secondary air nozzles receives both a component parallel to the central longitudinal axis of the main nozzle and a perpendicular thereto arranged component, which is mainly responsible for the expansion of the spray.
  • Different expansions of the spray jet can be achieved by the variation of the angle ⁇ .
  • the central longitudinal axes of the secondary air nozzles do not intersect the central longitudinal axis of the main nozzle.
  • a particularly uniform widening of the spray jet can be achieved.
  • a spray can be imparted to the spray jet of the main nozzle, which promotes widening of the spray jet.
  • the secondary air nozzles are aligned tangentially to an imaginary circle concentric with the central longitudinal axis of the main nozzle.
  • the central longitudinal axes of the secondary air nozzles appear as tangents which rest on an imaginary circle concentrically surrounding the central longitudinal axis of the main nozzle. Since the secondary air nozzles moreover enclose an angle of less than 90 ° with the central longitudinal axis of the main nozzle, they thus touch an imaginary circular cylinder which concentrically surrounds the central longitudinal axis of the main nozzle.
  • this imaginary circle has a radius which is between 30% and 80% of the radius of the spray jet of the main nozzle at the level of the circle.
  • Such an orientation of the secondary air nozzles results in a significant widening of the spray jet with fine droplet atomization. If one thus considers the imaginary circle on which the projection of the central longitudinal axes of the secondary air nozzles lie tangentially, and especially the plane in which this circle lies, then this plane with the outer boundary of the main spray jet forms a circular section line with a spray jet radius.
  • the imaginary circle then has a radius which is between 30% and 80% of this spray radius.
  • the imaginary circle is arranged downstream of the nozzle mouth or main nozzle. The contact points of the central longitudinal axes of the secondary air nozzles are thus at an imaginary circular cylinder about the central longitudinal axis of the main nozzle downstream of the nozzle mouth.
  • the secondary air nozzles open upstream of the nozzle mouth of the main nozzle in the outflow from the mixing chamber to the nozzle mouth.
  • the secondary air nozzles open directly in front of the nozzle mouth in the discharge channel. It may be advantageous that touch the mouths of the secondary air nozzles at the entrance to the discharge or partially overlap.
  • a separate air supply line is provided to the secondary air nozzles.
  • the amount of air and the velocity of the air exiting the secondary air nozzles can be adjusted separately and used, for example, to set a desired spray jet angle.
  • this adjustment means are then required for setting an air pressure at the secondary air nozzles.
  • the secondary air nozzles are in flow communication with a feed line for compressed gas, wherein this feed line is also in flow communication with the mixing chamber.
  • a simple construction of the nozzle according to the invention results when the air required for the secondary air nozzles from the supply line for compressed gas of the main nozzle is shown.
  • the secondary air nozzles can advantageously be connected to an annular space surrounding the mixing chamber. In this way, the two-fluid nozzle according to the invention can be constructed very compact.
  • the nozzle mouth is surrounded by an annular gap, wherein the annular gap can be acted upon with compressed air.
  • an additional annular gap atomization water droplets at the nozzle mouth, which originate from a liquid film occupying the wall of the outflow channel, can be drawn out into liquid lamellae and atomized into fine droplets.
  • An additional annular gap atomization can be particularly advantageous if the individual secondary air nozzles do not touch or overlap at the edge of the outflow channel.
  • an outflow channel initially narrows continuously and then, starting from a constriction in the outflow channel, widens continuously again towards the nozzle mouth.
  • the outflow channel can be designed and the pressure of the liquid and of the compressed gas adjusted in such a way that in the outflow channel at least partially supersonic speed is reached.
  • Such a Schleierluftdüse or Hüllluftdüse may be provided in addition to the annular gap for the Annularspaltverdüsung and is subjected to lower pressure air than is required for the Annularspaltverdüsung.
  • FIG. 3 shows a two-fluid nozzle 30 according to the invention, which has a concentrically arranged to a central longitudinal axis 32 of the nozzle feed tube 34 for liquid to be sprayed.
  • the feed tube 34 merges into a frusto-conical constriction 36 and then into a cylindrical constriction 38, which is followed by a mixing chamber 40 which widens in the shape of a truncated cone.
  • the mixing chamber is provided in its peripheral wall with inlet openings 42 for compressed gas.
  • the inlet openings 42 are arranged in two, spaced apart along the outflow direction rings in the wall of the mixing chamber 40.
  • the mixing chamber 40 is adjoined by an outflow channel 44, which ends at the nozzle mouth 46 and initially narrows continuously and then expands continuously again starting from a constriction 45.
  • the boundary of the outflow channel thereby has a continuously curved shape in the outflow 44, the mixture formed in the mixing chamber 40 of gas and liquid, such as air and water, greatly accelerated and can reach supersonic speed in the divergent section.
  • Compressed gas is fed to the two-substance nozzle 30 via a compressed gas pipe 48 which surrounds the feed pipe 34 concentrically.
  • the compressed gas is accordingly guided in the annular region between feed tube 34 and compressed gas tube 48.
  • the compressed gas then passes through the inlet openings 42 into the mixing chamber 40.
  • inlet openings of secondary air nozzles 52a, 52b are arranged, into which compressed gas according to the Fig. 3 indicated arrows 54 occurs.
  • the secondary air nozzles 52 are formed as bores in a closure piece 56 which centrally carries the outflow channel 44 and at the upstream end of the outflow channel 44 provides a flange for receiving a, the mixing chamber 40 defining tubular component.
  • the annulus 50 for the pressurized gas will also formed by the component 56, and at its upstream end, the component 56 is screwed to the compressed gas tube 48.
  • the secondary air nozzles 52a, 52b have central longitudinal axes 58a, 58b, which form an angle ⁇ with the central longitudinal axis 32 of the main nozzle defined by the outflow channel 44.
  • the angle ⁇ is in the representation of Fig. 3 about 45 ° and can be between about 20 ° and about 80 °.
  • the secondary air nozzles 52 a, 52 b open into the outflow channel 44 immediately upstream of the nozzle mouth 46.
  • the central longitudinal axes 58 a and 58 b of the two illustrated secondary air nozzles 52 a, 52 b intersect downstream of the nozzle mouth 46 with the central longitudinal axis 32.
  • the nozzle mouth 46 annular surrounding Hüllluftdüse 66 is provided by means of a.
  • Hüllluftohres 68 is formed. Through the Hüllluftrohr 68 compressed gas is supplied at a lower pressure than the mixing chamber 40 supplied compressed gas. The enveloping air surrounds the spray jet 64 annularly.
  • FIG. 4 shows a two-fluid nozzle 70 according to the invention according to a further embodiment of the invention.
  • identical parts are provided with the same reference numerals and will not be explained again.
  • the two-fluid nozzle 70 In contrast to the two-fluid nozzle 30 of Fig. 2 In the two-fluid nozzle 70 four secondary air nozzles 72a, 72b, 72c and 72d are provided, wherein in the illustration of Fig. 3 only three secondary air nozzles 72a, 72b and 72d can be seen. In the view of Fig. 4 On the other hand, the orifices of the four secondary air nozzles 72a, 72b, 72c and 72d are indicated in an outflow channel 74 of the two-component nozzle 70. These openings are located directly above a nozzle mouth 76. To illustrate the arrangement of the secondary air nozzles 72a, 72b, 72c and 72d, the respective central longitudinal axes 78a to 78d are shown.
  • the central longitudinal axis 78a to 78d of the two-substance nozzle 72a to 72d are inclined on the one hand by the angle ⁇ to the central longitudinal axis 32 of the main nozzle, as already in FIG Fig. 3 can be seen.
  • the central longitudinal axes 78a to 78d but are skewed to the central longitudinal axis 32 and lie tangentially to a circle which is arranged concentrically to the central longitudinal axis 32 of the main nozzle.
  • the secondary air nozzles 72a to 72d thus impart a twist to the binary mixture emerging from the outflow channel 74 and thereby ensure that the spray jet widened to the spray angle ⁇ .
  • the nozzle bores can also be achieved in this case the confluence with the outflow channel 74 touch or partially overlap.
  • the lines of action of the secondary air jets are therefore not directed towards the central longitudinal axis 32 of the main jet, but they dive into this main jet at a suitable radius r 1 , which is between 20% and 80% of the radius of the main beam at the relevant point.
  • r 1 a suitable radius
  • the inclination angle ⁇ of the central longitudinal axes of the secondary air nozzles relative to the central longitudinal axis 32 of the main nozzle plays a significant role, wherein, as mentioned, here the angle range between 20 ° and 80 ° for this angle ⁇ is particularly advantageous.
  • the nozzle 30 according to the invention is thus characterized by a two-fluid nozzle with annular gap atomization according to the German patent application, not previously published DE 10 2005 048 489.1
  • annular gap atomization By replacing the annular gap for the annular gap atomization by a ring of individual air nozzles, which surround the nozzle mouth.
  • an annular gap atomization may be provided with the annular gap 80 in addition to the ring of secondary air nozzles.
  • a certain disadvantage of the nozzle according to the invention could be seen in the fact that the provision of secondary air requires additional energy.
  • conventional two-fluid nozzles with a single nozzle mouth produce a very compact, slim droplet jet.
  • it In order to be able to realize the drop evaporation in a similarly short time or on a comparably short path, as in the novel nozzle, it must be sprayed much finer in a slender jet. Of course, this is also associated with a substantial increase in energy consumption.
  • the two-fluid nozzle 70 of Fig. 4 in addition to an annular gap 80 which is directly adjacent to the outflow channel 74 and provided for annular gap atomization for the purpose of avoiding coarse liquid droplets on the nozzle mouth 76, provided with a Schleierluftdüse 82 which surrounds the annular gap 80 annular and for the supply of compressed gas at a lower pressure than is provided in the mixing chamber 40 and the annular gap 80.
  • the presentation of the Fig. 5 shows a view of the two-fluid nozzle 70 from below and approximately at the level of in Fig. 4 Dashed line VV.
  • the central longitudinal axes 78a to 78d abut tangentially on an imaginary circle with the radius r 1 approximately at the level of the plane VV and therefore downstream of the nozzle mouth 76.
  • the radius of this circle r 1 amounts to about 50% of the radius of the spray jet of the main nozzle placed on this, the in Fig. 4 through the section line of the dashed plane VV and the likewise indicated by dashed lateral surface 84 of the main spray in Fig. 4 is defined.
  • the radius r 1 may be between 30% and 80% of the radius of the principal ray at the point concerned. In other words and as in Fig. 5 can be seen, the radius r 1 between the radius of the nozzle mouth 76 and the radius of a constriction 86 in the discharge channel 74.
  • the central longitudinal axes 78a to 78d thus tangentially touch an imaginary circular cylinder, which is aligned concentrically to the central longitudinal axis 32 of the main nozzle and the radius between the radius of the nozzle mouth 76 and the radius of the constriction 86 in the convergent-divergent-shaped outflow 74 of the two-fluid nozzle 70 is located.
  • the contact point of the central longitudinal axes 78a to 78d at this imaginary circular cylinder can be located downstream of the nozzle mouth, with a corresponding design of the nozzle but also quite at the level of the nozzle mouth itself or even upstream thereof.
  • the presentation of the Fig. 6 shows a two-fluid nozzle 90 according to the invention with a nozzle body 92, the one in Fig. 6 has invisible through hole, which forms a nozzle mouth 94 at its exit from the nozzle body 92.
  • the shape of the nozzle mouth 94 from a circular shape. This is caused by nozzle bores of four secondary air nozzles opening in the area of the nozzle mouth.
  • Fig. 7 shows the two-fluid nozzle 90 in a side view, wherein additionally indicated by dashed lines nozzle holes of the secondary air nozzles.
  • nozzle bores 96, 98, 100 and 102 are indicated by dashed lines, which are all arranged at an angle of approximately 45 ° to a central longitudinal axis of the nozzle and open into an outflow channel 104 in the region of the nozzle orifice 94.
  • the presentation of the Fig. 8 shows a view of the two-fluid nozzle 90 from below, ie from the side of the nozzle mouth 94 ago. Good to see the four nozzle holes 96, 98, 100 and 102 and their staggered to a coordinate system through the central longitudinal axis arrangement.
  • the nozzle bores 96, 98, 100 and 102 are thereby arranged tangentially to an imaginary circle about the central longitudinal axis of the nozzle and do not intersect the central longitudinal axis.
  • Fig. 8 shows a view of the two-fluid nozzle 90 from below, ie from the side of the nozzle mouth 94 ago. Good to see the four nozzle holes 96, 98, 100 and 102 and their staggered to a coordinate system through the central longitudinal axis arrangement.
  • the nozzle bores 96, 98, 100 and 102 are thereby arranged tangentially to an imaginary circle about the central longitudinal axis of the nozzle and do not intersect the central longitudinal axi
  • the detail D is shown enlarged, the mouth of the nozzle bores 96, 98, 100 and 102 in the region of the nozzle mouth show, the ellipses of the detail D, which indicate the mouth area, are only visible when in the nozzle body 92 first the nozzle holes 96, 98, 100 and 102 of the secondary air nozzles are introduced before the outflow channel 94. From the detail D it can be seen that the orifices of the nozzle bores 96, 98, 100 and 102 touch each other and thereby form a ring-like configuration as a whole around the central longitudinal axis of the two-substance nozzle.
  • the secondary air emerging from the nozzle bores 96, 98, 100 and 102 thus forms an annular air jet which surrounds the spray jet emerging parallel to the central longitudinal axis. It is thereby ensured that a fluid film resting against the wall of the outflow channel 104 and driven through the flow towards the nozzle mouth 94 is detected over the entire circumference of the outflow channel 104 by secondary air from one of the nozzle bores 96, 98, 100 or 102, is pulled out to a thin liquid lamella at the nozzle mouth 94 and atomized into fine droplets.
  • the presentation of the Fig. 9 shows a sectional view taken along the line AA in Fig. 7 , Good to see the central through-hole of the nozzle and the nozzle holes 96, 98, 100 and 102 of the secondary air nozzles.
  • the nozzle bores 96, 98, 100 and 102 intersect at the level of the cutting plane AA, each with a blind hole 106, the blind holes 106 emanating from an outer periphery of the nozzle, as well as in Fig. 6 can be seen, and are provided for the insertion of throttle screws to adjust a free cross section of the nozzle bores 96, 98, 100 and 102 can.
  • the presentation of the Fig. 10 shows a view of the two-fluid nozzle 90 according to the invention from the side of the nozzle mouth 94 forth and indicates the course of a section line BB.
  • the cutting line BB initially runs centrally through the nozzle bore 102, bends vertically at the height of the central longitudinal axis. passes through the discharge channel 94 and then bends at the level of the center of the nozzle bore 98 again at right angles.
  • the presentation of the Fig. 11 shows the sectional view along the line BB. Good to see the course of the nozzle bores 102, 98, which initially extend parallel to a central longitudinal axis of the two-fluid nozzle 90, after passing through the respective associated blind hole 106 bend by 45 °, and then finally open in the region of the nozzle mouth 94 in the outflow channel 104.
  • the nozzle holes 98, 102 and of course the in Fig. 11 unrecognizable nozzle bores 96, 100 start from an annular space 108, which in the Fig. 12 is shown and formed by the insertion of a mixing chamber 110 into the nozzle body 92. In this annulus 108 pressurized gas is introduced, which then enters through a first holes 112 in a mixing chamber 114 and on the other hand into the nozzle bores 96, 98, 100, 102 of the secondary air nozzles.
  • the presentation of the Fig. 13 shows a sectional view of a two-fluid nozzle 120 according to the invention according to a fourth embodiment of the invention.
  • the obliquely introduced to the central longitudinal axis of the nozzle nozzle holes in the 3, 4, 5 and 6 to 12 illustrated two-fluid nozzles 30, 70 and 90 problematic.
  • the two-fluid nozzle 120 of the Fig. 13 Therefore, another possibility was chosen to realize a arranged in the region of the nozzle mouth ring of secondary air nozzles.
  • the two-fluid nozzle 120 has a feed tube 122 through which liquid to be sprayed is supplied to the nozzle.
  • the feed tube 122 is surrounded by a concentric compressed gas tube 124, which in turn is surrounded concentrically by a Schufierfuftrohr 126.
  • the veiling air is supplied at a substantially lower pressure than the compressed gas used for atomization.
  • the pressure of the compressed gas between 1 bar and 1.5 bar are absolute, the supplied air would then supplied, for example, with an absolute pressure of about 40 mbar to 80 mbar.
  • the provision of fog air essentially serves to avoid incrustations in the region of the nozzle mouth.
  • the compressed gas tube 124 has a frusto-conical component 130 which tapers toward a nozzle mouth, and the veiled air tube 126 also runs in the form of a truncated cone toward the nozzle mouth 128 and essentially parallel to the component 130.
  • the feed tube 122 is extended by means of a mixing chamber component 132, which is provided with a plurality of compressed gas bores 134, 136, 138.
  • the compressed gas bores 134, 136, 138 are each arranged at an angle of about 45 ° to a central longitudinal axis of the nozzle, wherein pressurized gas is thereby introduced in the outflow direction into the mixing chamber and the extensions of the center axes of the pressure gas bores 134, 136, 138 intersect the central longitudinal axis of the two-substance nozzle 120.
  • a plurality, for example four, compressed gas bores 134, 136, 138 are uniformly spaced and arranged around the circumference of the mixing chamber component 132 around. Seen in the outflow direction of the nozzle, a total of three rings with compressed gas bores 134, 136, 138 are arranged, all of which open into a mixing chamber 140. A cross-section of an annular gap between the pressurized gas tube 124 and the mixing chamber member 132 decreases downstream of each ring of pressurized gas bores 134, 136, 138.
  • a liquid nozzle 142 is provided, which initially clearly narrows the free cross section of the feed pipe 122 and then has a further cross-sectional constriction and protrudes with a nozzle pipe 144 into the mixing chamber 140.
  • a swirl insert 146 may optionally be provided in the liquid nozzle 142.
  • the nozzle tube 144 extends so far into the mixing chamber 140 in that the extensions of the pressure gas bores 134 coincide with the end of the nozzle tube 144.
  • the pressure gas entering the mixing chamber 140 through the pressurized gas bores 134 thereby ensures that no larger drops of liquid can form at the end of the nozzle tube 144, but that any liquid adhering to the edge of the nozzle tube 144 is finely atomized.
  • the provision of the fluid nozzle 142 is of considerable advantage, especially when the two-fluid nozzle 120 according to the invention is to be used over a large area of a liquid flow to be atomized.
  • the liquid nozzle 142 provided at the entrance into the mixing chamber 140 thus serves to distinctly improve dynamics and the control range of the two-substance nozzle 120. At low liquid flow, the liquid tends to drip instationary when entering the mixing chamber 140, which ultimately leads to unsteady atomization, the so-called spitting of the nozzle and a poor part-load behavior.
  • the liquid nozzle 142 is now provided, the nozzle tube 144 projects into the mixing chamber 140.
  • the first ring of the pressure gas bores 134 is arranged such that the liquid emerging from the nozzle tube 144 is entrained without intermediate storage by the compressed gas provided for the atomization.
  • the pressure gas bores 134 are arranged in the, the liquid nozzle 142 at the inlet to the mixing chamber 140 closest bore ring so that the incoming compressed gas is directed to the mouth of the liquid nozzle 142.
  • the mixing chamber member 132 is inserted axially with its downstream end into an outlet member 148, which forms an outflow channel 150 and extends from the end of the mixing chamber 140 to the nozzle mouth 128.
  • the mixing chamber 140 expands in the frustoconical direction, as viewed in the flow direction, in order to constrict again at the end of the mixing chamber component 132 through the outlet component 148 in the form of a truncated cone.
  • the subsequent to the mixing chamber 140 outflow 150 first narrows, then passes into a circular cylindrical constriction, to then expand again to the nozzle mouth 128 out.
  • the two-fluid nozzle 120 is accordingly designed as a convergent divergent nozzle or Laval nozzle. At least in the divergent Area of the outflow channel 150 reaches the compressed gas-liquid mixture sonic velocity.
  • the exit member 148 is provided at its upstream end with an annular flange 152 in which a plurality of through holes 154 are provided evenly spaced from each other.
  • the annular flange 152 holds the outlet component 148 between the compressed gas tube 124 and the component 130 on the one hand and, with the through holes 154 on the other, ensures that secondary air can enter into a gap between the component 130 and the outlet component 148.
  • the pressurized gas then flows as so-called secondary air between the component 130 and the downstream end of the outlet component 148 in order to hit the spray jet in the area of the nozzle mouth 128 at the downstream end of the outlet channel 150.
  • the outlet member 148 and the component 130 in the region of the nozzle mouth 128 are not adjacent to each other, so that secondary air can enter over the entire circumference of the discharge channel 150 in the region of the nozzle mouth.
  • cutouts 156 are provided at the downstream end of the outlet component 148. These cutouts 156 each form the upper portion of a nozzle channel and are in Fig. 15 to recognize more precisely. The secondary air passing between the component 130 and the outlet component 148 is thus channeled and aligned by the cutouts 156, in order then to strike the spray jet from the outflow channel 150 in the area of the nozzle mouth 128.
  • the component 130 can also be provided with cut-outs forming nozzle ducts. Accordingly, the two-substance nozzle 120 according to the invention has a combination of nozzle bores opening at the nozzle mouth 128 with a circumferential annular gap.
  • annular gap and secondary air nozzle bores or secondary air nozzle channels can thus be produced by milling on the outside of the conical exit component 148. Additionally or alternatively, the annular gap and the Sekundäluffdüsenbohrungen can also be generated by milling on the inside of the likewise conical outer body, so the component 130. If the outlet part 148 is brought into contact with the inside of the component 130, no continuous annular gap is formed any more, but only discrete nozzle channels.
  • the preparation of the slender secondary air nozzle holes in the two-fluid nozzle 30, 70 and 90 is costly and must be made for example by means of spark erosion.
  • the spark erosion also allows, for example, to deviate from cylindrical holes.
  • the cutouts 156 on the outlet component 148 can be produced comparatively inexpensively by means of shaped cutters, for example as a rectangular groove or as a semicircular groove. But it is quite possible also an arbitrary different geometry of these cutouts, such as a wavy shape.
  • the outlet component 148 and the conical outer body instead of providing the milling grooves 156 in the outlet component 148, the outlet component 148 and the conical outer body, that is to say the component 130, could again be combined to form a single, cast component, given a corresponding further development of precision casting methods.

Description

Die Erfindung betrifft eine Zweistoffdüse mit einer Hauptdüse, mit einer Mischkammer und einem mit der Mischkammer verbundenen und stromabwärts der Mischkammer angeordneten Düsenmund, wobei Sekundärluftdüsen vorgesehen sind, die im Bereich des Düsenmundes ringförmig einmünden.The invention relates to a two-fluid nozzle with a main nozzle, with a mixing chamber and a nozzle connected to the mixing chamber and arranged downstream of the mixing chamber, wherein secondary air nozzles are provided, which open in the region of the nozzle mouth annular.

US 1,451,063 zeigt eine Brennerdüse, bei der ein flüssiger Brennstoff mittels einer mittig angeordneten Zuführdüse in einen Mischraum eingebracht wird. Der Mischraum ist kreiszylindrisch ausgebildet und erweitert sich in drei aufeinanderfolgenden Stufen bis hin zu einer Austrittsöffnung. Im Bereich der einzelnen Stufen des Mischraums und im Bereich des Düsenmundes münden jeweils ringförmig angeordnete Sekundärluftdüsen ein. Die Sekundärluftdüsen sind als zylindrische Bohrungen ausgebildet und so angeordnet, dass sie eine Mittellängsachse des Mischraumes nicht schneiden. US 1,451,063 shows a burner nozzle, in which a liquid fuel is introduced by means of a centrally arranged feed nozzle in a mixing space. The mixing chamber is circular-cylindrical and widens in three successive stages up to an outlet opening. In the region of the individual stages of the mixing chamber and in the region of the nozzle mouth, annular secondary air nozzles open in each case. The secondary air nozzles are formed as cylindrical bores and arranged so that they do not intersect a central longitudinal axis of the mixing chamber.

EP 0 205 739 A1 beschreibt eine Düse zum Einspeisen von Schlamm. Im Bereich des Düsenmundes münden zylindrische Düsenbohrungen zum Einbringen eines Zerteilermediums. EP 0 205 739 A1 describes a nozzle for feeding mud. In the area of the nozzle mouth open cylindrical nozzle holes for introducing a Zerteilermediums.

In vielen verfahrenstechnischen Anlagen werden Flüssigkeiten in einem Gas verteilt. Dabei ist es häufig von entscheidender Bedeutung, dass die Flüssigkeit in möglichst feinen Tropfen versprüht wird. Je feiner die Tropfen sind, umso größer ist die spezifische Tropfenoberfläche. Daraus können sich erhebliche verfahrenstechnische Vorteile ergeben. So hängen beispielsweise die Größe eines Reaktionsbehälters und seine Herstellungskosten erheblich von der mittleren Tropfengröße ab. Aber vielfach ist es keineswegs ausreichend, dass die mittlere Tropfengröße einen bestimmten Grenzwert unterschreitet. Schon einige wenige wesentlich größere Tropfen können zu erheblichen Betriebsstörungen führen. Dies ist insbesondere dann der Fall, wenn die Tropfen aufgrund ihrer Größe nicht schnell genug verdunsten, so dass noch Tropfen oder auch teigige Partikel in nachfolgenden Komponenten, z.B. auf Gewebefilterschläuchen oder an Gebläseschaufeln, abgeschieden werden und zu Betriebsstörungen durch Inkrustierungen oder Korrosion führen.In many process plants, liquids are distributed in a gas. It is often of crucial importance that the liquid is sprayed in fine drops as possible. The finer the drops, the larger the specific drop surface. This can result in considerable procedural advantages. For example, the size of a reaction vessel and its manufacturing costs are significantly dependent on the average droplet size. But many times it is by no means sufficient that the mean droplet size falls below a certain limit. Even a few much larger drops can lead to significant disruption. This is particularly the case when the drops do not evaporate fast enough due to their size, so that even drops or doughy particles in subsequent components, eg fabric filter bags or fan blades, are deposited and lead to malfunction due to incrustations or corrosion.

Um Flüssigkeiten fein zu versprühen, kommen entweder Hochdruck-Einstoffdüsen oder Mitteldruck-Zweistoffdüsen zum Einsatz. Ein Vorteil von Zweistoffdüsen liegt darin, dass sie relativ große Strömungsquerschnitte aufweisen, so dass auch grobpartikelhaltige Flüssigkeiten versprüht werden können.To spray liquids finely, either high-pressure single-fluid nozzles or medium-pressure two-fluid nozzles are used. An advantage of two-component nozzles is that they have relatively large flow cross-sections, so that even coarse particle-containing liquids can be sprayed.

Die Darstellung der Fig. 1 zeigt beispielhaft eine zur Achse 24 im Wesentlichen symmetrische Zweistoffdüse 3 nach dem Stand der Technik.The presentation of the Fig. 1 shows by way of example a two-way nozzle 3 according to the prior art which is substantially symmetrical with respect to the axis 24.

Die zu versprühende Flüssigkeit 1 wird über ein zentrales Lanzenrohr 2 an der Engstelle 10 in die Mischkammer 7 eingeleitet. Das Druckgas 15 wird über ein äußeres Lanzenrohr 4 einer Ringkammer 6 zugeführt, welche die Mischkammer ringförmig umschließt; über eine gewisse Anzahl von Bohrungen 5 wird das Druckgas in die Mischkammer 7 eingeleitet. In dieser Mischkammer findet eine erste Zerteilung der Flüssigkeit in Tropfen statt, so dass hier ein tropfenhaltiges Gas 9 gebildet wird. Auch am Austritt aus der Mischkammer 7 existiert eine Engstelle 14. An die Engstelle 14 schließt sich ein divergentes Austrittsteil 26 an, welches mit der Düsenmündung 8 endet. Der in der Mischkammer 7 gebildete tropfenhaltige Gasstrom 9 wird in der Konvergent-Divergent-Düse, auch Lavaldüse genannt, stark beschleunigt, so dass hier eine weitere Zerteilung der Tropfen bewirkt wird.The liquid to be sprayed 1 is introduced via a central lance tube 2 at the constriction 10 in the mixing chamber 7. The compressed gas 15 is supplied via an outer lance tube 4 of an annular chamber 6, which surrounds the mixing chamber in an annular manner; over a certain number of holes 5, the compressed gas is introduced into the mixing chamber 7. In this mixing chamber, a first division of the liquid takes place in drops, so that here a drop-containing gas 9 is formed. Also at the outlet from the mixing chamber 7 there is a constriction 14. At the bottleneck 14, a divergent outlet part 26 connects, which ends with the nozzle orifice 8. The droplet-containing gas stream 9 formed in the mixing chamber 7 is greatly accelerated in the convergent-divergent nozzle, also called the Laval nozzle, so that here a further division of the droplets is effected.

Zweistoffdüsen mit einer einzigen Austrittsbohrung herkömmlicher Bauart leiden unter der Eigenschaft, dass der aus der Düse austretende Strahl 21 aus Tropfen und Verdüsungsluft nur einen geringen Öffnungswinkel α aufweist. Dies hat zur Folge, dass für die Tropfenverdunstung relativ große Wegstrecken bzw. große Behälter benötigt werden.Two-substance nozzles with a single exit bore of conventional design suffer from the property that the jet 21 emerging from the nozzle of droplets and atomizing air has only a small opening angle α. This has the consequence that relatively large distances or large containers are required for the drop evaporation.

Ein grundsätzliche Problem resultiert bei diesen Düsen daraus, dass die Wände in der Mischkammer 7 mit Flüssigkeit benetzt sind. Die Flüssigkeit, welche die Wand in der Mischkammer benetzt, wird von den Schubspannungs- und den Druckkräften als Flüssigkeitsfilm 20 zum Düsenmund hingetrieben. Man ist versucht, anzunehmen, dass die Wände zum Düsenmund hin infolge hoher Strömungsgeschwindigkeiten der gasphase trockengeblasen werden und dass dabei aus dem Flüssigkeitsfilm nur sehr feine Tropfen gebildet werden.A fundamental problem with these nozzles results from the fact that the walls in the mixing chamber 7 are wetted with liquid. The liquid which wets the wall in the mixing chamber is driven by the shear stress and pressure forces as liquid film 20 to the nozzle mouth. It is tempting to assume that the walls are blown dry towards the nozzle mouth due to high flow velocities of the gas phase and that only very fine droplets are formed from the liquid film.

Theoretische und experimentelle Arbeiten des Erfinders haben jedoch gezeigt, dass Flüssigkeitsfilme auf Wänden selbst dann noch als stabile Filme ohne Tropfenbildung existent sein können, wenn die Gasströmung, welche den Flüssigkeitsfilm zum Düsenmund treibt, Überschallgeschwindigkeit erreicht. Und dies ist ja auch der Grund dafür, das es möglich ist, in Raketenschubdüsen eine Flüssigkeitsfilmkühlung anzuwenden. Besonders kritisch ist die Filmströmung bei der Versprühung hochviskoser Flüssigkeiten, die gleichzeitig eine hohe Oberflächenspannung aufweisen, z.B. von Glykol in Kältetrocknern von Erdgaspumpstationen oder von Feststoffsuspensionen in Sprühabsorbern.However, the inventor's theoretical and experimental work has shown that liquid films on walls can still exist as stable films without dripping even when the gas flow which drives the liquid film to the nozzle orifice is supersonic reached. And this is also the reason why it is possible to use liquid film cooling in rocket thrusters. The film flow is particularly critical in the spraying of highly viscous liquids which simultaneously have a high surface tension, for example of glycol in refrigeration dryers of natural gas pumping stations or of solid suspensions in spray absorbers.

Die Flüssigkeitsfilme, die von der Gasströmung zum Düsenmund 8 getrieben werden, können aufgrund der Adhäsionskräfte sogar um eine scharfe Kante am Düsenmund herumwandern; sie bilden dann an der Außenseite des Düsenmundes einen Wasserwulst 12, siehe Fig. 1. Von diesem Wasserwulst lösen sich Randtropfen 13 ab, deren Durchmesser ein Vielfaches des mittleren Tropfendurchmessers im Strahlkern beträgt. Obwohl diese großen Randtropfen nur einen kleinen Massenanteil zur Gesamttropfenfracht beitragen, sind sie letztlich, bestimmend für die Abmessungen des Behälter, in welchem beispiersweise die Temperatur eines Gases durch Verdunstungskühlung von 350°C auf 120°C abgesenkt werden soll, ohne dass es zu einem Eintrag von Tropfen in nachgeschaltete Komponenten wie Gebläse oder Gewebefilter kommt.The liquid films, which are driven by the gas flow to the nozzle orifice 8, can even roam around a sharp edge on the nozzle orifice due to the adhesive forces; they then form on the outside of the nozzle mouth a water bead 12, see Fig. 1 , From this water bead to dissolve edge drops 13 whose diameter is a multiple of the average droplet diameter in the jet core. Although these large edge drops contribute only a small mass fraction to the overall drop load, they are ultimately determinative of the dimensions of the container in which, for example, the temperature of a gas is to be lowered by evaporative cooling from 350 ° C to 120 ° C, without causing an entry from drops to downstream components such as blowers or fabric filters.

Die nicht vorveröffentlichte deutsche Patentanmeldung DE 10 2005 048 489.1 derselben Erfinder betrifft eine Zweistoffdüse, bei der die Bildung großer Randtropfen durch eine Ringspaltverdüsung zuverlässig unterbunden wird. Fig. 2 zeigt eine entsprechende Zweistoffdüse mit Ringspaltverdüsung. Bei der dargestellten Variante wird die Ringspaltluft, hier auch als Sekundärluft bezeichnet, über Bohrungen 19 direkt aus der Ringkammer 6 abgezweigt. Aber auch dieser Düsentyp leidet unter der Eigenschaft, einen relativ schlanken Strahl 21 zu erzeugen, mit einem Öffnungswinkel α von ca. 15°. Dass derartige Düsen grundsätzlich von einem Schleieduft- oder Sperrluftring 25 und einer Schleierluft- oder Sperrluftdüse 23 umschlossen sein können, ist bekannt. Der wesentliche Unterschied zwischen der Sperrluft 11 und der Ringspaltluft besteht darin, dass der Totaldruck der aus dem Ringspalt 16 austretenden Ringspaltluft größenordnungsmäßig mit dem Druck des Druckgases 15 für die Zerstäubung übereinstimmt, während der Druck der Sperrluft 11 in aller Regel um ein bis zwei Größenordnungen kleiner ist.The not previously published German patent application DE 10 2005 048 489.1 The same inventor relates to a two-fluid nozzle, in which the formation of large edge drops is reliably prevented by an annular gap atomization. Fig. 2 shows a corresponding two-fluid nozzle with annular gap atomization. In the illustrated variant, the annular gap air, also referred to here as secondary air, is branched off via bores 19 directly from the annular chamber 6. But even this type of nozzle suffers from the property to produce a relatively slender beam 21, with an opening angle α of about 15 °. That such nozzles in principle by a Schleieduft- or blocking air ring 25 and a Schleierluft- or Sperrluftdüse 23 may be enclosed, is known. The main difference between the Blocking air 11 and the annular gap air is that the total pressure of the exiting from the annular gap 16 annular clearance air of the order of magnitude coincides with the pressure of the pressurized gas 15 for the atomization, while the pressure of the sealing air 11 is usually smaller by one or two orders of magnitude.

Aus dem Ringspalt 16 tritt Druckgas mit hoher Geschwindigkeit aus und sorgt dafür, dass ein Flüssigkeitsfilm an der Wandung des Düsenmundes, insbesondere des divergenten Austrittsabschnitts, zu einer sehr dünnen Flüssigkeitslamelle ausgezogen wird, die dann in kleine Tropfen zerfällt. Auf diese Weise kann die Bildung großer Tropfen aus Wandflüssigkeitsfilmen im Düsenaustrittsbereich verhindert bzw. auf ein erträgliches Maß reduziert werden und gleichzeitig kann das feine Tropfenspektrum im Strahlkern erhalten werden, ohne dass hierfür der Druckgasverbrauch der Zweistoffdüse bzw. der hiermit verknüpfte Eigenenergiebedarf erhöht werden müsste. Die Ringspalfluftmenge kann beispielsweise 10% bis 40% der Gesamtzerstäubungsluftmenge betragen. Der Totaldruck der Luft im Ringspalt beträgt vorteilhafterweise 1,5 bar bis 2,5 bar absolut. Der Totaldruck der Luft im Ringspalt ist vorteilhafterweise so hoch, dass bei Expansion auf das Druckniveau im Behälter näherungsweise Schallgeschwindigkeit erreicht wird. Die Austrittsöffnung ist mittels einer umlaufenden Wandung gebildet, deren äußerstes Ende eine Austrittskante bildet und der Ringspalt ist im Bereich der Austrittskante angeordnet. Zweckmäßigerweise ist der Ringspalt zwischen der Austrittskante und einer äußeren Ringspaltwandung gebildet. In Ausströmrichtung gesehen ist die Ringspaltwandungskante nach der Austrittskante angeordnet. Vorteilhafterweise ist die Ringspaltwandungskante zwischen 5% und 20% des Durchmessers der Austrittsöffnung nach der Austrittskante angeordnet. Ein Druck des dem Ringspalt zugeführten Druckgases und ein Druck des durch den Druckgaseinlass in die Mischkammer mündenden Druckgases kann unabhängig voneinander einstellbar sein. Die Einlassbohrungen 5 in die Mischkammer können tangential zu einem Kreis um eine Mittellängsachse der Düse ausgerichtet sein, um einen Drall in einer ersten Richtung zu erzeugen. Mehrere Einlassbohrungen können beabstandet voneinander vorgesehen sein und unterschiedliche Einlassbohrungen können tangential so ausgerichtet sein, dass sie einen Drall in unterschiedliche Richtungen, beispielsweise auch gegenläufige Drallrichtungen, erzeugen.Compressed gas exits the annular gap 16 at high speed and ensures that a liquid film on the wall of the nozzle mouth, in particular of the divergent outlet section, is drawn out to a very thin liquid lamella, which then decays into small drops. In this way, the formation of large drops of wall liquid films in the nozzle exit region can be prevented or reduced to an acceptable level and at the same time the fine droplet spectrum in the jet core can be obtained without the need to increase the pressure gas consumption of the two-fluid nozzle or the associated own energy demand. The annular air volume may be, for example, 10% to 40% of the total atomizing air amount. The total pressure of the air in the annular gap is advantageously 1.5 bar to 2.5 bar absolute. The total pressure of the air in the annular gap is advantageously so high that when it is expanded to the pressure level in the container, approximately sound velocity is achieved. The outlet opening is formed by means of a peripheral wall, whose extreme end forms an outlet edge and the annular gap is arranged in the region of the outlet edge. Conveniently, the annular gap between the exit edge and an outer annular gap wall is formed. Seen in the outflow direction, the annular gap wall edge is arranged after the trailing edge. Advantageously, the annular gap wall edge is arranged between 5% and 20% of the diameter of the outlet opening to the outlet edge. A pressure of the compressed gas supplied to the annular gap and a pressure of the compressed gas opening into the mixing chamber through the compressed gas inlet can be set independently of one another. The inlet bores 5 in the mixing chamber can be aligned tangentially to a circle about a central longitudinal axis of the nozzle be to create a spin in a first direction. Multiple inlet bores may be provided spaced from one another, and different inlet bores may be tangentially aligned to produce a twist in different directions, for example, opposing twist directions.

In der nicht vorveröffentlichten Patentanmeldung DE 10 2006 0013190 ist eine Zweistoffdüse für den wandgebundenen Einbau beschrieben, bei der zur Vermeidung von Wandbelägen eine Hüll-, Sperr- oder Schleierluftdüse und der Wandbereich im Umfeld der Düse beheizt sind. Im Übrigen ist die dort beschriebene Düse analog zur Zweistoffdüse gemäß DE 10 2005 048 489.1 ausgestaltet.In the non-prepublished patent application DE 10 2006 0013190 is a two-fluid nozzle for wall-mounted installation described in which to avoid wall coverings a Hüll-, barrier or Schleierluftdüse and the wall area are heated in the vicinity of the nozzle. Incidentally, the nozzle described therein is analogous to the two-fluid nozzle according to DE 10 2005 048 489.1 designed.

Allen vorstehend beschriebenen Zweistoffdüsen ist gemein, dass der Öffnungswinkel eines erzeugten Sprühstrahles vergleichsweise gering ist, so dass große Wegstrecken für die Tropfenverdunstung benötigt werden.All the two-fluid nozzles described above have in common that the opening angle of a spray jet generated is comparatively low, so that large distances are required for the drop evaporation.

Mit der Erfindung soll eine Zweistoffdüse bereitgestellt werden, mit der ein großer Öffnungswinkel des Sprühstrahls erzielt werden kann.With the invention, a two-fluid nozzle is to be provided with which a large opening angle of the spray jet can be achieved.

Erfindungsgemäß ist hierzu eine Zweistoffdüse mit einer Hauptdüse, mit einer Mischkammer und einem mit der Mischkammer verbundenen und stromabwärts der Mischkammer angeordneten Düsenmund vorgesehen, bei der im Bereich des Düsenmunds Sekundärluftdüsen ringförmig einmünden und bei der die Sekundärluftdüsen zwischen zwei sich im Bereich des Düsenmundes gegenüberliegenden Bauteilen mittels Ausnehmungen in wenigstens einem der beiden sich gegenüberliegenden Bauteile im Bereich des Düsenmundes ausgebildet sind.According to the invention, a two-substance nozzle is provided with a main nozzle, with a mixing chamber and a nozzle mouth arranged downstream of the mixing chamber, in which secondary air nozzles open out annularly in the area of the nozzle mouth and in which the secondary air nozzles between two components located in the area of the nozzle mouth Recesses are formed in at least one of the two opposing components in the region of the nozzle mouth.

Durch Vorsehen eines im Bereich des Düsenmundes angeordneten oder auch den Düsenmund umgebenden Rings von Sekundärluftdüsen kann ein Düsenstrahl mit wesentlich größerem Öffnungswinkel α von wenigstens ca. 30° bis 45° erzeugt werden. Aus den Sekundärluftdüsen austretende Pressluftstrahlen wirken auf den aus der Düse austretenden Strahl aus Tropfen und Verdüsungsluft ein und weiten diesen auf. Gleichzeitig können auch ohne durchgehenden Ringspalt die Vorteile der Ringspaltverdüsung gemäß der deutschen Patentanmeldung DE 10 2005 048 489.1 beibehalten werden und speziell wird die Bildung großer Randtropfen unterbunden. Die erfindungsgemäße Düse geht somit dadurch aus einer Zweistoffdüse mit Ringspaltverdüsung gemäß der nicht vorveröffentlichten deutschen Patentanmeldung DE 10 2005 048 489.1 hervor, indem man den Ringspalt für die Ringspaltverdüsung durch einen Ring aus einzelnen Luftdüsen ersetzt, welche den Düsenmund umschließen. Mit Umschließen ist hierbei gemeint, dass die einzelnen Sekundärluftdüsen kreisförmig um den Düsenmund herum angeordnet sind und dass sich bei mehreren Sekundärluftdüsen deren Austrittsstrahlen im Bereich des Düsenmundes berühren oder sogar überlagern können, so dass ein durchgehender Ringstrahl aus Sekundärluft den Düsenmund umgibt. Es können sich dabei die gedachten Projektionen der Sekundärluftbohrungen in der Ebene der Düsenmundes zu einer geschlossenen, ringförmigen Fläche überlagern. Einzelne Sekundärluftdüsenbohrungen nehmen ihren Anfang also im vergleichsweise breiten Ringraum außerhalb der Mischkammer, können sich aber im weiteren Verlauf in Richtung des Düsenmundes an diesem durchaus berühren oder sogar überschneiden. Neben der bereits erörterten Überschneidung der Projektionen der Verlängerungen der Düsenbohrungen auf die Ebene des Düsenmundes können Sekundärluftbohrungen natürlich auch so eingebracht sein, dass sie sich bereits im Bereich des Austritts und im Bereich des Düsenmundes überlagern, so dass die Wandung des Düsenmundes eine ringartige, umlaufende Ausnehmung aufweist. Die erfindungsgemäße Düse bietet somit die Möglichkeit, je nach Durchmesser oder Anordnung der Sekundärluftbohrungen einen Ringspalt mit variabler Breite bereitzustellen. Dies ist insbesondere bei der Herstellung von Düsenserien oder Düsenfamilien von Bedeutung, wenn ein und derselbe Grundkörper mit unterschiedlichen Ringspaltweiten versehen werden soll. Die erfindungsgemäße Düse kann somit eine geometrische Überschneidung der Sekundärluftbohrungen im Bereich des Düsenmundes aufweisen und entweder findet diese Überschneidung bereits im Wandungsbereich des Düsenmundes statt oder erst auf einer gedachten Ebene auf Höhe des Düsenmundes. Es kann aber zusätzlich zu den Sekundärluftdüsen auch noch eine Ringspaltverdüsung vorgesehen sein. Durch Vorsehen von ringförmig angeordneten Sekundärluftdüsen kann eine Zweistoffdüse mit Innenmischung durch eine Umgestaltung im Bereich des Düsenmundes in eine Düse mit Weitwinkelstrahl verwandelt werden.By providing a ring of secondary air nozzles arranged in the area of the nozzle mouth or also surrounding the nozzle mouth, a nozzle jet with a substantially larger opening angle α of at least approximately 30 ° to 45 ° can be produced. From the secondary air nozzles Exiting compressed air jets act on the emerging from the nozzle jet of droplets and atomizing air and expand it. At the same time, without a continuous annular gap, the advantages of the annular gap atomization according to the German patent application DE 10 2005 048 489.1 are maintained and specifically the formation of large peripheral drops is prevented. The nozzle according to the invention is therefore characterized by a two-fluid nozzle with annular gap atomization according to the German patent application, not previously published DE 10 2005 048 489.1 By replacing the annular gap for the annular gap atomization by a ring of individual air nozzles, which surround the nozzle mouth. By enclosing this is meant that the individual secondary air nozzles are arranged in a circle around the nozzle mouth around and that at several secondary air nozzles whose outlet jets touch or even overlap in the region of the nozzle mouth, so that a continuous annular beam of secondary air surrounds the nozzle mouth. In this case, the imaginary projections of the secondary air bores in the plane of the nozzle mouth can overlap to form a closed, annular surface. Individual Sekundärluftdüsenbohrungen take their beginning so in the comparatively wide annular space outside the mixing chamber, but can in the further course in the direction of the nozzle mouth at this quite touch or even overlap. In addition to the already discussed overlapping of the projections of the extensions of the nozzle bores on the plane of the nozzle mouth secondary air holes can of course also be introduced so that they overlap already in the region of the outlet and in the region of the nozzle orifice, so that the wall of the nozzle mouth an annular, circumferential recess having. The nozzle according to the invention thus offers the possibility of providing an annular gap of variable width, depending on the diameter or arrangement of the secondary air bores. This is particularly important in the production of nozzle series or nozzle families, if one and the same body is to be provided with different annular gap widths. The nozzle according to the invention can thus have a geometric overlap have the secondary air holes in the mouth of the nozzle and either this overlap already takes place in the wall region of the nozzle mouth or only on an imaginary plane at the level of the nozzle mouth. However, in addition to the secondary air nozzles, an annular gap atomization may also be provided. By providing annularly arranged secondary air nozzles, a two-substance nozzle with internal mixing can be transformed by a transformation in the region of the nozzle mouth into a nozzle with a wide-angle jet.

In Weiterbildung der Erfindung ist eine Hauptsprührichtung der Sekundärluftdüsen in einen vom Düsenmund ausgehenden Hauptsprühstrahl hinein ausgerichtet.In a further development of the invention, a main spraying direction of the secondary air nozzles is aligned into a main spray jet emanating from the nozzle mouth.

Durch eine solche Ausrichtung der Sekundärluftdüsen treten diese in den Sprühstrahl der Hauptdüse ein und weiten diesen dadurch auf.By such an orientation of the secondary air nozzles, they enter into the spray jet of the main nozzle and thereby widen it.

In Weiterbildung der Erfindung sind Mittellängsachsen der Sekundärluftdüsen zu einer Mittellängsachse der Hauptdüse unter einem Winkel β von 20° bis 80° angeordnet.In a further development of the invention, the central longitudinal axes of the secondary air nozzles are arranged to a central longitudinal axis of the main nozzle at an angle β of 20 ° to 80 °.

Auf diese Weise erhält der Sprühstrahl der Sekundärluftdüsen sowohl eine Komponente parallel zur Mittellängsachse der Hauptdüse als auch eine senkrecht hierzu angeordnete Komponente, die hauptsächlich für die Aufweitung des Sprühstrahles verantwortlich ist. Unterschiedliche Aufweitungen des Sprühstrahls können durch die Variation des Winkels β erzielt werden.In this way, the spray of secondary air nozzles receives both a component parallel to the central longitudinal axis of the main nozzle and a perpendicular thereto arranged component, which is mainly responsible for the expansion of the spray. Different expansions of the spray jet can be achieved by the variation of the angle β.

In Weiterbildung der Erfindung schneiden die Mittellängsachsen der Sekundärluftdüsen die Mittellängsachse der Hauptdüse nicht.In a further development of the invention, the central longitudinal axes of the secondary air nozzles do not intersect the central longitudinal axis of the main nozzle.

Durch eine solche windschiefe Anordnung der Mittellängsachsen der Sekundärluftdüsen kann eine besonders gleichmäßige Aufweitung des Sprühstrahles erreicht werden. Bei entsprechender Anordnung der Sekundärluftdüsen kann beispielsweise dem Sprühstrahl der Hauptdüse ein Drall aufgeprägt werden, der eine Aufweitung des Sprühstrahles begünstigt.By such a skewed arrangement of the central longitudinal axes of the secondary air nozzles, a particularly uniform widening of the spray jet can be achieved. With appropriate arrangement of the secondary air nozzles For example, a spray can be imparted to the spray jet of the main nozzle, which promotes widening of the spray jet.

In Weiterbildung der Erfindung sind die Sekundärluftdüsen tangential zu einem zur Mittellängsachse der Hauptdüse konzentrischen, gedachten Kreis ausgerichtet.In a further development of the invention, the secondary air nozzles are aligned tangentially to an imaginary circle concentric with the central longitudinal axis of the main nozzle.

Auf diese Weise lässt sich eine sehr effektive Aufweitung des Sprühstrahls bei feintropfiger Verdüsung erzielen. In Blickrichtung der Mittellängsachse der Hauptdüse erscheinen die Mittellängsachsen der Sekundärluftdüsen als Tangenten, die an einem die Mittellängsachse der Hauptdüse konzentrisch umgebenden, gedachten Kreis anliegen. Da die Sekundärluftdüsen darüber hinaus einen Winkel von weniger als 90° mit der Mittellängsachse de Hauptdüse einschließen, berühren diese somit einen gedachten Kreiszylinder, der die Mittellängsachse der Hauptdüse konzentrisch umgibt. Vorteilhafterweise weist dieser gedachte Kreis einen Radius auf, der zwischen 30% und 80% des Radius des Sprühstrahls der Hauptdüse auf Höhe des Kreises beträgt. Eine solche Ausrichtung der Sekundärluftdüsen ergibt einen deutliche Aufweitung des Sprühstrahles bei feintropfiger Verdüsung. Betrachtet man also den gedachten Kreis, an dem die Projektion der Mittellängsachsen der Sekundärluftdüsen tangential anliegen, und speziell die Ebene, in der dieser Kreis liegt, so bildet diese Ebene mit der Außenberandung des Hauptsprühstrahles eine kreisförmige Schnittlinie mit einem Sprühstrahlradius. Der gedachte Kreis weist dann einen Radius auf, der zwischen 30% und 80% dieses Sprühstrahlradius beträgt. Vorteilhafterweise ist der gedachte Kreis stromabwärts des Düsenmundes oder Hauptdüse angeordnet. Die Berührstellen der Mittellängsachsen der Sekundärluftdüsen liegen also an einem gedachten Kreiszylinder um die Mittellängsachse der Hauptdüse stromabwärts des Düsenmundes an.In this way, a very effective widening of the spray jet with fine droplet atomization can be achieved. In the direction of the central longitudinal axis of the main nozzle, the central longitudinal axes of the secondary air nozzles appear as tangents which rest on an imaginary circle concentrically surrounding the central longitudinal axis of the main nozzle. Since the secondary air nozzles moreover enclose an angle of less than 90 ° with the central longitudinal axis of the main nozzle, they thus touch an imaginary circular cylinder which concentrically surrounds the central longitudinal axis of the main nozzle. Advantageously, this imaginary circle has a radius which is between 30% and 80% of the radius of the spray jet of the main nozzle at the level of the circle. Such an orientation of the secondary air nozzles results in a significant widening of the spray jet with fine droplet atomization. If one thus considers the imaginary circle on which the projection of the central longitudinal axes of the secondary air nozzles lie tangentially, and especially the plane in which this circle lies, then this plane with the outer boundary of the main spray jet forms a circular section line with a spray jet radius. The imaginary circle then has a radius which is between 30% and 80% of this spray radius. Advantageously, the imaginary circle is arranged downstream of the nozzle mouth or main nozzle. The contact points of the central longitudinal axes of the secondary air nozzles are thus at an imaginary circular cylinder about the central longitudinal axis of the main nozzle downstream of the nozzle mouth.

In Weiterbildung der Erfindung münden die Sekundärluftdüsen stromaufwärts des Düsenmundes der Hauptdüse in den Ausströmkanal von der Mischkammer zum Düsenmund.In a further development of the invention, the secondary air nozzles open upstream of the nozzle mouth of the main nozzle in the outflow from the mixing chamber to the nozzle mouth.

Es hat sich dabei als vorteilhaft erwiesen, wenn die Sekundärluftdüsen unmittelbar vor dem Düsenmund in den Ausströmkanal münden. Dabei kann es vorteilhaft sein, dass sich die Mündungen der Sekundärluftdüsen am Eintritt in den Ausströmkanal berühren oder teilweise überschneiden.It has proven to be advantageous if the secondary air nozzles open directly in front of the nozzle mouth in the discharge channel. It may be advantageous that touch the mouths of the secondary air nozzles at the entrance to the discharge or partially overlap.

In Weiterbildung der Erfindung ist eine separate Zuluftleitung zu den Sekundärluftdüsen vorgesehen.In a further development of the invention, a separate air supply line is provided to the secondary air nozzles.

Auf diese Weise kann die Luftmenge und die Geschwindigkeit der aus den Seklundärluftdüsen austretenden, Luft separat eingestellt werden und beispielsweise dazu benutzt werden, einen gewünschten Sprühstrahlwinkel einzustellen. Hierzu werden dann Einstellmittel zum Einstellen eines Luftdrucks an den Sekundärluftdüsen benötigt.In this way, the amount of air and the velocity of the air exiting the secondary air nozzles can be adjusted separately and used, for example, to set a desired spray jet angle. For this adjustment means are then required for setting an air pressure at the secondary air nozzles.

In Weiterbildung der Erfindung stehen die Sekundärluftdüsen mit einer Zuführleitung für Druckgas in Strömungsverbindung, wobei diese Zuführleitung auch mit der Mischkammer in Strömungsverbindung steht.In a further development of the invention, the secondary air nozzles are in flow communication with a feed line for compressed gas, wherein this feed line is also in flow communication with the mixing chamber.

Eine einfache Bauweise der erfindungsgemäßen Düse ergibt sich dann, wenn die für die Sekundärluftdüsen benötigte Luft aus der Zuführleitung für Druckgas der Hauptdüse abgezeigt wird. Vorteilhafterweise können die Sekundärluftdüsen hierzu an einen, die Mischkammer umgebenden Ringraum angeschlossen sein. Auf diese Weise kann die erfindungsgemäße Zweistoffdüse sehr kompakt aufgebaut werden.A simple construction of the nozzle according to the invention results when the air required for the secondary air nozzles from the supply line for compressed gas of the main nozzle is shown. For this purpose, the secondary air nozzles can advantageously be connected to an annular space surrounding the mixing chamber. In this way, the two-fluid nozzle according to the invention can be constructed very compact.

In Weiterbildung der Erfindung ist der Düsenmund von einem Ringspalt umgeben, wobei der Ringspalt mit Druckluft beaufschlagbar ist.In a further development of the invention, the nozzle mouth is surrounded by an annular gap, wherein the annular gap can be acted upon with compressed air.

Durch Vorsehen einer solchen zusätzlichen Ringspaltverdüsung können sich Wassertropfen am Düsenmund, die von einem die Wandung des Ausströmkanals belegenden Flüssigkeitsfilm herrühren, zu Flüssigkeitslamellen ausgezogen und in feine Tropfen zerstäubt werden. Eine zusätzliche Ringspaltverdüsung kann insbesondere dann vorteilhaft sein, wenn sich die einzelnen Sekundärluftdüsen am Rand des Ausströmkanals nicht berühren oder überschneiden.By providing such an additional annular gap atomization, water droplets at the nozzle mouth, which originate from a liquid film occupying the wall of the outflow channel, can be drawn out into liquid lamellae and atomized into fine droplets. An additional annular gap atomization can be particularly advantageous if the individual secondary air nozzles do not touch or overlap at the edge of the outflow channel.

In Weiterbildung der Erfindung ist vorgesehen, dass, ausgehend von der Mischkammer, sich ein Ausströmkanal zunächst kontinuierlich verengt und dann, ausgehend von einer Engstelle im Ausströmkanal, sich zum Düsenmund hin wieder kontinuierlich erweitert.In a further development of the invention, it is provided that, starting from the mixing chamber, an outflow channel initially narrows continuously and then, starting from a constriction in the outflow channel, widens continuously again towards the nozzle mouth.

Auf diese Weise wird das durch den Ausströmkanal geleitete Zweistoffgemisch in der Konvergent-Divergent-Düse stark beschleunig und es kann eine feine Tropfenverteilung im Sprühstrahl erzielt werden Der Ausströmkanal kann so gestaltet sein und der Druck der Flüssigkeit und des Druckgases so eingestellt sein, dass im Ausströmkanal wenigstens abschnittsweise Überschallgeschwindigkeit erreicht wird.In this way, the two-substance mixture passed through the outflow channel in the convergent-divergent nozzle is greatly accelerated and a fine droplet distribution in the spray jet can be achieved. The outflow channel can be designed and the pressure of the liquid and of the compressed gas adjusted in such a way that in the outflow channel at least partially supersonic speed is reached.

In Weiterbildung der Erfindung ist eine zusätzliche, den Düsenmund ringförmig umgebende Schleierluftdüse vorgesehen.In a further development of the invention, an additional, the nozzle mouth annular surrounding Schleierluftdüse is provided.

Eine solche Schleierluftdüse oder Hüllluftdüse kann zusätzlich zum Ringspalt für die Ringspaltverdüsung vorgesehen sein und wird mit Schleierluft geringeren Drucks, als für die Ringspaltverdüsung benötigt wird, beaufschlagt.Such a Schleierluftdüse or Hüllluftdüse may be provided in addition to the annular gap for the Annularspaltverdüsung and is subjected to lower pressure air than is required for the Annularspaltverdüsung.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung im Zusammenhang mit den Zeichnungen. Einzelmerkmale der unterschiedlichen, in den Zeichnungen dargestellten Ausführungsformen der Erfindung lassen sich dabei in beliebiger Weise miteinander kombinieren, ohne den Rahmen der Erfindung zu überschreiten. Speziell lassen sich die Merkmale der in Fig. 2 dargestellten Zweistoffdüse in beliebiger Weise mit der in Fig. 3, 4 und 5 dargestellten Düsen kombinieren, ohne den Rahmen der Erfindung zu überschreiten. In den Zeichnungen zeigen:

Fig. 1
eine Zweistoffdüse nach dem Stand der Technik,
Fig. 2
eine Zweistoffdüse mit Ringspaltverdüsung und Schleierluftdüse gemäß der nicht vorveröffentlichten Anmeldung DE 10 2005 048 489.1 ,
Fig. 3
eine erste Ausführungsform einer erfindungsgemäßen Zweistoffdüse,
Fig. 4
eine zweite Ausführungsform einer erfindungsgemäßen Zweistoffdüse,
Fig. 5
eine Ansicht auf die Ebene V-V der Fig. 4 zur Verdeutlichung der Anordnung der Sekundärluftdüsen bei der Zweistoffdüse der Fig. 4,
Fig. 6 bis 12
verschiedene Ansichten einer dritten Ausführungsform einer erfindungsgemäßen Zweistoffdüse,
Fig. 13
eine Schnittansicht einer vierten Ausführungsform einer erfindungsgemäßen Zweistoffdüse,
Fig. 14
eine Schnittansicht eines den Düsenauslass der Zweistoffdüse der Fig. 13 definierenden Bauteils und
Fig. 15
eine Ansicht des Bauteils der Fig. 14 von unten.
Further features and advantages of the invention will become apparent from the claims and the following description taken in conjunction with the drawings. Individual features of the different, illustrated in the drawings embodiments of the invention can be combined with each other in any way, without the scope of the To exceed invention. Specifically, the characteristics of in Fig. 2 shown two-fluid nozzle in any way with the in Fig. 3 . 4 and 5 combine illustrated nozzles, without exceeding the scope of the invention. In the drawings show:
Fig. 1
a two-fluid nozzle according to the prior art,
Fig. 2
a two-fluid nozzle with annular gap atomization and Schleierluftdüse according to the not previously published application DE 10 2005 048 489.1 .
Fig. 3
A first embodiment of a two-substance nozzle according to the invention,
Fig. 4
A second embodiment of a two-substance nozzle according to the invention,
Fig. 5
a view on the level VV the Fig. 4 to clarify the arrangement of the secondary air nozzles in the two-fluid nozzle of Fig. 4 .
6 to 12
various views of a third embodiment of a two-fluid nozzle according to the invention,
Fig. 13
a sectional view of a fourth embodiment of a two-fluid nozzle according to the invention,
Fig. 14
a sectional view of the nozzle outlet of the two-fluid nozzle of Fig. 13 defining component and
Fig. 15
a view of the component of Fig. 14 from underneath.

Die Schnittansicht der Fig. 3 zeigt eine erfindungsgemäße Zweistoffdüse 30, die ein konzentrisch zu einer Mittellängsachse 32 der Düse angeordnetes Einspeiserohr 34 für zu versprühende Flüssigkeit aufweist. Das Einspeiserohr 34 geht in eine kegelstumpfförmige Verengung 36 und anschließend in eine zylinderförmige Engstelle 38 über, an die sich eine sich kegelstumpfförmig erweiternde Mischkammer 40 anschließt. Die Mischkammer ist in ihrer umlaufenden Wandung mit Eintrittsöffnungen 42 für Druckgas versehen. Die Einlassöffnungen 42 sind in zwei, entlang der Ausströmrichtung voneinander beabstandeten Ringen in der Wandung der Mischkammer 40 angeordnet. An die Mischkammer 40 schließt sich ein Ausströmkanal 44 an, der am Düsenmund 46 endet und sich zunächst kontinuierlich verengt und dann ausgehend von einer Engstelle 45 wieder kontinuierlich aufweitet. In der Schnittansicht der Fig. 3 weist die Berandung des Ausströmkanals dabei eine durchgehend gekrümmte Form auf Im Ausströmkanal 44 wird das in der Mischkammer 40 gebildet Gemisch aus Gas und Flüssigkeit, beispielsweise Luft und Wasser, stark beschleunigt und kann im divergenten Abschnitt Überschallgeschwindigkeit erreichen.The sectional view of Fig. 3 shows a two-fluid nozzle 30 according to the invention, which has a concentrically arranged to a central longitudinal axis 32 of the nozzle feed tube 34 for liquid to be sprayed. The feed tube 34 merges into a frusto-conical constriction 36 and then into a cylindrical constriction 38, which is followed by a mixing chamber 40 which widens in the shape of a truncated cone. The mixing chamber is provided in its peripheral wall with inlet openings 42 for compressed gas. The inlet openings 42 are arranged in two, spaced apart along the outflow direction rings in the wall of the mixing chamber 40. The mixing chamber 40 is adjoined by an outflow channel 44, which ends at the nozzle mouth 46 and initially narrows continuously and then expands continuously again starting from a constriction 45. In the sectional view of Fig. 3 the boundary of the outflow channel thereby has a continuously curved shape in the outflow 44, the mixture formed in the mixing chamber 40 of gas and liquid, such as air and water, greatly accelerated and can reach supersonic speed in the divergent section.

Druckgas wird der Zweistoffdüse 30 über ein Druckgasrohr 48 zugeführt, das das Einspeiserohr 34 konzentrisch umgibt. Das Druckgas wird demgemäß in dem Ringbereich zwischen Einspeiserohr 34 und Druckgasrohr 48 geführt. Ausgehend von einem, die Mischkammer 40 umgebenden Ringraum gelangt das Druckgas dann durch die Einlassöffnungen 42 in die Mischkammer 40. Am stromabwärts gelegenen Ende des Ringraums 50 sind Eintrittsöffnungen von Sekundärluftdüsen 52a, 52b angeordnet, in die Druckgas gemäß der in Fig. 3 angedeuteten Pfeile 54 eintritt. Die Sekundärluftdüsen 52 sind dabei als Bohrungen in einem Abschlussstück 56 ausgebildet, das mittig den Ausströmkanal 44 trägt und am stromaufwärts gelegenen Ende des Ausströmkanals 44 einen Flansch für die Aufnahme eines, die Mischkammer 40 definierenden Rohrbauteiles bereitstellt. Der Ringraum 50 für das Druckgas wird ebenfalls durch das Bauteil 56 gebildet, und an seinem stromaufwärts gelegenen Ende ist das Bauteil 56 mit dem Druckgasrohr 48 verschraubt.Compressed gas is fed to the two-substance nozzle 30 via a compressed gas pipe 48 which surrounds the feed pipe 34 concentrically. The compressed gas is accordingly guided in the annular region between feed tube 34 and compressed gas tube 48. Starting from an annular space surrounding the mixing chamber 40, the compressed gas then passes through the inlet openings 42 into the mixing chamber 40. At the downstream end of the annular space 50, inlet openings of secondary air nozzles 52a, 52b are arranged, into which compressed gas according to the Fig. 3 indicated arrows 54 occurs. The secondary air nozzles 52 are formed as bores in a closure piece 56 which centrally carries the outflow channel 44 and at the upstream end of the outflow channel 44 provides a flange for receiving a, the mixing chamber 40 defining tubular component. The annulus 50 for the pressurized gas will also formed by the component 56, and at its upstream end, the component 56 is screwed to the compressed gas tube 48.

Die Sekundärluftdüsen 52a, 52b weisen Mittellängsachsen 58a, 58b auf, die mit der Mittellängsachse 32 der durch den Ausströmkanal 44 definierten Hauptdüse einen Winkel β einschließen. Der Winkel β beträgt in der Darstellung der Fig. 3 etwa 45° und kann zwischen etwa 20° und etwa 80° betragen. Die Sekundärluftdüsen 52a, 52b münden in den Ausströmkanal 44 unmittelbar stromaufwärts des Düsenmundes 46. Die Mittellängsachsen 58a und 58b der beiden dargestellten Sekundärluftdüsen 52a, 52b schneiden sich stromabwärts des Düsenmundes 46 mit der Mittellängsachse 32.The secondary air nozzles 52a, 52b have central longitudinal axes 58a, 58b, which form an angle β with the central longitudinal axis 32 of the main nozzle defined by the outflow channel 44. The angle β is in the representation of Fig. 3 about 45 ° and can be between about 20 ° and about 80 °. The secondary air nozzles 52 a, 52 b open into the outflow channel 44 immediately upstream of the nozzle mouth 46. The central longitudinal axes 58 a and 58 b of the two illustrated secondary air nozzles 52 a, 52 b intersect downstream of the nozzle mouth 46 with the central longitudinal axis 32.

Weiterhin ist eine, den Düsenmund 46 ringförmig umgebende Hüllluftdüse 66 vorgesehen, die mittels eines. Hüllluftohres 68 gebildet ist. Durch das Hüllluftrohr 68 wird Druckgas mit geringerem Druck als das der Mischkammer 40 zugeführte Druckgas zugeleitet. Die Hüllluft umgibt den Sprühstrahl 64 ringförmig.Furthermore, one, the nozzle mouth 46 annular surrounding Hüllluftdüse 66 is provided by means of a. Hüllluftohres 68 is formed. Through the Hüllluftrohr 68 compressed gas is supplied at a lower pressure than the mixing chamber 40 supplied compressed gas. The enveloping air surrounds the spray jet 64 annularly.

Die Schnittansicht der Fig. 4 zeigt eine erfindungsgemäßen Zweistoffdüse 70 gemäß einer weiteren Ausführungsform der Erfindung. Zu der Zweistoffdüse 30 der Fig. 3 baugleiche Teile sind mit den gleichen Bezugsziffern versehen und werden nicht erneut erläutert.The sectional view of Fig. 4 shows a two-fluid nozzle 70 according to the invention according to a further embodiment of the invention. To the two-fluid nozzle 30 of the Fig. 3 identical parts are provided with the same reference numerals and will not be explained again.

Im Unterschied zur Zweistoffdüse 30 der Fig. 2 sind bei der Zweistoffdüse 70 vier Sekundärluftdüsen 72a, 72b, 72c und 72d vorgesehen, wobei in der Darstellung der Fig. 3 lediglich drei Sekundärluftdüsen 72a, 72b und 72d zu erkennen sind. In der Ansicht der Fig. 4 sind dahingegen die Mündungsöffnungen der vier Sekundärluftdüsen 72a, 72b, 72c und 72d in einen Ausströmkanal 74 der Zweistoffdüse 70 angedeutet. Diese Mündungen liegen unmittelbar oberhalb eines Düsenmundes 76. Zur Verdeutlichung der Anordnung der Sekundärluftdüsen 72a, 72b, 72c und 72d sind die jeweiligen Mittellängsachsen 78a bis 78d mit eingezeichnet.In contrast to the two-fluid nozzle 30 of Fig. 2 In the two-fluid nozzle 70 four secondary air nozzles 72a, 72b, 72c and 72d are provided, wherein in the illustration of Fig. 3 only three secondary air nozzles 72a, 72b and 72d can be seen. In the view of Fig. 4 On the other hand, the orifices of the four secondary air nozzles 72a, 72b, 72c and 72d are indicated in an outflow channel 74 of the two-component nozzle 70. These openings are located directly above a nozzle mouth 76. To illustrate the arrangement of the secondary air nozzles 72a, 72b, 72c and 72d, the respective central longitudinal axes 78a to 78d are shown.

Anhand der Darstellung der Fig. 4 ist zu erkennen, dass die Mittellängsachse 78a bis 78d der Zweistoffdüse 72a bis 72d zum einen um den Winkel β zur Mittellängsachse 32 der Hauptdüse geneigt sind, wie bereits in Fig. 3 zu erkennen ist. Zusätzlich sind die Mittellängsachsen 78a bis 78d aber windschief zum Mittellängsachse 32 angeordnet und liegen tangential an einem Kreis an, der konzentrisch zum Mittellängsachse 32 der Hauptdüse angeordnet ist. Die Sekundärluftdüsen 72a bis 72d prägen somit dem aus dem Ausströmkanal 74 austretenden Zweistoffgemisch einen Drall auf und sorgen dadurch für eine Aufweitung des Sprühstrahles auf den Sprühwinkel α Durch eine entsprechende Anpassung des Durchmessers der Sekundärluftdüsen kann auch in diesem Fall erreicht werden, dass sich die Düsenbohrungen an der Einmündung in den Ausströmkanal 74 berühren oder teilweise überschneiden.Based on the presentation of the Fig. 4 It can be seen that the central longitudinal axis 78a to 78d of the two-substance nozzle 72a to 72d are inclined on the one hand by the angle β to the central longitudinal axis 32 of the main nozzle, as already in FIG Fig. 3 can be seen. In addition, the central longitudinal axes 78a to 78d but are skewed to the central longitudinal axis 32 and lie tangentially to a circle which is arranged concentrically to the central longitudinal axis 32 of the main nozzle. The secondary air nozzles 72a to 72d thus impart a twist to the binary mixture emerging from the outflow channel 74 and thereby ensure that the spray jet widened to the spray angle α. By correspondingly adjusting the diameter of the secondary air nozzles, the nozzle bores can also be achieved in this case the confluence with the outflow channel 74 touch or partially overlap.

Die Wirkungslinien der Sekundärluftstrahlen sind demnach nicht auf die Mittellängsachse 32 des Hauptstrahles hin gerichtet, sondern sie tauchen in diesen Hauptstrahl auf einem geeigneten Radius r1 ein, der zwischen 20% und 80% des Radius des Hauptstrahles an der betreffenden Stelle beträgt. Auch der Neigungswinkel β der Mittellängsachsen der Sekundärluftdüsen relativ zur Mittellängsachse 32 der Hauptdüse spielt eine erhebliche Rolle, wobei, wie erwähnt, hier der Winkelbereich zwischen 20° und 80° für diesen Winkel β besonders vorteilhaft ist.The lines of action of the secondary air jets are therefore not directed towards the central longitudinal axis 32 of the main jet, but they dive into this main jet at a suitable radius r 1 , which is between 20% and 80% of the radius of the main beam at the relevant point. Also, the inclination angle β of the central longitudinal axes of the secondary air nozzles relative to the central longitudinal axis 32 of the main nozzle plays a significant role, wherein, as mentioned, here the angle range between 20 ° and 80 ° for this angle β is particularly advantageous.

Die erfindungsgemäße Düse 30 geht somit dadurch aus einer Zweistoffdüse mit Ringspaltverdüsung gemäß der nicht vorveröffentlichten deutschen Patentanmeldung DE 10 2005 048 489.1 hervor, indem man den Ringspalt für die Ringspaltverdüsung durch einen Ring aus einzelnen Luftdüsen ersetzt, welche den Düsenmund umschließen. Wie bei der Zweistoffdüse 70 gezeigt ist, kann eine Ringspaltverdüsung mit dem Ringspalt 80 zusätzlich zu dem Ring aus Sekundärluftdüsen vorgesehen sein.The nozzle 30 according to the invention is thus characterized by a two-fluid nozzle with annular gap atomization according to the German patent application, not previously published DE 10 2005 048 489.1 By replacing the annular gap for the annular gap atomization by a ring of individual air nozzles, which surround the nozzle mouth. As shown in the dual-fluid nozzle 70, an annular gap atomization may be provided with the annular gap 80 in addition to the ring of secondary air nozzles.

Ein gewisser Nachteil der erfindungsgemäßen Düse könnte darin gesehen werden, dass die Beistellung der Sekundärluft einen zusätzlichen Energieaufwand bedingt. Dabei sollte man allerdings nicht übersehen, dass herkömmliche Zweistoffdüsen mit einem einzigen Düsenmund einen sehr kompakten, schlanken Tropfenstrahl erzeugen. Um hier die Tropfenverdunstung in einer ähnlich kurzen Zeit bzw. auf einer vergleichbar kurzen Wegstrecke verwirklichen zu können, wie bei der neuartigen Düse, muss bei einem schlanken Düsenstrahl wesentlich feiner versprüht werden. Dies ist natürlich ebenfalls mit einer wesentlichen Steigerung des Energieaufwandes verbunden. Und konkurrierende Konzepte der Zweistoffdüsen, die anstelle eines einzigen Düsenmundes über eine Vielzahl von Düsenbohrungen verfügen, auch Bündeldüsen genannt, und die auf diese Weise einen großen Strahlöffnungswinkel erzielen, leiden unter dem Nachteil, dass die kleinen Austrittsbohrungen relativ schnell verstopft sind, insbesondere bei der Versprühung von Feststoffsuspensionen. Ferner kommt es auf dem Düsenkörper zwischen den Düsenbohrungen leicht zu Anbackungen. Beide Effekte können zu einer erheblichen Störung der Verdüsung beitragen, indem sie der Entstehung großer Tropfen Vorschub leisten. Außerdem ist die Regelbarkeit von Bündeldüsen begrenzt und es ist vergleichsweise kompliziert, Bündeldüsen mit Sperrluft oder Hüllluft zu umgeben, die eine Belagsbildung auf dem Düsenkörper zwischen den Bohrungen vermeiden helfen würde.A certain disadvantage of the nozzle according to the invention could be seen in the fact that the provision of secondary air requires additional energy. However, one should not overlook the fact that conventional two-fluid nozzles with a single nozzle mouth produce a very compact, slim droplet jet. In order to be able to realize the drop evaporation in a similarly short time or on a comparably short path, as in the novel nozzle, it must be sprayed much finer in a slender jet. Of course, this is also associated with a substantial increase in energy consumption. And competing concepts of the two-fluid nozzles, which have a plurality of nozzle holes instead of a single nozzle mouth, also called bundle nozzles, and thus achieve a large jet angle, suffer from the disadvantage that the small exit holes are clogged relatively quickly, especially in the spray of solid suspensions. Furthermore, caking readily occurs on the nozzle body between the nozzle bores. Both effects can contribute to a significant disturbance of the atomization by promoting the formation of large drops. In addition, the controllability of bundle nozzles is limited and it is comparatively complicated to surround bundle nozzles with sealing air or enveloping air, which would help avoid formation of deposits on the nozzle body between the bores.

Im Unterschied zur Zweistoffdüse 30 der Fig. 3 ist die Zweistoffdüse 70 der Fig. 4 zusätzlich zu einem Ringspalt 80, der unmittelbar an den Ausströmkanal 74 angrenzt und zur Ringspaltverdüsung zum Zweck der Vermeidung grober Flüssigkeitstropfen am Düsenmund 76 vorgesehen ist, mit einer Schleierluftdüse 82 versehen, die den Ringspalt 80 ringförmig umgibt und für die Einspeisung von Druckgas mit geringerem Druck als in die Mischkammer 40 und den Ringspalt 80 vorgesehen ist.In contrast to the two-fluid nozzle 30 of Fig. 3 is the two-fluid nozzle 70 of Fig. 4 in addition to an annular gap 80 which is directly adjacent to the outflow channel 74 and provided for annular gap atomization for the purpose of avoiding coarse liquid droplets on the nozzle mouth 76, provided with a Schleierluftdüse 82 which surrounds the annular gap 80 annular and for the supply of compressed gas at a lower pressure than is provided in the mixing chamber 40 and the annular gap 80.

Die Darstellung der Fig. 5 zeigt eine Ansicht der Zweistoffdüse 70 von unten und etwa auf Höhe der in Fig. 4 gestrichelt eingezeichneten Ebene V-V. In der Darstellung der Fig. 5 ist zu erkennen, dass die Mittellängsachsen 78a bis 78d etwa auf Höhe der Ebene V-V und demnach stromabwärts des Düsenmundes 76 tangential an einem gedachten Kreis mit dem Radius r1 anliegen. Der Radius dieses Kreises r1 beträgt dabei etwa 50% des Radius des Sprühstrahls der Hauptdüse an dieser stellte, der in Fig. 4 durch die Schnittlinie der gestrichelten Ebene V-V und der ebenfalls gestrichelt angedeuteten Mantelfläche 84 des Hauptsprühstrahles in Fig. 4 definiert ist. Der Radius r1 kann zwischen 30% und 80% des Radius des Hauptstrahls an der betreffenden Stelle betragen. Mit anderen Worten und wie in Fig. 5 zu erkennen ist, liegt der Radius r1 zwischen dem Radius des Düsenmundes 76 und dem Radius einer Engstelle 86 im Ausströmkanal 74. Die Mittellängsachsen 78a bis 78d berühren demnach einen gedachten Kreiszylinder tangential, der konzentrisch zur Mittellängsachse 32 der Hauptdüse ausgerichtet ist und dessen Radius zwischen dem Radius des Düsenmundes 76 und dem Radius der Engstelle 86 im konvergent-divergent-geformten Ausströmkanal 74 der Zweistoffdüse 70 liegt. Die Berührstelle der Mittellängsachsen 78a bis 78d an diesen gedachten Kreiszylinder kann dabei stromabwärts des Düsenmundes liegen, bei entsprechender Auslegung der Düse aber auch durchaus auf Höhe des Düsenmundes selbst oder gar stromaufwärts hiervon.The presentation of the Fig. 5 shows a view of the two-fluid nozzle 70 from below and approximately at the level of in Fig. 4 Dashed line VV. In the presentation of the Fig. 5 It can be seen that the central longitudinal axes 78a to 78d abut tangentially on an imaginary circle with the radius r 1 approximately at the level of the plane VV and therefore downstream of the nozzle mouth 76. The radius of this circle r 1 amounts to about 50% of the radius of the spray jet of the main nozzle placed on this, the in Fig. 4 through the section line of the dashed plane VV and the likewise indicated by dashed lateral surface 84 of the main spray in Fig. 4 is defined. The radius r 1 may be between 30% and 80% of the radius of the principal ray at the point concerned. In other words and as in Fig. 5 can be seen, the radius r 1 between the radius of the nozzle mouth 76 and the radius of a constriction 86 in the discharge channel 74. The central longitudinal axes 78a to 78d thus tangentially touch an imaginary circular cylinder, which is aligned concentrically to the central longitudinal axis 32 of the main nozzle and the radius between the radius of the nozzle mouth 76 and the radius of the constriction 86 in the convergent-divergent-shaped outflow 74 of the two-fluid nozzle 70 is located. The contact point of the central longitudinal axes 78a to 78d at this imaginary circular cylinder can be located downstream of the nozzle mouth, with a corresponding design of the nozzle but also quite at the level of the nozzle mouth itself or even upstream thereof.

Die Darstellung der Fig. 6 zeigt eine erfindungsgemäße Zweistoffdüse 90 mit einem Düsenkörper 92, der eine in Fig. 6 nicht sichtbare Durchgangsbohrung aufweist, die bei ihrem Austritt aus dem Düsenkörper 92 einen Düsenmund 94 bildet. Wie bereits in der Fig. 6 zu erkennen ist und wie nachfolgend noch genauer erläutert wird, weist die Form des Düsenmundes 94 von einer Kreisform ab. Dies ist dadurch verursacht, dass im Bereich des Düsenmundes Düsenbohrungen von vier Sekundärluftdüsen münden.The presentation of the Fig. 6 shows a two-fluid nozzle 90 according to the invention with a nozzle body 92, the one in Fig. 6 has invisible through hole, which forms a nozzle mouth 94 at its exit from the nozzle body 92. As already in the Fig. 6 can be seen and as will be explained in more detail below, the shape of the nozzle mouth 94 from a circular shape. This is caused by nozzle bores of four secondary air nozzles opening in the area of the nozzle mouth.

Die Darstellung der Fig. 7 zeigt die Zweistoffdüse 90 in einer Seitenansicht, wobei zusätzlich durch gestrichelte Linien Düsenbohrungen der Sekundärluftdüsen angedeutet sind. Speziell sind Düsenbohrungen 96, 98, 100 und 102 gestrichelt angedeutet, die alle in einem Winkel von etwa 45° zu einer Mittellängsachse der Düse angeordnet sind und im Bereich des Düsenmundes 94 in einen Ausströmkanal 104 münden.The presentation of the Fig. 7 shows the two-fluid nozzle 90 in a side view, wherein additionally indicated by dashed lines nozzle holes of the secondary air nozzles. Specifically, nozzle bores 96, 98, 100 and 102 are indicated by dashed lines, which are all arranged at an angle of approximately 45 ° to a central longitudinal axis of the nozzle and open into an outflow channel 104 in the region of the nozzle orifice 94.

Die Darstellung der Fig. 8 zeigt eine Ansicht der Zweistoffdüse 90 von unten, also von der Seite des Düsenmundes 94 her. Gut zu erkennen sind die vier Düsenbohrungen 96, 98, 100 und 102 und deren zu einem Achsenkreuz durch die Mittellängsachse versetzte Anordnung. Die Düsenbohrungen 96, 98, 100 und 102 sind dadurch tangential zu einem gedachten Kreis um die Mittellängsachse der Düse angeordnet und schneiden die Mittellängsachse nicht. In Fig. 8 ist weiterhin die Einzelheit D vergrößert dargestellt, die Mündung der Düsenbohrungen 96, 98, 100 und 102 im Bereich des Düsenmundes zeigen, wobei die Ellipsen der Einzelheit D, die den Mündungsbereich andeuten, nur dann sichtbar sind, wenn in den Düsenkörper 92 zunächst die Düsenbohrungen 96, 98, 100 und 102 der Sekundärluftdüsen noch vor dem Ausströmkanal 94 eingebracht werden. Anhand der Einzelheit D ist zu erkennen, dass sich die Mündungen der Düsenbohrungen 96, 98, 100 und 102 berühren und insgesamt dadurch eine ringähnliche Konfiguration um die Mittellängsachse der Zweistoffdüse herum bilden. Im Betrieb bildet die aus den Düsenbohrungen 96, 98, 100 und 102 austretende Sekundärluft somit einen Ringluftstrahl, der den parallel zur Mittellängsachse austretenden Sprühstrahl umgibt. Es ist dadurch sichergestellt, dass ein an der Wandung des Ausströmkanals 104 anliegender Flüssigkeitsfilm, der durch die Strömung zum Düsenmund 94 hin getrieben wird, über den gesamten Umfang des Ausströmkanals 104 von Sekundärluft aus einer der Düsenbohrungen 96, 98, 100 oder 102 erfasst wird, zu einer dünnen Flüssigkeitslamelle am Düsenmund 94 ausgezogen und in feine Tropfen zerstäubt wird.The presentation of the Fig. 8 shows a view of the two-fluid nozzle 90 from below, ie from the side of the nozzle mouth 94 ago. Good to see the four nozzle holes 96, 98, 100 and 102 and their staggered to a coordinate system through the central longitudinal axis arrangement. The nozzle bores 96, 98, 100 and 102 are thereby arranged tangentially to an imaginary circle about the central longitudinal axis of the nozzle and do not intersect the central longitudinal axis. In Fig. 8 Furthermore, the detail D is shown enlarged, the mouth of the nozzle bores 96, 98, 100 and 102 in the region of the nozzle mouth show, the ellipses of the detail D, which indicate the mouth area, are only visible when in the nozzle body 92 first the nozzle holes 96, 98, 100 and 102 of the secondary air nozzles are introduced before the outflow channel 94. From the detail D it can be seen that the orifices of the nozzle bores 96, 98, 100 and 102 touch each other and thereby form a ring-like configuration as a whole around the central longitudinal axis of the two-substance nozzle. During operation, the secondary air emerging from the nozzle bores 96, 98, 100 and 102 thus forms an annular air jet which surrounds the spray jet emerging parallel to the central longitudinal axis. It is thereby ensured that a fluid film resting against the wall of the outflow channel 104 and driven through the flow towards the nozzle mouth 94 is detected over the entire circumference of the outflow channel 104 by secondary air from one of the nozzle bores 96, 98, 100 or 102, is pulled out to a thin liquid lamella at the nozzle mouth 94 and atomized into fine droplets.

Die Darstellung der Fig. 9 zeigt eine Schnittansicht entlang der Linie A-A in Fig. 7. Gut zu erkennen ist die zentrale Durchgangsbohrung der Düse und die Düsenbohrungen 96, 98, 100 und 102 der Sekundärluftdüsen. Die Düsenbohrungen 96, 98, 100 und 102 kreuzen sich auf Höhe der Schnittebene A-A mit jeweils einem Sackloch 106, wobei die Sacklöcher 106 von einem Außenumfang der Düse ausgehen, wie auch in Fig. 6 zu erkennen ist, und für das Einsetzen von Drosselschrauben vorgesehen sind, um einen freien Querschnitt der Düsenbohrungen 96, 98, 100 und 102 einstellen zu können.The presentation of the Fig. 9 shows a sectional view taken along the line AA in Fig. 7 , Good to see the central through-hole of the nozzle and the nozzle holes 96, 98, 100 and 102 of the secondary air nozzles. The nozzle bores 96, 98, 100 and 102 intersect at the level of the cutting plane AA, each with a blind hole 106, the blind holes 106 emanating from an outer periphery of the nozzle, as well as in Fig. 6 can be seen, and are provided for the insertion of throttle screws to adjust a free cross section of the nozzle bores 96, 98, 100 and 102 can.

Die Darstellung der Fig. 10 zeigt eine Ansicht der erfindungsgemäßen Zweistoffdüse 90 von der Seite des Düsenmundes 94 her und deutet den Verlauf einer Schnittlinie B-B an. Die Schnittlinie B-B verläuft zunächst mittig durch die Düsenbohrung 102, knickt auf Höhe der Mittellängsachse senkrecht ab. durchquert den Ausströmkanal 94 und knickt dann auf Höhe der Mitte der Düsenbohrung 98 erneut rechtwinklig ab.The presentation of the Fig. 10 shows a view of the two-fluid nozzle 90 according to the invention from the side of the nozzle mouth 94 forth and indicates the course of a section line BB. The cutting line BB initially runs centrally through the nozzle bore 102, bends vertically at the height of the central longitudinal axis. passes through the discharge channel 94 and then bends at the level of the center of the nozzle bore 98 again at right angles.

Die Darstellung der Fig. 11 zeigt die Schnittansicht entlang der Linie B-B. Gut zu erkennen ist der Verlauf der Düsenbohrungen 102, 98, die zunächst parallel zu einer Mittellängsachse der Zweistoffdüse 90 verlaufen, nach Passieren des jeweils zugeordneten Sacklochs 106 um 45° abknicken, um dann letztendlich im Bereich des Düsenmundes 94 in den Ausströmkanal 104 zu münden. Die Düsenbohrungen 98, 102 und natürlich auch die in Fig. 11 nicht erkennbaren Düsenbohrungen 96, 100 gehen von einem Ringraum 108 aus, der in der Fig. 12 dargestellt ist und durch das Einsetzen eines Mischkammerbauteils 110 in den Düsenkörper 92 entsteht. In diesen Ringraum 108 wird Druckgas eingeleitet, das dann zum einen durch Bohrungen 112 in eine Mischkammer 114 eintritt und zum anderen in die Düsenbohrungen 96, 98, 100, 102 der Sekundärluftdüsen eintritt.The presentation of the Fig. 11 shows the sectional view along the line BB. Good to see the course of the nozzle bores 102, 98, which initially extend parallel to a central longitudinal axis of the two-fluid nozzle 90, after passing through the respective associated blind hole 106 bend by 45 °, and then finally open in the region of the nozzle mouth 94 in the outflow channel 104. The nozzle holes 98, 102 and of course the in Fig. 11 unrecognizable nozzle bores 96, 100 start from an annular space 108, which in the Fig. 12 is shown and formed by the insertion of a mixing chamber 110 into the nozzle body 92. In this annulus 108 pressurized gas is introduced, which then enters through a first holes 112 in a mixing chamber 114 and on the other hand into the nozzle bores 96, 98, 100, 102 of the secondary air nozzles.

Auch anhand der Fig. 12 ist die Mündung der Düsenbohrungen im Bereich des Düsenmundes 94 zu erkennen, die diesem eine von der kreiszylindrischen Form des Ausströmkanals 104 abweichende Form verleihen.Also on the basis of Fig. 12 the mouth of the nozzle bores in the region of the nozzle mouth 94 can be seen, this one of the circular cylindrical Shape of the outflow channel 104 give a different shape.

Die Darstellung der Fig. 13 zeigt eine Schnittansicht einer erfindungsgemäßen Zweistoffdüse 120 gemäß einer vierten Ausführungsform der Erfindung. In fertigungstechnischer Hinsicht sind die schräg zur Mittellängsachse der Düse einzubringenden Düsenbohrungen der in den Fig. 3, 4, 5 und 6 bis 12 dargestellten Zweistoffdüsen 30, 70 und 90 problematisch. Bei der Zweistoffdüse 120 der Fig. 13 wurde daher eine andere Möglichkeit gewählt, einen im Bereich des Düsenmunds angeordneten Ring von Sekundärluftdüsen zu realisieren.The presentation of the Fig. 13 shows a sectional view of a two-fluid nozzle 120 according to the invention according to a fourth embodiment of the invention. In manufacturing terms, the obliquely introduced to the central longitudinal axis of the nozzle nozzle holes in the 3, 4, 5 and 6 to 12 illustrated two-fluid nozzles 30, 70 and 90 problematic. In the two-fluid nozzle 120 of the Fig. 13 Therefore, another possibility was chosen to realize a arranged in the region of the nozzle mouth ring of secondary air nozzles.

Die Zweistoffdüse 120 weist ein Zuführrohr 122 auf, durch das zu versprühende Flüssigkeit der Düse zugeführt wird. Das Zuführrohr 122 ist von einem konzentrischen Druckgasrohr 124 umgeben, das wiederum von einem Schfeierfuftrohr 126 konzentrisch umgeben ist. Es wurde bereits erläutert, dass die Schleierluft mit einem wesentlich geringeren Druck zugeführt wird als das zur Zerstäubung verwendete Druckgas. Beispielsweise kann der Druck des Druckgases zwischen 1 bar und 1,5 bar absolut liegen, die zugeführte Schleierluft würde dann beispielsweise mit einem Absolutdruck von etwa 40 mbar bis 80 mbar zugeführt. Das Vorsehen von Schleierluft dient im Wesentlichen dazu, Inkrustierungen im Bereich des Düsenmundes zu vermeiden. Das Druckgasrohr 124 weist ein kegelstumpfförmig auf einen Düsenmund zulaufendes Bauteil 130 auf, und auch das Schleierluftrohr 126 läuft kegelstumpfförmig auf den Düsenmund 128 und im Wesentlichen parallel zum Bauteil 130 zu.The two-fluid nozzle 120 has a feed tube 122 through which liquid to be sprayed is supplied to the nozzle. The feed tube 122 is surrounded by a concentric compressed gas tube 124, which in turn is surrounded concentrically by a Schufierfuftrohr 126. It has already been explained that the veiling air is supplied at a substantially lower pressure than the compressed gas used for atomization. For example, the pressure of the compressed gas between 1 bar and 1.5 bar are absolute, the supplied air would then supplied, for example, with an absolute pressure of about 40 mbar to 80 mbar. The provision of fog air essentially serves to avoid incrustations in the region of the nozzle mouth. The compressed gas tube 124 has a frusto-conical component 130 which tapers toward a nozzle mouth, and the veiled air tube 126 also runs in the form of a truncated cone toward the nozzle mouth 128 and essentially parallel to the component 130.

Das Zuführrohr 122 wird mittels eines Mischkammerbauteils 132 verlängert, das mit mehreren Druckgasbohrungen 134, 136, 138 versehen ist. Die Druckgasbohrungen 134, 136, 138 sind jeweils in einem Winkel von etwa 45° zu einer Mittellängsachse der Düse angeordnet, wobei Druckgas dadurch in Ausströmrichtung in die Mischkammer eingebracht wird und die Verlängerungen der Mittelachsen der Druckgasbohrungen 134, 136, 138 die Mittellängsachse der Zweistoffdüse 120 schneiden.The feed tube 122 is extended by means of a mixing chamber component 132, which is provided with a plurality of compressed gas bores 134, 136, 138. The compressed gas bores 134, 136, 138 are each arranged at an angle of about 45 ° to a central longitudinal axis of the nozzle, wherein pressurized gas is thereby introduced in the outflow direction into the mixing chamber and the extensions of the center axes of the pressure gas bores 134, 136, 138 intersect the central longitudinal axis of the two-substance nozzle 120.

Wie Fig. 13 zu entnehmen ist, sind jeweils mehrere, beispielsweise vier, Druckgasbohrungen 134, 136, 138 gleichmäßig beabstandet und um den Umfang des Mischkammerbauteils 132 herum angeordnet. In Ausströmrichtung der Düse gesehen sind dadurch insgesamt drei Ringe mit Druckgasbohrungen 134, 136, 138 angeordnet, die alle in eine Mischkammer 140 münden. Ein Querschnitt eines Ringspalts zwischen dem Druckgasrohr 124 und dem Mischkammerbauteil 132 verringert sich stromabwärts jedes Rings aus Druckgasbohrungen 134, 136, 138.As Fig. 13 it can be seen, in each case a plurality, for example four, compressed gas bores 134, 136, 138 are uniformly spaced and arranged around the circumference of the mixing chamber component 132 around. Seen in the outflow direction of the nozzle, a total of three rings with compressed gas bores 134, 136, 138 are arranged, all of which open into a mixing chamber 140. A cross-section of an annular gap between the pressurized gas tube 124 and the mixing chamber member 132 decreases downstream of each ring of pressurized gas bores 134, 136, 138.

Am Übergang vom Zuführrohr 122 zum Mischkammerbauteil 132 ist eine Flüssigkeitsdüse 142 vorgesehen, die den freien Querschnitt des Zuführrohres 122 zunächst deutlich, verengt und dann eine nochmalige Querschnittsverengung aufweist und mit einem Düsenrohr 144 in die Mischkammer 140 vorragt. In der Flüssigkeitsdüse 142 kann optional ein Dralleinsatz 146 vorgesehen sein. Das Düsenrohr 144 erstreckt sich so weit in die Mischkammer 140 hinein, dass die Verlängerungen der Druckgasbohrungen 134 mit dem Ende des Düsenrohres 144 zusammentreffen. Das durch die Druckgasbohrungen 134 in die Mischkammer 140 eintretende Druckgas sorgt dadurch dafür, dass sich am Ende des Düsenrohres 144 keine größeren Flüssigkeitstropfen bilden können, sondern am Rand des Düsenrohres 144 eventuell anhaftende Flüssigkeit fein zerstäubt wird. Das Vorsehen der Flüssigkeitsdüse 142 ist speziell dann von erheblichem Vorteil, wenn die erfindungsgemäße Zweistoffdüse 120 über einen großen Bereich eines zu zerstäubenden Flüssigkeitsstroms benutzt werden soll.At the transition from the feed pipe 122 to the mixing chamber component 132, a liquid nozzle 142 is provided, which initially clearly narrows the free cross section of the feed pipe 122 and then has a further cross-sectional constriction and protrudes with a nozzle pipe 144 into the mixing chamber 140. In the liquid nozzle 142 may optionally be provided a swirl insert 146. The nozzle tube 144 extends so far into the mixing chamber 140 in that the extensions of the pressure gas bores 134 coincide with the end of the nozzle tube 144. The pressure gas entering the mixing chamber 140 through the pressurized gas bores 134 thereby ensures that no larger drops of liquid can form at the end of the nozzle tube 144, but that any liquid adhering to the edge of the nozzle tube 144 is finely atomized. The provision of the fluid nozzle 142 is of considerable advantage, especially when the two-fluid nozzle 120 according to the invention is to be used over a large area of a liquid flow to be atomized.

Konventionelle Zweistoffdüsen sind in der Regel für einen engen Bereich des Flüssigkeitsstromes ausgelegt. Wird der vorgesehene Flüssigkeitsstrombereich unterschritten, so neigen konventionelle Zweistoffdüsen zum Spucken, da sich bereits am Eintritt in die Mischkammer keine stationären Strömungsverhältnisse mehr ergeben. Stattdessen wandert der in die Mischkammer eintretende Flüssigkeitsstrom aus und die verstärkte Bildung großer Tropfen ist die Folge. Dies wird mit dem Begriff "Spucken" umschrieben.Conventional two-fluid nozzles are usually designed for a narrow range of liquid flow. If the intended liquid flow range is undershot, conventional two-fluid nozzles tend to spit, since there is no entry at the inlet into the mixing chamber steady flow conditions give more. Instead, the liquid stream entering the mixing chamber migrates and the increased formation of large drops is the result. This is described by the term "spitting".

Die am Eingang in die Mischkammer 140 vorgesehene Flüssigkeitsdüse 142 dient also dazu, eine Dynamik und den Regelbereich der Zweistoffdüse 120 deutlich zu verbessern. Bei niedrigem Flüssigkeitsstrom neigt die Flüssigkeit beim Eintritt in die Mischkammer 140 dazu, instationär abzutropfen, was letztendlich zu instationärer Zerstäubung, dem sogenannten Spucken der Düse und einem schlechten Teillastverhalten führt. Als erste Abhilfemaßnahme ist nun die Flüssigkeitsdüse 142 vorgesehen, deren Düsenrohr 144 in die Mischkammer 140 hineinragt. Als zweite Maßnahme ist der erste Ring der Druckgasbohrungen 134 so angeordnet, dass die aus dem Düsenrohr 144 austretende Flüssigkeit ohne Zwischenspeicherung durch das für die Zerstäubung vorgesehene Druckgas mitgerissen wird. Zu diesem Zweck sind die Druckgasbohrungen 134 in dem, der Flüssigkeitsdüse 142 am Eintritt in die Mischkammer 140 am nächsten liegenden Bohrungsring so angeordnet, dass das eintretende Druckgas auf die Mündung dieser Flüssigkeitsdüse 142 gerichtet ist.The liquid nozzle 142 provided at the entrance into the mixing chamber 140 thus serves to distinctly improve dynamics and the control range of the two-substance nozzle 120. At low liquid flow, the liquid tends to drip instationary when entering the mixing chamber 140, which ultimately leads to unsteady atomization, the so-called spitting of the nozzle and a poor part-load behavior. As a first remedy, the liquid nozzle 142 is now provided, the nozzle tube 144 projects into the mixing chamber 140. As a second measure, the first ring of the pressure gas bores 134 is arranged such that the liquid emerging from the nozzle tube 144 is entrained without intermediate storage by the compressed gas provided for the atomization. For this purpose, the pressure gas bores 134 are arranged in the, the liquid nozzle 142 at the inlet to the mixing chamber 140 closest bore ring so that the incoming compressed gas is directed to the mouth of the liquid nozzle 142.

Das Mischkammerbauteil 132 ist axial mit seinem stromabwärts gelegenen Ende in ein Austrittsbauteil 148 eingeschoben, das einen Ausströmkanal 150 bildet und sich vom Ende der Mischkammer 140 bis zum Düsenmund 128 erstreckt. Die Mischkammer 140 weitet sich in Strömungsrichtung gesehen zunächst kegelstumpfförmig auf, um am Ende des Mischkammerbauteils 132 sich durch das Austrittsbauteil 148 wieder kegelstumpfförmig zu verengen. Der an die Mischkammer 140 anschließende Ausströmkanal 150 verengt sich zunächst, geht dann in eine kreiszylindrische Engstelle über, um sich zum Düsenmund 128 hin dann wieder aufzuweiten. Die Zweistoffdüse 120 ist demnach als Konvergent-Divergent-Düse oder Lavaldüse ausgebildet. Wenigstens im divergenten Bereich des Ausströmkanals 150 erreicht das Druckgas-Flüssigkeitsgemisch Schallgeschwindigkeit.The mixing chamber member 132 is inserted axially with its downstream end into an outlet member 148, which forms an outflow channel 150 and extends from the end of the mixing chamber 140 to the nozzle mouth 128. The mixing chamber 140 expands in the frustoconical direction, as viewed in the flow direction, in order to constrict again at the end of the mixing chamber component 132 through the outlet component 148 in the form of a truncated cone. The subsequent to the mixing chamber 140 outflow 150 first narrows, then passes into a circular cylindrical constriction, to then expand again to the nozzle mouth 128 out. The two-fluid nozzle 120 is accordingly designed as a convergent divergent nozzle or Laval nozzle. At least in the divergent Area of the outflow channel 150 reaches the compressed gas-liquid mixture sonic velocity.

Das Austrittsbauteil 148 ist an seinem stromaufwärts gelegenen Ende mit einem ringförmigen Flansch 152 versehen, in dem gleichmäßig voneinander beabstandet mehrere Durchgangsbohrungen 154 vorgesehen sind. Der Ringflansch 152 hält das Austrittsbauteil 148 zum einen zwischen dem Druckgasrohr 124 und dem Bauteil 130 und sorgt mit den Durchgangsbohrungen 154 zum anderen dafür, dass Sekundärluft in einen Zwischenraum zwischen dem Bauteil 130 und dem Austrittsbauteil 148 eintreten kann. Ausgehend von diesem Zwischenraum strömt das Druckgas dann als sogenannte Sekundärluft zwischen dem Bauteil 130 und dem stromabwärts gelegenen Ende des Austrittsbauteils 148 hindurch, um im Bereich des Düsenmundes 128 am stromabwärts gelegenen Ende des Ausströmkanals 150 auf den Sprühstrahl zu treffen.The exit member 148 is provided at its upstream end with an annular flange 152 in which a plurality of through holes 154 are provided evenly spaced from each other. The annular flange 152 holds the outlet component 148 between the compressed gas tube 124 and the component 130 on the one hand and, with the through holes 154 on the other, ensures that secondary air can enter into a gap between the component 130 and the outlet component 148. Starting from this intermediate space, the pressurized gas then flows as so-called secondary air between the component 130 and the downstream end of the outlet component 148 in order to hit the spray jet in the area of the nozzle mouth 128 at the downstream end of the outlet channel 150.

Wie Fig. 13 zu entnehmen ist, liegen das Austrittsbauteil 148 und das Bauteil 130 im Bereich des Düsenmundes 128 nicht aneinander an, so dass Sekundärluft über den gesamten Umfang des Ausströmkanals 150 im Bereich des Düsenmundes eintreten kann. Um der im Bereich des Düsenmundes 128 austretenden Sekundärluft einen Drall zu verleihen und dadurch den Sprühstrahl der Zweistoffdüse 120 aufzuweiten, sind am stromabwärts gelegenen Ende des Austrittsbauteils 148 Ausfräsungen 156 vorgesehen. Diese Ausfräsungen 156 bilden jeweils den oberen Abschnitt eines Düsenkanals und sind in Fig. 15 genauer zu erkennen. Die zwischen dem Bauteil 130 und dem Austrittsbauteil 148 hindurchtretende Sekundärluft wird somit durch die Ausfräsungen 156 kanalisiert und ausgerichtet, um dann im Bereich des Düsenmundes 128 auf den Sprühstrahl aus dem Ausströmkanal 150 zu treffen.As Fig. 13 can be seen, the outlet member 148 and the component 130 in the region of the nozzle mouth 128 are not adjacent to each other, so that secondary air can enter over the entire circumference of the discharge channel 150 in the region of the nozzle mouth. In order to impart a twist to the secondary air emerging in the region of the nozzle mouth 128 and thereby to expand the spray jet of the two-substance nozzle 120, cutouts 156 are provided at the downstream end of the outlet component 148. These cutouts 156 each form the upper portion of a nozzle channel and are in Fig. 15 to recognize more precisely. The secondary air passing between the component 130 and the outlet component 148 is thus channeled and aligned by the cutouts 156, in order then to strike the spray jet from the outflow channel 150 in the area of the nozzle mouth 128.

Anhand der Darstellungen der Fig. 14 und 15 ist die Lage der Ausfräsungen genauer zu erkennen. Speziell anhand der Fig. 15 ist zu erkennen, dass die Ausfräsungen 156 mit ihrer Mittelachse tangential zu einem gedachten Kreis um die Mittellängsachse der Zweistoffdüse 120 ausgerichtet sind. Der Sprühstrahl am Düsenmund 128 wird dadurch mit einem Drall beaufschlagt und weitet sich auf. Da das Austrittsbauteil 148 separat gefertigt wird und die Düsenkanäle mittels der Ausfräsungen 156 erst nach dem Einsetzen des Austrittsbauteils 148 in das Bauteil 130 entstehen, ist die Fertigung der Zweistoffdüse 120 erheblich erleichtert. Zusätzlich oder alternativ zu den Ausfräsungen 156 im Ausströmbauteil 148 kann auch das Bauteil 130 mit Abschnitte von Düsenkanälen bildenden Ausfräsungen versehen werden. Die erfindungsgemäße Zweistoffdüse 120 weist demnach eine Kombination von am Düsenmund 128 mündenden Düsenbohrungen mit einem umlaufenden Ringspalt auf.Based on the representations of FIGS. 14 and 15 the position of the cutouts can be seen more precisely. Specially based on the Fig. 15 It can be seen that the cutouts 156 with their central axis tangential to a imaginary circle about the central longitudinal axis of the two-fluid nozzle 120 are aligned. The spray jet at the nozzle mouth 128 is thereby subjected to a twist and expands. Since the outlet component 148 is manufactured separately and the nozzle channels are formed by means of the cutouts 156 only after the onset of the outlet component 148 into the component 130, the production of the two-component nozzle 120 is considerably facilitated. In addition or as an alternative to the cutouts 156 in the outflow component 148, the component 130 can also be provided with cut-outs forming nozzle ducts. Accordingly, the two-substance nozzle 120 according to the invention has a combination of nozzle bores opening at the nozzle mouth 128 with a circumferential annular gap.

Ein Ringspalt und Sekundärluftdüsenbohrungen oder Sekundärluftdüsenkanäle können somit durch Einfräsungen an der Außenseite des kegeligen Austrittsbauteils 148 erzeugt werden. Zusätzlich oder alternativ können der Ringspalt und die Sekundäluffdüsenbohrungen auch durch Einfräsungen an der Innenseite des ebenfalls kegeligen Außenkörpers, also des Bauteils 130 erzeugt werden. Wird das Austrittsteil 148 zur Anlage an die Innenseite des Bauteils 130 gebracht, ist kein durchgehender Ringspalt mehr gebildet, sondern lediglich noch diskrete Düsenkanäle.An annular gap and secondary air nozzle bores or secondary air nozzle channels can thus be produced by milling on the outside of the conical exit component 148. Additionally or alternatively, the annular gap and the Sekundäluffdüsenbohrungen can also be generated by milling on the inside of the likewise conical outer body, so the component 130. If the outlet part 148 is brought into contact with the inside of the component 130, no continuous annular gap is formed any more, but only discrete nozzle channels.

Die Anfertigung der schlanken Sekundärluftdüsenbohrungen bei den Zweistoffdüse 30, 70 und 90 ist kostspielig und muss beispielsweise mit Hilfe von Funkenerosion vorgenommen werden. Die Funkenerosion erlaubt beispielsweise auch, von zylindrischen Bohrungen abzuweichen. Im Gegensatz hierzu können die Einfräsungen 156 an dem Austrittsbauteil 148 mit Hilfe von Formfräsern, z.B. als Rechtecknut oder als Halbkreisnut, vergleichsweise kostengünstig hergestellt werden. Aber es ist durchaus auch eine beliebig andersartige Geometrie dieser Ausfräsungen möglich, wie z.B. eine wellenförmige Gestalt. Durch eine geeignete Beabstandung des kegeligen Außenkörpers, also des Bauteils 130, gegenüber dem zentralen Düsenaustrittsteil 148 kann hier auf einfache Weise eine Kombination von Ringspalt und Sekundärluftdüsenbohrungen bewirkt werden.The preparation of the slender secondary air nozzle holes in the two-fluid nozzle 30, 70 and 90 is costly and must be made for example by means of spark erosion. The spark erosion also allows, for example, to deviate from cylindrical holes. In contrast to this, the cutouts 156 on the outlet component 148 can be produced comparatively inexpensively by means of shaped cutters, for example as a rectangular groove or as a semicircular groove. But it is quite possible also an arbitrary different geometry of these cutouts, such as a wavy shape. By a suitable spacing of the conical outer body, that is, the component 130, relative to the central nozzle exit part 148 can here to simple A combination of annular gap and Sekundärluftdüsenbohrungen be effected.

Anstelle die Einfräsungen 156 im Austrittsbauteil 148 vorzusehen, könnte bei entsprechender Weiterentwicklung von Präzisionsgussverfahren das Austrittsbauteil 148 und der kegelige Außenkörper, also das Bauteil 130, auch wieder zu einem einzigen, gegossenen Bauteil vereint werden. Instead of providing the milling grooves 156 in the outlet component 148, the outlet component 148 and the conical outer body, that is to say the component 130, could again be combined to form a single, cast component, given a corresponding further development of precision casting methods.

Claims (16)

  1. Two-component nozzle with a main nozzle with a mixing chamber (40) and a nozzle orifice (46; 76) connected to the mixing chamber (40) and positioned downstream thereof, wherein secondary air nozzles (52a, 52b; 72a, 72b, 72c, 72d) are provided and issue in annular manner in the vicinity of the nozzles orifice (46; 76), characterized in that the secondary air nozzles are formed between two component parts lying opposite one another in the vicinity of the nozzle orifice by means of recesses in at least one of the two component parts lying opposite one another in the vicinity of the nozzle orifice.
  2. Two-component nozzle according to claim 1, characterized in that nozzle holes of the secondary air nozzles overlap in the vicinity of the nozzle orifice.
  3. Two-component nozzle according to claim 1 or 2, characterized in that a main spraying direction of the secondary air nozzles (52a, 52b; 72a, 72b, 72c, 72d) is directed into a main spray jet emanating from the nozzle orifice (46; 76).
  4. Two-component nozzle according to at least one of the preceding claims, characterized in that median longitudinal axes of the secondary air nozzles (52a, 52b; 72a, 72b, 72c, 72d) are arranged at an angle (β) of 20° to 80° to a median longitudinal axis (32) of the main nozzle.
  5. Two-component nozzle according to at least one of the preceding claims, characterized in that median longitudinal axes of the secondary air nozzles (52a, 52b; 72a, 72b, 72c, 72d) do not intersect the median longitudinal axis (32) of the main nozzle.
  6. Two-component nozzle according to at least one of the preceding claims, characterized in that the secondary air nozzles (72a, 72b, 72c, 72d) are oriented tangentially to an imaginary circle concentric to the median longitudinal axis (32) of the main nozzle, wherein in particular the imaginary circle has a radius (r1) between 30% and 80% of the radius of the main jet level with the circle.
  7. Two-component nozzle according to claim 6, characterized in that the circle is downstream of the nozzle orifice (76) of the main nozzle.
  8. Two-component nozzle according to at least one of the preceding claims, characterized in that the secondary air nozzles (52a, 52b; 72a, 72b, 72c, 72d) upstream of the nozzle orifice (46; 76) of the main nozzle issue into an outflow channel (44; 74) from the mixing chamber (40) to the nozzle orifice (46; 76).
  9. Two-component nozzle according to at least one of the preceding claims, characterized in that a separate supply air line to the secondary air nozzles is provided, wherein adjusting means are provided for adjusting an air pressure at the secondary air nozzles.
  10. Two-component nozzle according to at least one of the preceding claims, characterized in that the nozzle orifice (46; 76) is surrounded by an annular clearance (80) to which pressure gas can be supplied.
  11. Two-component nozzle according to at least one of the preceding claims, characterized in that starting from the mixing chamber (40), an outflow channel (44; 74) initially continuously narrows and then, starting from a narrow point (45; 86) then continuously widens up to the nozzle orifice (46; 76).
  12. Two-component nozzle according to claim 11, characterized in that during operation of the nozzle a two-component mixture reaches supersonic speed at least in sections of the outflow channel (44; 74).
  13. Two-component nozzle according to at least one of the preceding claims, characterized in that an additional screen air nozzle (82) is provided that surrounds the nozzle orifice (76) in an annular manner.
  14. Two-component nozzle according to at least one of the preceding claims, characterized in that a liquid nozzle (142) is provided at the entrance to the mixing chamber.
  15. Two-component nozzle according to claim 14, characterized in that the liquid nozzle (142) has a nozzle tube (144) extending into the mixing chamber (140).
  16. Two-component nozzle according to claim 14 or 15, characterized in that pressure gas holes (134) are so positioned for the introduction of pressure gas into the mixing chamber (140) that pressure gas is directed onto an opening of the liquid nozzle (142).
EP07703511A 2006-02-24 2007-02-17 Two-component nozzle with secondary air nozzles arranged in circular form Not-in-force EP1986788B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07703511T PL1986788T3 (en) 2006-02-24 2007-02-17 Two-component nozzle with secondary air nozzles arranged in circular form

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006009147A DE102006009147A1 (en) 2006-02-24 2006-02-24 Dual nozzle has mixing chamber, and ring is arranged by secondary air nozzles around mouth of main nozzle
PCT/EP2007/001384 WO2007098865A1 (en) 2006-02-24 2007-02-17 Two-component nozzle with secondary air nozzles arranged in circular form

Publications (2)

Publication Number Publication Date
EP1986788A1 EP1986788A1 (en) 2008-11-05
EP1986788B1 true EP1986788B1 (en) 2012-12-26

Family

ID=38016678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703511A Not-in-force EP1986788B1 (en) 2006-02-24 2007-02-17 Two-component nozzle with secondary air nozzles arranged in circular form

Country Status (6)

Country Link
US (1) US8857740B2 (en)
EP (1) EP1986788B1 (en)
DE (1) DE102006009147A1 (en)
ES (1) ES2401026T3 (en)
PL (1) PL1986788T3 (en)
WO (1) WO2007098865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200236A1 (en) * 2015-01-12 2016-07-14 Lechler Gmbh Method of producing a spray jet and two-fluid nozzle

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034549A1 (en) 2007-07-22 2009-01-29 Wurz, Dieter, Prof. Dr.-Ing. Compressed air-supported two-fluid nozzle for atomization of liquid, has mixing chamber in which liquid and primary atomization compressed air directly contact with each other at entrance
DE102007044272A1 (en) 2007-09-17 2009-04-02 Wurz, Dieter, Prof. Dr.-Ing. Multi-hole or bundle head nozzle with and without compressed air support
DE102009037828A1 (en) 2008-11-11 2010-05-20 Wurz, Dieter, Prof. Dr. Two-fluid nozzle, bundling nozzle and method for atomizing fluids
GB2488144B (en) * 2011-02-17 2014-01-15 Kelda Showers Ltd Shower head
EP2554273A1 (en) 2011-08-02 2013-02-06 Omya Development AG Atomizing nozzle device and use of the same
RU2482928C1 (en) * 2012-03-20 2013-05-27 Олег Савельевич Кочетов Kochetov's gas-drop jet generator
US9074969B2 (en) 2012-04-18 2015-07-07 Cooper Environmental Services Llc Sample fluid stream probe
JP6166103B2 (en) * 2013-06-04 2017-07-19 ヤンマー株式会社 Urea water injection nozzle
US9981315B2 (en) 2013-09-24 2018-05-29 Iowa State University Research Foundation, Inc. Atomizer for improved ultra-fine powder production
CA2943487C (en) * 2014-03-25 2023-10-24 The Coca-Cola Company High flow, reduced foam dispensing nozzle
US10226778B2 (en) * 2014-06-30 2019-03-12 Carbonxt, Inc. Systems, lances, nozzles, and methods for powder injection resulting in reduced agglomeration
RU2576296C1 (en) * 2015-02-06 2016-02-27 Олег Савельевич Кочетов Kochetov(s vortex foam generator
US9746397B2 (en) 2015-07-20 2017-08-29 Cooper Environmental Services Llc Sample fluid stream probe gas sheet nozzle
US10807111B2 (en) * 2015-10-02 2020-10-20 Spraying Systems Co. Pressurized air assisted full cone spray nozzle assembly
CN105345675B (en) * 2015-11-03 2019-04-05 吉首大学 Cyclone water direct injection band sand flusher
RU2622927C1 (en) * 2016-03-14 2017-06-21 Олег Савельевич Кочетов Kochetov's foam generator
CN105618290B (en) * 2016-03-16 2018-06-26 湖北荷普药业股份有限公司 A kind of atomizer
RU2624110C1 (en) * 2016-03-18 2017-06-30 Татьяна Дмитриевна Ходакова Foam generator
DE102016123814A1 (en) * 2016-12-08 2018-06-14 Air Liquide Deutschland Gmbh Arrangement and method for treating a surface
DE102019209898A1 (en) * 2019-07-04 2021-01-07 Schmid Silicon Technology Gmbh Apparatus and method for forming liquid silicon
KR20220044516A (en) * 2019-07-11 2022-04-08 더 리젠츠 오브 더 유니버시티 오브 미시건 Aerosol Printing of Special Fluids
JP7218335B2 (en) * 2020-09-11 2023-02-06 三菱重工業株式会社 Metal powder production equipment and its gas injector
CN114682404A (en) * 2020-12-31 2022-07-01 大连理工大学 External rotational flow cross hole ejector

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1451063A (en) * 1923-04-10 Burner
US733463A (en) * 1902-02-15 1903-07-14 Ezra D Dennison Petroleum-burner for furnaces.
US733579A (en) * 1903-04-01 1903-07-14 Joseph Fitton Hydrocarbon-burner.
US3272441A (en) * 1965-11-03 1966-09-13 Gulf Research Development Co Aspirating spray nozzle
US3642202A (en) * 1970-05-13 1972-02-15 Exxon Research Engineering Co Feed system for coking unit
IT1117662B (en) * 1977-01-14 1986-02-17 Italimpianti RADIANT BURNER FOR LIQUID AND GASEOUS FUEL
US4338099A (en) * 1979-12-26 1982-07-06 Texaco Inc. Process for the partial oxidation of slurries of solid carbonaceous fuels
US4341347A (en) * 1980-05-05 1982-07-27 S. C. Johnson & Son, Inc. Electrostatic spraying of liquids
US4946475A (en) * 1985-04-16 1990-08-07 The Dow Chemical Company Apparatus for use with pressurized reactors
DE3514931A1 (en) 1985-04-25 1986-10-30 Deutsche Babcock Werke AG, 4200 Oberhausen DEVICE AND METHOD FOR FEEDING SLUDGE
FR2660215B1 (en) * 1990-04-02 1995-07-21 Stein Industrie PULP DISPERSION LANCE.
DE10222863C1 (en) 2002-05-23 2003-11-20 Edmar Link Minimum quantity cooling oil device has jet head with mixing of pressurized air and cooling oil and air mantle generator providing air mantle enclosing delivered air/cooling oil mixture
US6997405B2 (en) 2002-09-23 2006-02-14 Spraying Systems Co. External mix air atomizing spray nozzle assembly
DE102005048489A1 (en) 2005-10-07 2007-04-19 Dieter Prof. Dr.-Ing. Wurz Two-fluid nozzle with annular gap atomization
DE102006001319A1 (en) 2006-01-09 2007-07-12 Wurz, Dieter, Prof. Dr.-Ing. Two-fluid nozzle with Lavalcharekteristik and with pre-division in the liquid supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200236A1 (en) * 2015-01-12 2016-07-14 Lechler Gmbh Method of producing a spray jet and two-fluid nozzle
US10092917B2 (en) 2015-01-12 2018-10-09 Lechler Gmbh Method for producing a spray jet, and two-component nozzle

Also Published As

Publication number Publication date
DE102006009147A1 (en) 2007-08-30
US8857740B2 (en) 2014-10-14
US20100163647A1 (en) 2010-07-01
PL1986788T3 (en) 2013-05-31
EP1986788A1 (en) 2008-11-05
ES2401026T3 (en) 2013-04-16
WO2007098865A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
EP1986788B1 (en) Two-component nozzle with secondary air nozzles arranged in circular form
EP1931478B1 (en) Atomizing nozzle for two substances
EP2190587B1 (en) Multi-hole or cluster nozzle
WO2010054798A1 (en) Two-component nozzle, bundle nozzle and method for atomizing fluids
DE3131070C2 (en)
EP2772312B1 (en) Two-fluid nozzle and method for spraying a liquid gas mixture
DE2542240C3 (en) Hollow cone nozzle for atomizing liquid
DE2404039A1 (en) IMPROVED FUEL INJECTION DEVICE
EP3042724B1 (en) Method for generating a spray jet and dual material nozzle
EP3246095B1 (en) Nozzle for spraying fluid
DE3116660A1 (en) "AIR SPRAYER SPRAY NOZZLE"
DE2544361C2 (en)
EP1971444A1 (en) Two-component nozzle
EP2555858A1 (en) Spray system and method for spraying a secondary fluid into a primary fluid
EP0924460B1 (en) Two-stage pressurised atomising nozzle
DE102007034549A1 (en) Compressed air-supported two-fluid nozzle for atomization of liquid, has mixing chamber in which liquid and primary atomization compressed air directly contact with each other at entrance
EP0801990B1 (en) Spray nozzle, particularly for spraying water in fire protection installations
EP0762057A1 (en) Mixing device for fuel and air for gas turbine combustors
DE3706694C2 (en)
EP1470864B1 (en) Two-fluid spray nozzle
EP0924461A1 (en) Two-stage pressurised atomising nozzle
EP3088087A1 (en) Spray nozzle and method for producing non-round spray cones
DE102011102693B4 (en) Extinguishing nozzle head with flow channel
EP2186572A1 (en) Ring split nozzle
DE19854382B4 (en) Method and device for atomizing liquid fuel for a firing plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100625

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 7/06 20060101ALI20120430BHEP

Ipc: B05B 7/04 20060101AFI20120430BHEP

Ipc: B05B 7/08 20060101ALI20120430BHEP

Ipc: B05B 7/10 20060101ALI20120430BHEP

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 590150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007011102

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2401026

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

BERE Be: lapsed

Owner name: WURZ, DIETER

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130927

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007011102

Country of ref document: DE

Effective date: 20130927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BAECHERSTRASSE 9, 8832 WOLLERAU (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200225

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210218

Year of fee payment: 15

Ref country code: ES

Payment date: 20210323

Year of fee payment: 15

Ref country code: PL

Payment date: 20210121

Year of fee payment: 15

Ref country code: AT

Payment date: 20210216

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007011102

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 590150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217