EP2432988A1 - Electromechanical reactor - Google Patents

Electromechanical reactor

Info

Publication number
EP2432988A1
EP2432988A1 EP09785923A EP09785923A EP2432988A1 EP 2432988 A1 EP2432988 A1 EP 2432988A1 EP 09785923 A EP09785923 A EP 09785923A EP 09785923 A EP09785923 A EP 09785923A EP 2432988 A1 EP2432988 A1 EP 2432988A1
Authority
EP
European Patent Office
Prior art keywords
energy
mechanical
electricity
reaction
operate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09785923A
Other languages
German (de)
French (fr)
Inventor
Paulo Veiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyelp Energy Development
Original Assignee
Hyelp Energy Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyelp Energy Development filed Critical Hyelp Energy Development
Publication of EP2432988A1 publication Critical patent/EP2432988A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia

Definitions

  • the present invention describes a new electric power generation system, where electricity is produced by an electromechanical reaction, regardless of traditional transformations from petroleum, natural gas, coal, nuclear, hydro, geothermal, biomass, sun or wind .
  • the operating principle of the system designated as an ELECTROMECHANICAL REACTOR is the transformation into electrical energy of accumulated mechanical energy, by the combination of two distinct energy properties, electricity and kinetics.
  • the basic principle of the system is to obtain an energy gain through the control of a mechanical action created and its reaction.
  • the process is initiated by two groups of electric accumulators (batteries), which after the inversion process feed an AC motor, which pumps and pressurizes the hydraulic fluid.
  • the depressurization of the hydraulic fluid is controlled by means of electronic circuits and timers, which drive the production of driving forces for the alternators.
  • the recharge / use sequences of the two groups of batteries are alternated, in order to maintain a group always available for the cycles of the system, and to ensure the operation of the generator.
  • the system can operate in parallel with a local electricity distribution network to provide additional electricity production to compensate for variations in the quality and quantity of electricity on this electricity distribution network.
  • the system can also provide alternative electricity production in the event of failure of this local electricity distribution network.
  • the system can be used as a standalone generator of electricity without recourse to an external power supply, the energy necessary for the initial power supply and the unwinding pulses of the cycles being ensured by groups of batteries, maintained by the production of batteries. energy from the system.
  • the mechanical reaction is obtained via pneumatic tanks ( Figure 1).
  • FIG. 1 illustrates the entire mechanical diagram of the hydraulic and pneumatic circuit of the HYELP (Hydrostatic Electric Power) generator.
  • Figure 2 illustrates the electrical-electronic diagram required for system control.
  • Figure 3 depicts the mechanical force transformer.
  • Figure 4 depicts the external charging system.
  • the electromechanical reactor HYELP is composed of: Four hydropneumatic cylinders (10, 11, 12, 14), able to store 70 liters of hydraulic fluid each and withstand forces higher than 1000 bars of pressure.
  • An electric motor (M2) of alternating current is an electric motor (M2) of alternating current.
  • V1, V2, V3, V4 Four electromagnetic valves, (V1, V2, V3, V4) which determine the direction of the hydraulic flow.
  • V1, V2, V3, V4 Four digital gauges of pneumatic pressure (IA, IB, IC, ID).
  • the circulation system of the hydraulic flow operates in open circuit.
  • the pneumatic circuit of high pressure operates in closed circuit. All valve sensors are controlled by the electronic control module E. CU. (10) Figure 2.
  • the electrical diagram formed by cabling and connectors (1) is responsible for the distribution of energy and the control signals of the accumulators (GB1, GB2) which operate in alternating cycles to actuate the motor ( Ml) figure 1.
  • the alternating cycles allow the accumulator group (GB 1) figure 2, provides the energy required to operate the engine (Ml) figure 1.
  • the accumulator group (GB 1) figure 2
  • FIG. 2 is responsible for managing the charging cycle times of the idle battery pack (GB1, GB2) so that they are greater than 140% of the motor energy consumption time (Ml Figure 1.
  • the entire system is initialized by a manual key (16) Figure 2, which connects the contacts (11) Figure 2, connecting the energy of 12 volts, through a relay (11) Figure 2 , from the battery (B) Figure 2, for the electronic control unit (10) Figure 2, which is programmed by the table (W) Figure 2.
  • the flip-flop system inserted in the electronic control unit (10) in FIG. 2, alternates the groups of the accumulators (GB1, GB2) FIG. 2, which are connected by the relays (18, 19) FIG.
  • the connectors (2, 4, 5, 6, 7, 14, 15) in FIG. 2 are used for the interconnection between the valves, sensors, motors and the generators shown in FIG. 1.
  • the AC motor [M1] FIG. 1 which is the main engine responsible for the entire pumping system of the hydraulic fluid, becomes inoperative in case of power failure on the local electricity distribution network. In this case, the DC motor (M1) Figure I 1 automatically takes over.
  • FIGS. 3 and 4 An operating system (firmware) transferred via the connector (11) Figure 2, based on the software environment Windows or other common computer operating system, records the energy produced, the time of the operation, the serial number of the generator, as well as the electronic management of the generator.
  • the pressurized hydraulic fluid coming from the outlet (18), FIG. 1 is conveyed to the inlet (23) FIG. 3, simultaneously driving the hydraulic pump (17) FIG. 3 and the engine Hydraulic (19) Figure 3, which creates the driving force to raise the load [35) Figure 4, through the steel cable (39) Figure 4.
  • the return of the hydraulic fluid is directed to the reservoir (Jl Figure 1 through the tube (25) Figure 3, which is interconnected to the tube (16) Figure 1.
  • the electromechanical reactor has a hydrostatic fluid distributor system (J2) Figure 1 characterized by being cylindrical and capacity of 7 liters of hydrostatic fluid distributed by 4 direct outputs and an indirect output. The indirect output is balanced by the internal shape and is thus obtained a better accuracy in the distribution of the force as shown in Figure 5.
  • J2 hydrostatic fluid distributor system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to an electromechanical reactor that consists of a novel system for producing electric energy, in which electricity is generated by an electromechanical reaction separate from the conventional conversions from petroleum, natural gas, coal, nuclear energy, hydraulic energy, geothermal energy, biomass, the sun or wind. The operational principle of the system is based on the conversion of accumulated mechanical energy into electric energy by the combination of two distinct energetic properties, electricity and kinetics. The basic principle of the system is to obtain an energy gain thanks to the control of a generated mechanical action and of the reaction thereof. The system can operate in parallel with a local power distribution network, or as a backup generator in the event of a failure of said distribution network. The system can be used as an independent power generator without using an external power supply, the energy necessary for the initial powering and for the cycle running pulses being provided by groups of batteries that are kept charged by the power generated by the system. When used as a mobile generator or for electric power lower than 1 MW, the mechanical reaction (depressurization) is obtained through pneumatic tanks and, for higher power levels, the mechanical reaction (depressurization) is obtained via a mechanical device referred to as a mechanical force converter that converts the movements of a weight into a hydraulic flow. The reactor can generate electricity without emitting effluents, the operational sound level thereof is very low, and the system can operate without oxygen.

Description

REACTEUR ELECTROMECANIQUE ELECTROMECHANICAL REACTOR
La présente invention décrit un nouveau système de production d'énergie électrique, où l'électricité est produite par une réaction Electromécanique, indépendamment des transformations traditionnelles à partir du pétrole, gaz naturel, charbon, nucléaire, hydraulique, géothermie, biomasse, soleil ou vent.The present invention describes a new electric power generation system, where electricity is produced by an electromechanical reaction, regardless of traditional transformations from petroleum, natural gas, coal, nuclear, hydro, geothermal, biomass, sun or wind .
Le principe de fonctionnement du système désigné comme un REACTEUR ELECTROMECANIQUE est la transformation en énergie électrique d'une énergie mécanique accumulée, par la combinaison de deux propriétés énergétiques distinctes, l'électricité et la cinétique. Le principe de base du système est l'obtention d'un gain énergétique grâce au contrôle d'une action mécanique créée et de sa réaction.The operating principle of the system designated as an ELECTROMECHANICAL REACTOR is the transformation into electrical energy of accumulated mechanical energy, by the combination of two distinct energy properties, electricity and kinetics. The basic principle of the system is to obtain an energy gain through the control of a mechanical action created and its reaction.
Le procédé est initialisé par deux groupes d'accumulateurs électriques (batteries), qui après le processus d'inversion alimentent un moteur en courant alternatif, lequel pompe et pressurise le fluide hydraulique. La dépressurisation du fluide hydraulique est contrôlée par l'intermédiaire de circuits électroniques et de temporisateurs, qui pilotent la production de forces motrices pour les alternateurs.The process is initiated by two groups of electric accumulators (batteries), which after the inversion process feed an AC motor, which pumps and pressurizes the hydraulic fluid. The depressurization of the hydraulic fluid is controlled by means of electronic circuits and timers, which drive the production of driving forces for the alternators.
Les séquences de recharge / utilisation des deux groupes de batteries sont alternées, afin de maintenir un groupe toujours disponible pour les cycles du système, et d'assurer le fonctionnement du générateur.The recharge / use sequences of the two groups of batteries are alternated, in order to maintain a group always available for the cycles of the system, and to ensure the operation of the generator.
Le système peut fonctionner en parallèle avec un réseau de distribution local d'électricité pour assurer une production électrique suplémentaire permettant de compenser des variations de qualité et de quantité d'électricité sur ce réseau de distribution d'électricité. Le système peut assurer également une production d'électricité de remplacement en cas de défaillance de ce réseau de distribution local d'électricité.The system can operate in parallel with a local electricity distribution network to provide additional electricity production to compensate for variations in the quality and quantity of electricity on this electricity distribution network. The system can also provide alternative electricity production in the event of failure of this local electricity distribution network.
Le système peut être utilisé comme générateur autonome d'électricité sans recours à une alimentation électrique extérieure, l'énergie nécessaire à l'alimentation initiale et aux impulsions de déroulement des cycles étant assurée par des groupes de batteries, maintenues en charge par la production d'énergie issue du système. Pour un usage comme générateur mobile ou pour une puissance électrique comprise entre 10 kW et 1000 kW, la réaction mécanique (dépressurisation) est obtenue par l'intermédiaire de réservoirs pneumatiques (Figure 1).The system can be used as a standalone generator of electricity without recourse to an external power supply, the energy necessary for the initial power supply and the unwinding pulses of the cycles being ensured by groups of batteries, maintained by the production of batteries. energy from the system. For use as a mobile generator or for an electric power of between 10 kW and 1000 kW, the mechanical reaction (depressurization) is obtained via pneumatic tanks (Figure 1).
Pour des puissances supérieures, la réaction mécanique (dépressurisation) est obtenue par recours à un dispositif mécanique « transformateur de forces mécaniques » transformant les mouvements d'un poids en flux hydraulique (Figure 3&4).For higher powers, the mechanical reaction (depressurization) is obtained using a mechanical device "mechanical force transformer" transforming the movements of a weight in hydraulic flow (Figure 3 & 4).
Dans le cas d'un raccordement au réseau, le premier cycle, après initialisation par les deux groupes d'accumulateurs, est assuré par un moteur de courant alternatif. DESCRIPTIF figures la figure 1 illustre tout le diagramme mécanique du circuit hydraulique et pneumatique du générateur HYELP (Hydrostatic Electric Power)In the case of a connection to the network, the first cycle, after initialization by the two groups of accumulators, is provided by an AC motor. DESCRIPTION FIG. 1 illustrates the entire mechanical diagram of the hydraulic and pneumatic circuit of the HYELP (Hydrostatic Electric Power) generator.
La figure 2 illustre le diagramme électrique-électronique nécessaire pour le contrôle du système. la figure 3 décrit le transformateur de force mécanique. la figure 4 décrit le système de charge externe.Figure 2 illustrates the electrical-electronic diagram required for system control. Figure 3 depicts the mechanical force transformer. Figure 4 depicts the external charging system.
En conformité avec l'illustration de la figure 1.In accordance with the illustration of Figure 1.
Le réacteur électromécanique HYELP est composé de : Quatre cylindres hydropneumatiques (10, 11, 12, 14), capables d'emmagasiner 70 litres de fluide hydraulique chacun et de supporter des forces supérieures à 1000 bars de pression.The electromechanical reactor HYELP is composed of: Four hydropneumatic cylinders (10, 11, 12, 14), able to store 70 liters of hydraulic fluid each and withstand forces higher than 1000 bars of pressure.
Quatre réservoirs d'air comprimé (S, P, T, R) avec capacité de supporter une pression supérieure à 1000 bars.Four compressed air tanks (S, P, T, R) with the capacity to withstand a pressure greater than 1000 bar.
Deux pompes hydrauliques (N, L) avec une capacité de flux de 120 litres par minute chacune. Un moteur électrique (Ml) de courant alternatif.Two hydraulic pumps (N, L) with a flow capacity of 120 liters per minute each. An electric motor (Ml) of alternating current.
Un moteur électrique (M2) de courant alternatif.An electric motor (M2) of alternating current.
Quatre moteurs hydrauliques (A, B, C, D) avec capacité de fournir 150 HP chacun à 3.000 rpm.Four hydraulic motors (A, B, C, D) with capacity to supply 150 HP each at 3,000 rpm.
Deux générateurs alternateurs (El, E2). Un générateur électrique de courant alternatif (Gl) deTwo generators alternators (El, E2). An alternating current (AC) electric generator
250kW/h monophasé. Un générateur de courant alternatif (G2) de 250kW/h triphasé. Un réservoir de basse pression (Jl) avec une capacité pour emmagasiner 300 litres de fluide hydraulique.250kW / h single phase. An alternating current generator (G2) of 250kW / h three phase. A low pressure tank (Jl) with a capacity to store 300 liters of hydraulic fluid.
Une valve (K) ayant comme fonction de retirer l'air comprimé retenu dans le liquide hydraulique.A valve (K) having the function of removing the compressed air retained in the hydraulic fluid.
Quatre valves électromagnétiques, (V1,V2,V3,V4) qui déterminent le sens du flux hydraulique. Quatre mesureurs digitaux de la pression pneumatique (IA, IB, IC, ID).Four electromagnetic valves, (V1, V2, V3, V4) which determine the direction of the hydraulic flow. Four digital gauges of pneumatic pressure (IA, IB, IC, ID).
Un mesureur digital de la pression hydraulique (2).A digital meter of the hydraulic pressure (2).
Quatre mesureurs du flux et contrôle (5, 6, 11 8).Four flow meters and control (5, 6, 1 1 8).
Un réservoir distributeur avec manomètre analogique (J2), pour le circuit de haute pression, les tubes % sont en acier inox sans soudures et sans coutures pour les connexions. Quatre valves électromagnétiques séparatrices du flux (3, 4, 9, 15).A distributor tank with analog manometer (J2), for the high pressure circuit, the tubes% are in stainless steel without seams and without seams for connections. Four electromagnetic valves separating the flux (3, 4, 9, 15).
Le système de circulation du flux hydraulique opère en circuit ouvert. Le circuit pneumatique de haute pression opère en circuit fermé. Tous les senseurs des valves sont contrôlés par le module de contrôle électronique E. CU. (10) figure 2.The circulation system of the hydraulic flow operates in open circuit. The pneumatic circuit of high pressure operates in closed circuit. All valve sensors are controlled by the electronic control module E. CU. (10) Figure 2.
En conformité avec la figure 2, le diagramme électrique constitué par câblages et connecteurs (1) , est responsable de la distribution de l'énergie et des signaux de contrôle des accumulateurs (GBl, GB2) qui opèrent en cycles alternatifs pour actionner le moteur (Ml) figure 1. Les cycles alternatifs permettent que le groupe d'accumulateurs (GB 1) figure 2, fournit l'énergie nécessaire pour actionner le moteur (Ml) figure 1. Le groupe d'accumulateursIn accordance with FIG. 2, the electrical diagram formed by cabling and connectors (1), is responsible for the distribution of energy and the control signals of the accumulators (GB1, GB2) which operate in alternating cycles to actuate the motor ( Ml) figure 1. The alternating cycles allow the accumulator group (GB 1) figure 2, provides the energy required to operate the engine (Ml) figure 1. The accumulator group
(GB2)//gure 2, se recharge grâce aux alternateurs (E1,E2) figure 1, emmagasinant l'énergie pour le cycle suivant, type flip-flop. L'unité de contrôle électronique E. CU. (10) figure 2 est responsable de la gestion du temps des cycles de recharge du groupe d'accumulateurs qui se trouve au repos (GBl, GB2), pour qu'ils soient supérieurs à 140 % du temps de consommation énergétique du moteur (Ml) figure 1. Tout le système est initialisé par une clé manuelle (16) figure 2, qui connecte les contacts (11) figure 2, connectant I' énergie de 12 volts, par l'intermédiaire d'un relais {11) figure 2, provenant de la batterie (B) figure 2, pour l'unité électronique de contrôle (10) figure 2, qui est programmée par le tableau (W) figure 2.(GB2) // gure 2, recharges thanks to alternators (E1, E2) figure 1, storing energy for the next cycle, type flip-flop. The electronic control unit E. CU. (10) FIG. 2 is responsible for managing the charging cycle times of the idle battery pack (GB1, GB2) so that they are greater than 140% of the motor energy consumption time (Ml Figure 1. The entire system is initialized by a manual key (16) Figure 2, which connects the contacts (11) Figure 2, connecting the energy of 12 volts, through a relay (11) Figure 2 , from the battery (B) Figure 2, for the electronic control unit (10) Figure 2, which is programmed by the table (W) Figure 2.
Le système flip-flop, inséré dans l'unité électronique de contrôle (10) figure 2, alterne les groupes des accumulateurs (GBl, GB2) figure 2, qui sont connectés par les relais (18, 19) figure2. Les connecteurs (2, 4, 5, 6, 7, 14, 15) figure 2 sont utilisés pour l'interconnexion entre les valves, senseurs, moteurs et les générateurs présentés en figure 1. Le moteur de courant alternatif [Ml) figure 1, qui est le moteur principal responsable pour tout le système de pompage du fluide hydraulique , devient inopérationnel en cas de coupure d'énergie électrique sur le réseau de distribution local d'électricité. Dans ce cas, le moteur de courant continu (Ml) figure I1 prend automatiquement le relais.The flip-flop system, inserted in the electronic control unit (10) in FIG. 2, alternates the groups of the accumulators (GB1, GB2) FIG. 2, which are connected by the relays (18, 19) FIG. The connectors (2, 4, 5, 6, 7, 14, 15) in FIG. 2 are used for the interconnection between the valves, sensors, motors and the generators shown in FIG. 1. The AC motor [M1] FIG. 1 , which is the main engine responsible for the entire pumping system of the hydraulic fluid, becomes inoperative in case of power failure on the local electricity distribution network. In this case, the DC motor (M1) Figure I 1 automatically takes over.
Un système opérationnel (firmware) transféré par l'intermédiaire du connecteur (11) figure 2 , basé sur le software en environnement de type Windows ou autre système d'exploitation courant d'ordinateur, enregistre l'énergie produite, le temps de l'opération, le numéro de série du générateur, ainsi que la gestion électronique du générateur. En conformité avec les figures 3 et 4, le fluide hydraulique sous pression en provenance de la sortie (18) figure 1, est acheminé vers l'entrée (23) figure 3, attaque simultanément la pompe hydraulique (17) figure 3 et le moteur hydraulique (19) figure 3, ce qui crée la force motrice pour élever la charge [35) figure 4, par l'intermédiaire du câble d'acier (39) figure 4. Le retour du fluide hydraulique est dirigé vers le réservoir (Jl) figure 1 par le tube (25) figure 3, qui est interconnecté au tube (16) figure 1.An operating system (firmware) transferred via the connector (11) Figure 2, based on the software environment Windows or other common computer operating system, records the energy produced, the time of the operation, the serial number of the generator, as well as the electronic management of the generator. In accordance with FIGS. 3 and 4, the pressurized hydraulic fluid coming from the outlet (18), FIG. 1, is conveyed to the inlet (23) FIG. 3, simultaneously driving the hydraulic pump (17) FIG. 3 and the engine Hydraulic (19) Figure 3, which creates the driving force to raise the load [35) Figure 4, through the steel cable (39) Figure 4. The return of the hydraulic fluid is directed to the reservoir (Jl Figure 1 through the tube (25) Figure 3, which is interconnected to the tube (16) Figure 1.
Quand la charge arrive en haut, le contact électrique (11) figure 3, envoie l'information « ON » à l'unité de contrôle électronique E. CU. (10) figure 2, qui actionne les relais (18) et (19) figure 2, qui déconnecte le groupe de batterie (GB 1) figure 2 du circuit principal et le connecte au générateur (El) figure 1, qui actionne en simultané la valve (15) figure 1, laquelle passe dans la position (R), déviant à 100% le flux hydraulique vers le moteur hydraulique (A) figure 1.When the load arrives at the top, the electrical contact (11) in FIG. 3 sends the information "ON" to the electronic control unit E. CU. (10) Figure 2, which actuates the relays (18) and (19) Figure 2, which disconnects the battery group (GB 1) Figure 2 of the main circuit and connects to the generator (El) Figure 1, which operates simultaneously the valve (15) in FIG. 1, which passes into the position (R), deviating 100% of the hydraulic flow towards the hydraulic motor (A) FIG.
La charge (35) figure 4 commence la descente, créant la force motrice inverse dans le moteur hydraulique (19) figure 3, fournissant l'augmentation de pression hydraulique nécessaire au moteur hydraulique (A) figure 1, connecté au générateur (E 1) figure 1. Quand la charge (35) atteint la base de la colonne d'une hauteur de 40 mètres (A) figure 4, et d'un diamètre de 50 cm (B) figure 4, le contact électrique (11) figure 3 envoie l'information « OFF » à l'unité de contrôle électronique E. CU. (10) figure 2, qui initie le cycle « B », envoie l'information électrique aux relais (18) et (19) figure 2, reconnecte (GB 1) figure 2, repositionne la valve (15) dans la position (S), déconnecte (GB2) figure 2, interconnecte (GB2)//gure 2 au générateur [El) figure 1, positionne la valve (9) figure 1 dans la position (R). Le réacteur électromécanique dispose d'un système distributeur de fluide hydrostatique (J2) figure 1 caractérisé par le fait d'être cylindrique et de capacité 7 litres de fluide hydrostatique distribués par 4 sorties directes et une sortie indirecte. La sortie indirecte est équilibrée par la forme interne et, est ainsi obtenue une meilleure précision dans la distribution de la force comme le montre la figure 5. Load (35) Figure 4 begins the descent, creating the reverse driving force in the hydraulic motor (19) Figure 3, providing the necessary hydraulic pressure increase to the hydraulic motor (A) Figure 1, connected to the generator (E 1) Figure 1. When the load (35) reaches the base of the column from a height of 40 meters (A) Figure 4, and a diameter of 50 cm (B) Figure 4, the electrical contact (11) Figure 3 sends the information "OFF" to the electronic control unit E. CU. (10) FIG. 2, which initiates cycle "B", sends electrical information to relays (18) and (19) FIG. 2, reconnects (GB 1) FIG. 2, repositions valve (15) in position (S). ), disconnected (GB2) Figure 2, interconnects (GB2) // gure 2 to the generator [El) Figure 1, positions the valve (9) Figure 1 in the position (R). The electromechanical reactor has a hydrostatic fluid distributor system (J2) Figure 1 characterized by being cylindrical and capacity of 7 liters of hydrostatic fluid distributed by 4 direct outputs and an indirect output. The indirect output is balanced by the internal shape and is thus obtained a better accuracy in the distribution of the force as shown in Figure 5.

Claims

Revendicationsclaims
1-Procédé pour produire de l'énergie électrique caractérisé par une utilisation de la transformation en énergie électrique d'une énergie mécanique accumulée, par la combinaison de deux propriétés énergétiques distinctes, l'électricité et la cinétique. Le principe de base du système est l'obtention d'un gain énergétique grâce au contrôle d'une action mécanique créée et de sa réaction.A method for producing electrical energy characterized by using the electrical energy transformation of accumulated mechanical energy by the combination of two distinct energy properties, electricity and kinetics. The basic principle of the system is to obtain an energy gain through the control of a mechanical action created and its reaction.
Le procédé est initialisé par deux groupes d'accumulateurs électriques (batteries), qui après le processus d'inversion alimentent un moteur en courant alternatif, lequel pompe et pressurise le fluide hydraulique.The process is initiated by two groups of electric accumulators (batteries), which after the inversion process feed an AC motor, which pumps and pressurizes the hydraulic fluid.
La dépressurisation du fluide hydraulique est contrôlée par l'intermédiaire de circuits électroniques et de temporisateurs, qui pilotent la production de force motrice pour les alternateurs.The depressurization of the hydraulic fluid is controlled via electronic circuits and timers, which drive the production of motive power for the alternators.
2- Procédé selon la revendication 1 caractérisé par le fait qu'il utilise des séquences alternées de recharge / utilisation des 2 groupes de batteries, afin de maintenir un groupe toujours disponible pour les cycles du système, et d'assurer le fonctionnement du générateur.2- A method according to claim 1 characterized in that it uses alternating sequences of recharging / use of the two groups of batteries, in order to maintain a group always available for the cycles of the system, and to ensure the operation of the generator.
3- Procédé selon la revendication 1 et 2 caractérisé par le fait qu'il dispose d'un système qui fournit la pression hydraulique pour les moteurs (/K1D) figure 1, interconnectés aux alternateurs [El1El) figure 1 4- Procédé selon la revendication 3 caractérisé par le fait qu'il dispose d'un système qui transforme la force de gravité en mouvement mécanique motrice pour produire l'énergie électrique figure 4.3- A method according to claim 1 and 2 characterized in that it has a system that provides the hydraulic pressure for the motors (/ K 1 D) 1, interconnected to the alternators [El 1 El) figure 1 4- Process according to Claim 3, characterized in that it has a system which converts the force of gravity into mechanical mechanical movement in order to produce the electrical energy figure 4.
5- Procédé selon les revendications 1 à 4 caractérisé par l'utilisation d'une unité de contrôle électronique E. CU. (10) figure 2 qui est responsable de la gestion du temps pour les cycles de recharge du groupe d'accumulateurs qui se trouve au repos (GBl, GB2), pour qu'ils soient supérieurs à 140 % du temps de consommation énergétique du moteur (Ml) figure 1.5. Process according to claims 1 to 4 characterized by the use of an electronic control unit E. CU. (10) figure 2 which is responsible for the time management for the recharging cycles of the group of accumulators which is at rest (GB1, GB2), so that they are greater than 140% of the energy consumption time of the engine (Ml) figure 1.
6- Procédé selon les revendications 1 à 5 caractérisé par un système utilisant la réaction mécanique (dépressurisation) obtenue par l'intermédiaire de réservoirs pneumatiques comme décrit en Figure 1. 7- Procédé selon les revendications 1 à 5 caractérisé par un système utlisant la réaction mécanique (dépressurisation) obtenue par recours à un dispositif mécanique « transformateur de forces mécaniques » transformant les mouvements d'un poids en flux hydraulique comme décrit en Figure 3 & 4.6. Process according to claims 1 to 5 characterized by a system using the mechanical reaction (depressurization) obtained via pneumatic tanks as described in Figure 1. 7- A method according to claims 1 to 5 characterized by a system utlisant the reaction mechanical (depressurization) obtained using a mechanical device "mechanical force transformer" transforming the movements of a weight in hydraulic flow as described in Figure 3 & 4.
8- Procédé selon les revendications 1 à 7 caractérisé par l'utilisation d'un diagramme électrique constitué par câblage et connecteurs figure 2 (1) , qui est responsable de la distribution de l'énergie et des signaux de contrôle des accumulateurs (GBl, GB2) qui opèrent en cycles alternatifs pour actionner le moteur (Ml) figure 1. Les cycles alternatifs permettent que le groupe d'accumulateurs (GB 1) figure 2, fournit l'énergie nécessaire pour actionner le moteur (Ml) figure 1. Le groupe d'accumulateurs (GB2) figure 2, se recharge grâce aux alternateurs (El1El) figure I1 emmagasinant l'énergie pour le cycle suivant, type flip-flop. 9- Procédé selon les revendications 1 à 5 caractérisé par un système distributeur de fluide hydrostatique [H) figure 1 caractérisé par le fait d'être cylindrique et de capacité pour sept litres de fluide hydrostatique distribués par quatre sorties directes et une sortie indirecte. La sortie indirecte est équilibrée par la forme interne, pour obtenir une meilleure précision dans la distribution de la force, comme le montre \a figure 5.8- A method according to claims 1 to 7 characterized by the use of an electrical diagram constituted by wiring and connectors figure 2 (1), which is responsible for the distribution of energy and control signals accumulators (GBl, GB2) which operate in reciprocating cycles to actuate the motor (Ml) Figure 1. The alternative cycles allow the accumulator group (GB 1) to figure 2, provides the energy necessary to actuate the engine (Ml) Figure 1. The accumulator group (GB2) Figure 2, is recharged thanks to alternators (El 1 El) Figure I 1 storing energy for the next cycle, type flip-flop. 9- Process according to claims 1 to 5 characterized by a hydrostatic fluid distributor system [H) 1 characterized by being cylindrical and capacity for seven liters of hydrostatic fluid distributed by four direct outputs and an indirect output. The indirect output is balanced by the internal shape, to obtain a better precision in the distribution of the force, as shown in Figure 5.
10- Procédé selon les revendications 1 à 5 caractérisé par sa capacité à fonctionner en parallèle avec un réseau de distribution local d'électricité pour assurer une production électrique supplémentaire permettant de compenser des variations de qualité et de quantité d'électricité. 11- Procédé selon les revendications 1 à 5 caractérisé par sa capacité à fonctionner en système de production d'électricité de remplacement en cas de défaillance d'un réseau de distribution local d'électricité.10- A method according to claims 1 to 5 characterized by its ability to operate in parallel with a local electricity distribution network to provide additional power production to compensate for variations in quality and quantity of electricity. 11- A method according to claims 1 to 5 characterized by its ability to operate in alternative electricity production system in case of failure of a local electricity distribution network.
12- Procédé selon les revendications 1 à 5 caractérisé par sa capacité à fonctionner comme générateur autonome d'électricité sans recours à une alimentation électrique extérieure, l'énergie nécessaire à l'alimentation initiale et aux impulsions de déroulement des cycles étant assurée par des groupes de batteries, maintenues en charge par la production d'énergie issue du système. 12- A method according to claims 1 to 5 characterized by its ability to operate as an autonomous generator of electricity without recourse to an external power supply, the energy required for the initial supply and the cycles of unwinding pulses being provided by groups of batteries, maintained by the production of energy from the system.
EP09785923A 2009-05-20 2009-05-20 Electromechanical reactor Withdrawn EP2432988A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2009/005727 WO2010133914A1 (en) 2009-05-20 2009-05-20 Electromechanical reactor

Publications (1)

Publication Number Publication Date
EP2432988A1 true EP2432988A1 (en) 2012-03-28

Family

ID=42244756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09785923A Withdrawn EP2432988A1 (en) 2009-05-20 2009-05-20 Electromechanical reactor

Country Status (5)

Country Link
EP (1) EP2432988A1 (en)
JP (1) JP2012527862A (en)
CA (1) CA2800243A1 (en)
RU (1) RU2011152196A (en)
WO (1) WO2010133914A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011102506A1 (en) * 2011-05-24 2012-11-29 Udo Dittmer System for regulating, compensating and controlling flow of energy in commercial as well as in private applications, comprises preloaded energy storage unit for storing energy by using compressed air water container
ITBS20130171A1 (en) * 2013-11-20 2015-05-21 Celeste Assolini GRAVITATIONAL GENERATOR OF ELECTRICITY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199512A (en) * 2000-12-27 2002-07-12 Hajime Kamimura Electric vehicle
DE102004047290A1 (en) * 2003-09-24 2005-05-04 Karl Ludwig Holder Method for operating power station and power station carrying out, operation with water power station circuit converting water pressure energy into electric one, with several heat exchangers
JP2005261058A (en) * 2004-03-11 2005-09-22 Chugoku Electric Power Co Inc:The Feed system
JP4535753B2 (en) * 2004-03-23 2010-09-01 カヤバ工業株式会社 Power generation system
SI22263A (en) * 2006-03-20 2007-10-31 Alojz Moĺ˝Ina Power recuperator
WO2007113847A1 (en) * 2006-04-03 2007-10-11 Kandnery Mohammed Moosa Fluid booster
CA2548690A1 (en) * 2006-06-05 2007-08-05 Afif Abou-Raphael Self-propelled energy generator
WO2008043113A1 (en) * 2006-10-06 2008-04-10 Winston Lenderd Cornish Hydropower delivery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010133914A1 *

Also Published As

Publication number Publication date
WO2010133914A1 (en) 2010-11-25
JP2012527862A (en) 2012-11-08
RU2011152196A (en) 2013-06-27
CA2800243A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
CN107407248B (en) Hydropneumatic energy-storage system and hydropneumatic energy storage component for deep-sea water
US10415469B2 (en) Hybrid compressed air/water energy storage system and method
US4206608A (en) Natural energy conversion, storage and electricity generation system
US20100107627A1 (en) Buoyancy energy storage and energy generation system
US8378521B2 (en) Energy storage systems
US9617969B2 (en) Hydraulic energy store
US9957018B1 (en) System for wave amplifying, wave energy harnessing, and energy storage
US9673682B2 (en) Hybrid vertical energy storage system
EP2337955A2 (en) Electrical energy/pressurized air conversion techniques
CN101290001A (en) Levitating force pressurized pump and tide generation station adopting same
US9267492B2 (en) Power transfer and generation using pressurized fluids
CN113417803B (en) Offshore wind turbine device and method for pumping seawater to store energy and generate power
CN115777043A (en) FFWN clean energy power generation equipment
WO2010133914A1 (en) Electromechanical reactor
WO2015001229A1 (en) Hybrid device for producing power
US10876514B2 (en) Ocean wave energy exploiting and storing device
CN114576073A (en) Energy conversion and storage device
CN101302751B (en) Large power underwater constant pressure storage plant
Long et al. Storage-integrated energy harvesters
WO2016016668A1 (en) Conversion from gravitational force to electrical power
Pastuch et al. Small scale compressed air energy storage (ss-caes) strategies overview
CN217232040U (en) Distributed pumped storage system combined with urban water supply system
EP4376249A1 (en) Hydrogen production apparatus, electrical energy supply arrangement and method for operating a hydrogen production apparatus
US20230216340A1 (en) Hydraulic compressed air energy storage system
BG113524A (en) Integrated gravitational hydro storage system with light-amplified photovoltaic panels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202