EP2428649A1 - Drallbrecher in einer Leckageströmung einer Strömungsmaschine - Google Patents

Drallbrecher in einer Leckageströmung einer Strömungsmaschine Download PDF

Info

Publication number
EP2428649A1
EP2428649A1 EP10176188A EP10176188A EP2428649A1 EP 2428649 A1 EP2428649 A1 EP 2428649A1 EP 10176188 A EP10176188 A EP 10176188A EP 10176188 A EP10176188 A EP 10176188A EP 2428649 A1 EP2428649 A1 EP 2428649A1
Authority
EP
European Patent Office
Prior art keywords
turbomachine
housing
rotor
swirl breaker
swirl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10176188A
Other languages
English (en)
French (fr)
Inventor
Andreas Biesen
Johan Flegler
Michael Kleinhaus
Joachim Schettel
Armin De Lazzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10176188A priority Critical patent/EP2428649A1/de
Priority to EP11757253.7A priority patent/EP2614222B1/de
Priority to CN201180043747.XA priority patent/CN103109041B/zh
Priority to PCT/EP2011/065516 priority patent/WO2012032105A1/de
Publication of EP2428649A1 publication Critical patent/EP2428649A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/231Preventing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the invention relates to a turbomachine having a rotor rotatably mounted about a rotation axis and a housing arranged around the rotor, wherein the housing has a housing inner surface formed with respect to the rotor in a circumferential direction, wherein at least one gap is formed between the rotor and the housing inner surface, wherein a Number of radially extending vanes, each having a Leitschaufelfuß are attached to the housing and in the region of the housing inner surface a swirl crusher for reducing a twist of a leakage flow is arranged. It further relates to a power plant with such a turbomachine.
  • Turbomachines in the context of this invention are, for example, steam turbines, gas turbines or compressors, the invention preferably referring to steam turbines.
  • Turbomachines are characterized by a flow medium. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term "turbomachinery". All of these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine, or vice versa, to supply energy to a fluid in order to increase its pressure.
  • the energy conversion is indirect and preferably takes the path over the kinetic energy of the fluid.
  • Such turbomachines are used, for example, in power generation in power plants.
  • turbomachines such. B. in steam turbines
  • a flow medium in a main flow direction, which corresponds substantially to the direction of the axis of rotation.
  • the flow medium should ideally only through a so-called flow channel, which has so-called guide vanes and blades.
  • the flow channel is formed of different successively arranged guide and moving blades, wherein the guide vanes are fixed to a Leitschaufelfuß to a housing of the turbomachine, while the blades are fixed to the rotor.
  • the flow medium flows past the guide and moving blades through the flow channel, whereby the kinetic energy of the fluid is converted into rotational energy, which leads to a rotation of the rotor.
  • a first approach is to arrange so-called sealing lips between the rotating and fixed components.
  • the sealing lips are arranged rotationally symmetrically on the rotor and stator and act as a barrier to the leakage flow.
  • the leakage flow leads in turbomachinery to a further effect, which is undesirable.
  • the leakage flow through the gaps can amplify or dampen existing rotor vibrations during operation, which occurs depending on the prevailing boundary conditions.
  • This effect is referred to in fluid mechanics as Spalterregulation.
  • this effect is referred to as Dampfanfachung.
  • the branching off in the direction of the gap Flow medium portion having different directional components, in addition to the main direction component, which leads along the main flow channel also direction components are present, which are directed in the circumferential direction.
  • This circumferentially directed leakage flow component is also referred to as a spin.
  • the gap excitation or vaporization depends on the direction and magnitude of this twist of the leakage flow entering the gap.
  • the leakage flow in turbines has the effect that rather a fanning effect takes place instead of a damping.
  • swirl breakers are understood as meaning components which form a barrier to the leakage flow flowing in the circumferential direction, which is referred to as a swirl.
  • a brake fluid can be injected into the leakage flow in such a way that the twist is thereby minimized or prevented.
  • the swirl breakers are usually formed of individual components and incorporated in a suitable manner in the circumferential direction individually in the housing. This can require a high production cost, which leads to an increased production time.
  • the object of the invention is therefore to provide a turbomachine of the type mentioned above, which can be made quickly and at the same time technically particularly simple design.
  • the swirl breaker is designed as a component which is fixed in a form-locking manner in a gap formed by two adjacent guide blade feet.
  • the invention is based on the consideration that a particularly simple and rapid production of a turbomachine would be possible if the individual swirl crushers could be used in a simple manner without special effort in the construction of the turbomachine.
  • welding operations or similar complicated procedures should be omitted when introducing the individual swirl breaker.
  • This can be achieved by fixing the swirl crushers in a form-fitting manner.
  • the simplest possible structures should be used to fix the swirl crushers. This is achievable by suitably modifying the blade roots of adjacent vanes on the housing inner wall, e.g. B. by introducing appropriate wells, and the swirl breaker clamped between two adjacent Leitschaufel Stahl Kunststoff H, d. H. be fixed positively.
  • a swirl breaker is positively fixed in a plurality of intermediate spaces formed from two adjoining vanes feet. This can be achieved in a simple manner in the entire circumferential direction sufficient suppression of the peripheral components of the leakage flow.
  • the respective intermediate space is formed by recesses which are introduced into the respectively adjacent guide blade feet.
  • the guide blade feet thus have recesses which serve as a fit for the swirl breaker to be introduced.
  • the respective swirl breaker is designed as a sheet metal. This allows a particularly simple and inexpensive design. Additionally or alternatively, the respective swirl breaker can advantageously be made of one piece of material, ie. H. made of one piece or piece of sheet metal. If necessary, such a swirl breaker can be used as a standard component in all gaps between the rotor and the housing inner wall. This also simplifies the manufacture and assembly.
  • the swirl breaker advantageously has a section extending in the radial direction, which is fixed in a form-fitting manner in a groove of the housing.
  • the nominal size of the swirl breaker is slightly less than that of the space between the vanes feet. This will ensure that the flow of force passes over the sides of the vanes feet.
  • the respective swirl crusher has a bead, so that it elastically deforms during installation of the guide vanes. He is then secured in the circumferential direction against tilting.
  • a profiling of the sheet by means of a bead can also serve to achieve a stiffening against the attacking flow forces.
  • the leakage flow sometimes has a wide variety of directional components, it depends greatly on the boundary conditions, which form of the swirl breaker is suitable.
  • a swirl breaker wall is conceivable which has rounded corners, has a triangular shape or has further geometric shapes.
  • the swirl crusher is advantageously bent at a shallow angle in the circumferential direction. The orientation of the swirl breaker is then independent of the orientation of the blade roots.
  • such a turbomachine is used in a power plant.
  • the advantages achieved by the invention are in particular that a particularly simple and cost-effective installation of the swirl crusher in a turbomachine is made possible by a swirl crusher, which is positively fixed between two vanes feet.
  • the swirl breaker is a standard component that can be used in the same way on all gaps between the rotor and the housing of a turbine.
  • the standard component can simply be formed from a sheet which is placed in a suitable recess on the side of a blade root.
  • a subsequent replacement is particularly simple and inexpensive possible.
  • a particularly high efficiency of the turbomachine is achieved by effective spin suppression.
  • radial, axial and circumferential direction also refer in the following to the system of the turbomachine, wherein the direction designation "axially” refers to the axis of rotation.
  • the FIG. 1 shows a turbomachine 1, here as an embodiment of a steam turbine.
  • a turbomachine is a gas turbine or a compressor.
  • the steam turbine comprises an outer housing 2, which is designed as a pot housing.
  • the pot construction is merely exemplary, the invention can also be used in turbines of other designs.
  • a lid 3 is arranged with fastening means.
  • an inner housing 4 is arranged within the outer housing 2.
  • the inner housing 4 has guide vanes 5.
  • the steam turbine 1 has an inflow opening 6 through which steam flows as a flow medium during operation. The flow medium flows through a flow channel 7 past the guide vanes 5.
  • a rotor 8 is rotatably mounted about a rotation axis 9.
  • the rotor 8 comprises rotor blades arranged on the rotor surface 10. For the sake of clarity is in the FIG. 1 only one blade provided with the reference numeral 10.
  • the rotor 8 further comprises a thrust balance piston 11, which is commonly used in high pressure turbine parts with a usual for this type blading.
  • the steam flowing through the steam turbine 1 gives its energy to the Rotor 8 from, resulting in a rotation of the rotor 8.
  • the rotation of the rotor 8 is used, for example, to drive generators or pumps.
  • FIG. 2 is a section of a turbomachine shown.
  • the FIG. 2 shows a portion of a blade 10.
  • the blade 10 has a shroud 12 on. Opposite the shroud 12, the housing inner surface 14 of a portion of the inner housing 4 is shown.
  • the inner housing 4 has sealing lips 16, which are arranged rotationally symmetrically in the circumferential direction. Between the housing inner surface 14 and a surface of the shroud 12 of the blade 10, a gap 18 is formed. A flow of the flow medium through this gap 18 represents a loss that should be prevented or minimized.
  • the leakage flow also has a flow component which takes place in the circumferential direction, ie in FIG. 2 out of the picture plane or into it.
  • a swirl breaker 20 is mounted in the region of the housing inner surface 14.
  • the swirl breaker 20 is designed as a one-piece standard component made of sheet metal, which is fixed in a form-fitting manner between two guide blade feet 22 of two guide vanes 5. For this purpose, corresponding recesses or depressions are introduced into the guide blade feet 22, which serve as a fit for the swirl breakers 20.
  • FIG. 2 only one swirl breaker 20 is shown, but these are distributed rotationally symmetrically over the entire circumference of the turbomachine 1. In this case, the swirl breaker 20 extends in its surface substantially in the radial-axial plane.
  • the swirl breaker 20 has a radially extending portion 26 which engages the guide vane groove 28.
  • the dimensions of the swirl breaker 20 are chosen for a clearance fit.
  • the swirl crusher further has a ground edge 29 facing the shroud 12 in the installed state. This is to prevent that in the case of a touch, not the entire side surface of the swirl breaker 20 touches the shroud 12 and excessively damaged.
  • FIG. 3 is a view of the swirl breaker 20 in the circumferential direction.
  • the swirl breaker 20 has a bead 30 which extends initially in the radial direction over the radial section 26, and then over the remaining axial section. This serves on the one hand to stiffen the component, on the other hand, the swirl crusher 20 can be elastically deformed during installation so that it is secured against tilting.
  • FIG. 4 shows a corresponding view of the swirl breaker 20 in the axial direction.
  • FIG. 5 shows the swirl breaker 20 from the radial direction, wherein a bend of the swirl breaker 20 at the base of the radial portion 26 can be seen.
  • the swirl breaker 20 is bent at a flat angle about a bending axis 32 running in the radial direction.
  • the proposed here swirl breaker is a standard component, which allows a particularly simple and inexpensive construction of a turbomachine 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Eine Strömungsmaschine mit einem um eine Rotationsachse (9) drehbar gelagerten Rotor (8) und einem um den Rotor (8) angeordneten Gehäuse (4, 2), wobei das Gehäuse (4, 2) eine gegenüber dem Rotor (8) in einer Umfangsrichtung ausgebildete Gehäuseinnenoberfläche (14) aufweist, wobei zwischen dem Rotor (8) und der Gehäuseinnenoberfläche (14) mindestens ein Spalt (18) ausgebildet ist, wobei eine Anzahl von sich radial erstreckenden Leitschaufeln (24) mit jeweils einem Leitschaufelfuß (22) am Gehäuse befestigt sind und im Bereich der Gehäuseinnenoberfläche (14) ein Drallbrecher (20) zum Vermindern eines Dralls einer Leckageströmung angeordnet ist, soll schnell hergestellt werden können und gleichzeitig technisch besonders einfach ausgestaltet sein. Dazu ist der Drallbrecher (20) als formschlüssig in einem von zwei benachbarten Leitschaufelfüßen (22) gebildeten Zwischenraum fixiertes Bauteil ausgebildet.

Description

  • Die Erfindung betrifft eine Strömungsmaschine mit einem um eine Rotationsachse drehbar gelagerten Rotor und einem um den Rotor angeordneten Gehäuse, wobei das Gehäuse eine gegenüber dem Rotor in einer Umfangsrichtung ausgebildete Gehäuseinnenoberfläche aufweist, wobei zwischen dem Rotor und der Gehäuseinnenoberfläche mindestens ein Spalt ausgebildet ist, wobei eine Anzahl von sich radial erstreckenden Leitschaufeln mit jeweils einem Leitschaufelfuß am Gehäuse befestigt sind und im Bereich der Gehäuseinnenoberfläche ein Drallbrecher zum Vermindern eines Dralls einer Leckageströmung angeordnet ist. Sie betrifft weiter eine Kraftwerksanlage mit einer derartigen Strömungsmaschine.
  • Strömungsmaschinen im Sinne dieser Erfindung sind beispielsweise Dampfturbinen, Gasturbinen oder Verdichter, wobei sich die Erfindung vorzugsweise auf Dampfturbinen bezieht. Strömungsmaschinen zeichnen sich durch ein Strömungsmedium aus. Unter der Sammelbezeichnung "Strömungsmaschinen" werden Wasserturbinen, Dampf- und Gasturbinen, Windräder, Kreiselpumpen und Kreiselverdichter sowie Propeller zusammengefasst. Allen diesen Maschinen ist gemeinsam, dass sie dem Zweck dienen, einem Fluid Energie zu entziehen, um damit eine andere Maschine anzutreiben oder umgekehrt, einem Fluid Energie zuzuführen, um dessen Druck zu erhöhen. In Strömungsmaschinen ist die Energieumsetzung indirekt und nimmt vorzugsweise den Weg über die kinetische Energie des Fluids. Derartige Strömungsmaschinen kommen beispielsweise bei der Stromerzeugung in Kraftwerksanlagen zum Einsatz.
  • In Strömungsmaschinen, wie z. B. bei Dampfturbinen, strömt im Betrieb ein Strömungsmedium in einer Hauptströmungsrichtung, die im Wesentlichen der Richtung der Rotationsachse entspricht. Das Strömungsmedium soll idealer Weise lediglich durch einen so genannten Strömungskanal strömen, der so genannte Leit- und Laufschaufeln aufweist. Üblicherweise wird der Strömungskanal aus verschiedenen hintereinander angeordneten Leit- und Laufschaufeln gebildet, wobei die Leitschaufeln an einem Leitschaufelfuß an einem Gehäuse der Strömungsmaschine fixiert sind, während die Laufschaufeln am Rotor fixiert sind. Das Strömungsmedium strömt durch den Strömungskanal an den Leit- und Laufschaufeln vorbei, wobei die kinetische Energie des Fluids in Rotationsenergie umgewandelt wird, was zu einer Rotation des Rotors führt.
  • Da eine Bewegung des Rotors in dem Gehäuse stattfindet, sind Spalte zwischen der Gehäuseinnenoberfläche und dem Rotor vorhanden, die so gering wie möglich ausgeführt werden sollten. Dennoch können Spalte nicht vermieden werden, was zu einer unerwünschten Strömung durch die Spalte führt. Die unerwünschte Strömung ergibt sich aus der Hauptströmung, wobei ein Teil aus der Hauptströmung abzweigt und durch den Spalt strömt. Diese Spaltströmung kann als Leckageströmung bezeichnet werden, wobei es Ziel bei jeder Auslegung einer Strömungsmaschine ist, die Leckageströmung so gering wie möglich zu halten. Daher existieren verschiedene Ansätze um die Leckageströmung zu minimieren. Ein erster Ansatz besteht darin, so genannte Dichtlippen zwischen den rotierenden und den fest stehenden Komponenten anzuordnen. Die Dichtlippen sind dabei rotationssymmetrisch an Rotor und Stator angeordnet und wirken als Barriere für die Leckageströmung. Somit wird eine im Wesentlichen parallel zur Hauptströmung strömende Leckageströmung abgebremst.
  • Die Leckageströmung führt allerdings im Strömungsmaschinenbau zu einem weiteren Effekt, der unerwünscht ist. Die Leckageströmung durch die Spalte kann im Betrieb vorhandene Rotorschwingungen verstärken oder abdämpfen, was je nach vorherrschenden Randbedingungen zum Vorschein tritt. Dieser Effekt wird im Strömungsmaschinenbau als Spalterregung bezeichnet. Speziell im Dampfturbinenbau wird dieser Effekt als Dampfanfachung bezeichnet. Da der in Richtung Spalt abzweigende Strömungsmediumanteil verschiedene Richtungskomponenten aufweist, sind neben der Hauptrichtungskomponente, die entlang des Hauptströmungskanals führt auch Richtungskomponenten vorhanden, die in Umfangsrichtung gerichtet sind. Diese in Umfangsrichtung gerichtete Leckageströmungskomponente wird auch als Drall bezeichnet. Die Spalterregung bzw. Dampfanfachung ist abhängig von Richtung und Größe dieses Dralls der Leckageströmung beim Eintritt in den Spalt. Generell hat die Leckageströmung bei Turbinen den Effekt, dass eher eine anfachende Wirkung statt einer dämpfenden erfolgt.
  • Diese anfachende Wirkung ist störend und es sind Bestrebungen vorhanden, diese Störung zu verhindern. Dabei ist es bekannt Drallbrecher in unterschiedlichen Bauformen einzusetzen. Unter Drallbrechern werden hierbei Komponenten verstanden, die eine Barriere bilden für die in Umfangsrichtung strömende Leckageströmung, die als Drall bezeichnet wird. Alternativ dazu oder zusätzlich kann ein Bremsfluid derart in die Leckageströmung eingeblasen werden, dass dadurch der Drall minimiert bzw. verhindert wird.
  • Die Drallbrecher werden üblicherweise aus einzelnen Komponenten ausgebildet und in geeigneter Weise in Umfangsrichtung einzeln in das Gehäuse eingearbeitet. Dies kann einen hohen Fertigungsaufwand bedingen, was zu einer erhöhten Fertigungszeit führt.
  • Aufgabe der Erfindung ist es daher, eine Strömungsmaschine der oben genannten Art anzugeben, die schnell hergestellt werden kann und gleichzeitig technisch besonders einfach ausgestaltet ist.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem der Drallbrecher als formschlüssig in einem von zwei benachbarten Leitschaufelfüßen gebildeten Zwischenraum fixiertes Bauteil ausgebildet ist.
  • Die Erfindung geht von der Überlegung aus, dass eine besonders einfache und schnelle Herstellung einer Strömungsmaschine möglich wäre, wenn die einzelnen Drallbrecher in einfacher Weise ohne gesonderten Aufwand bei der Konstruktion der Strömungsmaschine eingesetzt werde könnten. Insbesondere sollten Schweißvorgänge oder ähnlich aufwändige Verfahren beim Einbringen der einzelnen Drallbrecher entfallen. Dies ist erreichbar, indem die Drallbrecher formschlüssig fixiert werden. Dabei sollten zur einfachen Ausgestaltung möglichst vorhandene Strukturen zur Fixierung der Drallbrecher genutzt werden. Dies ist erreichbar, indem die Schaufelfüße benachbarter Leitschaufeln an der Gehäuseinnenwand geeignet modifiziert werden, z. B. durch Einbringen entsprechender Vertiefungen, und die Drallbrecher zwischen zwei benachbarten Leitschaufelfüßen eingeklemmt, d. h. formschlüssig fixiert werden.
  • Durch eine derartige Anordnung können nun über den gesamten Umfang Drallbrecher verteilt werden, d. h. vorteilhafterweise ist jeweils ein Drallbrecher in einer Mehrzahl von aus jeweils zwei benachbarten Leitschaufelfüßen gebildeten Zwischenräumen formschlüssig fixiert. Dadurch kann auf einfache Weise in der gesamten Umfangsrichtung eine ausreichende Unterdrückung der Umfangskomponenten der Leckageströmung erreicht werden.
  • Vorteilhafterweise ist der jeweilige Zwischenraum dabei durch Ausnehmungen gebildet, die in die jeweils benachbarten Leitschaufelfüße eingebracht sind. Die Leitschaufelfüße weisen also Vertiefungen auf, die als Passform für die einzubringenden Drallbrecher dienen.
  • Zur Unterdrückung der Umfangskomponenten sollte der Drallbrecher eine Barriere in im Wesentlichen radial-axialer Ebene der Strömungsmaschine errichten. Da auch die Zwischenräume zwischen den Leitschaufelfüßen in dieser Ebene erstreckt sind, ergibt sich eine besonders einfache, flache Bauweise, indem der jeweilige Drallbrecher vorteilhafterweise als sich im Wesentlichen in radial-axialer Ebene erstreckendes Bauteil ausgestaltet ist.
  • In vorteilhafter Ausgestaltung ist der jeweilige Drallbrecher als Blech ausgestaltet. Dies ermöglicht eine besonders einfache und kostengünstige Ausführung. Zusätzlich oder alternativ kann der jeweilige Drallbrecher vorteilhafterweise materialeinstückig, d. h. aus einem Stück bzw. Blechstück gefertigt werden. Ein derartiger Drallbrecher kann als Standardbauteil gegebenenfalls in alle Spalten zwischen Rotor und Gehäuseinnenwand eingesetzt werden. Auch dies vereinfacht die Herstellung und Montage.
  • Die Leitschaufelfüße stellen nach dem Einbau einen Formschluss für die jeweiligen Drallbrecher in Umfangsrichtung her. Um auch einen Formschluss in axialer Richtung zu gewährleisten, weist der Drallbrecher vorteilhafterweise einen sich in radialer Richtung erstreckenden Abschnitt auf, der in einer Nut des Gehäuses formschlüssig fixiert ist.
  • In vorteilhafter Ausgestaltung ist dabei der jeweilige Drallbrecher mit einer Spielpassung fixiert, d. h. das Nennmaß des Drallbrechers ist etwas geringer als das des Zwischenraumes zwischen den Leitschaufelfüßen. Dadurch wird sichergestellt, dass der Kraftfluss über die Seiten der Leitschaufelfüße geht.
  • In weiterer oder alternativer Ausgestaltung weist der jeweilige Drallbrecher eine Sicke auf, so dass er sich beim Einbau der Leitschaufeln elastisch verformt. Er ist dann in Umfangsrichtung gegen Verkippen gesichert. Eine Profilierung des Bleches mittels einer Sicke kann dabei auch dazu dienen, eine Versteifung gegen die angreifenden Strömungskräfte zu erreichen.
  • Da die Leckageströmung teilweise verschiedenste Richtungskomponenten aufweist, hängt es stark von den Randbedingungen ab, welche Form des Drallbrechers geeignet ist. So ist beispielsweise eine Drallbrecherwand denkbar, die abgerundete Ecken aufweist, eine dreieckige Form aufweist oder weitere geometrische Formen aufweist. Für eine besonders einfache Beeinflussung der Strömung kann der frei in der Strömung stehende Teil des Drallbrechers gegenüber dem zwischen zwei Schaufelfüßen verklemmten Bereich mit einem Winkel angeordnet werden, d. h., der Drallbrecher ist vorteilhafterweise in flachem Winkel in Umfangsrichtung gebogen. Die Ausrichtung des Drallbrechers ist dann von der Orientierung der Schaufelfüße unabhängig.
  • In vorteilhafter Ausgestaltung kommt eine derartige Strömungsmaschine in einer Kraftwerksanlage zum Einsatz.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch einen Drallbrecher, der formschlüssig zwischen zwei Leitschaufelfüßen fixiert ist, eine besonders einfache und kostengünstige Installation des Drallbrechers in einer Strömungsmaschine ermöglicht wird. Der Drallbrecher ist ein Standardbauteil, das in gleicher Weise an allen Spalten zwischen Rotor und Gehäuse einer Turbine eingesetzt werden kann. Das Standardbauteil kann einfach aus einem Blech gebildet werden, das in eine passende Vertiefung an der Seite eines Schaufelfußes gelegt wird. Damit ist auch ein nachträglicher Austausch besonders einfach und kostengünstig möglich. Gleichzeitig wird durch effektive Drallunterdrückung ein besonders hoher Wirkungsgrad der Strömungsmaschine erreicht.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    eine Dampfturbine als Ausführungsbeispiel für eine Strömungsmaschine,
    FIG 2
    einen Ausschnitt aus einer Strömungsmaschine,
    FIG 3
    eine Ansicht eines Drallbrechers in Umfangsrichtung,
    FIG 4
    eine Ansicht des Drallbrechers in axialer Richtung, und
    FIG 5
    eine Ansicht des Drallbrechers in radialer Richtung.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen. Die Bezeichnungen radial, axial und Umfangsrichtung beziehen sich auch im Folgenden jeweils auf das System der Strömungsmaschine, wobei sich die Richtungsbezeichnung "axial" auf die Rotationsachse bezieht.
  • Die FIG 1 zeigt eine Strömungsmaschine 1, hier als Ausführungsform eine Dampfturbine. Weitere Beispiele für eine Strömungsmaschine sind eine Gasturbine oder ein Verdichter. Die Dampfturbine umfasst ein Außengehäuse 2, das als Topfgehäuse ausgebildet ist. Die Topfbauweise ist dabei lediglich beispielhaft, die Erfindung kann auch in Turbinen anderer Bauformen zur Anwendung kommen. Zum Außengehäuse 2 wird ein Deckel 3 mit Befestigungsmitteln angeordnet. Innerhalb des Außengehäuses 2 ist ein Innengehäuse 4 angeordnet. Das Innengehäuse 4 weist Leitschaufeln 5 auf. Der Übersichtlichkeit wegen ist in der FIG 1 lediglich eine Leitschaufel mit dem Bezugszeichen 5 versehen. Des Weiteren weist die Dampfturbine 1 eine Einströmöffnung 6 auf, durch die im Betrieb Dampf als Strömungsmedium strömt. Das Strömungsmedium strömt durch einen Strömungskanal 7 an den Leitschaufeln 5 vorbei. Innerhalb des Innengehäuses 4 ist ein Rotor 8 um eine Rotationsachse 9 drehbar gelagert. Der Rotor 8 umfasst auf der Rotoroberfläche angeordnete Laufschaufeln 10. Der Übersichtlichkeit wegen ist in der FIG 1 lediglich eine Laufschaufel mit dem Bezugszeichen 10 versehen.
  • Der Rotor 8 weist des Weiteren einen Schubausgleichskolben 11 auf, der üblicherweise in Hochdruckteilturbinen mit einer für diesen Typ üblichen Beschaufelung verwendet wird. Der durch die Dampfturbine 1 strömende Dampf gibt seine Energie an den Rotor 8 ab, was zu einer Rotation des Rotors 8 führt. Die Rotation des Rotors 8 wird beispielsweise dazu verwendet, um Generatoren oder Pumpen anzutreiben.
  • In der FIG 2 ist ein Ausschnitt einer Strömungsmaschine dargestellt. Die FIG 2 zeigt einen Teil einer Laufschaufel 10. Die Laufschaufel 10 weist ein Deckband 12 auf. Gegenüber dem Deckband 12 ist Gehäuseinnenoberfläche 14 eines Teils des Innengehäuses 4 dargestellt. Das Innengehäuse 4 weist Dichtlippen 16 auf, die in Umfangsrichtung rotationssymmetrisch angeordnet sind. Zwischen der Gehäuseinnenoberfläche 14 und einer Oberfläche des Deckbands 12 der Laufschaufel 10 ist ein Spalt 18 ausgebildet. Eine Strömung des Strömungsmediums durch diesen Spalt 18 stellt einen Verlust dar, der verhindert bzw. minimiert werden soll.
  • Der größte Teil des Strömungsmediums strömt entlang der Hauptströmung, im Wesentlichen entlang der Rotationsachse 9. Bei konusförmigen Strömungskanälen verläuft die Hauptströmungsrichtung nicht zwingend exakt entlang der Rotationsachsen 9. Ein vergleichsweise geringer Anteil der Hauptströmung 16 zweigt in radialer Richtung zum Spalt 18 hin ab. Die Leckageströmung weist neben einer radialen Strömungskomponente auch eine Strömungskomponente auf, die in Umfangsrichtung erfolgt, d. h. in FIG 2 aus der Bildebene heraus oder hinein. Zur Minimierung dieser in Umfangsrichtung ausgebildeten Strömungskomponente der Leckageströmung wird ein Drallbrecher 20 im Bereich der Gehäuseinnenoberfläche 14 angebracht.
  • Für eine besonders einfache Konstruktion der Strömungsmaschine 1 ist der Drallbrecher 20 dabei als einstückiges Standardbauteil aus Blech ausgebildet, das zwischen zwei Leitschaufelfüßen 22 zweier Leitschaufeln 5 formschlüssig fixiert ist. Dazu sind in die Leitschaufelfüße 22 jeweils entsprechende Ausnehmungen oder Vertiefungen eingebracht, die als Passform für die Drallbrecher 20 dienen. In FIG 2 ist lediglich ein Drallbrecher 20 gezeigt, diese sind jedoch rotationssymmetrisch über den gesamten Umfang der Strömungsmaschine 1 verteilt. Dabei erstreckt sich der Drallbrecher 20 in seiner Fläche im Wesentlichen in radial-axialer Ebene. Der Drallbrecher 20 weist einen sich in radialer Richtung erstreckenden Abschnitt 26 auf, der in die Leitschaufelnut 28 eingreift. Somit ist sowohl in Umfangsrichtung durch die Leitschaufeln 5 als auch in axialer Richtung durch die Leitschaufelnut 28 ein Formschluss und somit sicherer Halt des Drallbrechers 20 gewährleistet. Die Maße des Drallbrechers 20 sind dabei für eine Spielpassung gewählt. Der Drallbrecher weist weiterhin eine im eingebauten Zustand dem Deckband 12 zugewandte angeschliffene Kante 29 auf. Diese soll verhindern, dass im Falle einer Berührung nicht die gesamte Seitenfläche des Drallbrechers 20 das Deckband 12 berührt und übermäßig schädigt.
  • In der FIG 3 ist eine Ansicht des Drallbrechers 20 in Umfangsrichtung dargestellt. Der Drallbrecher 20 weist eine sich zunächst in radialer Richtung über den radialen Abschnitt 26, und dann über den axialen übrigen Abschnitt erstreckende Sicke 30 auf. Diese dient einerseits zur Versteifung des Bauteils, andererseits kann der Drallbrecher 20 beim Einbau so elastisch verformt werden, dass er gegen Verkippen gesichert ist. FIG 4 zeigt eine entsprechende Ansicht des Drallbrechers 20 in axialer Richtung. FIG 5 zeigt den Drallbrecher 20 aus radialer Richtung, wobei eine Biegung des Drallbrechers 20 am Ansatz des radialen Abschnitts 26 erkennbar ist. Hier ist der Drallbrecher 20 um eine in radialer Richtung verlaufende Biegeachse 32 in flachem Winkel gebogen. So kann die Ausrichtung des in den Spalt 18 ragenden Teils des Drallbrechers 20 unabhängig von der Einbausituation der Leitschaufeln 5 an die jeweiligen Strömungsverhältnisse angebracht werden. Der hier vorgeschlagene Drallbrecher, ist ein Standardbauteil, welches eine besonders einfache und kostengünstige Konstruktion einer Strömungsmaschine 1 ermöglicht.

Claims (11)

  1. Strömungsmaschine mit einem um eine Rotationsachse (9) drehbar gelagerten Rotor (8) und einem um den Rotor (8) angeordneten Gehäuse (4, 2),
    wobei das Gehäuse (4, 2) eine gegenüber dem Rotor (8) in einer Umfangsrichtung ausgebildete Gehäuseinnenoberfläche (14) aufweist,
    wobei zwischen dem Rotor (8) und der Gehäuseinnenoberfläche (14) mindestens ein Spalt (18) ausgebildet ist,
    wobei eine Anzahl von sich radial erstreckenden Leitschaufeln (24) mit jeweils einem Leitschaufelfuß (22) am Gehäuse befestigt sind und im Bereich der Gehäuseinnenoberfläche (14) ein Drallbrecher (20) zum Vermindern eines Dralls einer Leckageströmung angeordnet ist,
    wobei der Drallbrecher (20) als formschlüssig in einem von zwei benachbarten Leitschaufelfüßen (22) gebildeten Zwischenraum fixiertes Bauteil ausgebildet ist.
  2. Strömungsmaschine (1) nach Anspruch 1,
    wobei jeweils ein Drallbrecher (20) in einer Mehrzahl von aus jeweils zwei benachbarten Leitschaufelfüßen (22) gebildeten Zwischenräumen formschlüssig fixiert ist.
  3. Strömungsmaschine (1) nach Anspruch 1 oder 2,
    wobei in die jeweils zwei benachbarten Leitschaufelfüße (22) Ausnehmungen eingebracht sind und der jeweilige Zwischenraum im Wesentlichen durch die Ausnehmungen gebildet ist.
  4. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) als sich im Wesentlichen in radial-axialer Ebene erstreckendes Bauteil ausgestaltet ist.
  5. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) als Blech ausgestaltet ist.
  6. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) materialeinstückig ist.
  7. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) einen sich in radialer Richtung erstreckenden Abschnitt aufweist, der in einer Nut (28) des Gehäuses (4, 2) formschlüssig fixiert ist.
  8. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) mit Spielpassung fixiert ist.
  9. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) eine Sicke (30) aufweist.
  10. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der jeweilige Drallbrecher (20) in flachem Winkel in Umfangsrichtung gebogen ist.
  11. Kraftwerksanlage mit einer Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche.
EP10176188A 2010-09-10 2010-09-10 Drallbrecher in einer Leckageströmung einer Strömungsmaschine Withdrawn EP2428649A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10176188A EP2428649A1 (de) 2010-09-10 2010-09-10 Drallbrecher in einer Leckageströmung einer Strömungsmaschine
EP11757253.7A EP2614222B1 (de) 2010-09-10 2011-09-08 Drallbrecher in einer Leckageströmung einer Strömungsmaschine
CN201180043747.XA CN103109041B (zh) 2010-09-10 2011-09-08 在泄漏流中具有涡旋破坏件的流体机械
PCT/EP2011/065516 WO2012032105A1 (de) 2010-09-10 2011-09-08 Drallbrecher in einer leckageströmung einer strömungsmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10176188A EP2428649A1 (de) 2010-09-10 2010-09-10 Drallbrecher in einer Leckageströmung einer Strömungsmaschine

Publications (1)

Publication Number Publication Date
EP2428649A1 true EP2428649A1 (de) 2012-03-14

Family

ID=43558482

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10176188A Withdrawn EP2428649A1 (de) 2010-09-10 2010-09-10 Drallbrecher in einer Leckageströmung einer Strömungsmaschine
EP11757253.7A Not-in-force EP2614222B1 (de) 2010-09-10 2011-09-08 Drallbrecher in einer Leckageströmung einer Strömungsmaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11757253.7A Not-in-force EP2614222B1 (de) 2010-09-10 2011-09-08 Drallbrecher in einer Leckageströmung einer Strömungsmaschine

Country Status (3)

Country Link
EP (2) EP2428649A1 (de)
CN (1) CN103109041B (de)
WO (1) WO2012032105A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089768A (ja) * 2014-11-07 2016-05-23 三菱日立パワーシステムズ株式会社 シール装置及びターボ機械

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1861960A (en) * 1930-11-28 1932-06-07 Westinghouse Electric & Mfg Co Turbine blading
US4370094A (en) * 1974-03-21 1983-01-25 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
US4662820A (en) * 1984-07-10 1987-05-05 Hitachi, Ltd. Turbine stage structure
DE4215440A1 (de) * 1992-05-11 1993-11-18 Mtu Muenchen Gmbh Einrichtung zur Bauteilabdichtung, insbesondere bei Turbomaschinen
EP1001139A1 (de) * 1998-11-10 2000-05-17 Asea Brown Boveri AG Spitzendichtung für Turbinenlaufschaufeln
EP1163428B1 (de) * 1999-03-24 2004-08-25 Siemens Aktiengesellschaft Leitschaufel und leitschaufelkranz für eine strömungsmaschine, sowie bauteil zur begrenzung eines strömungskanals
JP2006104952A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 流体機械の旋回流防止装置
EP1744015A1 (de) * 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Befestigung von federndem Dichtsegment im Schaufelfuss von Leitschaufeln
DE102007054926A1 (de) * 2006-11-16 2008-06-05 General Electric Co. Schutzvorrichtung für Turbinendichtungen
EP2031184A1 (de) * 2007-08-31 2009-03-04 Siemens Aktiengesellschaft Drallbrecher für eine Strömungsmaschine
EP2182173A2 (de) * 2008-10-29 2010-05-05 General Electric Company Dampfturbine mit wärmeaktivierter Dichtungsvorrichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722846B2 (en) * 2002-07-30 2004-04-20 General Electric Company Endface gap sealing of steam turbine bucket tip static seal segments and retrofitting thereof
DE102007030764B4 (de) * 2006-07-17 2020-07-02 General Electric Technology Gmbh Dampfturbine mit Heizdampfentnahme

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1861960A (en) * 1930-11-28 1932-06-07 Westinghouse Electric & Mfg Co Turbine blading
US4370094A (en) * 1974-03-21 1983-01-25 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
US4662820A (en) * 1984-07-10 1987-05-05 Hitachi, Ltd. Turbine stage structure
DE4215440A1 (de) * 1992-05-11 1993-11-18 Mtu Muenchen Gmbh Einrichtung zur Bauteilabdichtung, insbesondere bei Turbomaschinen
EP1001139A1 (de) * 1998-11-10 2000-05-17 Asea Brown Boveri AG Spitzendichtung für Turbinenlaufschaufeln
EP1163428B1 (de) * 1999-03-24 2004-08-25 Siemens Aktiengesellschaft Leitschaufel und leitschaufelkranz für eine strömungsmaschine, sowie bauteil zur begrenzung eines strömungskanals
JP2006104952A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 流体機械の旋回流防止装置
EP1744015A1 (de) * 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Befestigung von federndem Dichtsegment im Schaufelfuss von Leitschaufeln
DE102007054926A1 (de) * 2006-11-16 2008-06-05 General Electric Co. Schutzvorrichtung für Turbinendichtungen
EP2031184A1 (de) * 2007-08-31 2009-03-04 Siemens Aktiengesellschaft Drallbrecher für eine Strömungsmaschine
EP2182173A2 (de) * 2008-10-29 2010-05-05 General Electric Company Dampfturbine mit wärmeaktivierter Dichtungsvorrichtung

Also Published As

Publication number Publication date
CN103109041A (zh) 2013-05-15
CN103109041B (zh) 2015-11-25
WO2012032105A1 (de) 2012-03-15
EP2614222B1 (de) 2014-10-29
EP2614222A1 (de) 2013-07-17

Similar Documents

Publication Publication Date Title
EP2261463B1 (de) Strömungsmaschine mit einer Schaufelreihengruppe
EP2108784B1 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
EP2647795B1 (de) Dichtungssystem für eine Strömungsmaschine
EP2503246B1 (de) Segmentierter Brennkammerkopf
EP2993357B1 (de) Radialverdichterstufe
EP2652337A1 (de) Axialkompressor
EP2647796A1 (de) Dichtungssystem für eine Strömungsmaschine
EP3034788B1 (de) Kompressorschaufel einer gasturbine
EP2558685A2 (de) Leitschaufel einer strömungsmaschine
EP2514975B1 (de) Strömungsmaschine
EP3022393B1 (de) Rotor für eine thermische strömungsmaschine
EP2994615B1 (de) Rotor für eine thermische strömungsmaschine
WO2016087214A1 (de) Turbinenlaufschaufel, zugehöriger rotor und strömungsmaschine
EP2824277B1 (de) Gasturbinenstufe
DE102017212311A1 (de) Umströmungsanordung zum Anordnen im Heißgaskanal einer Strömungsmaschine
EP3309359B1 (de) Laufschaufelbaugruppe für ein triebwerk
EP2614222B1 (de) Drallbrecher in einer Leckageströmung einer Strömungsmaschine
DE102013210427A1 (de) Deckbandanordnung für eine Strömungsmaschine
WO2016096420A1 (de) Kühlmöglichkeit für strömungsmaschinen
DE102012212483A1 (de) Zahnärztliches Präparationsinstrument
EP3309360B1 (de) Laufschaufelbaugruppe für ein triebwerk
EP2031184A1 (de) Drallbrecher für eine Strömungsmaschine
EP2597265A1 (de) Laufschaufel für eine axial durchströmbare Turbomaschine
WO2018146046A1 (de) Verfahren zum modifizieren einer turbine
EP3246521B1 (de) Auflauffläche für leitschaufeldeck- und laufschaufelgrundplatte

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

18D Application deemed to be withdrawn

Effective date: 20120915