EP2441117B1 - Multiband antenna with cross polarisation - Google Patents

Multiband antenna with cross polarisation Download PDF

Info

Publication number
EP2441117B1
EP2441117B1 EP10743057.1A EP10743057A EP2441117B1 EP 2441117 B1 EP2441117 B1 EP 2441117B1 EP 10743057 A EP10743057 A EP 10743057A EP 2441117 B1 EP2441117 B1 EP 2441117B1
Authority
EP
European Patent Office
Prior art keywords
dipoles
pair
plane
arms
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10743057.1A
Other languages
German (de)
French (fr)
Other versions
EP2441117A1 (en
Inventor
Jean-Pierre Harel
Patrick Lecam
Jérôme Plet
Aurélien Hilary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP2441117A1 publication Critical patent/EP2441117A1/en
Application granted granted Critical
Publication of EP2441117B1 publication Critical patent/EP2441117B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • H01Q5/47Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device with a coaxial arrangement of the feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to a radiating element, such as those present in particular in multi-band telecommunications antennas. These are in particular multi-band antennas, called panel antennas, intended more particularly for cellular telephony applications.
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Telephone Service
  • the operators of the telecommunication networks must provide themselves with a network of antennas carrying out transmissions according to the various frequency bands used. For this, certain operators set up complementary antenna networks, each of these networks operating according to a telecommunications system. Thus, operators use a network of GSM antennas and a network of DCS antennas while they install a network of UMTS antennas. However, as part of the deployment of their network, operators have difficulty obtaining authorization to install new antennas. Current sites are already very crowded in terms of their visual impact. In addition, the proliferation of antenna networks leads to increasing costs for operators - purchase of antennas, rental of sites, installations - as well as environmental degradation.
  • dual-band or tri-band antennas are known in which the radiating elements assigned to each frequency are aligned either parallel according to a longitudinal periodic structure, or for example interposed in staggered rows, so as to ensure a radio environment similar to all the elements radiators corresponding to the same frequency.
  • These configurations lead to a significant increase in the width of the antenna, which degrades the radiation performance, at least for the highest frequency.
  • a squint effect of the azimuthal pattern is caused by the asymmetry in the azimuthal plane of the alignment of the high-frequency radiating elements.
  • a dual-polarized radiating element is formed from two independent dipoles each comprising two collinear conductive arms of a given polarization, positive or negative, for transmitting / receiving radiofrequency signals.
  • the length of each arm is substantially equal to a quarter of the wavelength of the working signal.
  • the radiating elements are mounted aligned longitudinally above a reflector, which makes it possible, by reflection of the rear radiation from the dipoles, to refine the directivity of the radiation pattern of the assembly thus formed.
  • Each dipole of a radiating element is connected by a supply line to an external source of energy. These radiating elements are dedicated to the transmission / reception of a single frequency.
  • Radiating elements comprising four substantially triangular conductive arms which are arranged orthogonally with respect to each other in a horizontal plane, called cross dipole assemblies (or "cross bow tie” in English).
  • radiating elements called “butterfly” (or “butterfly” in English) formed of four conductive arms folded axially in a V and arranged orthogonally relative to each other.
  • printed elements also called “patch” elements, comprising four conductive arms designed by a conductive layer deposited on a dielectric substrate.
  • the documents WO01 / 76012 A , US5418544 A , FR2795240 A , WO2007 / 042938 A , WO2010 / 067022 A2 and JP2004187195 A describe examples of multi-band antenna comprising superimposed radiating elements.
  • the antenna comprises a first low-frequency band radiating element disposed on a reflector in a first plane and at least a second high-frequency band radiating element disposed on the first radiating element in a second plane parallel to the first plane.
  • the radiating elements comprising pellets, dipoles, or cross dipoles having arms in fractal pattern in square or triangular shape.
  • the object of the present invention is therefore to propose a radiating element for a multi-band antenna which makes it possible to reduce its bulk.
  • the object of the present invention is a multi-band antenna according to independent claim 1.
  • the radiating element of the multi-band antenna comprises a first pair of dual cross-polarized dipoles each comprising two collinear conductor arms, the four conductor arms defining a first radiating plane corresponding to a low frequency band.
  • Element radiating further comprises at least a second pair of cross-polarized dipoles each comprising two collinear conductor arms, the four conductor arms defining a second radiating plane corresponding to a higher frequency band.
  • the first radiating plane and the second radiating plane are parallel, the second radiating plane being placed above the first radiating plane from which it is electrically isolated, and the surface of the first radiating plane covering the conductive arms of the first pair of dipoles is greater on the surface of the second radiating plane covering the conductive arms of the second pair of dipoles.
  • the lower radiating plane of lower frequency, is designed so as to offer a sufficient surface for the upper radiating plane, of higher frequency, so that it can be assimilated to a ground plane vis-à-vis the upper radiating plane. This is obtained with a surface covered by the dipoles of the lower radiating plane as large as possible.
  • the first radiating plane is defined by a pair of cross dipoles comprising arms made up of strands separated by a distance less than or equal to ⁇ HF / 10 where ⁇ HF is the wavelength of the RF signal of said higher frequency band and the second radiating plane is defined by a pair of dipoles chosen from among cross dipoles, butterfly dipoles and printed dipoles.
  • the dipoles of the second pair of dipoles are cross dipoles and have triangular shaped arms.
  • the dipoles of the second pair of dipoles are cross dipoles and have square arms.
  • the dipoles of the second pair of dipoles are cross dipoles comprising arms made up of a volume fractal pattern.
  • the radiating element comprises three radiating planes superimposed in parallel: a first lower radiating plane, a second plane intermediate radiating plane placed above the first radiating plane from which it is electrically isolated, and a third upper radiating plane placed above the second radiating plane from which it is electrically isolated.
  • the present invention has the advantage of reducing the width of the antenna, and therefore its surface, which reduces its manufacturing cost and gives it less wind resistance.
  • the figures 1 , 3 and 5-8 illustrate examples of a radiating element which are not covered by the present invention.
  • a radiating element 1 comprising a lower radiating plane 2 defined by a first pair of cross dipoles composed of a first dipole 3 and a second dipole 4 with double crossed polarization of length substantially equal to 1 / 2 ⁇ BF , where ⁇ BF is the length waveform of the low-frequency RF signal, and arranged orthogonally to each other so as to have polarizations orthogonal to ⁇ 45 °.
  • the first dipole 3 comprises a first conductor arm 5 and a second conductor arm 6 collinear with negative polarization (- 45 °), each of length substantially equal to 1 / 4 ⁇ BF .
  • Each conductive arm 5, 6 is of substantially triangular shape.
  • the arms could just as easily adopt another shape, square for example.
  • the first 5 and second 6 conductive arms are arranged, in the extension of one another in a horizontal plane, so as to approach one of their top without however coming into contact.
  • the second dipole 4 comprises a first conductor arm 7 and a second conductor arm 8 collinear with positive polarization (+ 45 °).
  • Each conductive arm 7, 8 is of substantially triangular shape.
  • the first 7 and second 8 conductive arms are arranged in the continuation of one another in a horizontal plane so as to approach at one of their top without however coming into contact.
  • the cross dipoles 3, 4 are carried by a foot 9.
  • the four conductive arms 5 , 6, 7 , 8 are each supported by a rod 10 fixed on a common base plate 11 , forming the foot 9.
  • Each dipole 3, 4 is respectively provided with a balanced power supply to generate a linear polarization.
  • the radiating element 1 also comprises an upper radiating plane 13, for example similar to the lower radiating plane 2, defined by a second pair of cross dipoles composed of a first dipole 14 and a second dipole 15 with double cross polarization of length substantially equal to 1 / 2 ⁇ HF , where ⁇ HF is the wavelength of the high frequency RF signal, and arranged orthogonally to each other so as to have polarizations orthogonal to ⁇ 45 °.
  • the dipole 14 comprises a first conductor arm 16 and a second conductor arm 17 collinear with negative polarization (-45 °) and the dipole 15 comprises a first conductive arm 18 and a second conductor arm 19 collinear with positive polarization (+ 45 °).
  • the arms 16, 17, 18, 19 are of substantially triangular shape and arranged in the extension of one another in a horizontal plane.
  • the cross dipoles 14, 15 are carried by a foot 20, each arm 16, 17, 18, 19 being carried by a rod 21 fixed to a common base plate 22 , forming the foot 20.
  • Each dipole 14, 15 is provided with respectively of a balanced power supply to generate a linear polarization.
  • the lower plane 2 is mounted on a plane reflector 24 , serving as a ground plane, via its base plate 11.
  • the upper radiating plane 13 is placed above the lower plane. 2 , from which it is electrically isolated, for example by a layer of dielectric material 23 , and there is fixed by means of its base plate 20 .
  • the conductive arms 5, 6, 16, 17 with negative polarization (- 45 °) are superimposed, and likewise the conductive arms 7, 8, 18, 19 with positive polarization (+ 45 °) are superimposed.
  • the conductive arms 5 , 6 , 7 , 8 of the dipoles 3 , 4 of the lower plane 2 have a sufficiently developed metallic surface to serve as a reflector of RF energy for the upper plane 13 .
  • the radiating element 31 comprises an upper radiating plane 33 dedicated to the UMTS frequency band and a lower radiating plane 34 dedicated to the GSM frequency band.
  • the antenna 30 may further include elements comprising a radiating plane 35, similar to the upper radiating plane 33, dedicated to the UMTS frequency band, which are interposed between the radiating elements 31.
  • the radiating planes 35 and 33 must either be located physically at the same height or be electrically compensated by the addition of a cable so as to generate a flat wavefront.
  • the figure 3 shows a second example of a radiating element 40 comprising a foot 41 surmounted by a radiating plane 42.
  • the lower radiating plane 42 is defined by a first pair of cross-shaped dipoles composed of two dipoles 43 and 44 with double crossed polarization.
  • the negatively polarized (- 45 °) dipole 43 has a first conductor arm 45 and a second conductor arm 46
  • the positively polarized (+ 45 °) dipole 44 has a first conductor arm 47 and a second conductor arm 48.
  • a upper radiating plane 49 defined by a second pair of printed or metallic dipoles with double polarization, called "patch" type, surmounts the lower radiating plane 42 from which it is electrically isolated.
  • the conductive arms 45, 46, 47, 48 are each carried by a rod 50 fixed to a base plate 51.
  • Each dipole 43, 44 is thus provided respectively with a balanced power supply to generate a linear polarization.
  • the figure 4 shows an embodiment of a radiating element according to the invention.
  • the radiating element 60 comprises a foot 61 carrying a radiating plane lower 64 defined by a first pair of dual cross-polarized dipoles composed of a first dipole 63 and a second dipole 62 arranged in a cross each having two arms 65, 66 and 67, 68 respectively.
  • Each arm 65, 66, 67, 68 is formed of separate strands having a length substantially equal to 1 / 4 ⁇ BF , where ⁇ BF is the wavelength of the low frequency RF signal
  • the strands are separated by a distance less than or equal to ⁇ HF / 10, where ⁇ HF is the length d high frequency RF signal wave.
  • the upper radiating plane 69 is superimposed on the lower radiating plane 64 from which it is electrically isolated.
  • the upper radiating plane 69 is defined by a second pair of dual cross-polarized dipoles comprising, carried by a foot 70, a first dipole 71 and a second dipole 72 arranged in a cross, each having two arms 73, 74 and 75, 76 respectively of substantially triangular shape and arranged in the continuation of one another in a horizontal plane.
  • radiating elements comprising a number of different radiating planes, for example a lower radiating plane, an intermediate radiating plane and an upper radiating plane superimposed.
  • the lower radiating plane must have the same characteristics with respect to the intermediate plane as those already described with respect to the upper radiating plane.
  • the intermediate radiating plane must have the same characteristics with respect to the upper radiating plane as those already described for the lower radiating plane.
  • the radiating element 80 shown in figure 5 is a third example of a radiating element.
  • the radiating element 80 comprises a lower radiating plane 81 defined by a first pair of dipoles, which is a printed circuit forming dipoles 82 and 83 each having two arms 84, 85 and 86, 87 respectively supplied by a conductive line 88.
  • a radiating plane 89 defined by a second pair of dual cross-polarized dipoles is superimposed on the lower radiating plane 81 from which it is electrically isolated.
  • the upper radiating plane 89 comprises two crossed dipoles carried by a foot, similar to the upper radiating plane 69 of the figure 4 and already described.
  • the figure 6 shows a fourth example of a radiating element.
  • the radiating element 90 comprises a lower radiating plane 91 defined by a first pair of dipoles, which is a printed circuit forming dipoles 92 and 93 in a cross similar to the lower radiating plane 81 of the figure 5 already described.
  • a radiating plane 94 defined by a second pair of cross dipoles is superimposed on the lower radiating plane 91 from which it is electrically isolated.
  • the upper radiating plane 94 comprises two crossed dipoles 95, 96 of the "butterfly" type arranged orthogonally and carried by a foot 97. Each dipole 95, 96 is formed of two conductive arms folded axially in V.
  • the figure 7 shows a fifth example of a radiating element.
  • the radiating element 100 comprises a lower radiating plane 101 , defined by a first pair of dipoles, which is a printed circuit forming dipoles 102 and 103 in a cross similar to the lower plane 81 of the figure 5 and already described.
  • An upper radiating plane 104 is superimposed on the lower radiating plane 101 from which it is electrically isolated.
  • the upper radiating plane 104 is a printed circuit forming cross dipoles 105 and 106 .
  • radiating elements comprising a number of different radiating planes.
  • a radiating element 110 comprising a lower radiating plane 111, an intermediate radiating plane 112 and an upper radiating plane 113 superimposed as shown in figure 8 .
  • the lower radiating plane 111 must present with respect to the intermediate plane 112 the same characteristics as those previously described with respect to the upper radiating plane 113.
  • the intermediate radiating plane 112 must have vis-à-vis the intermediate plane 112. with respect to the upper radiating plane 113 the same characteristics as those already described for the lower radiating plane 111.
  • the lower radiating plane 111 defined by a first pair of dipoles, is a printed circuit forming dipoles 114 and 115 in a cross similar to the lower plane 81 of the figure 5 and already described.
  • An intermediate radiating plane 112 defined by a second pair of dipoles is superimposed on the lower radiating plane 111 from which it is electrically isolated.
  • the intermediate radiating plane 112 is also a printed circuit forming dipoles 116 and 117 arranged in a cross.
  • An upper radiating plane 113 defined by a third pair of dipoles, is superimposed on the intermediate radiating plane 112 from which it is electrically isolated.
  • the upper radiating plane 113 is also a printed circuit forming cross dipoles 118 and 119 .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention se rapporte à un élément rayonnant, tel que ceux présent notamment dans les antennes multi-bandes de télécommunication. Il s'agit en particulier d'antennes multi-bandes, dites antennes panneau, destinées plus particulièrement aux applications à la téléphonie cellulaire.The present invention relates to a radiating element, such as those present in particular in multi-band telecommunications antennas. These are in particular multi-band antennas, called panel antennas, intended more particularly for cellular telephony applications.

La téléphonie cellulaire utilise diverses bandes de fréquences correspondant aux différents systèmes de télécommunication connus. Plusieurs systèmes de télécommunication sont actuellement utilisés simultanément, comme par exemple le "Global System for Mobile communications" GSM (870-960 MHz) ou le "Universal Mobile Telephone Service" UMTS (1710-2170 MHz).Cellular telephony uses various frequency bands corresponding to the various known telecommunications systems. Several telecommunication systems are currently used simultaneously, such as for example the “Global System for Mobile communications” GSM (870-960 MHz) or the “Universal Mobile Telephone Service” UMTS (1710-2170 MHz).

Dès lors, les opérateurs des réseaux de télécommunication doivent se pourvoir d'un réseau d'antennes effectuant des transmissions suivant les diverses bandes de fréquences utilisées. Pour cela, certains opérateurs mettent en place des réseaux complémentaires d'antennes, chacun de ces réseaux fonctionnant suivant un système de télécommunication. Ainsi, des opérateurs utilisent un réseau d'antennes GSM et un réseau d'antennes DCS tandis qu'ils installent un réseau d'antennes UMTS. Cependant, dans le cadre du déploiement de leur réseau, les opérateurs obtiennent difficilement l'autorisation d'installer de nouvelles antennes. Les sites actuels sont déjà très encombrés au niveau de leur impact visuel. Par ailleurs la multiplication des réseaux d'antennes entraîne des coûts croissants pour les opérateurs - achats d'antennes, locations d'emplacements, installations - ainsi qu'une dégradation de l'environnement.Consequently, the operators of the telecommunication networks must provide themselves with a network of antennas carrying out transmissions according to the various frequency bands used. For this, certain operators set up complementary antenna networks, each of these networks operating according to a telecommunications system. Thus, operators use a network of GSM antennas and a network of DCS antennas while they install a network of UMTS antennas. However, as part of the deployment of their network, operators have difficulty obtaining authorization to install new antennas. Current sites are already very crowded in terms of their visual impact. In addition, the proliferation of antenna networks leads to increasing costs for operators - purchase of antennas, rental of sites, installations - as well as environmental degradation.

Pour toutes ces raisons, les opérateurs évitent d'augmenter le nombre d'antennes déjà installées. Une solution pour régler ce problème est l'utilisation d'antennes multi-bandes résultant de la combinaison, à l'intérieur d'un unique châssis d'antenne, d'éléments rayonnants appartenant respectivement à plusieurs systèmes de télécommunication. Ces antennes intègrent dans un volume réduit plusieurs antennes mono-bandes en conservant la même qualité de service.For all these reasons, operators avoid increasing the number of antennas already installed. One solution for solving this problem is the use of multi-band antennas resulting from the combination, within a single antenna frame, of radiating elements belonging respectively to several telecommunication systems. These antennas integrate several single-band antennas in a reduced volume while maintaining the same quality of service.

On connaît par exemple des antennes bi-bande ou tri-bande dans lesquels les éléments rayonnants affectés à chaque fréquence sont alignés soit parallèlement selon une structure périodique longitudinale, soit par exemple intercalés en quinconce, de manière à assurer un environnement radioélectrique similaire à tous les éléments rayonnants correspondants à une même fréquence. Ces configurations conduisent à une augmentation sensible de la largeur de l'antenne, ce qui dégrade les performances en rayonnement, au moins pour la fréquence la plus élevée. Pour les deux types de configuration, un effet de strabisme du diagramme azimutal est causé par la dissymétrie dans le plan azimutal de l'alignement des éléments rayonnant à haute fréquence. On observe également une forte dégradation de la polarisation croisée dans la section angulaire ±60° en raison de cette dissymétrie.For example, dual-band or tri-band antennas are known in which the radiating elements assigned to each frequency are aligned either parallel according to a longitudinal periodic structure, or for example interposed in staggered rows, so as to ensure a radio environment similar to all the elements radiators corresponding to the same frequency. These configurations lead to a significant increase in the width of the antenna, which degrades the radiation performance, at least for the highest frequency. For both types of configuration, a squint effect of the azimuthal pattern is caused by the asymmetry in the azimuthal plane of the alignment of the high-frequency radiating elements. There is also a strong degradation of the cross polarization in the angular section ± 60 ° due to this asymmetry.

Un élément rayonnant à double polarisation est formé de deux dipôles indépendants comprenant chacun deux bras conducteurs colinéaires d'une polarisation donnée, positive ou négative, pour émettre/recevoir des signaux radiofréquence. La longueur de chaque bras est sensiblement égale au quart de la longueur d'onde du signal de travail. Les éléments rayonnants sont montés alignés longitudinalement au-dessus d'un réflecteur, ce qui permet, par réflexion du rayonnement arrière des dipôles, d'affiner la directivité du diagramme de rayonnement de l'ensemble ainsi formé. Chaque dipôle d'un élément rayonnant est relié par une ligne d'alimentation à une source extérieure d'énergie. Ces éléments rayonnants sont dédiés à l'émission/réception d'une seule fréquence.A dual-polarized radiating element is formed from two independent dipoles each comprising two collinear conductive arms of a given polarization, positive or negative, for transmitting / receiving radiofrequency signals. The length of each arm is substantially equal to a quarter of the wavelength of the working signal. The radiating elements are mounted aligned longitudinally above a reflector, which makes it possible, by reflection of the rear radiation from the dipoles, to refine the directivity of the radiation pattern of the assembly thus formed. Each dipole of a radiating element is connected by a supply line to an external source of energy. These radiating elements are dedicated to the transmission / reception of a single frequency.

On connaît des éléments rayonnants comportant quatre bras conducteurs sensiblement triangulaires qui sont disposés orthogonalement les uns par rapport aux autres dans un plan horizontal, appelés ensembles dipolaires en croix (ou « cross bow tie » en anglais).Radiating elements are known comprising four substantially triangular conductive arms which are arranged orthogonally with respect to each other in a horizontal plane, called cross dipole assemblies (or "cross bow tie" in English).

On connaît aussi notamment des éléments rayonnants dits « papillon » (ou « butterfly » en anglais) formés de quatre bras conducteurs pliés axialement en V et disposés orthogonalement les uns par rapport aux autres.Also known are radiating elements called "butterfly" (or "butterfly" in English) formed of four conductive arms folded axially in a V and arranged orthogonally relative to each other.

On connaît encore des éléments imprimés, aussi appelée éléments "patch", comprenant quatre bras conducteurs dessinés par une couche conductrice déposée sur un substrat diélectrique.Also known are printed elements, also called "patch" elements, comprising four conductive arms designed by a conductive layer deposited on a dielectric substrate.

Les documents WO01/76012 A , US5418544 A , FR2795240 A , WO2007/042938 A , WO2010/067022 A2 et JP2004187195 A décrivent des exemples d'antenne multi-bande comprenant des éléments rayonnants superposés. Dans les documents WO2007/042938 A , WO2010/067022 A2 et JP2004187195 l'antenne comprend un premier élément rayonnant à une bande de basse fréquence disposé sur un réflecteur dans un premier plan et au moins un deuxième élément rayonnant à une bande de haute fréquence disposé sur le premier élément rayonnant dans un deuxième plan parallèle au premier plan. Les éléments rayonnants comprenant des pastilles, des dipôles, ou des dipôles en croix ayant des bras en motif fractal en forme carré ou triangulaire.The documents WO01 / 76012 A , US5418544 A , FR2795240 A , WO2007 / 042938 A , WO2010 / 067022 A2 and JP2004187195 A describe examples of multi-band antenna comprising superimposed radiating elements. In documents WO2007 / 042938 A , WO2010 / 067022 A2 and JP2004187195 the antenna comprises a first low-frequency band radiating element disposed on a reflector in a first plane and at least a second high-frequency band radiating element disposed on the first radiating element in a second plane parallel to the first plane. The radiating elements comprising pellets, dipoles, or cross dipoles having arms in fractal pattern in square or triangular shape.

La présente invention a donc pour but de proposer un élément rayonnant pour une antenne multi-bande qui permette de réduire son encombrement.The object of the present invention is therefore to propose a radiating element for a multi-band antenna which makes it possible to reduce its bulk.

L'objet de la présente invention est une antenne multi-bande d'après la revendication indépendante 1.The object of the present invention is a multi-band antenna according to independent claim 1.

L'élément rayonnant de l'antenne multi-bande comporte une première paire de dipôles à double polarisation croisée comprenant chacun deux bras conducteurs colinéaires, les quatre bras conducteurs définissant un premier plan rayonnant correspondant à une bande de basse fréquence. L'élément rayonnant comporte en outre au moins une deuxième paire de dipôles à polarisation croisée comprenant chacun deux bras conducteurs colinéaires, les quatre bras conducteurs définissant un deuxième plan rayonnant correspondant à une bande de plus haute fréquence. Le premier plan rayonnant et le deuxième plan rayonnant sont parallèles, le deuxième plan rayonnant étant placé au-dessus du premier plan rayonnant dont il est électriquement isolé, et la surface du premier plan rayonnant recouvrant les bras conducteurs de la première paire de dipôles est supérieure à la surface du deuxième plan rayonnant recouvrant les bras conducteurs de la deuxième paire de dipôles.The radiating element of the multi-band antenna comprises a first pair of dual cross-polarized dipoles each comprising two collinear conductor arms, the four conductor arms defining a first radiating plane corresponding to a low frequency band. Element radiating further comprises at least a second pair of cross-polarized dipoles each comprising two collinear conductor arms, the four conductor arms defining a second radiating plane corresponding to a higher frequency band. The first radiating plane and the second radiating plane are parallel, the second radiating plane being placed above the first radiating plane from which it is electrically isolated, and the surface of the first radiating plane covering the conductive arms of the first pair of dipoles is greater on the surface of the second radiating plane covering the conductive arms of the second pair of dipoles.

Il s'agit de superposer parallèlement deux plans rayonnant séparés, isolés électriquement l'un de l'autre. Le plan rayonnant inférieur, de plus basse fréquence, est conçu de manière à offrir une surface suffisante pour le plan rayonnant supérieur, de plus haute fréquence, de telle sorte qu'il puisse être assimilé à un plan de masse vis-à-vis du plan rayonnant supérieur. Ceci est obtenu avec une surface recouverte par les dipôles du plan rayonnant inférieur la plus grande possible.This involves parallel superimposing two separate radiating planes, electrically isolated from each other. The lower radiating plane, of lower frequency, is designed so as to offer a sufficient surface for the upper radiating plane, of higher frequency, so that it can be assimilated to a ground plane vis-à-vis the upper radiating plane. This is obtained with a surface covered by the dipoles of the lower radiating plane as large as possible.

Le premier plan rayonnant est défini par une paire de dipôles en croix comportant des bras constitués de brins séparés par une distance inférieure ou égale à λHF/10 où λHF est la longueur d'onde du signal RF de ladite bande de plus haute fréquence et le deuxième plan rayonnant est défini par une paire de dipôles choisis parmi des dipôles en croix des dipôles papillon et des dipôles imprimé.The first radiating plane is defined by a pair of cross dipoles comprising arms made up of strands separated by a distance less than or equal to λ HF / 10 where λ HF is the wavelength of the RF signal of said higher frequency band and the second radiating plane is defined by a pair of dipoles chosen from among cross dipoles, butterfly dipoles and printed dipoles.

Selon une première forme d'exécution, les dipôles de la deuxième paire de dipôle sont des dipôles en croix comportent des bras de forme triangulaire.According to a first embodiment, the dipoles of the second pair of dipoles are cross dipoles and have triangular shaped arms.

Selon une deuxième forme d'exécution, les dipôles de la deuxième paire de dipôle sont des dipôles en croix comportent des bras de forme carrée.According to a second embodiment, the dipoles of the second pair of dipoles are cross dipoles and have square arms.

Selon une troisième forme d'exécution, les dipôles de la deuxième paire de dipôle sont des dipôles en croix comportent des bras constitués d'un motif fractal volumique.According to a third embodiment, the dipoles of the second pair of dipoles are cross dipoles comprising arms made up of a volume fractal pattern.

Selon une variante, l'élément rayonnant comprend trois plans rayonnants superposés parallèlement : une premier plan rayonnant inférieur, un deuxième plan rayonnant intermédiaire placé au-dessus du premier plan rayonnant dont il est électriquement isolé, et un troisième plan rayonnant supérieur placé au-dessus du deuxième plan rayonnant dont il est électriquement isolé.According to a variant, the radiating element comprises three radiating planes superimposed in parallel: a first lower radiating plane, a second plane intermediate radiating plane placed above the first radiating plane from which it is electrically isolated, and a third upper radiating plane placed above the second radiating plane from which it is electrically isolated.

La présente invention a comme avantage de réduire la largeur de l'antenne, donc sa surface, ce qui diminue son coût de fabrication et lui confère une prise au vent moindre.The present invention has the advantage of reducing the width of the antenna, and therefore its surface, which reduces its manufacturing cost and gives it less wind resistance.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation, donné bien entendu à titre illustratif et non limitatif, et dans le dessin annexé sur lequel

  • la figure 1 représente un élément rayonnant selon un premier exemple,
  • la figure 2 montre une antenne multi-bande comportant des éléments rayonnants analogue à ceux de la figure 1,
  • la figure 3 représente un élément rayonnant selon un deuxième exemple,
  • la figure 4 représente un élément rayonnant selon un mode de réalisation,
  • la figure 5 représente un élément rayonnant selon un troisième exemple,
  • la figure 6 représente un élément rayonnant selon un quatrième exemple,
  • la figure 7 représente un élément rayonnant selon un cinquième exemple,
  • la figure 8 représente un élément rayonnant selon un sixième exemple.
Other characteristics and advantages of the present invention will become apparent on reading the following description of an embodiment, given of course by way of illustration and not limiting, and in the appended drawing in which
  • the figure 1 represents a radiating element according to a first example,
  • the figure 2 shows a multi-band antenna with radiating elements similar to those of the figure 1 ,
  • the figure 3 represents a radiating element according to a second example,
  • the figure 4 represents a radiating element according to one embodiment,
  • the figure 5 represents a radiating element according to a third example,
  • the figure 6 represents a radiating element according to a fourth example,
  • the figure 7 represents a radiating element according to a fifth example,
  • the figure 8 represents a radiating element according to a sixth example.

Les figures 1, 3 et 5-8 illustrent des exemples d'élément rayonnant qui ne sont pas couverts par la présente invention.The figures 1 , 3 and 5-8 illustrate examples of a radiating element which are not covered by the present invention.

Dans l'exemple illustré sur la figure 1, on a représenté un élément rayonnant 1 comprenant un plan rayonnant inférieur 2 défini par une première paire de dipôles en croix composée d'un premier dipôle 3 et d'un second dipôle 4 à double polarisation croisée de longueur sensiblement égale à 1/2λBF, où λBF est la longueur d'onde du signal RF basse fréquence, et disposés orthogonalement l'un par rapport à l'autre de manière à présenter des polarisations orthogonales à ±45°. Le premier dipôle 3 comporte un premier bras conducteur 5 et un second bras conducteur 6 colinéaires à polarisation négative (- 45°), chacun de longueur sensiblement égale à 1/4λBF. Chaque bras conducteur 5, 6 est de forme sensiblement triangulaire. Bien entendu les bras pourraient tout aussi bien adopter une autre forme, carrée par exemple. Les premier 5 et second 6 bras conducteur sont disposés, dans le prolongement l'un de l'autre dans un plan horizontal de manière se rapprocher par un de leur sommet sans toutefois entrer en contact. De même, le second dipôle 4 comporte un premier bras conducteur 7 et un second bras conducteur 8 colinéaire à polarisation positive (+ 45°). Chaque bras conducteur 7, 8 est de forme sensiblement triangulaire. Les premier 7 et second 8 bras conducteurs sont disposés dans le prolongement l'un de l'autre dans un plan horizontal de manière à se rapprocher par un de leur sommet sans toutefois entrer en contact. Les dipôles 3, 4 en croix sont portés par un pied 9. Les quatre bras conducteurs 5, 6, 7, 8 sont chacun supportés par une tige 10 fixée sur une plaque de base 11 commune, formant le pied 9. Chaque dipôle 3, 4 est pourvu respectivement d'une alimentation équilibrée pour générer une polarisation linéaire.In the example shown on figure 1 , there is shown a radiating element 1 comprising a lower radiating plane 2 defined by a first pair of cross dipoles composed of a first dipole 3 and a second dipole 4 with double crossed polarization of length substantially equal to 1 / 2λ BF , where λ BF is the length waveform of the low-frequency RF signal, and arranged orthogonally to each other so as to have polarizations orthogonal to ± 45 °. The first dipole 3 comprises a first conductor arm 5 and a second conductor arm 6 collinear with negative polarization (- 45 °), each of length substantially equal to 1 / 4λ BF . Each conductive arm 5, 6 is of substantially triangular shape. Of course, the arms could just as easily adopt another shape, square for example. The first 5 and second 6 conductive arms are arranged, in the extension of one another in a horizontal plane, so as to approach one of their top without however coming into contact. Likewise, the second dipole 4 comprises a first conductor arm 7 and a second conductor arm 8 collinear with positive polarization (+ 45 °). Each conductive arm 7, 8 is of substantially triangular shape. The first 7 and second 8 conductive arms are arranged in the continuation of one another in a horizontal plane so as to approach at one of their top without however coming into contact. The cross dipoles 3, 4 are carried by a foot 9. The four conductive arms 5 , 6, 7 , 8 are each supported by a rod 10 fixed on a common base plate 11 , forming the foot 9. Each dipole 3, 4 is respectively provided with a balanced power supply to generate a linear polarization.

Selon une forme d'exécution de l'invention, l'élément rayonnant 1 comprend aussi un plan rayonnant supérieur 13, par exemple analogue au plan rayonnant inférieur 2, défini par une deuxième paire de dipôles en croix composée d'un premier dipôle 14 et d'un second dipôle 15 à double polarisation croisée de longueur sensiblement égale à 1/2λHF, où λHF est la longueur d'onde du signal RF haute fréquence, et disposés orthogonalement l'un par rapport à l'autre de manière à présenter des polarisations orthogonales à ±45°. Le dipôle 14 comporte un premier bras conducteur 16 et un second bras conducteur 17 colinéaires à polarisation négative (-45°) et le dipôle 15 comporte un premier bras conducteur 18 et un second bras conducteur 19 colinéaires à polarisation positive (+ 45°). Les bras 16, 17, 18, 19 sont de forme sensiblement triangulaire et disposés dans le prolongement l'un de l'autre dans un plan horizontal. Les dipôles 14, 15 en croix sont portés par un pied 20, chaque bras 16, 17, 18, 19 étant porté par une tige 21 fixée sur une plaque de base 22 commune, formant le pied 20. Chaque dipôle 14, 15 est pourvu respectivement d'une alimentation équilibrée pour générer une polarisation linéaire.According to one embodiment of the invention, the radiating element 1 also comprises an upper radiating plane 13, for example similar to the lower radiating plane 2, defined by a second pair of cross dipoles composed of a first dipole 14 and a second dipole 15 with double cross polarization of length substantially equal to 1 / 2λ HF , where λ HF is the wavelength of the high frequency RF signal, and arranged orthogonally to each other so as to have polarizations orthogonal to ± 45 °. The dipole 14 comprises a first conductor arm 16 and a second conductor arm 17 collinear with negative polarization (-45 °) and the dipole 15 comprises a first conductive arm 18 and a second conductor arm 19 collinear with positive polarization (+ 45 °). The arms 16, 17, 18, 19 are of substantially triangular shape and arranged in the extension of one another in a horizontal plane. The cross dipoles 14, 15 are carried by a foot 20, each arm 16, 17, 18, 19 being carried by a rod 21 fixed to a common base plate 22 , forming the foot 20. Each dipole 14, 15 is provided with respectively of a balanced power supply to generate a linear polarization.

Le plan inférieur 2 est monté sur un réflecteur 24 plan, servant de plan de masse ("ground plane" en anglais), par l'intermédiaire de sa plaque de base 11. Le plan rayonnant supérieur 13 est placé au-dessus du plan inférieur 2, dont il est électriquement isolé, par exemple par une couche de matériau diélectrique 23, et il y est fixé par l'intermédiaire de sa plaque de base 20. Les bras conducteurs 5, 6, 16, 17 à polarisation négative (- 45°) sont superposés, et de même les bras conducteurs 7, 8, 18, 19 à polarisation positive (+ 45°) sont superposés. Dans le cas présent, les bras conducteurs 5, 6, 7, 8 des dipôles 3, 4 du plan inférieur 2 présentent une surface métallique suffisamment développée pour servir de réflecteur d'énergie RF pour le plan supérieur 13.The lower plane 2 is mounted on a plane reflector 24 , serving as a ground plane, via its base plate 11. The upper radiating plane 13 is placed above the lower plane. 2 , from which it is electrically isolated, for example by a layer of dielectric material 23 , and there is fixed by means of its base plate 20 . The conductive arms 5, 6, 16, 17 with negative polarization (- 45 °) are superimposed, and likewise the conductive arms 7, 8, 18, 19 with positive polarization (+ 45 °) are superimposed. In the present case, the conductive arms 5 , 6 , 7 , 8 of the dipoles 3 , 4 of the lower plane 2 have a sufficiently developed metallic surface to serve as a reflector of RF energy for the upper plane 13 .

On considérera maintenant la figure 2 qui illustre un exemple avantageux d'une antenne 30 de télécommunication comportant des éléments rayonnants 31 montés sur un réflecteur 32. L'élément rayonnant 31 comprend un plan rayonnant supérieur 33 dédié à la bande de fréquence UMTS et un plan rayonnant inférieure 34 dédié à la bande de fréquence GSM. L'antenne 30 peut comporter en outre des éléments comprenant un plan rayonnant 35, analogue au plan rayonnant supérieur 33, dédié à la bande de fréquence UMTS, qui sont intercalés entre les éléments rayonnants 31. Les plans rayonnants 35 et 33 doivent soit se situer physiquement à la même hauteur soit être compensés électriquement par l'ajout d'un câble de manière à générer un front d'onde plan.We will now consider the figure 2 which illustrates an advantageous example of a telecommunication antenna 30 comprising radiating elements 31 mounted on a reflector 32. The radiating element 31 comprises an upper radiating plane 33 dedicated to the UMTS frequency band and a lower radiating plane 34 dedicated to the GSM frequency band. The antenna 30 may further include elements comprising a radiating plane 35, similar to the upper radiating plane 33, dedicated to the UMTS frequency band, which are interposed between the radiating elements 31. The radiating planes 35 and 33 must either be located physically at the same height or be electrically compensated by the addition of a cable so as to generate a flat wavefront.

La figure 3 montre un deuxième exemple d'un élément rayonnant 40 comportant un pied 41 surmonté d'un plan rayonnant 42. Le plan rayonnant 42 inférieur est défini par une première paire de dipôles en croix composé de deux dipôles 43 et 44 à double polarisation croisée. Le dipôle 43 à polarisation négative (- 45°) comporte un premier bras conducteur 45 et un second bras conducteur 46, et le dipôle 44 à polarisation positive (+ 45°) comporte un premier bras conducteur 47 et un second bras conducteur 48. Un plan rayonnant 49 supérieur défini par une deuxième paire de dipôles imprimés ou métalliques à double polarisation, dit de type « patch », surmonte le plan rayonnant 42 inférieur dont il est électriquement isolé. Comme précédemment les bras conducteurs 45, 46, 47, 48 sont portés chacun par une tige 50 fixée sur une plaque de base 51. Chaque dipôle 43, 44 est ainsi pourvu respectivement d'une alimentation équilibrée pour générer une polarisation linéaire.The figure 3 shows a second example of a radiating element 40 comprising a foot 41 surmounted by a radiating plane 42. The lower radiating plane 42 is defined by a first pair of cross-shaped dipoles composed of two dipoles 43 and 44 with double crossed polarization. The negatively polarized (- 45 °) dipole 43 has a first conductor arm 45 and a second conductor arm 46, and the positively polarized (+ 45 °) dipole 44 has a first conductor arm 47 and a second conductor arm 48. A upper radiating plane 49 defined by a second pair of printed or metallic dipoles with double polarization, called "patch" type, surmounts the lower radiating plane 42 from which it is electrically isolated. As previously, the conductive arms 45, 46, 47, 48 are each carried by a rod 50 fixed to a base plate 51. Each dipole 43, 44 is thus provided respectively with a balanced power supply to generate a linear polarization.

La figure 4 montre un mode de réalisation d'un élément rayonnant selon l'invention. L'élément rayonnant 60 comporte un pied 61 portant un plan rayonnant inférieur 64 défini par une première paire de dipôles à double polarisation croisée composée d'un premier dipôle 63 et un second dipôle 62 disposés en croix ayant chacun deux bras 65, 66 et 67, 68 respectivement. Chaque bras 65, 66, 67, 68 est formé de brins séparés ayant une longueur sensiblement égale à 1/4λBF, où λBF est la longueur d'onde du signal RF basse fréquence Les brins sont séparés par une distance inférieure ou égale à λHF/10, où λHF est la longueur d'onde du signal RF haute fréquence.The figure 4 shows an embodiment of a radiating element according to the invention. The radiating element 60 comprises a foot 61 carrying a radiating plane lower 64 defined by a first pair of dual cross-polarized dipoles composed of a first dipole 63 and a second dipole 62 arranged in a cross each having two arms 65, 66 and 67, 68 respectively. Each arm 65, 66, 67, 68 is formed of separate strands having a length substantially equal to 1 / 4λ BF , where λ BF is the wavelength of the low frequency RF signal The strands are separated by a distance less than or equal to λ HF / 10, where λ HF is the length d high frequency RF signal wave.

Un plan rayonnant 69 supérieur est superposé au plan rayonnant 64 inférieur dont il est isolé électriquement. Le plan rayonnant 69 supérieur est défini par une deuxième paire de dipôles à double polarisation croisée comprend, portés par un pied 70, un premier dipôle 71 et un second dipôle 72 disposés en croix ayant chacun deux bras 73, 74 et 75, 76 respectivement de forme sensiblement triangulaire et disposés dans le prolongement l'un de l'autre dans un plan horizontal.An upper radiating plane 69 is superimposed on the lower radiating plane 64 from which it is electrically isolated. The upper radiating plane 69 is defined by a second pair of dual cross-polarized dipoles comprising, carried by a foot 70, a first dipole 71 and a second dipole 72 arranged in a cross, each having two arms 73, 74 and 75, 76 respectively of substantially triangular shape and arranged in the continuation of one another in a horizontal plane.

On pourra de la même façon réaliser des éléments rayonnants comportant un nombre de plans rayonnants différents, par exemple un plan rayonnant inférieur, un plan rayonnant intermédiaire et un plan rayonnant supérieur superposés. Bien entendu dans ce cas le plan rayonnant inférieur doit présenter vis-à-vis du plan intermédiaire les mêmes caractéristiques que celles déjà décrites vis-à-vis du plan rayonnant supérieur. De même le plan rayonnant intermédiaire doit présenter vis-à-vis du plan rayonnant supérieur les mêmes caractéristiques que celles déjà décrites pour le plan rayonnant inférieur.It is possible in the same way to produce radiating elements comprising a number of different radiating planes, for example a lower radiating plane, an intermediate radiating plane and an upper radiating plane superimposed. Of course, in this case, the lower radiating plane must have the same characteristics with respect to the intermediate plane as those already described with respect to the upper radiating plane. Similarly, the intermediate radiating plane must have the same characteristics with respect to the upper radiating plane as those already described for the lower radiating plane.

L'élément rayonnant 80 représenté sur la figure 5 est un troisième exemple d'un élément rayonnant. L'élément rayonnant 80 comprend un plan rayonnant 81 inférieur défini par une première paire de dipôles, qui est un circuit imprimé formant des dipôles 82 et 83 ayant chacun respectivement deux bras 84, 85 et 86, 87 alimenté par une ligne conductrice 88. Un plan rayonnant 89 défini par une deuxième paire de dipôles à double polarisation croisée est superposé au plan rayonnant 81 inférieur dont il est électriquement isolé. Le plan rayonnant 89 supérieur comprend deux dipôles croisés porté par un pied, analogue au plan rayonnant 69 supérieur de la figure 4 et déjà décrit.The radiating element 80 shown in figure 5 is a third example of a radiating element. The radiating element 80 comprises a lower radiating plane 81 defined by a first pair of dipoles, which is a printed circuit forming dipoles 82 and 83 each having two arms 84, 85 and 86, 87 respectively supplied by a conductive line 88. A radiating plane 89 defined by a second pair of dual cross-polarized dipoles is superimposed on the lower radiating plane 81 from which it is electrically isolated. The upper radiating plane 89 comprises two crossed dipoles carried by a foot, similar to the upper radiating plane 69 of the figure 4 and already described.

La figure 6 montre un quatrième exemple d'un élément rayonnant. L'élément rayonnant 90 comprend un plan rayonnant 91 inférieur défini par une première paire de dipôles, qui est un circuit imprimé formant des dipôles 92 et 93 en croix analogue au plan rayonnant 81 inférieur de la figure 5 déjà décrit. Un plan rayonnant 94 défini par une deuxième paire de dipôles en croix est superposé au plan rayonnant 91 inférieur dont il est électriquement isolé. Le plan rayonnant 94 supérieur comprend deux dipôles 95, 96 croisés du type « papillon » disposés orthogonalement et porté par un pied 97. Chaque dipôle 95, 96 est formé de deux bras conducteurs pliés axialement en V.The figure 6 shows a fourth example of a radiating element. The radiating element 90 comprises a lower radiating plane 91 defined by a first pair of dipoles, which is a printed circuit forming dipoles 92 and 93 in a cross similar to the lower radiating plane 81 of the figure 5 already described. A radiating plane 94 defined by a second pair of cross dipoles is superimposed on the lower radiating plane 91 from which it is electrically isolated. The upper radiating plane 94 comprises two crossed dipoles 95, 96 of the "butterfly" type arranged orthogonally and carried by a foot 97. Each dipole 95, 96 is formed of two conductive arms folded axially in V.

La figure 7 montre un cinquième exemple d'un élément rayonnant. L'élément rayonnant 100 comprend un plan rayonnant 101 inférieur, défini par une première paire de dipôles, qui est un circuit imprimé formant des dipôles 102 et 103 en croix analogue au plan inférieur 81 de la figure 5 et déjà décrit. Un plan rayonnant 104 supérieur est superposé au plan rayonnant 101 inférieur dont il est électriquement isolé. Le plan rayonnant 104 supérieur est un circuit imprimé formant des dipôles 105 et 106 en croix.The figure 7 shows a fifth example of a radiating element. The radiating element 100 comprises a lower radiating plane 101 , defined by a first pair of dipoles, which is a printed circuit forming dipoles 102 and 103 in a cross similar to the lower plane 81 of the figure 5 and already described. An upper radiating plane 104 is superimposed on the lower radiating plane 101 from which it is electrically isolated. The upper radiating plane 104 is a printed circuit forming cross dipoles 105 and 106 .

On pourra de la même façon réaliser des éléments rayonnants comportant un nombre de plans rayonnants différents. Par exemple un élément rayonnant 110 comportant un plan rayonnant inférieur 111, un plan rayonnant intermédiaire 112 et un plan rayonnant supérieur 113 superposés comme le montre la figure 8. Bien entendu dans ce cas le plan rayonnant inférieur 111 doit présenter vis-à-vis du plan intermédiaire 112 les mêmes caractéristiques que celles précédemment décrites vis-à-vis du plan rayonnant supérieur 113. De même le plan rayonnant intermédiaire 112 doit présenter vis-à-vis du plan rayonnant supérieur 113 les mêmes caractéristiques que celles déjà décrites pour le plan rayonnant inférieur 111. It is possible in the same way to produce radiating elements comprising a number of different radiating planes. For example a radiating element 110 comprising a lower radiating plane 111, an intermediate radiating plane 112 and an upper radiating plane 113 superimposed as shown in figure 8 . Of course, in this case, the lower radiating plane 111 must present with respect to the intermediate plane 112 the same characteristics as those previously described with respect to the upper radiating plane 113. Likewise, the intermediate radiating plane 112 must have vis-à-vis the intermediate plane 112. with respect to the upper radiating plane 113 the same characteristics as those already described for the lower radiating plane 111.

Le plan rayonnant 111 inférieur, défini par une première paire de dipôles, est un circuit imprimé formant des dipôles 114 et 115 en croix analogue au plan inférieur 81 de la figure 5 et déjà décrit. Un plan rayonnant 112 intermédiaire défini par une deuxième paire de dipôles, est superposé au plan rayonnant 111 inférieur dont il est électriquement isolé. Le plan rayonnant 112 intermédiaire est aussi un circuit imprimé formant des dipôles 116 et 117 disposés en croix. Un plan rayonnant 113 supérieur, défini par une troisième paire de dipôles, est superposé au plan rayonnant 112 intermédiaire dont il est électriquement isolé. Le plan rayonnant 113 supérieur est également un circuit imprimé formant des dipôles 118 et 119 en croix.The lower radiating plane 111 , defined by a first pair of dipoles, is a printed circuit forming dipoles 114 and 115 in a cross similar to the lower plane 81 of the figure 5 and already described. An intermediate radiating plane 112 defined by a second pair of dipoles is superimposed on the lower radiating plane 111 from which it is electrically isolated. The intermediate radiating plane 112 is also a printed circuit forming dipoles 116 and 117 arranged in a cross. An upper radiating plane 113 , defined by a third pair of dipoles, is superimposed on the intermediate radiating plane 112 from which it is electrically isolated. The upper radiating plane 113 is also a printed circuit forming cross dipoles 118 and 119 .

Claims (7)

  1. Multiband antenna comprising a reflector and at least one radiating element mounted on the reflector, including a first pair of dipoles with cross polarization, which are arranged orthogonally to one another and each comprise two conductive arms, and at least one second pair of dipoles, which are arranged orthogonally to one another and each comprise two conductive arms, the first pair of dipoles and the second pair of dipoles being electrically isolated from one another, wherein
    - the dipoles of the first pair, corresponding to a low-frequency band, are borne by a leg, the two arms of each dipole of the first pair of dipoles are collinear and the four conductive arms of the first pair of dipoles are arranged in a first plane,
    - the dipoles of the second pair, corresponding to a higher-frequency band, are borne by a leg, the two arms of each dipole of the second pair of dipoles are collinear and the four conductive arms of the second pair of dipoles are arranged in a second plane, and
    - the second plane is parallel to the first plane and is placed on the opposite side of the first plane to the reflector, which serves as a ground plane for the first pair of dipoles,
    - the metal surface area of the conductive arms of the first pair of dipoles in the first plane is larger than the metal surface area of the conductive arms of the second pair of dipoles in the second plane so as to serve as a reflector for the second pair of dipoles;
    characterized in that the dipoles of the first pair are crossed dipoles that include arms consisting of strands separated by a distance of less than or equal to λHF/10, where λHF is the wavelength of the RF signal of said higher-frequency band, and the dipoles of the second pair are chosen from among crossed dipoles, butterfly dipoles each formed of two conductive arms folded axially in a V shape, and printed dipoles.
  2. Multiband antenna according to Claim 1, wherein each dipole is connected by means of a feed line to produce linear polarization.
  3. Multiband antenna according to either of Claims 1 and 2, wherein the dipoles of the second pair of dipoles are crossed dipoles that include triangular arms.
  4. Multiband antenna according to either of Claims 1 and 2, wherein the dipoles of the second pair of dipoles are crossed dipoles that include square arms.
  5. Multiband antenna according to either of Claims 1 and 2, wherein the dipoles of the second pair of dipoles are crossed dipoles that include arms consisting of a volumetric fractal pattern.
  6. Multiband antenna according to one of the preceding claims, further comprising a third pair of dipoles arranged in a higher plane, the third pair of dipoles being placed above the second pair of dipoles, from which said third pair is electrically isolated.
  7. Multiband antenna according to one of the preceding claims, wherein the first pair of dipoles is dedicated to the GSM frequency band and the second pair of dipoles is dedicated to the UMTS frequency band.
EP10743057.1A 2009-06-11 2010-06-11 Multiband antenna with cross polarisation Active EP2441117B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0902838A FR2946806B1 (en) 2009-06-11 2009-06-11 RADIANT ELEMENT OF MULTIBAND ANTENNA
PCT/EP2010/058219 WO2010142780A1 (en) 2009-06-11 2010-06-11 Cross-polarised multiband antenna

Publications (2)

Publication Number Publication Date
EP2441117A1 EP2441117A1 (en) 2012-04-18
EP2441117B1 true EP2441117B1 (en) 2020-07-22

Family

ID=41376342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10743057.1A Active EP2441117B1 (en) 2009-06-11 2010-06-11 Multiband antenna with cross polarisation

Country Status (7)

Country Link
US (1) US8994603B2 (en)
EP (1) EP2441117B1 (en)
JP (2) JP2012529827A (en)
CN (1) CN102804492B (en)
BR (1) BRPI1012948B1 (en)
FR (1) FR2946806B1 (en)
WO (1) WO2010142780A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608348B2 (en) * 2012-03-31 2020-03-31 SeeScan, Inc. Dual antenna systems with variable polarization
US9000991B2 (en) * 2012-11-27 2015-04-07 Laird Technologies, Inc. Antenna assemblies including dipole elements and Vivaldi elements
TWI491105B (en) * 2013-01-07 2015-07-01 Wistron Neweb Corp Broadband dual polarization antenna
CN105051976A (en) * 2013-02-26 2015-11-11 盖尔创尼克斯有限公司 Dual-polarized dipole antenna and cruciform coupling element therefore
CN104143700B (en) * 2013-05-10 2017-02-15 中国电信股份有限公司 Four-polarization radiation oscillator and four-polarization antenna
CN103715519B (en) * 2013-06-09 2016-12-28 京信通信技术(广州)有限公司 Double polarization array antenna and radiating element thereof
KR101756112B1 (en) 2013-11-05 2017-07-11 주식회사 케이엠더블유 Antenna radiating element and multi-band antenna
US9600999B2 (en) 2014-05-21 2017-03-21 Universal City Studios Llc Amusement park element tracking system
WO2017100126A1 (en) * 2015-12-09 2017-06-15 Viasat, Inc. Stacked self-diplexed multi-band patch antenna
TWI628861B (en) * 2016-09-10 2018-07-01 啟碁科技股份有限公司 Complex antenna
CN109149080B (en) * 2017-06-27 2020-08-11 启碁科技股份有限公司 Communication device
TWI643399B (en) * 2017-08-01 2018-12-01 譁裕實業股份有限公司 Dipole antenna vibrator
CA3077431A1 (en) 2017-10-26 2019-05-02 John Mezzalingua Associates, Llc D/B/A Jma Wireless Low cost high performance multiband cellular antenna with cloaked monolithic metal dipole
EP3832799A4 (en) * 2018-07-31 2022-04-27 Yokowo Co., Ltd. Antenna device
US10886627B2 (en) * 2019-06-05 2021-01-05 Joymax Electronics Co., Ltd. Wideband antenna device
CN112531356B (en) * 2019-09-18 2022-05-03 北京小米移动软件有限公司 Antenna structure and mobile terminal
CN113131193B (en) * 2019-12-30 2022-08-26 华为技术有限公司 Dual-polarized antenna, router and base station
WO2021153179A1 (en) * 2020-01-28 2021-08-05 株式会社ヨコオ Vehicle-mounted antenna device
KR20210122956A (en) * 2020-04-01 2021-10-13 삼성전자주식회사 Multi-band antenna device
KR102300619B1 (en) * 2020-04-17 2021-09-10 충남대학교 산학협력단 Single feed antenna for integrated public network and 5G network frequency dual-band cover
WO2022028669A1 (en) * 2020-08-03 2022-02-10 Huawei Technologies Co., Ltd. A 3d radiating architecture for a smart antenna device
CN114122718B (en) * 2020-08-25 2022-07-29 广东博纬通信科技有限公司 Low-frequency oscillator unit and hybrid array antenna
KR20220036179A (en) * 2020-09-15 2022-03-22 타이코에이엠피 주식회사 Antenna device
CN114725649A (en) * 2021-01-06 2022-07-08 康普技术有限责任公司 Support, radiating element and base station antenna
CN112864604A (en) * 2021-03-15 2021-05-28 罗森伯格技术有限公司 Radiating element for antenna and antenna comprising the same
WO2024030880A1 (en) * 2022-08-05 2024-02-08 Commscope Technologies Llc Multi-band antennas having highly integrated cross-polarized dipole radiating elements therein
CN117220035B (en) * 2023-11-07 2024-01-09 湖南大学 Circularly polarized magneto-electric dipole antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187195A (en) * 2002-12-06 2004-07-02 Mitsubishi Electric Corp Antenna assembly
WO2010067022A2 (en) * 2008-12-10 2010-06-17 Alcatel Lucent Radiating element with dual polarization for a wideband antenna

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196443A (en) 1962-08-28 1965-07-20 United Shoe Machinery Corp Circularly polarized dipole antenna
JPS57211810A (en) * 1981-06-23 1982-12-25 Radio Res Lab Conical beam linear array antenna for mobile satellite communication
JPS59194508A (en) * 1983-04-20 1984-11-05 Meisei Electric Co Ltd Antenna common to multi-frequency
US5418544A (en) * 1993-04-16 1995-05-23 Apti, Inc. Stacked crossed grid dipole antenna array element
JP3563763B2 (en) * 1994-04-13 2004-09-08 日本アンテナ株式会社 Omnidirectional antenna, omnidirectional VHF antenna, omnidirectional UHF antenna, and omnidirectional VHF / UHF antenna
FR2795240B1 (en) * 1999-06-18 2003-06-13 Nortel Matra Cellular RADIOCOMMUNICATION BASE STATION ANTENNA
JP4073130B2 (en) * 1999-09-30 2008-04-09 株式会社ケンウッド Cross dipole antenna
US6342866B1 (en) 2000-03-17 2002-01-29 The United States Of America As Represented By The Secretary Of The Navy Wideband antenna system
US6342867B1 (en) * 2000-03-31 2002-01-29 Navcom Technology, Inc. Nested turnstile antenna
JP2002043838A (en) 2000-07-25 2002-02-08 Mitsubishi Electric Corp Antenna apparatus
JP3725415B2 (en) 2000-10-19 2005-12-14 三菱電機株式会社 Diversity antenna device
US6639558B2 (en) * 2002-02-06 2003-10-28 Tyco Electronics Corp. Multi frequency stacked patch antenna with improved frequency band isolation
CN1630963A (en) * 2002-07-15 2005-06-22 弗拉克托斯股份有限公司 Undersampled microstrip array using multilevel and space-filling shaped elements
EP1527500A1 (en) * 2002-08-01 2005-05-04 Koninklijke Philips Electronics N.V. Directional dual frequency antenna arrangement
JP2004242277A (en) 2003-01-17 2004-08-26 Fujitsu Ten Ltd Antenna
JP2005117099A (en) * 2003-10-02 2005-04-28 Murata Mfg Co Ltd Mobile wireless communication apparatus
JP2005142298A (en) 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The Frequency selecting board and element pattern thereof
US7113141B2 (en) * 2005-02-01 2006-09-26 Elta Systems Ltd. Fractal dipole antenna
JP2006235825A (en) * 2005-02-23 2006-09-07 Omron Corp Broadband ic tag
US20070008236A1 (en) * 2005-07-06 2007-01-11 Ems Technologies, Inc. Compact dual-band antenna system
EP1935057B1 (en) * 2005-10-14 2012-02-01 Fractus S.A. Slim triple band antenna array for cellular base stations
BRPI0520775A2 (en) 2005-12-23 2009-11-03 Ericsson Telefon Ab L M array antenna, antenna system, and method for transmitting or receiving by means of an array antenna
TW200803041A (en) * 2006-06-29 2008-01-01 Tatung Co Ltd Planar antenna for the radio frequency identification tag
JP2009100253A (en) * 2007-10-17 2009-05-07 Furukawa Electric Co Ltd:The Antenna for radar device
US8269686B2 (en) * 2007-11-27 2012-09-18 Uti Limited Partnership Dual circularly polarized antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187195A (en) * 2002-12-06 2004-07-02 Mitsubishi Electric Corp Antenna assembly
WO2010067022A2 (en) * 2008-12-10 2010-06-17 Alcatel Lucent Radiating element with dual polarization for a wideband antenna

Also Published As

Publication number Publication date
EP2441117A1 (en) 2012-04-18
BRPI1012948B1 (en) 2022-03-03
JP5721810B2 (en) 2015-05-20
JP2012529827A (en) 2012-11-22
US8994603B2 (en) 2015-03-31
WO2010142780A1 (en) 2010-12-16
FR2946806A1 (en) 2010-12-17
CN102804492A (en) 2012-11-28
JP2014079008A (en) 2014-05-01
BRPI1012948A2 (en) 2018-01-16
US20120133567A1 (en) 2012-05-31
CN102804492B (en) 2016-05-18
FR2946806B1 (en) 2012-03-30

Similar Documents

Publication Publication Date Title
EP2441117B1 (en) Multiband antenna with cross polarisation
FR2960710A1 (en) RADIANT ELEMENT WITH DUAL POLARIZATION OF MULTIBAND ANTENNA
FR2966986A1 (en) RADIANT ELEMENT OF ANTENNA
EP2430705B1 (en) Compact multibeam antenna
EP0239069B1 (en) Printed-circuit antenna array
EP1690317B1 (en) Multiband dual-polarised array antenna
FR2752646A1 (en) PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS
EP1589608A1 (en) Compact RF antenna
EP1225654A1 (en) Multiband antenna for portable devices
EP4012839A1 (en) Antenna array with directive radiation
EP1181744B1 (en) Vertical polarisation antenna
EP1516393B1 (en) Double polarization dual-band radiating device
EP2817850B1 (en) Electromagnetic band gap device, use thereof in an antenna device, and method for determining the parameters of the antenna device
CA2800952C (en) Very thin linear orthogonal dual-polarised wide band compact antenna operating in v/uhf bands
FR2965411A1 (en) STRONG GAIN COMPACT ANTENNA
WO2016139403A1 (en) Omnidirectional wideband antenna structure
EP2449623B1 (en) Modular band extension device for a very-wide-band omnidirectional antenna
EP2889955B1 (en) Compact antenna structure for satellite telecommunication
EP4167378A1 (en) Insulated radio frequency antenna device
WO2008059161A1 (en) Frequency- and polarisation-agile antenna
EP2096708A1 (en) Antenna for automobile, in particular for receiving terrestrial and/or satellite signals
FR3019385A1 (en) BEAM ORIENTATION ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
111Z Information provided on other rights and legal means of execution

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Effective date: 20130410

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

D11X Information provided on other rights and legal means of execution (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 5/42 20150101ALI20191204BHEP

Ipc: H01Q 1/38 20060101AFI20191204BHEP

Ipc: H01Q 9/28 20060101ALI20191204BHEP

Ipc: H01Q 21/26 20060101ALI20191204BHEP

Ipc: H01Q 21/28 20060101ALI20191204BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010064972

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1294267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1294267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010064972

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210611

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100611

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230502

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722