EP2436108A2 - Cooling for superconducting machines - Google Patents

Cooling for superconducting machines

Info

Publication number
EP2436108A2
EP2436108A2 EP10721491A EP10721491A EP2436108A2 EP 2436108 A2 EP2436108 A2 EP 2436108A2 EP 10721491 A EP10721491 A EP 10721491A EP 10721491 A EP10721491 A EP 10721491A EP 2436108 A2 EP2436108 A2 EP 2436108A2
Authority
EP
European Patent Office
Prior art keywords
evaporator
liquid coolant
wettable
cooling
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10721491A
Other languages
German (de)
French (fr)
Inventor
Heinz Schmidt
Peter Van Hasselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2436108A2 publication Critical patent/EP2436108A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0208Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes using moving tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to a device for cooling superconducting machines.
  • This device has a closed thermosiphon system, which can be filled with a liquid coolant and which has an evaporator for the evaporation of the liquid coolant.
  • DE 102 44 428 A1 discloses a machine with a rotor and a stator in a machine housing which contains a device for cooling parts within this housing.
  • This cooling device has on at least one end face of the machine a closed line system with a condenser located outside the housing, with an evaporator located inside the housing and with connecting pipes extending between the condenser and the evaporator, in which system a circulation of a refrigerant according to a thermosiphon effect he follows.
  • the invention has for its object to improve the cooling capacity of a device for cooling superconducting machines.
  • thermosiphon system which can be filled with a liquid coolant and which has an evaporator for evaporating the liquid coolant, wherein means for increasing a wettable by the liquid coolant surface of the evaporator are.
  • the invention is based on the finding that in order to achieve a required cooling capacity in a device for
  • Cooling superconducting machines not the absolute amount of available liquid coolant is crucial, but the size of one through the liquid coolant wettable surface of the evaporator.
  • the available cooling capacity of the device for cooling superconducting machines can thus be effectively increased.
  • the evaporator is arranged inside a rotor of a superconducting machine.
  • the excess heat energy can be dissipated directly from the rotor.
  • the achieved by the invention enlargement of the wettable by the liquid coolant surface of the evaporator is particularly advantageous in this embodiment of the invention, since usually the volume and thus the surface of a located in an interior of a rotor evaporator are limited by the relatively small dimensions of a rotor ,
  • An evaporator is usually designed as a cavity whose boundary is available as the surface of the evaporator. Depending on the degree of filling with the liquid coolant, a more or less large surface of the evaporator is thus available for the evaporation of the liquid coolant.
  • the means for increasing the wettable by the liquid coolant surface of the evaporator at least one displacement body for displacement having the liquid coolant.
  • Evaporator and the at least one displacement body cylindrical, in particular circular cylindrical, are formed. Such molding is easy to manufacture and yet effective in displacing the liquid coolant.
  • the wettable by the liquid coolant surface of the evaporator has a surface structure which is designed such that the effective for the transfer of heat usable surface is increased.
  • a surface structure which has one-dimensional, in particular groove or web-like, elements is particularly easy to realize.
  • the surface structure according to a further advantageous embodiment of the invention, two-dimensional, in particular hole-like or sting-like, elements.
  • the liquid coolant is neon.
  • Neon allows a particularly favorable working point, z.
  • the cooling of high-temperature superconductors but is relatively expensive, so that the reduction of coolant, which is achieved by the invention, comes particularly to fruition.
  • the invention will be described and explained in more detail below with reference to the exemplary embodiments schematically illustrated in the figures.
  • FIG. 1 shows a section through a superconducting machine and a device for cooling the superconducting machine in a schematic representation
  • FIG. 2 shows a schematic diagram of an evaporator according to the prior art
  • FIG 3 shows an embodiment of the device according to the invention with a displacement body for displacing the liquid coolant
  • FIG. 4 shows a further embodiment of the device according to the invention, in which the surface of the evaporator which can be used effectively to transfer heat is increased, and
  • FIG 5 shows an embodiment of the device according to the invention, in which various means for enlargement of the wettable by the liquid coolant
  • FIG. 1 shows a superconducting machine 1 and a device for cooling the superconducting machine 1 in a schematic representation. Shown is a section along the
  • the superconducting machine 1 shown in the exemplary embodiment according to FIG. 1 is a rotating electrical machine, in particular a synchronous machine, for example a motor or a generator. This has a stator 10 and a rotor 6. Furthermore, it has a housing 11 for receiving the stator 10 and for mounting the rotor 6.
  • the superconducting machine 1 is closed by a Thermosiphon cooled, which includes an evaporator 4, a condenser 9 and the evaporator 4 and the condenser 9 connecting elements, for. B. pipe connections, has.
  • the evaporator 4, the connecting elements and the condenser 9 define a closed volume, which is provided for receiving the liquid coolant 3.
  • the evaporator 4 has a wettable by the liquid coolant 3 surface 5, via which the dissipated heat energy, which is obtained in the rotor, is transferred to the coolant 3.
  • the coolant 3 is usually converted by the transferred heat energy from the liquid state to the gaseous state, ie, the coolant 3 evaporates or boils. Due to the lower density of the gaseous coolant, this rises through the connecting elements to the geodetically higher-lying condenser 9 and is there converted by withdrawal of the absorbed heat energy from the gaseous state to the liquid state.
  • the thus re-liquefied coolant 3 flows due to gravity back to the evaporator 4 and in particular to the wettable by the coolant 3 surface 3 of the evaporator 4.
  • Such a cooling system thus uses the so-called thermosiphon effect.
  • the cooling circuit is maintained solely by the mentioned differences in density or gravity.
  • FIG. 2 shows an axial section through the evaporator 4 of a superconducting machine during machine standstill. The other parts of the machine are not shown explicitly in FIG.
  • the evaporator 4 according to FIG 2 has a circular cylindrical cross-section.
  • the illustrated evaporator 4 is known from the prior art.
  • the evaporator 4 is at least partially filled with a liquid coolant 3.
  • the wettable by the liquid coolant 3 or wetted surface of the evaporator 4 is denoted by the reference numeral 5.
  • the 3 shows an evaporator 4 of an embodiment of a device according to the invention.
  • the evaporator 4 is at least partially filled with a liquid coolant 3.
  • the device has as a means 7, 8 for increasing the wettable by the liquid coolant 3 surface 5 of the evaporator 4, a displacement body 7 for displacing the liquid coolant 3.
  • the displacement body 7 By means of the displacement body 7, the volume available for the liquid coolant 3 within the evaporator 4 is limited in such a way that the surface 5 of the evaporator 4 actually wetted by the coolant 3 is increased.
  • 4 shows an evaporator 4 of a further embodiment of a device according to the invention.
  • the evaporator surface itself can be considerably enlarged by introducing a corresponding surface structure 8 in its effectively effective surface.
  • Advantageous embodiments are one-dimensional, groove or web-like structures with which the surface can be considerably increased in a simple manner (factor 3-5).
  • the means 7, 8 for increasing the wettable by the liquid coolant 3 surface 5 of the evaporator 4 is formed as a surface structure 8 of the surface of the evaporator, wherein the surface structure 8 is designed such that the effective for the transfer of heat usable surface 5 is increased.
  • the surface structure 8 in the exemplary embodiment shown has one-dimensional, in this case groove or web-like elements.
  • two-dimensional, somewhat more complicated variants for increasing the surface area such as, for example, the introduction of holes or sting-like structures), which permit an even greater enlargement of the effective surface area.
  • FIG. 5 shows a further exemplary embodiment of an evaporator 4 of a device according to the invention which has a combination of the means 7, 8 for enlarging the surface 5 of the evaporator 4 which is wettable by the liquid coolant 3.
  • Both the means according to FIG. 3, d. H. a displacement body 7, as well as the means according to FIG 4, d. H. a surface structure 8 for enlarging the wettable by the coolant 3 surface 5 of the evaporator 4 are combined according to the embodiment of FIG.
  • the illustrated embodiments of the invention allow a reduction in the amount of liquid required to wet a given minimum surface area of the evaporator 4 as part of the thermosyphon refrigeration cycle.
  • the advantages lie in the immediate reduction of the required The buffer volume (typically from several 100 liters to about one-tenth) and thus of smaller space requirements and lower costs.
  • the costs for the actual filling of the thermosiphon system are thereby also reduced (less coolant 3).
  • the invention relates to a device for cooling superconducting machines 1, with a closed thermosiphon system 2, which can be filled with a liquid coolant 3 and which has an evaporator 4 for the evaporation of the liquid coolant 3.
  • means 7, 8 are provided for enlarging a surface 5 of the evaporator 4 which is wettable by the liquid coolant 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

The invention relates to a device for cooling superconducting machines (1), comprising a closed thermal siphon system (2) which can be filled with a liquid coolant (3) and has an evaporator (4) for evaporating the liquid coolant (3). In order to improve the cooling performance of the device, the invention provides means (7, 8) for expanding a surface (5) of the evaporator (4) which can be wetted with the liquid coolant (3).

Description

Kühlung supraleitender MaschinenCooling superconducting machines
Die Erfindung betrifft eine Vorrichtung zur Kühlung supraleitender Maschinen. Diese Vorrichtung weist ein geschlossenes Thermosiphonsystem auf, welches mit einem flüssigen Kühlmittel befüllbar ist und welches einen Verdampfer zur Verdampfung des flüssigen Kühlmittels aufweist.The invention relates to a device for cooling superconducting machines. This device has a closed thermosiphon system, which can be filled with a liquid coolant and which has an evaporator for the evaporation of the liquid coolant.
Die DE 102 44 428 Al offenbart eine Maschine mit einem Läufer und einem Ständer in einem Maschinengehäuse, welche eine Einrichtung zur Kühlung von Teilen innerhalb dieses Gehäuses enthält. Diese Kühleinrichtung weist an wenigstens einer Stirnseite der Maschine ein geschlossenes Leitungssystem mit einem außerhalb des Gehäuses befindlichen Kondensator, mit einem innerhalb des Gehäuses befindlichen Verdampfer und mit zwischen dem Kondensator und dem Verdampfer verlaufenden Verbindungsrohren auf, wobei in diesem System eine Zirkulation eines Kältemittels nach einem Thermosiphoneffekt erfolgt.DE 102 44 428 A1 discloses a machine with a rotor and a stator in a machine housing which contains a device for cooling parts within this housing. This cooling device has on at least one end face of the machine a closed line system with a condenser located outside the housing, with an evaporator located inside the housing and with connecting pipes extending between the condenser and the evaporator, in which system a circulation of a refrigerant according to a thermosiphon effect he follows.
Der Erfindung liegt die Aufgabe zugrunde, die Kälteleistung einer Vorrichtung zur Kühlung supraleitender Maschinen zu verbessern .The invention has for its object to improve the cooling capacity of a device for cooling superconducting machines.
Diese Aufgabe wird durch eine Vorrichtung zur Kühlung supraleitender Maschinen gelöst, welche ein geschlossenes Thermosiphonsystem aufweist, welches mit einem flüssigen Kühlmittel befüllbar ist und welches einen Verdampfer zur Verdampfung des flüssigen Kühlmittels aufweist, wobei Mittel zur Vergrößerung einer durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers vorgesehen sind.This object is achieved by a device for cooling superconducting machines, which has a closed thermosiphon system which can be filled with a liquid coolant and which has an evaporator for evaporating the liquid coolant, wherein means for increasing a wettable by the liquid coolant surface of the evaporator are.
Die Erfindung basiert auf der Erkenntnis, dass zur Erzielung einer erforderlichen Kälteleistung in einer Vorrichtung zurThe invention is based on the finding that in order to achieve a required cooling capacity in a device for
Kühlung supraleitender Maschinen nicht die absolute Menge des zur Verfügung stehenden flüssigen Kühlmittels entscheidend ist, sondern die Größe einer durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers. Je größer die durch das flüssige Kühlmittel benetzbare Oberfläche des Verdampfers ist, desto mehr Kühlmittel kann verdampfen, d. h. desto mehr Wärmeenergie kann über diese zur Verfügung stehende benetzba- re Oberfläche in das verdampfende Kühlmittel übertragen werden. Durch eine Vergrößerung der benetzbaren Oberfläche des Verdampfers kann somit die verfügbare Kälteleistung der Vorrichtung zur Kühlung supraleitender Maschinen effektiv gesteigert werden.Cooling superconducting machines not the absolute amount of available liquid coolant is crucial, but the size of one through the liquid coolant wettable surface of the evaporator. The larger the surface of the evaporator which is wettable by the liquid coolant, the more coolant can evaporate, ie the more heat energy can be transferred into the evaporating coolant via this available wettable surface. By increasing the wettable surface of the evaporator, the available cooling capacity of the device for cooling superconducting machines can thus be effectively increased.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung gehen aus den abhängigen Ansprüchen hervor.Advantageous embodiments of the device according to the invention will become apparent from the dependent claims.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist der Verdampfer im Inneren eines Läufers einer supraleitenden Maschine angeordnet. Damit kann die überschüssige Wärmeenergie direkt aus dem Läufer abgeführt werden. Die durch die Erfindung erreichte Vergrößerung der durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers ist insbesondere bei dieser Ausgestaltung der Erfindung vorteilhaft, da üblicherweise das Volumen und damit auch die Oberfläche eines in einem Inneren eines Läufers befindlichen Verdampfers durch die relativ geringen Abmessungen eines Läufers begrenzt sind.According to an advantageous embodiment of the invention, the evaporator is arranged inside a rotor of a superconducting machine. Thus, the excess heat energy can be dissipated directly from the rotor. The achieved by the invention enlargement of the wettable by the liquid coolant surface of the evaporator is particularly advantageous in this embodiment of the invention, since usually the volume and thus the surface of a located in an interior of a rotor evaporator are limited by the relatively small dimensions of a rotor ,
Ein Verdampfer ist üblicherweise als Hohlraum ausgebildet, dessen Begrenzung als Oberfläche des Verdampfers zur Verfügung steht. Je nach Befüllungsgrad mit dem flüssigen Kühlmittel steht somit eine mehr oder weniger große Oberfläche des Verdampfers zur Verdampfung des flüssigen Kühlmittels zur Verfügung. Um diese durch das flüssige Kühlmittel benetzbare Oberfläche zu vergrößern, ohne die Menge des flüssigen Kühlmittels steigern zu müssen, wird gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung vorgeschlagen, dass die Mittel zur Vergrößerung der durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers mindestens einen Verdrängungskörper zur Verdrängung des flüssigen Kühlmittels aufweisen. Somit wird Kühlmittel eingespart, bei gleichzeiti- ger Vergrößerung der durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers.An evaporator is usually designed as a cavity whose boundary is available as the surface of the evaporator. Depending on the degree of filling with the liquid coolant, a more or less large surface of the evaporator is thus available for the evaporation of the liquid coolant. In order to increase this wettable by the liquid coolant surface without having to increase the amount of the liquid coolant, it is proposed according to a further advantageous embodiment of the invention that the means for increasing the wettable by the liquid coolant surface of the evaporator at least one displacement body for displacement having the liquid coolant. Thus, coolant is saved, at the same time Enlargement of the wettable by the liquid coolant surface of the evaporator.
Konstruktive Vorteile werden dadurch erzielt, dass gemäß ei- ner weiteren vorteilhaften Ausgestaltung der Erfindung derDesign advantages are achieved in that, according to a further advantageous embodiment of the invention
Verdampfer und der mindestens eine Verdrängungskörper zylindrisch, insbesondere kreiszylindrisch, geformt sind. Eine solche Formung ist einfach in der Herstellung und dennoch effektiv zur Verdrängung des flüssigen Kühlmittels.Evaporator and the at least one displacement body cylindrical, in particular circular cylindrical, are formed. Such molding is easy to manufacture and yet effective in displacing the liquid coolant.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird vorgeschlagen, dass die durch das flüssige Kühlmittel benetzbare Oberfläche des Verdampfers eine Oberflächenstruktur aufweist, welche derart ausgestaltet ist, dass die zur Übertragung von Wärme effektiv nutzbare Oberfläche vergrößert wird. Dadurch lässt sich eine besonders starke Vergrößerung der durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers erreichen, bei gleichzeitig konstruktiv geringem Aufwand.According to a further advantageous embodiment of the invention, it is proposed that the wettable by the liquid coolant surface of the evaporator has a surface structure which is designed such that the effective for the transfer of heat usable surface is increased. As a result, a particularly large increase in the wettable by the liquid coolant surface of the evaporator can be achieved, at the same time constructively little effort.
Fertigungstechnisch besonders einfach realisierbar ist dabei gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung eine Oberflächenstruktur, welche eindimensionale, insbesondere nuten- oder stegartige, Elemente aufweist.According to a further advantageous embodiment of the invention, a surface structure which has one-dimensional, in particular groove or web-like, elements is particularly easy to realize.
Um die Kälteleistung weiter zu erhöhen, weist die Oberflächenstruktur gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung zweidimensionale, insbesondere lochartige oder stachelartige, Elemente auf.In order to further increase the cooling capacity, the surface structure according to a further advantageous embodiment of the invention, two-dimensional, in particular hole-like or sting-like, elements.
Gemäß einer weiteren Ausgestaltung der Erfindung ist das flüssige Kühlmittel Neon. Neon ermöglicht einen besonders günstigen Arbeitspunkt, z. B. bei der Kühlung von Hochtemperatursupraleitern, ist jedoch relativ teuer, so dass die Re- duktion von Kühlmittel, welche durch die Erfindung erzielt wird, besonders zum Tragen kommt. Nachfolgend wird die Erfindung anhand der in den Figuren schematisch dargestellten Ausführungsbeispiele näher beschrieben und erläutert.According to a further embodiment of the invention, the liquid coolant is neon. Neon allows a particularly favorable working point, z. As in the cooling of high-temperature superconductors, but is relatively expensive, so that the reduction of coolant, which is achieved by the invention, comes particularly to fruition. The invention will be described and explained in more detail below with reference to the exemplary embodiments schematically illustrated in the figures.
Es zeigen:Show it:
FIG 1 einen Schnitt durch eine supraleitende Maschine sowie eine Vorrichtung zur Kühlung der supraleitenden Maschine in schematischer Darstellung,1 shows a section through a superconducting machine and a device for cooling the superconducting machine in a schematic representation,
FIG 2 einen Verdampfer gemäß Stand der Technik in schematischer Darstellung,2 shows a schematic diagram of an evaporator according to the prior art,
FIG 3 ein Ausführungsbeispiel der erfindungsgemäßen Vor- richtung mit einem Verdrängungskörper zur Verdrängung des flüssigen Kühlmittels,3 shows an embodiment of the device according to the invention with a displacement body for displacing the liquid coolant,
FIG 4 ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung, bei welcher die zur Übertragung von Wärme effektiv nutzbare Oberfläche des Verdampfers vergrößert ist, und4 shows a further embodiment of the device according to the invention, in which the surface of the evaporator which can be used effectively to transfer heat is increased, and
FIG 5 ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung, bei welcher verschiedene Mittel zur Vergrö- ßerung der durch das flüssige Kühlmittel benetzbaren5 shows an embodiment of the device according to the invention, in which various means for enlargement of the wettable by the liquid coolant
Oberfläche eingesetzt sind.Surface are used.
Figur 1 zeigt eine supraleitende Maschine 1 sowie eine Vorrichtung zur Kühlung der supraleitenden Maschine 1 in schema- tischer Darstellung. Gezeigt ist ein Schnitt entlang der1 shows a superconducting machine 1 and a device for cooling the superconducting machine 1 in a schematic representation. Shown is a section along the
Längsachse der supraleitenden Maschine 1. Bei der in dem Ausführungsbeispiel gemäß FIG 1 gezeigten supraleitenden Maschine 1 handelt es sich um eine rotierende elektrische Maschine, insbesondere um eine Synchronmaschine, beispielsweise einen Motor oder einen Generator. Diese weist einen Stator 10 sowie einen Läufer 6 auf. Des Weiteren weist sie ein Gehäuse 11 zur Aufnahme des Stators 10 und zur Lagerung des Läufers 6 auf. Die supraleitende Maschine 1 wird durch ein geschlossenes Thermosiphonsystem gekühlt, welches einen Verdampfer 4, einen Kondensator 9 sowie den Verdampfer 4 und den Kondensator 9 verbindende Elemente, z. B. Rohrverbindungen, aufweist. Der Verdampfer 4, die verbindenden Elemente und der Kondensator 9 begrenzen ein abgeschlossenes Volumen, welches zur Aufnahme des flüssigen Kühlmittels 3 vorgesehen ist. Der Verdampfer 4 weist eine durch das flüssige Kühlmittel 3 benetzbare Oberfläche 5 auf, über die die abzuführende Wärmeenergie, welche im Läufer anfällt, auf das Kühlmittel 3 übertragen wird. Da- bei wird üblicherweise das Kühlmittel 3 durch die übertragene Wärmeenergie vom flüssigen Zustand in den gasförmigen Zustand überführt, d. h. das Kühlmittel 3 verdampft bzw. siedet. Aufgrund der geringeren Dichte des gasförmigen Kühlmittels steigt dieses durch die verbindenden Elemente zum geodätisch höher gelegenen Kondensator 9 und wird dort durch Entzug der aufgenommenen Wärmeenergie wieder von dem gasförmigen Zustand in den flüssigen Zustand überführt. Das derart wieder verflüssigte Kühlmittel 3 fließt aufgrund der Schwerkraft wieder zurück zum Verdampfer 4 und insbesondere zur durch das Kühl- mittel 3 benetzbaren Oberfläche 3 des Verdampfers 4. Ein derartiges Kühlsystem nutzt somit den so genannten Thermosiphon- effekt. Der Kühlkreislauf wird allein durch die genannten Dichteunterschiede bzw. die Schwerkraft aufrechterhalten.Longitudinal axis of the superconducting machine 1. The superconducting machine 1 shown in the exemplary embodiment according to FIG. 1 is a rotating electrical machine, in particular a synchronous machine, for example a motor or a generator. This has a stator 10 and a rotor 6. Furthermore, it has a housing 11 for receiving the stator 10 and for mounting the rotor 6. The superconducting machine 1 is closed by a Thermosiphon cooled, which includes an evaporator 4, a condenser 9 and the evaporator 4 and the condenser 9 connecting elements, for. B. pipe connections, has. The evaporator 4, the connecting elements and the condenser 9 define a closed volume, which is provided for receiving the liquid coolant 3. The evaporator 4 has a wettable by the liquid coolant 3 surface 5, via which the dissipated heat energy, which is obtained in the rotor, is transferred to the coolant 3. In this case, the coolant 3 is usually converted by the transferred heat energy from the liquid state to the gaseous state, ie, the coolant 3 evaporates or boils. Due to the lower density of the gaseous coolant, this rises through the connecting elements to the geodetically higher-lying condenser 9 and is there converted by withdrawal of the absorbed heat energy from the gaseous state to the liquid state. The thus re-liquefied coolant 3 flows due to gravity back to the evaporator 4 and in particular to the wettable by the coolant 3 surface 3 of the evaporator 4. Such a cooling system thus uses the so-called thermosiphon effect. The cooling circuit is maintained solely by the mentioned differences in density or gravity.
FIG 2 zeigt einen axialen Schnitt durch den Verdampfer 4 einer supraleitenden Maschine bei Maschinenstillstand. Die weiteren Teile der Maschine sind in FIG 2 nicht explizit dargestellt. Der Verdampfer 4 gemäß FIG 2 weist einen kreiszylindrischen Querschnitt auf. Der dargestellte Verdampfer 4 ist bekannt aus dem Stand der Technik. Der Verdampfer 4 ist zumindest teilweise mit einem flüssigen Kühlmittel 3 gefüllt. Dabei ist die durch das flüssige Kühlmittel 3 benetzbare bzw. benetzte Oberfläche des Verdampfers 4 mit dem Bezugszeichen 5 gekennzeichnet .FIG. 2 shows an axial section through the evaporator 4 of a superconducting machine during machine standstill. The other parts of the machine are not shown explicitly in FIG. The evaporator 4 according to FIG 2 has a circular cylindrical cross-section. The illustrated evaporator 4 is known from the prior art. The evaporator 4 is at least partially filled with a liquid coolant 3. In this case, the wettable by the liquid coolant 3 or wetted surface of the evaporator 4 is denoted by the reference numeral 5.
Bei der Kühlung supraleitender Maschinen 1 mit einem Thermosiphonsystem muss zur Erreichung der erforderlichen Kälteleistung eine bestimmte Mindestfläche des Verdampfers 4 vom flüssigen Kühlmittel 3 benetzt werden. Abhängig von der genauen Geometrie des Verdampfers 4 in Verbindung mit dem während der Abkühlphase häufig durch Filmsieden begrenzten Wärmeübergang wird bei aktuell ausgelegten supraleitenden Ma- schinen hierfür eine vergleichsweise große Menge an flüssigem Kühlmittel (z. B. Neon, Stickstoff, o. ä.) benötigt.When cooling superconducting machines 1 with a thermosiphon system to achieve the required cooling capacity, a certain minimum area of the evaporator 4 from liquid coolant 3 are wetted. Depending on the exact geometry of the evaporator 4 in connection with the heat transfer, which is frequently limited by film boiling during the cooling phase, a comparatively large amount of liquid coolant (eg neon, nitrogen, or the like) is currently required for superconducting machines. needed.
Derzeit wird dieses Problem üblicherweise gelöst, indem einfach eine entsprechende Menge an Kühlmittel 3 eingefüllt wird, die in einem (üblicherweise horizontal angeordneten) zylindrisch geformten Verdampfer 4 eine hinreichend große Oberfläche benetzen kann. Bei gleichzeitiger Beibehaltung des Konzepts eines einmalig gefüllten, geschlossenen Thermosi- phonsystems erfordert dieses Verfahren einen vergleichsweise großen Pufferbehälter bei Raumtemperatur (Druckbehälter) , in dem das bei Abschalten oder Ausfall der Kühlung allmählich verdampfende flüssige Kühlmittel 3 bei einem tolerablen Druckanstieg aufgefangen werden kann. Alternativ kann natürlich auch in Kauf genommen werden, dass aufgrund einer gerin- gen Befüllung mit Kühlmittel der Abkühlvorgang länger dauert als eigentlich erforderlich.Currently, this problem is usually solved by simply filling a corresponding amount of coolant 3, which can wet a sufficiently large surface in a (usually horizontally arranged) cylindrically shaped evaporator 4. While maintaining the concept of a once-filled, closed thermosiphon system, this method requires a comparatively large buffer container at room temperature (pressure vessel) in which the liquid coolant 3, which gradually evaporates when the cooling is switched off or fails, can be collected at a tolerable pressure increase. Alternatively, of course, it can also be accepted that due to a low filling with coolant, the cooling process takes longer than actually required.
FIG 3 zeigt einen Verdampfer 4 eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung. Der Verdampfer 4 ist zu- mindest teilweise mit einem flüssigen Kühlmittel 3 gefüllt. Durch Verwendung eines zusätzlichen (vorteilhafterweise zylindrischen) Verdrängungskörpers 7 kann die erforderliche Flüssigkeitsmenge zur Benetzung der gleichen Verdampferoberfläche erheblich reduziert werden. Die Vorrichtung weist als Mittel 7, 8 zur Vergrößerung der durch das flüssige Kühlmittel 3 benetzbaren Oberfläche 5 des Verdampfers 4 einen Verdrängungskörper 7 zur Verdrängung des flüssigen Kühlmittels 3 auf. Durch den Verdrängungskörper 7 wird das für das flüssige Kühlmittel 3 innerhalb des Verdampfers 4 zur Verfügung ste- hende Volumen derart eingeschränkt, dass die durch das Kühlmittel 3 tatsächlich benetzte Oberfläche 5 des Verdampfers 4 vergrößert wird. FIG 4 zeigt einen Verdampfer 4 eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung. Alternativ oder zusätzlich zur Ausführung gemäß FIG 3 kann auch die Verdampferoberfläche selbst durch Einbringung einer entsprechenden Oberflächenstruktur 8 in ihrer effektiv wirksamen Oberfläche erheblich vergrößert werden. Vorteilhafte Ausgestaltungen sind eindimensionale, nuten- oder stegähnliche Strukturen, mit denen auf einfache Weise die Oberfläche erheblich vergrößert werden kann (Faktor 3-5) . Gemäß dem dargestellten Ausfüh- rungsbeispiel sind die Mittel 7, 8 zur Vergrößerung der durch das flüssige Kühlmittel 3 benetzbaren Oberfläche 5 des Verdampfers 4 als Oberflächenstruktur 8 der Oberfläche des Verdampfers ausgebildet, wobei die Oberflächenstruktur 8 derart ausgestaltet ist, dass die zur Übertragung von Wärme effektiv nutzbare Oberfläche 5 vergrößert wird. Die Oberflächenstruktur 8 im gezeigten Ausführungsbeispiel weist eindimensionale, in diesem Fall nuten- bzw. stegartige Elemente auf. Vorteilhaft sind auch zweidimensionale, etwas komplizierter herstellbare Varianten zur Oberflächenvergrößerung (wie z. B. die Einbringung von Löchern oder stachelähnliche Strukturen) , die eine noch größere Vergrößerung der effektiven Oberfläche erlauben .3 shows an evaporator 4 of an embodiment of a device according to the invention. The evaporator 4 is at least partially filled with a liquid coolant 3. By using an additional (advantageously cylindrical) displacement body 7, the required amount of liquid for wetting the same evaporator surface can be significantly reduced. The device has as a means 7, 8 for increasing the wettable by the liquid coolant 3 surface 5 of the evaporator 4, a displacement body 7 for displacing the liquid coolant 3. By means of the displacement body 7, the volume available for the liquid coolant 3 within the evaporator 4 is limited in such a way that the surface 5 of the evaporator 4 actually wetted by the coolant 3 is increased. 4 shows an evaporator 4 of a further embodiment of a device according to the invention. As an alternative or in addition to the embodiment according to FIG. 3, the evaporator surface itself can be considerably enlarged by introducing a corresponding surface structure 8 in its effectively effective surface. Advantageous embodiments are one-dimensional, groove or web-like structures with which the surface can be considerably increased in a simple manner (factor 3-5). According to the illustrated embodiment, the means 7, 8 for increasing the wettable by the liquid coolant 3 surface 5 of the evaporator 4 is formed as a surface structure 8 of the surface of the evaporator, wherein the surface structure 8 is designed such that the effective for the transfer of heat usable surface 5 is increased. The surface structure 8 in the exemplary embodiment shown has one-dimensional, in this case groove or web-like elements. Also advantageous are two-dimensional, somewhat more complicated variants for increasing the surface area (such as, for example, the introduction of holes or sting-like structures), which permit an even greater enlargement of the effective surface area.
FIG 5 zeigt als weiteres Ausführungsbeispiel eines Verdamp- fers 4 einer erfindungsgemäßen Vorrichtung, welche eine Kombination der Mittel 7, 8 zur Vergrößerung der durch das flüssige Kühlmittel 3 benetzbaren Oberfläche 5 des Verdampfers 4 aufweist. Sowohl die Mittel gemäß FIG 3, d. h. ein Verdrängungskörper 7, als auch die Mittel gemäß FIG 4, d. h. einer Oberflächenstruktur 8 zur Vergrößerung der durch das Kühlmittel 3 benetzbaren Oberfläche 5 des Verdampfers 4, sind gemäß dem Ausführungsbeispiel nach FIG 5 kombiniert.5 shows a further exemplary embodiment of an evaporator 4 of a device according to the invention which has a combination of the means 7, 8 for enlarging the surface 5 of the evaporator 4 which is wettable by the liquid coolant 3. Both the means according to FIG. 3, d. H. a displacement body 7, as well as the means according to FIG 4, d. H. a surface structure 8 for enlarging the wettable by the coolant 3 surface 5 of the evaporator 4 are combined according to the embodiment of FIG.
Die gezeigten Ausgestaltungen der Erfindung ermöglichen eine Reduzierung der erforderlichen Flüssigkeitsmenge zur Benetzung einer bestimmten Mindestoberfläche des Verdampfers 4 als Teil des Thermosiphon-Kühlkreislaufs . Die Vorteile liegen in der unmittelbar damit einhergehenden Verkleinerung des erfor- derlichen Puffer-Volumens (typisch von etlichen 100 Litern auf ca. ein Zehntel) und damit von geringerem Platzbedarf und geringeren Kosten. Auch die Kosten für die eigentliche Füllung des Thermosiphon-Systems werden dadurch reduziert (weni- ger Kühlmittel 3) .The illustrated embodiments of the invention allow a reduction in the amount of liquid required to wet a given minimum surface area of the evaporator 4 as part of the thermosyphon refrigeration cycle. The advantages lie in the immediate reduction of the required The buffer volume (typically from several 100 liters to about one-tenth) and thus of smaller space requirements and lower costs. The costs for the actual filling of the thermosiphon system are thereby also reduced (less coolant 3).
Zusammenfassend betrifft die Erfindung eine Vorrichtung zur Kühlung supraleitender Maschinen 1, mit einem geschlossenen Thermosiphonsystem 2, welches mit einem flüssigen Kühlmittel 3 befüllbar ist und welches einen Verdampfer 4 zur Verdampfung des flüssigen Kühlmittels 3 aufweist. Um die Kühlleistung der Vorrichtung zu verbessern, sind erfindungsgemäß Mittel 7, 8 zur Vergrößerung einer durch das flüssige Kühlmittel 3 benetzbaren Oberfläche 5 des Verdampfers 4 vorgesehen. In summary, the invention relates to a device for cooling superconducting machines 1, with a closed thermosiphon system 2, which can be filled with a liquid coolant 3 and which has an evaporator 4 for the evaporation of the liquid coolant 3. In order to improve the cooling performance of the device, according to the invention, means 7, 8 are provided for enlarging a surface 5 of the evaporator 4 which is wettable by the liquid coolant 3.

Claims

Patentansprüche claims
1. Vorrichtung zur Kühlung supraleitender Maschinen (1), mit einem geschlossenen Thermosiphonsystem (2), welches mit einem flüssigen Kühlmittel (3) befüllbar ist und welches einen Verdampfer (4) zur Verdampfung des flüssigen Kühlmittels (3) aufweist, wobei Mittel (7,8) zur Vergrößerung einer durch das flüssige Kühlmittel (3) benetzbaren Oberfläche (5) des Verdampfers (4) vorgesehen sind.1. A device for cooling superconducting machines (1), with a closed thermosiphon system (2) which is filled with a liquid coolant (3) and which has an evaporator (4) for the evaporation of the liquid coolant (3), wherein means (7 , 8) are provided for enlarging a wettable by the liquid coolant (3) surface (5) of the evaporator (4).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Verdampfer (4) im Inneren eines Läufers (6) einer supraleitenden Maschine (1) angeordnet ist.2. Device according to claim 1, characterized in that the evaporator (4) inside a rotor (6) of a superconducting machine (1) is arranged.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mittel (7,8) zur Vergrößerung der durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers als mindestens ein Verdrängungskörper (7) zur Verdrängung des flüssigen Kühlmittels (3) ausgebildet sind.3. Apparatus according to claim 1 or 2, characterized in that the means (7,8) for enlarging the wettable by the liquid coolant surface of the evaporator as at least one displacement body (7) for displacing the liquid coolant (3) are formed.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Verdampfer (4) und der mindestens eine Verdrängungskörper (7) zylindrisch, insbesondere kreiszylindrisch, geformt sind.4. Apparatus according to claim 3, characterized in that the evaporator (4) and the at least one displacement body (7) are cylindrical, in particular circular cylindrical shaped.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (7,8) zur Vergrößerung der durch das flüssige Kühlmittel benetzbaren Oberfläche des Verdampfers als Oberflächenstruktur (8) der durch das flüssige Kühlmittel (3) benetzbaren Oberfläche (5) des Verdampfers (4) ausgebildet sind, welche Oberflächenstruktur (8) derart ausgestaltet ist, dass die zur Übertragung von Wärme effektiv nutzbare Oberfläche vergrößert wird.5. Device according to one of the preceding claims, characterized in that the means (7,8) for increasing the wettable by the liquid coolant surface of the evaporator as the surface structure (8) of the liquid by the liquid coolant (3) wettable surface (5) Evaporator (4) are formed, which surface structure (8) is designed such that the effective for transmitting heat surface is increased.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Oberflächenstruktur (8) eindimensionale, insbesondere nuten- oder stegartige, Elemente aufweist. 6. Apparatus according to claim 5, characterized in that the surface structure (8) has one-dimensional, in particular groove or web-like, elements.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Oberflächenstruktur (8) zweidimensionale, insbesondere lochartige oder stachelartige, Elemente aufweist.7. Apparatus according to claim 5 or 6, characterized in that the surface structure (8) has two-dimensional, in particular hole-like or spiky, elements.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das flüssige Kühlmittel (3) Neon ist . 8. Device according to one of the preceding claims, characterized in that the liquid coolant (3) is neon.
EP10721491A 2009-05-28 2010-05-25 Cooling for superconducting machines Withdrawn EP2436108A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022960A DE102009022960A1 (en) 2009-05-28 2009-05-28 Cooling superconducting machines
PCT/EP2010/057098 WO2010136419A2 (en) 2009-05-28 2010-05-25 Cooling for superconducting machines

Publications (1)

Publication Number Publication Date
EP2436108A2 true EP2436108A2 (en) 2012-04-04

Family

ID=43014275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10721491A Withdrawn EP2436108A2 (en) 2009-05-28 2010-05-25 Cooling for superconducting machines

Country Status (10)

Country Link
US (1) US20120073787A1 (en)
EP (1) EP2436108A2 (en)
JP (1) JP2012528291A (en)
KR (1) KR20120028888A (en)
CN (1) CN102449889A (en)
AU (1) AU2010252079B2 (en)
CA (1) CA2763596A1 (en)
DE (1) DE102009022960A1 (en)
RU (1) RU2550089C2 (en)
WO (1) WO2010136419A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482570B1 (en) 2011-12-30 2015-01-16 두산중공업 주식회사 High temperatur superconducting rotor having wich structure
CN109120105B (en) * 2018-09-29 2024-02-20 东方电气自动控制工程有限公司 Anti-siphon device of generator stator cooling water system
CN114221491B (en) * 2021-12-02 2023-07-14 国网江苏省电力有限公司经济技术研究院 Superconductive motor rotor heat exchanger structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU805901A1 (en) * 1979-03-12 1996-05-27 Э.В. Барбашев Rotor of electrical machine with superconducting excitation winding
JPS5658751A (en) * 1979-10-19 1981-05-21 Toshiba Corp Extreme low temperature container for superconducting rotary machine
JPS5972958A (en) * 1982-10-19 1984-04-25 Toshiba Corp Superconductive rotary electric machine
JP2000180083A (en) * 1998-12-15 2000-06-30 Matsushita Refrig Co Ltd Heat transfer tube
DE10039964A1 (en) * 2000-08-16 2002-03-07 Siemens Ag Superconducting device with a cooling unit for cooling a rotating, superconducting winding
DE10231434A1 (en) * 2002-05-15 2003-12-04 Siemens Ag Superconductive device has rotor winding incorporated in refrigerated winding support coupled to refrigeration head
DE10244428A1 (en) 2002-09-24 2004-06-17 Siemens Ag Electrical machine with a cooling device
US6840311B2 (en) * 2003-02-25 2005-01-11 Delphi Technologies, Inc. Compact thermosiphon for dissipating heat generated by electronic components
DE10336277A1 (en) * 2003-08-07 2005-03-24 Siemens Ag Machine has superconducting winding and a thermo siphon cooling system with coolant passing through Archimedean screw through central hollow space
DE102004040493A1 (en) * 2004-08-20 2006-03-09 Siemens Ag Mechanical equipment, has pressure coils provided for pumping action of fluid cooling medium, and raising unit raising temperature in pipeline system to preset temperature level above normal operating temperature after action
US7994664B2 (en) * 2004-12-10 2011-08-09 General Electric Company System and method for cooling a superconducting rotary machine
DE102005005283A1 (en) * 2005-02-04 2006-08-17 Siemens Ag Machine system with thermosyphon cooling of its superconducting rotor winding
JP2008241180A (en) * 2007-03-28 2008-10-09 Kobelco & Materials Copper Tube Inc Heat transfer tube for heat pipe and heat pipe
JP2008269353A (en) * 2007-04-20 2008-11-06 Toshiba Corp Electronic equipment
DE102007038909B4 (en) * 2007-08-17 2021-07-15 Osram Gmbh Heat pipe and arrangement with heat pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010136419A2 *

Also Published As

Publication number Publication date
RU2011153676A (en) 2013-07-10
AU2010252079B2 (en) 2014-08-28
DE102009022960A1 (en) 2010-12-02
CA2763596A1 (en) 2010-12-02
WO2010136419A3 (en) 2011-05-12
JP2012528291A (en) 2012-11-12
KR20120028888A (en) 2012-03-23
US20120073787A1 (en) 2012-03-29
CN102449889A (en) 2012-05-09
WO2010136419A2 (en) 2010-12-02
AU2010252079A1 (en) 2012-01-12
RU2550089C2 (en) 2015-05-10

Similar Documents

Publication Publication Date Title
EP1636894B1 (en) Superconducting motor device with a superconducting winding and cooling by thermal siphon
DE102004061869B4 (en) Device for superconductivity and magnetic resonance device
DE102005005283A1 (en) Machine system with thermosyphon cooling of its superconducting rotor winding
EP2608223B1 (en) Method for cooling an assembly for superconductive cables
EP2645544A1 (en) Electric machine with efficient internal cooling
DE102005004858A1 (en) Machine setup with thermosyphon cooling of its superconducting rotor winding
DE10336277A1 (en) Machine has superconducting winding and a thermo siphon cooling system with coolant passing through Archimedean screw through central hollow space
EP2436108A2 (en) Cooling for superconducting machines
WO2003098786A1 (en) Superconductive device comprising a refrigeration unit, equipped with a refrigeration head that is thermally coupled to a rotating superconductive winding
DE102006012679B4 (en) Method for operating an energy system and energy system
DE102006059139A1 (en) Refrigeration system with a hot and a cold connection element and a heat pipe connected to the connecting elements
EP2641039A2 (en) Cooling device for a super conductor and super conducting synchronous machine
DE102005002361B3 (en) Refrigerating system for cooling superconducting winding in e.g. transformer, has two refrigerant paths, where connection point of one path is arranged such that point lies at geodetically higher location than orifice point of path
EP2162973B1 (en) Electric machine comprising a superconducting rotor winding
EP2721619B1 (en) Device and method for cooling a unit
DE102011003040A1 (en) Synchronous machine, has hollow inner space locating connection piece to outside of stator, and condenser rotated with rotor such that gaseous cooling medium is arrived from space to condenser and returns at walls of cavity again into space
DE102007030411B4 (en) Electric machine and method for determining the axial position of bearings for a rotor of the machine
EP2733265B1 (en) Cooling system for a transformer platform
WO2015169576A1 (en) Cooling device for at least two components to be cooled, rail vehicle and method for cooling
WO2003105316A1 (en) Electric motor comprising a stator cooling unit
WO2012119894A2 (en) Hts-synchronous machine with increased rotor leakage
DE102018210985A1 (en) Rotor for an electrical machine, electrical machine and motor vehicle
DE2920742C2 (en) Arrangement for cooling a "to be cooled" in particular superconducting excitation winding in the rotor of an electrical machine
EP0019259B1 (en) Device for cooling a cryogenic excitation winding in the rotor of an electric machine
DE19931383A1 (en) Rotor winding head bandage has copper line(s) held together by ring(s), at least one containing wires made of shape-memory alloy, corresponding to motor or generator circumference

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111124

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161201