EP2431594B1 - Desulfuration of a NOx trap - Google Patents

Desulfuration of a NOx trap Download PDF

Info

Publication number
EP2431594B1
EP2431594B1 EP11305886.1A EP11305886A EP2431594B1 EP 2431594 B1 EP2431594 B1 EP 2431594B1 EP 11305886 A EP11305886 A EP 11305886A EP 2431594 B1 EP2431594 B1 EP 2431594B1
Authority
EP
European Patent Office
Prior art keywords
trap
period
predetermined threshold
lean period
periods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11305886.1A
Other languages
German (de)
French (fr)
Other versions
EP2431594A1 (en
Inventor
Pierre-Yves Le-Morvan
Axel Vannier
Aurelien Ramseyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2431594A1 publication Critical patent/EP2431594A1/en
Application granted granted Critical
Publication of EP2431594B1 publication Critical patent/EP2431594B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity

Definitions

  • the invention relates to a process for the desulphurization of a nitrogen oxide trap, commonly known by its Anglo-Saxon NOx-Trap name, the function of which is the post-treatment of the exhaust gases emitted by a combustion engine. internal of a motor vehicle. It also relates to a power train equipped with a NOx-Trap and a motor vehicle as such implementing such a desulfurization process.
  • the invention is particularly suitable for motor vehicles equipped with a diesel engine.
  • polluting elements such as polluting particles, nitrogen oxides, sulfur, carbon monoxide and unburned hydrocarbons.
  • after-treatment devices are arranged on the exhaust line and their function is to trap these elements.
  • a post-treatment device is, for example, a "NOx-Trap" nitrogen oxide trap, which can be implemented by a NOx trap function on an oxidation catalyst.
  • Such a device chemically retains the nitrogen oxides (NO and NO 2 ) produced by the engine.
  • a NOx-Trap device operates periodically, in two phases. During a first phase, it stores polluting elements emitted by the engine, and during a second so-called regeneration phase, these pollutant elements are eliminated.
  • the regeneration of a NOx-Trap consists in reducing the nitrogen oxides to nitrogen N 2 and carbon dioxide CO 2 , when a predetermined threshold of NOx loading is reached. This regeneration phase requires a rich medium (excess of reducing agents) to reduce the nitrogen oxides.
  • sulfur in the exhaust also alters the NOx-Trap's operation over time. Indeed, during the operation of the engine, the sulfur initially present in the fuel and the oil is found in the exhaust gas in the form of sulfur dioxide SO 2 , which is then adsorbed by NOx-Trap at the sites of the fuel. adsorption expected for nitrogen oxides NOx, thus decreasing the storage capacity of NOx. In addition, the adsorbed sulfur is not destocked during the NOx purges of the NOx-Trap regeneration phases. As a result, the efficiency of a NOx trap decreases with the accumulation of sulfur. Thus, a phase of desulfurization of NOx-Trap is also periodically implemented to purge sulfur products, in addition to the regeneration of NOx-Trap previously explained.
  • the desulphurization of NOx-Trap requires a very high thermal level within the NOx-Trap, ie a temperature generally greater than 650 ° C, and a rich medium (excess of reducing agents) to reduce the sulfur components.
  • a specific fuel injection strategy is put in place.
  • this large increase in the temperature of the exhaust gas can be obtained by a specific injection strategy such as a delayed injection of fuel into the combustion chambers of the engine.
  • the solution adopted by the state of the art consists in alternating rich phases, during which the desulphurization is efficient, and poor phases (excess of oxidants), during which a stock of oxygen is reformed in within the NOx-Trap, to limit the disadvantages mentioned above, in particular the emission of pollutant components H 2 S and COS during a rich next phase and during which the NOx-Trap temperature decreases.
  • the desulfurization process determines a period of operation in the rich mode of the engine according to the conditions of use of the catalyst and / or engine parameters (operating point of the engine, model of the quantity of oxygen stored and reduced in the after-treatment device, aging of this device, reductant flow to promote the emission of sulfur in SO2 form rather than H 2 S), the threshold temperature not to be exceeded in the system.
  • the duration of the rich periods can for example be predefined or determined from dynamic models (for example estimation of the internal temperatures, model of regeneration of the quantity of stored oxygen or estimate of the quantity of H 2 S / COS emitted) or of measured information (exceeding the measured threshold temperature, tilting or variation of the information delivered by a downstream oxygen sensor).
  • the duration of a lean period is determined so as to compensate with the surplus energy provided by the rich phase, in order to reach the desired temperature setpoint, while respecting a period allowing the oxygen recharge on the basis of a computational model, without over-cooling the NOx-Trap.
  • a general object of the invention is to provide a solution for achieving increased desulfurization, with a more reliable and easy to develop solution.
  • the invention is based on a process for desulfurizing a nitrogen oxide trap for the aftertreatment of exhaust gases emitted by an internal combustion engine of a motor vehicle, comprising an alternation of periods rich and poor, characterized in that it implements at least a long, poor period to allow the substantial increase in oxygen storage capacity (OSC) parameter of the nitrogen oxide trap.
  • OSC oxygen storage capacity
  • the desulfurization process can include two types of poor periods, short, poor periods and at least one long, poor period, implemented between similar rich periods.
  • a short lean period may have a duration that allows the increase of the oxygen storage capacity (OSC) parameter of the nitrogen oxide trap according to a first fast dynamic up to a plateau and at least one long lean period may have a duration which allows the increase of the oxygen storage capacity parameter (OSC) of the oxidation trap.
  • Poor, short periods can have a duration of between 5 and 30 seconds while the long lean period can have a duration of between 20 and 60 seconds.
  • At least one long, poor period may have a duration greater than or equal to the average duration of the short, poor periods.
  • the desulphurization process may comprise a third step of determining the end of a rich period by applying the first law (LOI1) to start a new, lean period.
  • LOI1 first law
  • the invention also relates to a powertrain for a motor vehicle, comprising a motor and an exhaust pipe for driving the exhaust gases to a nitrogen oxide trap, characterized in that it comprises an electronic control unit.
  • ECU which implements the desulfurization process described above.
  • the invention also relates to a motor vehicle comprising such a powertrain.
  • the device further comprises an electronic control unit (ECU) 10, composed of hardware elements (hardware) and / or software (software), which is generally in the form of a computer on board.
  • This ECU unit receives data from different sensors, not shown, such as for example a temperature sensor for measuring the temperature of the exhaust gas, an oxygen sensor which measures the amount of oxygen in the exhaust gas, a sensor of temperature arranged at the inlet of the particulate filter so as to measure the temperature of the exhaust gas at this filter, a differential pressure sensor mounted at the terminals of the particulate filter.
  • the ECU unit implements a powertrain management method and in particular NOx-Trap 4 desulphurization management. For this, it controls, for example, the various valves and injectors of the device. This process is explained later.
  • the concept of the invention is based on the exploitation of a double dynamic of the oxygen storage capacity of NOx-Trap, also known by its Anglo-Saxon name of "oxygen storage capacity" and which we will call more simply parameter OSC thereafter, to allow thus to improve the global oxygen recharge of the NOx-Trap during a desulphurisation process and to reduce the polluting emissions in H 2 S and COS, while achieving an optimal desulfurization.
  • the desulfurization process is always based on an alternation of rich and poor slots, but the duration of which is calculated differently, as will be explained, by the implementation from time to time of a poor elongated period.
  • the method of the invention uses a determination of the duration of a slot or period by the combination of two splitting laws, whose principle will be explained later.
  • the first law LOI1 of fractionation is similar to the laws used in the state of the art whereas the second law LOI2 exploits the slow dynamics of the increase of the parameter OSC as a function of time.
  • Curve 15 represents the evolution of the rich and poor periods as a function of time according to an embodiment of the invention.
  • the desulfurization process comprises alternating rich and poor periods T1, T3 phases, wherein the duration of the rich periods 16 and poor periods 17 is determined by the first law LOI1. It further comprises at least one particular period T2 during which a poor period 18 of long duration is imposed by the second law LOI2 superimposed on the first.
  • the figure 3 shows in more detail the technical effect obtained by the embodiment of the invention presented on the figure 2 , and more particularly the effect obtained on the parameter OSC whose evolution as a function of time t is illustrated by curve 25.
  • the parameter OSC includes rising curves 27 during the poor periods 17, during which the excess oxygen fills the OSC, and downward curves during the rich periods 16, during which the excess reducers reduce the OSC.
  • the OSC parameter decreases globally during these periods.
  • the parameter OSC comprises a longer growth phase 28 of greater amplitude.
  • the curve 25 of evolution as a function of time t of the parameter OSC can be broken down into two curves 21 and 22 illustrating the two respectively fast and slow dynamics of this evolution, exploited by the invention.
  • the curve 25 is the sum of these two curves 21, 22. Indeed, it appears on the curve 21 a rapid variation as soon as one goes from a rich period to a poor period, and vice versa. This dynamic is faster than the duration of the periods, which allows the curve 21 to grow and fall towards higher levels 23 and lower 24 for respectively all the poor periods 17, 18 and rich 16.
  • the OSC parameter comprises a second slow component, which rises very little during the poor periods 17 and goes down a bit during the rich periods 16.
  • FIG 4 illustrates the implementation of the desulfurization process according to the embodiment of the invention. During this process, when the NOx-Trap is in a poor period 17, a first step E1 consists in applying the first law LOI1 to determine the end of this poor period.
  • the process goes through a second step E2 in which a second law LOI2 is applied, in order to determine if the LOI2 confirms the end of the short poor period 17 and the transition to rich period 16 or imposes the maintenance of a long poor period 18.
  • this second law orders the end of the poor period
  • the process begins a rich period 16.
  • a third step E3 determines the end of the rich period 16 by applying the first law LOI1, to start a new poor period 17 and repeat steps E1 to E3 explained above.
  • the rich periods have a duration of 5 to 30 seconds and the poor periods short preferably between 5 and 30 seconds, preferably less than 30 seconds.
  • the long poor periods have a duration of between 20 and 60 seconds, advantageously greater than 30 seconds or greater than or equal to the average duration of the short, poor periods.
  • the duration of a long poor period 18 is such that it allows the OSC parameter to reach its initial value again at the start of desulphurization.
  • the principle of the invention remains compatible with the existing processes, in particular the criteria for determining the start or the end of a NOx-Trap desulfurization process. For example, if the feasibility conditions of a rich period are no longer met, because the speed and / or the engine torque is too low for example, then the rich period is stopped.
  • the unfolding of the desulphurization process out periods elongated poor can be carried out according to any solution of the state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

L'invention concerne un procédé de désulfuration d'un piège à oxydes d'azote, couramment appelé par sa dénomination anglo-saxonne de NOx-Trap, dont la fonction est le post-traitement des gaz d'échappement émis par un moteur à combustion interne d'un véhicule automobile. Elle concerne aussi un groupe motopropulseur équipé d'un NOx-Trap et un véhicule automobile en tant que tels mettant en oeuvre un tel procédé de désulfuration. L'invention est particulièrement adaptée aux véhicules automobiles équipés d'un moteur diesel.The invention relates to a process for the desulphurization of a nitrogen oxide trap, commonly known by its Anglo-Saxon NOx-Trap name, the function of which is the post-treatment of the exhaust gases emitted by a combustion engine. internal of a motor vehicle. It also relates to a power train equipped with a NOx-Trap and a motor vehicle as such implementing such a desulfurization process. The invention is particularly suitable for motor vehicles equipped with a diesel engine.

Les moteurs à combustion interne, et plus particulièrement les moteurs de type diesel, rejettent dans l'atmosphère des éléments polluants comme des particules polluantes, des oxydes d'azote, du soufre, du monoxyde de carbone et des hydrocarbures imbrûlés. Pour réduire l'émission de ces éléments polluants, des dispositifs de post-traitement sont disposés sur la ligne d'échappement et ont pour fonction de piéger ces éléments. Un tel dispositif de post traitement est par exemple un piège à oxydes d'azote « NOx-Trap », qui peut être mis en oeuvre par une fonction de piège à NOx sur un catalyseur d'oxydation. Un tel dispositif retient chimiquement les oxydes d'azote (NO et NO2) produits par le moteur.Internal combustion engines, and more particularly diesel-type engines, discharge into the atmosphere polluting elements such as polluting particles, nitrogen oxides, sulfur, carbon monoxide and unburned hydrocarbons. To reduce the emission of these pollutants, after-treatment devices are arranged on the exhaust line and their function is to trap these elements. Such a post-treatment device is, for example, a "NOx-Trap" nitrogen oxide trap, which can be implemented by a NOx trap function on an oxidation catalyst. Such a device chemically retains the nitrogen oxides (NO and NO 2 ) produced by the engine.

Classiquement, un dispositif NOx-Trap fonctionne de manière périodique, en deux phases. Lors d'une première phase, il stocke des éléments polluants émis par le moteur, et lors d'une deuxième phase dite de régénération, ces éléments polluants sont éliminés. La régénération d'un NOx-Trap consiste à réduire les oxydes d'azote en diazote N2 et dioxyde de carbone CO2, lorsqu'un seuil prédéterminé de chargement en NOx est atteint. Cette phase de régénération nécessite un milieu riche (excès de réducteurs) pour réduire les oxydes d'azote.Conventionally, a NOx-Trap device operates periodically, in two phases. During a first phase, it stores polluting elements emitted by the engine, and during a second so-called regeneration phase, these pollutant elements are eliminated. The regeneration of a NOx-Trap consists in reducing the nitrogen oxides to nitrogen N 2 and carbon dioxide CO 2 , when a predetermined threshold of NOx loading is reached. This regeneration phase requires a rich medium (excess of reducing agents) to reduce the nitrogen oxides.

D'autre part, du soufre présent dans l'échappement altère aussi avec le temps le fonctionnement du NOx-Trap. En effet, pendant le fonctionnement du moteur, le soufre initialement présent dans le carburant et l'huile se retrouve dans les gaz d'échappement sous forme de dioxyde de soufre SO2, qui est alors adsorbé par le NOx-Trap sur les sites d'adsorption prévus pour les oxydes d'azote NOx, diminuant ainsi la capacité de stockage des NOx. De plus, le soufre adsorbé n'est pas déstocké pendant les purges en NOx des phases de régénération du NOx-Trap. Par conséquent, l'efficacité d'un piège à NOx décroît avec l'accumulation du soufre. Ainsi, une phase de désulfuration du NOx-Trap est aussi périodiquement mise en oeuvre pour le purger des produits soufrés, en complément de la régénération du NOx-Trap explicitée précédemment.On the other hand, sulfur in the exhaust also alters the NOx-Trap's operation over time. Indeed, during the operation of the engine, the sulfur initially present in the fuel and the oil is found in the exhaust gas in the form of sulfur dioxide SO 2 , which is then adsorbed by NOx-Trap at the sites of the fuel. adsorption expected for nitrogen oxides NOx, thus decreasing the storage capacity of NOx. In addition, the adsorbed sulfur is not destocked during the NOx purges of the NOx-Trap regeneration phases. As a result, the efficiency of a NOx trap decreases with the accumulation of sulfur. Thus, a phase of desulfurization of NOx-Trap is also periodically implemented to purge sulfur products, in addition to the regeneration of NOx-Trap previously explained.

La désulfuration du NOx-Trap nécessite une thermique très élevée au sein du NOx-Trap, soit une température en général supérieure à 650°C, et un milieu riche (excès de réducteurs) pour réduire les composants soufrés. Pour respecter ces conditions de purge, des stratégies spécifiques d'injection de carburant sont mises en place. Ainsi, cette forte augmentation de la température des gaz d'échappement peut être obtenue par une stratégie d'injection spécifique comme une injection retardée de carburant dans les chambres de combustion du moteur. On peut en particulier injecter du carburant juste après le point mort haut lors de la phase de détente, ce qui a pour effet d'augmenter la température et la richesse des gaz à l'échappement. En variante, il est également possible de prévoir une ou plusieurs injections tardives, c'est-à-dire nettement après le point mort haut ou une introduction de carburant directement dans la ligne d'échappement via l'utilisation d'un cinquième injecteur ou d'un vaporisateur à l'échappement. Le carburant ainsi injecté ne brûle pas dans la chambre de combustion du moteur, mais plus tard en augmentant ainsi la température et la richesse des gaz traversant ensuite le NOx-Trap.The desulphurization of NOx-Trap requires a very high thermal level within the NOx-Trap, ie a temperature generally greater than 650 ° C, and a rich medium (excess of reducing agents) to reduce the sulfur components. To comply with these purge conditions, specific fuel injection strategies are put in place. Thus, this large increase in the temperature of the exhaust gas can be obtained by a specific injection strategy such as a delayed injection of fuel into the combustion chambers of the engine. In particular, it is possible to inject fuel just after the top dead center during the expansion phase, which has the effect of increasing the temperature and the richness of the exhaust gases. Alternatively, it is also possible to provide one or more late injections, that is to say clearly after the top dead center or a fuel introduction directly into the exhaust line via the use of a fifth injector or a vaporizer in the exhaust. The fuel thus injected does not burn in the combustion chamber of the engine, but later in thus increasing the temperature and richness of the gases passing through the NOx-Trap.

Toutefois, le milieu riche et chaud du NOx-Trap ne peut pas être maintenu trop longtemps pour les raisons suivantes :

  • La température atteinte dans le NOx-Trap risque d'être trop élevée et d'engendrer un vieillissement prématuré du dispositif, voire sa dégradation par l'apparition de fissures par exemple, par un phénomène de dégradation thermomécanique ;
  • L'oxyde de soufre S02 désorbé lors de la désulfuration réagit avec les réducteurs présents et se transforme après quelques secondes en sulfure d'hydrogène H2S et en sulfure de carbonyle COS, qui sont deux espèces chimiques malodorantes et cancérigènes.
However, the rich, warm environment of NOx-Trap can not be maintained for too long for the following reasons:
  • The temperature reached in the NOx-Trap may be too high and cause premature aging of the device, or even its degradation by the appearance of cracks, for example, by a phenomenon of thermomechanical degradation;
  • S02 sulfur oxide desorbed during desulphurization reacts with the reducing agents present and after a few seconds transforms into hydrogen sulphide H 2 S and carbonyl sulphide COS, which are two malodorous and carcinogenic chemical species.

Pour éviter ces inconvénients, la solution retenue par l'état de la technique consiste à alterner des phases riches, durant lesquelles la désulfuration est efficace, et des phases pauvres (excès d'oxydants), durant lesquelles un stock d'oxygène est reformé au sein du NOx-Trap, pour limiter les inconvénients mentionnés ci-dessus, notamment l'émission des composants polluants H2S et COS lors d'une prochaine phase riche et durant lesquelles la température du NOx-Trap diminue.To avoid these drawbacks, the solution adopted by the state of the art consists in alternating rich phases, during which the desulphurization is efficient, and poor phases (excess of oxidants), during which a stock of oxygen is reformed in within the NOx-Trap, to limit the disadvantages mentioned above, in particular the emission of pollutant components H 2 S and COS during a rich next phase and during which the NOx-Trap temperature decreases.

Ainsi, cette solution de l'état de la technique consistant en l'alternance de créneaux ou périodes dites « riches » et « pauvres » pour désulfurer le NOx-Trap est par exemple décrite dans le document FR2927362 , ou dans le document DE10202935 A1 . Dans de telles solutions existantes, la détermination des périodes riche et pauvre est dictée par une régulation de la température interne du NOx-Trap autour d'une valeur de consigne permettant d'atteindre les conditions de désulfuration. Plus précisément, le procédé de désulfuration détermine une durée du fonctionnement en mode riche du moteur en fonction des conditions d'utilisation du catalyseur et/ou de paramètres du moteur (point de fonctionnement du moteur, modèle de la quantité d'oxygène stocké et réduit dans le dispositif de post-traitement, vieillissement de ce dispositif, débit de réducteur pour favoriser l'émission de soufre sous forme S02 plutôt que H2S), de la température seuil à ne pas dépasser dans le système. La durée des périodes riches peut par exemple être prédéfinie ou déterminée à partir de modèles dynamiques (par exemple estimation des températures internes, modèle de régénération de la quantité d'oxygène stocké ou estimation de la quantité de H2S /COS émise) ou d'informations mesurées (dépassement de la température seuil mesurée, basculement ou variation de l'information délivrée par une sonde à oxygène en aval). Ensuite, la durée d'une période pauvre est déterminée de manière à réaliser une compensation avec le surplus d'énergie apportée par la phase riche, afin d'atteindre la consigne de température recherchée, tout en respectant une durée permettant le rechargement en oxygène sur la base d'un modèle de calcul, sans trop refroidir le NOx-Trap.Thus, this solution of the state of the art consisting of the alternation of slots or so-called "rich" and "poor" periods to desulphurize NOx-Trap is for example described in document FR2927362 , or in the document DE10202935 A1 . In such existing solutions, the determination of the rich and lean periods is dictated by a regulation of the internal temperature of NOx-Trap around a set point to achieve the desulfurization conditions. More specifically, the desulfurization process determines a period of operation in the rich mode of the engine according to the conditions of use of the catalyst and / or engine parameters (operating point of the engine, model of the quantity of oxygen stored and reduced in the after-treatment device, aging of this device, reductant flow to promote the emission of sulfur in SO2 form rather than H 2 S), the threshold temperature not to be exceeded in the system. The duration of the rich periods can for example be predefined or determined from dynamic models (for example estimation of the internal temperatures, model of regeneration of the quantity of stored oxygen or estimate of the quantity of H 2 S / COS emitted) or of measured information (exceeding the measured threshold temperature, tilting or variation of the information delivered by a downstream oxygen sensor). Then, the duration of a lean period is determined so as to compensate with the surplus energy provided by the rich phase, in order to reach the desired temperature setpoint, while respecting a period allowing the oxygen recharge on the basis of a computational model, without over-cooling the NOx-Trap.

Ces approches de l'état de la technique se révèlent très délicates à utiliser en pratique car les modèles exploités sont difficiles à mettre au point car très sensibles aux changements des composantes du moteur, des injecteurs, et du NOx-Trap lui-même. Leur réglage doit atteindre le meilleur compromis possible entre la recherche de performance de la désulfuration et de niveau peu élevé de rejet de produits polluants H2S et COS. Avec les modèles existants, la recherche de ce compromis est délicate, et il s'avère en pratique que la désulfuration est soit insuffisante, ce qui nécessite des périodes de désulfuration plus longues ou plus fréquentes, soit suffisante mais accompagnée d'émissions polluantes trop élevées. De plus, l'alternance des périodes riches et pauvres de durées de quelques secondes selon l'état de la technique induit souvent des oscillations de température au niveau du NOx-Trap d'amplitude importante, de l'ordre de 150 °C, et très dynamiques, de l'ordre de quelques secondes. Dans ces conditions, la régulation de la température du NOx-Trap est difficile à maîtriser. Finalement, la désulfuration obtenue par ces solutions de l'état de la technique est insuffisante et nécessite un temps de mise au point trop important.These approaches of the state of the art prove very difficult to use in practice because the models exploited are difficult to develop because they are very sensitive to changes in the components of the engine, the injectors, and NOx-Trap itself. Their adjustment must reach the best possible compromise between the search for performance of the desulfurization and low level of discharge of pollutants H 2 S and COS. With the existing models, the search for this compromise is delicate, and it turns out in practice that the desulphurization is either insufficient, which requires longer or more frequent periods of desulfurization, which is sufficient but accompanied by polluting emissions that are too high. . Moreover, the alternation of rich and poor periods of time a few seconds according to the state of the art often induces temperature oscillations at the NOx-Trap large amplitude, of the order of 150 ° C, and very dynamic, of the order of a few seconds. Under these conditions, the temperature regulation of NOx-Trap is difficult to control. Finally, the desulfurization obtained by these solutions of the state of the art is insufficient and requires too much focusing time.

Ces solutions existantes ne sont donc pas satisfaisantes et il existe un besoin d'une autre solution améliorée de gestion de la désulfuration d'un piège à oxydes d'azote NOx-Trap.These existing solutions are therefore unsatisfactory and there is a need for another improved solution for managing the desulphurization of a NOx-Trap nitrogen oxide trap.

Ainsi, un objet général de l'invention est de proposer une solution permettant d'atteindre une désulfuration accrue, avec une solution plus fiable et facile à mettre au point.Thus, a general object of the invention is to provide a solution for achieving increased desulfurization, with a more reliable and easy to develop solution.

A cet effet, l'invention repose sur un procédé de désulfuration d'un piège à oxydes d'azote pour le post-traitement de gaz d'échappement émis par un moteur à combustion interne d'un véhicule automobile, comprenant une alternance de périodes riches et pauvres, caractérisé en ce qu'il met en oeuvre au moins une période pauvre longue pour permettre l'augmentation sensible du paramètre de capacité de stockage d'oxygène (OSC) du piège à oxydes d'azote.For this purpose, the invention is based on a process for desulfurizing a nitrogen oxide trap for the aftertreatment of exhaust gases emitted by an internal combustion engine of a motor vehicle, comprising an alternation of periods rich and poor, characterized in that it implements at least a long, poor period to allow the substantial increase in oxygen storage capacity (OSC) parameter of the nitrogen oxide trap.

Le procédé de désulfuration peut comprendre deux types de périodes pauvres, des périodes pauvres courtes et au moins une période pauvre longue, mises en oeuvre entre des périodes riches similaires.The desulfurization process can include two types of poor periods, short, poor periods and at least one long, poor period, implemented between similar rich periods.

Une période pauvre courte peut présenter une durée qui permet l'augmentation du paramètre de capacité de stockage d'oxygène (OSC) du piège à oxydes d'azote selon une première dynamique rapide jusqu'à un pallier et au moins une période pauvre longue peut présenter une durée qui permet l'augmentation du paramètre de capacité de stockage d'oxygène (OSC) du piège à oxydes d'azote selon une seconde dynamique lente, permettant le retour du paramètre de stockage d'oxygène (OSC) à une valeur équivalente au début de la désulfuration.A short lean period may have a duration that allows the increase of the oxygen storage capacity (OSC) parameter of the nitrogen oxide trap according to a first fast dynamic up to a plateau and at least one long lean period may have a duration which allows the increase of the oxygen storage capacity parameter (OSC) of the oxidation trap. nitrogen according to a second dynamic slow, allowing the return of the oxygen storage parameter (OSC) to an equivalent value at the beginning of the desulfurization.

Les périodes pauvres courtes peuvent présenter une durée comprise entre 5 et 30 secondes alors que la période pauvre longue peut présenter une durée comprise entre 20 et 60 secondes.Poor, short periods can have a duration of between 5 and 30 seconds while the long lean period can have a duration of between 20 and 60 seconds.

Au moins une période pauvre longue peut présenter une durée supérieure ou égale à la durée moyenne des périodes pauvres courtes.At least one long, poor period may have a duration greater than or equal to the average duration of the short, poor periods.

Le procédé de désulfuration peut comprendre les étapes suivantes quand le piège à oxydes d'azote se trouve dans une période pauvre :

  • détermination de la fin de la période pauvre courte en appliquant une première loi (LOI1),
  • quand la première loi (LOI1) détermine la fin de la période pauvre courte, détermination s'il est nécessaire d'effectuer une période pauvre longue en appliquant une seconde loi (LOI2), afin de stopper ou continuer la période pauvre.
The desulfurization process may include the following steps when the nitrogen oxide trap is in a poor period:
  • determination of the end of the short poor period by applying a first law (LOI1),
  • when the first law (LOI1) determines the end of the short poor period, determination whether it is necessary to perform a long lean period by applying a second law (LOI2), in order to stop or continue the lean period.

Le procédé de désulfuration peut comprendre une troisième étape de détermination de la fin d'une période riche en appliquant la première loi (LOI1), pour recommencer une nouvelle période pauvre.The desulphurization process may comprise a third step of determining the end of a rich period by applying the first law (LOI1) to start a new, lean period.

Le procédé de désulfuration peut comprendre la vérification d'au moins une des conditions suivantes pour décider de la réalisation d'une période pauvre longue :

  • Le nombre de périodes riches réalisées depuis la dernière période pauvre longue atteint un seuil prédéterminé ; et/ou
  • La durée cumulée des périodes riches réalisées depuis la dernière période pauvre longue atteint un seuil prédéterminé ; et/ou
  • La quantité de composants réducteurs excédentaires arrivés en entrée du NOx-Trap depuis la dernière période pauvre longue atteint un seuil prédéterminé ; et/ou
  • La température mesurée ou modélisée dans un endroit donné du NOx-Trap est supérieure à un seuil prédéterminé ; et/ou
  • La durée cumulée pendant laquelle la température mesurée ou modélisée dans un endroit donné du NOx-Trap est supérieure à un seuil de température est supérieure à un seuil prédéterminé ; et/ou
  • La valeur modélisée du paramètre OSC est inférieure à un seuil prédéterminé.
The desulphurization process may include the verification of at least one of the following conditions for deciding to achieve a long lean period:
  • The number of rich periods realized since the last long poor period reaches a predetermined threshold; and or
  • The accumulated duration of the rich periods realized since the last long poor period reaches a predetermined threshold; and or
  • The amount of excess reductant components that have arrived at NOx-Trap input since the last long lean period has reached a predetermined threshold; and or
  • The measured or modeled temperature in a given location of the NOx-Trap is above a predetermined threshold; and or
  • The cumulative duration during which the measured or modeled temperature in a given location of the NOx-Trap is greater than a temperature threshold is greater than a predetermined threshold; and or
  • The modeled value of the OSC parameter is less than a predetermined threshold.

Le procédé de désulfuration peut comprendre la vérification d'au moins une des conditions suivantes pour décider de la fin d'une période pauvre longue :

  • La durée totale de la période pauvre longue est supérieure à un seuil prédéterminé ; et/ou
  • La quantité de composants oxydants excédentaires arrivés en entrée du NOx-Trap est supérieure à un seuil prédéterminé ; et/ou
  • La température mesurée ou modélisée dans un endroit donné du NOx-Trap est inférieure à un seuil prédéterminé ; et/ou
  • La durée cumulée pendant laquelle la température mesurée ou modélisée dans un endroit donné du NOx-Trap est inférieure à un seuil de température est supérieure à un seuil prédéterminé ; et/ou
  • La valeur modélisée du paramètre OSC est supérieure à un seuil prédéterminé.
The desulfurization process may include checking at least one of the following conditions to decide the end of a long lean period:
  • The total duration of the long lean period is greater than a predetermined threshold; and or
  • The amount of excess oxidizing components arriving at the NOx-Trap input is greater than a predetermined threshold; and or
  • The measured or modeled temperature in a given location of the NOx-Trap is below a predetermined threshold; and or
  • The cumulative duration during which the measured or modeled temperature in a given location of the NOx-Trap is below a temperature threshold is greater than a predetermined threshold; and or
  • The modeled value of the OSC parameter is greater than a predetermined threshold.

L'invention porte aussi sur un groupe motopropulseur pour véhicule automobile, comprenant un moteur et une conduite d'échappement pour conduire les gaz d'échappement vers un piège à oxydes d'azote, caractérisé en ce qu'il comprend une unité de commande électronique ECU qui met en oeuvre le procédé de désulfuration décrit précédemment.The invention also relates to a powertrain for a motor vehicle, comprising a motor and an exhaust pipe for driving the exhaust gases to a nitrogen oxide trap, characterized in that it comprises an electronic control unit. ECU which implements the desulfurization process described above.

L'invention porte aussi sur un véhicule automobile comprenant un tel groupe motopropulseur.The invention also relates to a motor vehicle comprising such a powertrain.

Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante d'un mode d'exécution particulier fait à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • La figure 1 représente schématiquement un groupe motopropulseur selon l'invention.
  • La figure 2 représente schématiquement l'évolution dans le temps des différentes périodes d'un procédé de désulfuration selon un mode d'exécution de l'invention.
  • La figure 3 représente schématiquement l'évolution dans le temps du paramètre OSC d'un procédé de désulfuration selon le mode d'exécution de l'invention.
  • La figure 4 représente un algorithme d'un procédé de désulfuration selon le mode d'exécution de l'invention.
  • La figure 1 illustre schématiquement un groupe motopropulseur selon l'invention. Ce dispositif comprend un moteur diesel 1, alimenté en air arrivant par une conduite d'admission 2 et en carburant par un système d'injection 6. En sortie du moteur, les gaz d'échappement sont conduits par une conduite d'échappement 3 et traversent successivement un NOx-Trap 4 puis un filtre à particules 5.
These objects, features and advantages of the present invention will be set forth in detail in the following description of a particular embodiment made in a non-limiting manner in relation to the appended figures among which:
  • The figure 1 schematically represents a powertrain according to the invention.
  • The figure 2 schematically represents the evolution over time of the different periods of a desulfurization process according to an embodiment of the invention.
  • The figure 3 schematically represents the evolution over time of the OSC parameter of a desulfurization process according to the embodiment of the invention.
  • The figure 4 represents an algorithm of a desulfurization process according to the embodiment of the invention.
  • The figure 1 schematically illustrates a powertrain according to the invention. This device comprises a diesel engine 1, supplied with air arriving through an intake pipe 2 and fueled by an injection system 6. At the outlet of the engine, the exhaust gases are driven by an exhaust pipe 3 and cross successively a NOx-Trap 4 and then a particulate filter 5.

Le dispositif comprend de plus une unité de commande électronique (ECU) 10, composée d'éléments matériels (hardware) et/ou logiciels (software), qui se présente généralement sous la forme d'un ordinateur de bord. Cette unité ECU reçoit des données de différents capteurs, non représentés, comme par exemple un capteur de température pour mesurer la température des gaz d'échappement, une sonde à oxygène qui mesure la quantité d'oxygène dans les gaz d'échappement, un capteur de température disposé en entrée du filtre à particules de sorte de mesurer la température des gaz d'échappement au niveau de ce filtre, un capteur de pression différentielle monté aux bornes du filtre à particules. A partir de ces données et/ou de modèles mémorisés, l'unité ECU met en oeuvre un procédé de gestion du groupe motopropulseur et notamment de gestion de la désulfuration du NOx-Trap 4. Pour cela, elle pilote par exemple les différentes vannes et injecteurs du dispositif. Ce procédé est explicité par la suite.The device further comprises an electronic control unit (ECU) 10, composed of hardware elements (hardware) and / or software (software), which is generally in the form of a computer on board. This ECU unit receives data from different sensors, not shown, such as for example a temperature sensor for measuring the temperature of the exhaust gas, an oxygen sensor which measures the amount of oxygen in the exhaust gas, a sensor of temperature arranged at the inlet of the particulate filter so as to measure the temperature of the exhaust gas at this filter, a differential pressure sensor mounted at the terminals of the particulate filter. On the basis of these data and / or memorized models, the ECU unit implements a powertrain management method and in particular NOx-Trap 4 desulphurization management. For this, it controls, for example, the various valves and injectors of the device. This process is explained later.

Le concept de l'invention repose sur l'exploitation d'une double dynamique de la capacité de stockage en oxygène du NOx-Trap, aussi connue par sa dénomination anglo-saxonne de « oxygen storage capacity » et que nous appellerons plus simplement paramètre OSC par la suite, pour permettre ainsi d'améliorer la recharge globale en oxygène du NOx-Trap durant un procédé de désulfuration et de réduire les émissions polluantes en H2S et COS, tout en atteignant une désulfuration optimale.The concept of the invention is based on the exploitation of a double dynamic of the oxygen storage capacity of NOx-Trap, also known by its Anglo-Saxon name of "oxygen storage capacity" and which we will call more simply parameter OSC thereafter, to allow thus to improve the global oxygen recharge of the NOx-Trap during a desulphurisation process and to reduce the polluting emissions in H 2 S and COS, while achieving an optimal desulfurization.

Pour cela, le procédé de désulfuration repose toujours sur une alternance de créneaux riches et pauvres, mais dont la durée est calculée différemment, comme cela va être explicité, par la mise en oeuvre de temps en temps d'une période pauvre allongée.For this, the desulfurization process is always based on an alternation of rich and poor slots, but the duration of which is calculated differently, as will be explained, by the implementation from time to time of a poor elongated period.

Pour cela, le procédé de l'invention utilise une détermination de la durée d'un créneau ou période par la combinaison de deux lois de fractionnement, dont le principe va être explicité par la suite. La première loi LOI1 de fractionnement est similaire aux lois utilisées dans l'état de la technique alors que la seconde loi LOI2 exploite la dynamique lente de l'augmentation du paramètre OSC en fonction du temps.For this, the method of the invention uses a determination of the duration of a slot or period by the combination of two splitting laws, whose principle will be explained later. The first law LOI1 of fractionation is similar to the laws used in the state of the art whereas the second law LOI2 exploits the slow dynamics of the increase of the parameter OSC as a function of time.

Ainsi, la figure 2 illustre le principe de l'invention. La courbe 15 représente l'évolution des périodes riches et pauvres en fonction du temps selon un mode d'exécution de l'invention. Le procédé de désulfuration comprend des phases T1, T3 d'alternance de périodes riches et pauvres, dans lesquelles la durée des périodes riches 16 et des périodes pauvres 17 est déterminée par la première loi LOI1. Il comprend de plus au moins une période T2 particulière durant laquelle une période pauvre 18 de longue durée est imposée par la seconde loi LOI2 superposée à la première.So, the figure 2 illustrates the principle of the invention. Curve 15 represents the evolution of the rich and poor periods as a function of time according to an embodiment of the invention. The desulfurization process comprises alternating rich and poor periods T1, T3 phases, wherein the duration of the rich periods 16 and poor periods 17 is determined by the first law LOI1. It further comprises at least one particular period T2 during which a poor period 18 of long duration is imposed by the second law LOI2 superimposed on the first.

La figure 3 représente plus en détail l'effet technique obtenu par le mode d'exécution de l'invention présenté sur la figure 2, et plus particulièrement l'effet obtenu sur le paramètre OSC dont l'évolution en fonction du temps t est illustrée par la courbe 25. Pendant les périodes entre les instants t0 et t1, et t2 et t3, le paramètre OSC comprend des courbes montantes 27 pendant les périodes pauvres 17, pendant lesquelles l'oxygène en excès remplit l'OSC, et des courbes descendantes 26 pendant les périodes riches 16, durant lesquelles les réducteurs en excès réduisent l'OSC. Toutefois, le paramètre OSC décroit globalement durant ces périodes. Entre les instants t1 et t2 correspondant à la période pauvre longue 18, le paramètre OSC comprend une phase de croissance 28 plus longue et de plus forte amplitude.The figure 3 shows in more detail the technical effect obtained by the embodiment of the invention presented on the figure 2 , and more particularly the effect obtained on the parameter OSC whose evolution as a function of time t is illustrated by curve 25. During the periods between times t 0 and t 1 , and t 2 and t 3 , the parameter OSC includes rising curves 27 during the poor periods 17, during which the excess oxygen fills the OSC, and downward curves during the rich periods 16, during which the excess reducers reduce the OSC. However, the OSC parameter decreases globally during these periods. Between instants t 1 and t 2 corresponding to the long poor period 18, the parameter OSC comprises a longer growth phase 28 of greater amplitude.

La courbe 25 d'évolution en fonction du temps t du paramètre OSC peut se décomposer en deux courbes 21 et 22 illustrant les deux dynamiques respectivement rapides et lentes de cette évolution, exploitées par l'invention. En remarque, la courbe 25 est la somme de ces deux courbes 21, 22. En effet, il apparaît sur la courbe 21 une rapide variation dès que l'on passe d'une période riche à une période pauvre, et inversement. Cette dynamique est plus rapide que la durée des périodes, ce qui permet à la courbe 21 de croître et décroître vers des paliers supérieurs 23 et inférieurs 24 pour respectivement toutes les périodes pauvres 17, 18 et riches 16. En revanche, il apparaît par la courbe 22 que le paramètre OSC comprend une seconde composante lente, qui remonte très peu pendant les périodes pauvres 17 et descend un peu pendant les périodes riches 16. Le fait d'imposer une période pauvre longue 18 au cours du procédé de désulfuration permet à cette composante lente de remonter de manière significative durant cette période, et permet finalement au paramètre OSC de conserver toujours une valeur suffisante durant la désulfuration pour limiter les émissions polluantes, comme le montre la courbe 25 qui est la somme des courbes 21, 22. Ainsi, par l'implémentation de cette solution, chaque phase T1, T3 d'alternance de périodes riches et pauvres de manière similaire à l'état de la technique se fait en réalité avec un taux d'oxygène stocké accru, ce qui permet de réduire fortement les émissions polluantes mentionnées précédemment. La figure 4 illustre la mise en oeuvre du procédé de désulfuration selon le mode d'exécution de l'invention. Pendant ce procédé, quand le NOx-Trap est dans une période pauvre 17, une première étape E1 consiste à appliquer la première loi LOI1 pour déterminer la fin de cette période pauvre. Dès que cette période pauvre devrait se terminer selon la première loi LOI1, le procédé passe par une seconde étape E2 dans laquelle une seconde loi LOI2 est appliquée, afin de déterminer si la LOI2 confirme la fin de la période pauvre courte 17 et le passage en période riche 16 ou impose le maintien d'une période pauvre longue 18. Quand cette seconde loi ordonne la fin de la période pauvre, le procédé débute une période riche 16. Une troisième étape E3 détermine alors la fin de la période riche 16 en appliquant la première loi LOI1, pour recommencer une nouvelle période pauvre 17 et renouveler les étapes E1 à E3 explicitées ci-dessus.The curve 25 of evolution as a function of time t of the parameter OSC can be broken down into two curves 21 and 22 illustrating the two respectively fast and slow dynamics of this evolution, exploited by the invention. As a remark, the curve 25 is the sum of these two curves 21, 22. Indeed, it appears on the curve 21 a rapid variation as soon as one goes from a rich period to a poor period, and vice versa. This dynamic is faster than the duration of the periods, which allows the curve 21 to grow and fall towards higher levels 23 and lower 24 for respectively all the poor periods 17, 18 and rich 16. On the other hand, it appears by the curve 22 that the OSC parameter comprises a second slow component, which rises very little during the poor periods 17 and goes down a bit during the rich periods 16. Imposing a long lean period 18 during the desulfurization process allows this slow component to rise significantly during this period, and finally allows the OSC parameter to always retain sufficient value during desulphurization to limit emissions, as shown by the curve 25 which is the sum of the curves 21, 22. Thus, by the implementation of this solution, each phase T1, T3 of alternation of rich and poor periods in a similar way to the state of the techn This is actually done with an increased stored oxygen level, which greatly reduces the pollutant emissions mentioned above. The figure 4 illustrates the implementation of the desulfurization process according to the embodiment of the invention. During this process, when the NOx-Trap is in a poor period 17, a first step E1 consists in applying the first law LOI1 to determine the end of this poor period. As soon as this poor period should end according to the first law LOI1, the process goes through a second step E2 in which a second law LOI2 is applied, in order to determine if the LOI2 confirms the end of the short poor period 17 and the transition to rich period 16 or imposes the maintenance of a long poor period 18. When this second law orders the end of the poor period, the process begins a rich period 16. A third step E3 then determines the end of the rich period 16 by applying the first law LOI1, to start a new poor period 17 and repeat steps E1 to E3 explained above.

Pour gérer le passage du créneau pauvre court au créneau pauvre long, un opérateur booléen C peut être utilisé par le procédé, qui lui donne la valeur C = false quand la seconde loi LOI2 ordonne d'effectuer un créneau pauvre long ou prend la valeur C = true sinon. Dans ce cas, l'étape E2 comprend la vérification de la valeur de l'opérateur booléen C et tant que C = false, la période pauvre est prolongée.To handle the transition from the poor niche to the poor long niche, a Boolean operator C can be used by the method, which gives it the value C = false when the second law LOI2 orders to perform a poor long niche or takes the value C = true otherwise. In this case, the step E2 includes checking the value of the Boolean operator C and as long as C = false, the poor period is extended.

Selon le mode d'exécution de l'invention, les périodes riches présentent une durée de 5 à 30 secondes et les périodes pauvres courtes une durée de préférence entre 5 et 30 secondes, avantageusement inférieure à 30 secondes. Au contraire, les périodes pauvres longues présentent une durée comprise entre 20 et 60 secondes, avantageusement supérieure à 30 secondes ou supérieure ou égale à la durée moyenne des périodes pauvres courtes. Avantageusement, la durée d'une période pauvre longue 18 est telle qu'elle permet au paramètre OSC d'atteindre à nouveau sa valeur initiale en début de désulfuration.According to the embodiment of the invention, the rich periods have a duration of 5 to 30 seconds and the poor periods short preferably between 5 and 30 seconds, preferably less than 30 seconds. On the contrary, the long poor periods have a duration of between 20 and 60 seconds, advantageously greater than 30 seconds or greater than or equal to the average duration of the short, poor periods. Advantageously, the duration of a long poor period 18 is such that it allows the OSC parameter to reach its initial value again at the start of desulphurization.

La seconde loi LOI2 permet donc de tenir compte de la dynamique lente de l'évolution du paramètre OSC, qui est ignorée par les solutions de l'état de la technique. Cette seconde loi vérifie au moins une des conditions suivantes pour décider de la réalisation d'une période pauvre longue, et le passage du booléen C de la valeur true à false :

  • Le nombre de périodes riches réalisées depuis la dernière période pauvre longue atteint un seuil prédéterminé ; et/ou
  • La durée cumulée des périodes riches réalisées depuis la dernière période pauvre longue atteint un seuil prédéterminé ; et/ou
  • La quantité de composants réducteurs excédentaires arrivés en entrée du NOx-Trap depuis la dernière période pauvre longue atteint un seuil prédéterminé ; et/ou
  • La température mesurée ou modélisée dans un endroit donné du NOx-Trap (aval, interne,...) est supérieure à un seuil prédéterminé ; et/ou
  • La durée cumulée pendant laquelle la température mesurée ou modélisée dans un endroit donné du NOx-Trap (aval, interne,...) est supérieure à un seuil de température est supérieure à un seuil prédéterminé ; et/ou
  • La valeur modélisée du paramètre OSC est inférieure à un seuil prédéterminé. Ce modèle peut s'appuyer sur la température des gaz, le débit d'échappement, le taux d'oxygène dans les gaz, etc.
The second law LOI2 thus allows to take into account the slow dynamics of the evolution of the OSC parameter, which is ignored by the solutions of the state of the art. This second law satisfies at least one of the following conditions for deciding the realization of a long lean period, and passing the Boolean C from true to false:
  • The number of rich periods realized since the last long poor period reaches a predetermined threshold; and or
  • The accumulated duration of the rich periods realized since the last long poor period reaches a predetermined threshold; and or
  • The amount of excess reductant components that have arrived at NOx-Trap input since the last long lean period has reached a predetermined threshold; and or
  • The temperature measured or modeled in a given location of the NOx-Trap (downstream, internal, ...) is greater than a predetermined threshold; and or
  • The cumulative duration during which the temperature measured or modeled in a given location of the NOx-Trap (downstream, internal, ...) is greater than a temperature threshold is greater than a predetermined threshold; and or
  • The modeled value of the OSC parameter is less than a predetermined threshold. This model can rely on the temperature of the gases, the exhaust flow, the rate of oxygen in the gases, etc.

De plus, cette seconde loi LOI2 détermine aussi la fin de la période pauvre longue, et change la valeur de l'opérateur booléen C de false à true, par la vérification d'au moins une des conditions suivantes :

  • La durée totale de la période pauvre longue, soit depuis la dernière période riche, est supérieure à un seuil prédéterminé ; et/ou
  • La quantité de composants oxydants excédentaires arrivés en entrée du NOx-Trap est supérieure à un seuil prédéterminé ; et/ou
  • La température mesurée ou modélisée dans un endroit donné du NOx-Trap (aval, interne,...) est inférieure à un seuil prédéterminé ; et/ou
  • La durée cumulée pendant laquelle la température mesurée ou modélisée dans un endroit donné du NOx-Trap (aval, interne,...) est inférieure à un seuil de température est supérieure à un seuil prédéterminé ; et/ou
  • La valeur modélisée du paramètre OSC est supérieure à un seuil prédéterminé.
Moreover, this second law LOI2 also determines the end of the long poor period, and changes the value of the Boolean operator C from false to true, by the verification of at least one of the following conditions:
  • The total duration of the long poor period, ie since the last rich period, is greater than a predetermined threshold; and or
  • The amount of excess oxidizing components arriving at the NOx-Trap input is greater than a predetermined threshold; and or
  • The temperature measured or modeled in a given location of the NOx-Trap (downstream, internal, ...) is below a predetermined threshold; and or
  • The cumulative duration during which the temperature measured or modeled in a given location of the NOx-Trap (downstream, internal, ...) is below a temperature threshold is greater than a predetermined threshold; and or
  • The modeled value of the OSC parameter is greater than a predetermined threshold.

Tous les seuils mentionnés ci-dessus peuvent être paramétrables pour permettre le réglage du procédé de désulfuration.All the thresholds mentioned above can be parameterized to allow the adjustment of the desulfurization process.

Le principe de l'invention reste compatible avec les procédés existants, notamment les critères pour déterminer le début ou la fin d'un procédé de désulfuration du NOx-Trap. Par exemple, si les conditions de faisabilité d'une période riche ne sont plus réunies, parce que le régime et/ou le couple moteur est trop bas par exemple, alors la période riche est arrêtée. De plus, le déroulement du procédé de désulfuration hors des périodes pauvres allongées peut être effectué selon toute solution de l'état de la technique.The principle of the invention remains compatible with the existing processes, in particular the criteria for determining the start or the end of a NOx-Trap desulfurization process. For example, if the feasibility conditions of a rich period are no longer met, because the speed and / or the engine torque is too low for example, then the rich period is stopped. In addition, the unfolding of the desulphurization process out periods elongated poor can be carried out according to any solution of the state of the art.

Finalement, l'invention présente les avantages suivants :

  • L'utilisation d'au moins un créneau pauvre allongé permet de restocker massivement de l'oxygène sur le NOx-Trap et permet de réduire les émissions nocives de H2S et COS ;
  • Elle permet soit de réduire ces émissions nocives soit de conserver la même émission en réduisant le volume du NOx-Trap, ou en réduisant la quantité de matériaux précieux le composant, donc en réduisant son coût ;
  • La superposition de la seconde loi qui réduit les émissions nocives permet de se contenter d'un réglage moins précis du reste du procédé, notamment mis en oeuvre par la première loi, ce qui réduit globalement le coût de calibration du procédé ;
  • Elle permet de choisir un mode d'alternance très rapide des créneaux riches et pauvres en application de la première loi LOI1, de l'ordre de quelques dizaines de millisecondes, permettant ainsi d'augmenter l'efficacité de la désulfuration, sans entraîner de pollution trop importante par émission de H2S et COS.
Finally, the invention has the following advantages:
  • The use of at least one elongated poor slot allows mass storage of oxygen on NOx-Trap and reduces the harmful emissions of H 2 S and COS;
  • It allows either to reduce these harmful emissions or to keep the same emission by reducing the volume of NOx-Trap, or by reducing the amount of precious materials composing it, thus reducing its cost;
  • The superposition of the second law which reduces the harmful emissions makes it possible to be content with a less precise adjustment of the rest of the process, in particular implemented by the first law, which overall reduces the cost of calibration of the process;
  • It makes it possible to choose a very fast alternating mode of the rich and poor slots in application of the first law LOI1, of the order of a few tens of milliseconds, thus making it possible to increase the efficiency of the desulfurization, without causing pollution too much by emission of H 2 S and COS.

Claims (9)

  1. Method for desulfurization of a nitrogen oxide trap (4) for the after-treatment of exhaust gases emitted by an internal combustion engine of a motor vehicle comprising an alternation of rich and lean periods, which involves implementing at least one long lean period (18) to allow the substantial increase of the parameter of oxygen storage capacity (OSC) of the nitrogen oxide trap (4), characterized in that it comprises the following steps when the nitrogen oxide trap (4) is in a lean period:
    (E1) - determining the end of the short lean period (17) by applying a first law (LAW1),
    (E2) - when the first law (LAW1) determines the end of the short lean period (17), determining if it is necessary to implement a long lean period (18) allowing the return of the parameter of oxygen storage (OSC) to a value equivalent to the start of the desulfurization by applying a second law (LAW2) in order to stop or continue the lean period, the said second law taking into account a slow dynamic of an evolution of a parameter of oxygen storage capacity of the nitrogen oxide trap,
    and in that it comprises the verification of at least one of the following conditions to determine the implementation of a long lean period (18):
    - the number of rich periods implemented from the last long lean period reaches a predetermined threshold; and/or
    - the cumulative duration of the rich periods implemented from the last long lean period reaches a predetermined threshold; and/or
    - the quantity of excess reducing components having arrived at the inlet of the NOx trap from the last long lean period reaches a predetermined threshold; and/or
    - the temperature measured or modelled in a given location of the NOx trap is greater than a predetermined threshold; and/or
    - the cumulative duration during which the temperature measured or modelled in a given location of the NOx trap is greater than a predetermined threshold.
  2. Desulfurization method according to the preceding claim, characterized in that it comprises two types of lean periods, short lean periods and at least one long lean period, which are implemented between similar rich periods.
  3. Desulfurization method according to the preceding claim, characterized in that a short lean period has a duration which allows the increase of the parameter of oxygen storage capacity (OSC) of the nitrogen oxide trap according to a first quick dynamic to a plateau (23), and in that at least one long lean period (18) has a duration which allows the increase of the parameter of oxygen storage capacity (OSC) of the nitrogen oxide trap according to a second slow dynamic, allowing the return of the parameter of oxygen storage (OSC) to a value equivalent to the start of the desulfurization.
  4. Desulfurization method according to one of the preceding claims, characterized in that the short lean periods (17) have a duration of between 5 and 30 seconds, whereas the long lean period (18) has a duration of between 20 and 60 seconds.
  5. Desulfurization method according to one of the preceding claims, characterized in that the at least one long lean period (18) has a duration of greater than or equal to the average duration of the short lean periods (17).
  6. Desulfurization method according to one of the preceding claims, characterized in that it comprises a third step (E3) of determining the end of a rich period (16) by applying the first law (LAW1) in order to restart a new lean period (17).
  7. Desulfurization method according to one of the preceding claims, characterized in that it comprises the verification of at least one of the following conditions to determine the end of a long lean period (18):
    - the total duration of the long lean period is greater than a predetermined threshold; and/or
    - the quantity of excess oxidizing components having arrived at the inlet of the NOx trap is greater than a predetermined threshold; and/or
    - the temperature measured or modelled in a given location of the NOx trap is lower than a predetermined threshold; and/or
    - the cumulative duration during which the temperature measured or modelled in a given location of the NOx trap is lower than a temperature threshold is greater than a predetermined threshold; and/or
    - the modelled value of the OSC parameter is greater than a predetermined threshold.
  8. Drive train for a motor vehicle, comprising an engine (1) and an exhaust pipe (3) for channelling the exhaust gases towards a nitrogen oxide trap (4), characterized in that it comprises an electronic control unit ECU (10) which implements the desulfurization method according to one of the preceding claims.
  9. Motor vehicle, characterized in that it comprises a drive train according to the preceding claim.
EP11305886.1A 2010-09-20 2011-07-08 Desulfuration of a NOx trap Active EP2431594B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1057501A FR2965017B1 (en) 2010-09-20 2010-09-20 DESULFURATION OF A NITROGEN OXIDE TRAP FROM A MOTOR VEHICLE

Publications (2)

Publication Number Publication Date
EP2431594A1 EP2431594A1 (en) 2012-03-21
EP2431594B1 true EP2431594B1 (en) 2018-06-13

Family

ID=43923681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11305886.1A Active EP2431594B1 (en) 2010-09-20 2011-07-08 Desulfuration of a NOx trap

Country Status (2)

Country Link
EP (1) EP2431594B1 (en)
FR (1) FR2965017B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713199A (en) * 1995-03-28 1998-02-03 Toyota Jidosha Kabushiki Kaisha Device for detecting deterioration of NOx absorbent
US6823843B1 (en) * 2004-01-13 2004-11-30 Ford Global Technologies, Llc System and method to minimize the amount of NOx released from a NOx trap
US20040255574A1 (en) * 2003-06-18 2004-12-23 Yasuki Tamura Exhaust emission control device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676884B2 (en) * 1989-03-03 1997-11-17 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
DE10202935A1 (en) * 2002-01-14 2003-08-21 Volkswagen Ag Operating process for removal of sulfur deposits from the pre-catalyst in an IC engine exhaust system by periodic inducing of high temperature with alternating lean and rich lambda conditions
DE10240977A1 (en) * 2002-09-05 2004-03-18 Robert Bosch Gmbh Method for operating an internal combustion engine and internal combustion engine itself
FR2927362B1 (en) 2008-02-07 2013-10-18 Renault Sas METHOD AND DEVICE FOR REGENERATING AN EXHAUST GAS POST-TREATMENT DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713199A (en) * 1995-03-28 1998-02-03 Toyota Jidosha Kabushiki Kaisha Device for detecting deterioration of NOx absorbent
US20040255574A1 (en) * 2003-06-18 2004-12-23 Yasuki Tamura Exhaust emission control device for internal combustion engine
US6823843B1 (en) * 2004-01-13 2004-11-30 Ford Global Technologies, Llc System and method to minimize the amount of NOx released from a NOx trap

Also Published As

Publication number Publication date
FR2965017A1 (en) 2012-03-23
EP2431594A1 (en) 2012-03-21
FR2965017B1 (en) 2014-05-09

Similar Documents

Publication Publication Date Title
FR2870568A1 (en) PROCESS FOR DESULFURIZING A NITROGEN OXIDE ACCUMULATOR CATALYST
EP1617060B1 (en) System for desulfurization of a NOx trap disposed in an exhaust line of a vehicle diesel motor
EP1954925B1 (en) System for determining the level of sulphur poisoning of depollution means integrated into the exhaust line of a motor vehicle engine
FR2831923A1 (en) System and process for the purification of exhaust gases from internal combustion engines, particularly for the elimination of particulate contamination from diesel engines
FR2807473A1 (en) Procedure for coordination of exhaust relevant measures with direct fuel injected internal combustion engine entails determining by use of measuring, evaluating and control equipment the state of NOx storage catalyser
EP2431594B1 (en) Desulfuration of a NOx trap
EP1982065B1 (en) SULPHUR OXIDE (SOx) REMOVAL METHOD AND SYSTEM AND STOP MODULE FOR SAID SYSTEM
FR2933447A1 (en) Nitrogen oxide trap desulfurizing method for post processing of exhaust gas emitted by internal engine of motor vehicle, involves initiating desulfurization of trap during regeneration of particle filter
WO2010000981A1 (en) Combined management of regeneration and sulphur removal for motor vehicle
FR3066704B1 (en) PROCESS FOR POST-PROCESSING NITROGEN OXIDES IN AN INTERNAL COMBUSTION ENGINE
FR2933445A1 (en) Nitrogen oxide trap desulphurizing method for post processing of exhaust gas emitted by diesel engine of motor vehicle, involves desulphurizing trap after beginning and before ending of regeneration of filter
FR2927372A1 (en) Fuel supply controlling method for internal combustion engine e.g. oil engine, of automobile, involves injecting fuel flows after regulating richness during regeneration of sulfur products of nitrogen oxide trap
EP2539558B1 (en) Method for controlling the pollutant emissions of a combustion engine
FR2933446A1 (en) Nitrogen oxide trap desulfurizing method for post processing of exhaust gas emitted by internal engine of motor vehicle, involves desulfurizing trap after beginning and before ending of regeneration of filter
FR2927947A1 (en) Sulfur oxide purging control method for e.g. diesel engine of motor vehicle, involves determining rich time/weak time such that rich time is higher than duration necessary for consuming surface oxygen present in converter
FR2956696A1 (en) METHOD FOR CONTROLLING A SYSTEM FOR TREATING EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
EP1413720A2 (en) Method to determine the internal temperature of a particulate filter, method to control the regeneration of said particulate filter, control system and particulate filter thereof
FR2983531A1 (en) Method managing fuel supply of internal combustion engine i.e. diesel engine, of power unit of car, involves determining temperature of air-fuel mixtures, and adjusting noise of combustion according to temperature of air-fuel mixtures
FR2930279A1 (en) White smoke and unburnt hydrocarbon emission reducing method for motor vehicle in diesel depollution field, involves detecting fault or excess of oxygen in exhaust gases in outlet of catalyst using binary oxygen probe
FR2978984A3 (en) Method for managing selective catalytic reduction catalyst used in post treatment device of exhaust gas emitted by internal combustion engine of motor vehicle, involves defining target value according to operation parameter
FR2983522A1 (en) Method for regenerating e.g. particle filter, of exhaust gases emitted by diesel engine of power train of car, involves estimating effectiveness of regeneration, and determining setpoint temperature based on estimated effectiveness
FR2938876A1 (en) STRATEGY FOR REGENERATING A PARTICLE FILTER
FR2933737A1 (en) Fuel's sulphur quantity detecting method for e.g. supercharged diesel engine, of motor vehicle, involves determining duration of purges of nitrogen oxide in nitrogen-oxide trap and comparing reduction of duration in time with threshold
WO2011061425A1 (en) Method for monitoring polluting emissions of a combustion engine
FR2927946A1 (en) Sulfur oxide purging control method for e.g. petrol engine of motor vehicle, involves changing rich to weak mixture when oxygen quantity is less than/equal to predetermined threshold, and weak to rich mixture when high threshold is attained

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120920

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/02 20060101AFI20130218BHEP

17Q First examination report despatched

Effective date: 20160329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011049198

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02D0041020000

Ipc: F02D0041140000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101AFI20170410BHEP

Ipc: F02D 41/02 20060101ALI20170410BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1008753

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011049198

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1008753

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011049198

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180708

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

26N No opposition filed

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220721

Year of fee payment: 12

Ref country code: DE

Payment date: 20220720

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011049198

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230708