EP2425684A1 - Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben - Google Patents

Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben

Info

Publication number
EP2425684A1
EP2425684A1 EP10716534A EP10716534A EP2425684A1 EP 2425684 A1 EP2425684 A1 EP 2425684A1 EP 10716534 A EP10716534 A EP 10716534A EP 10716534 A EP10716534 A EP 10716534A EP 2425684 A1 EP2425684 A1 EP 2425684A1
Authority
EP
European Patent Office
Prior art keywords
power
operating
circuit
power loss
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10716534A
Other languages
English (en)
French (fr)
Other versions
EP2425684B1 (de
Inventor
Christian Nesensohn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2425684A1 publication Critical patent/EP2425684A1/de
Application granted granted Critical
Publication of EP2425684B1 publication Critical patent/EP2425684B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules

Definitions

  • the invention relates to a power-controlled operating circuit for a lighting means with means for determining a power-related actual value with the circuit-specific power loss, with a controller to which a power actual value and a power setpoint are supplied and which generates a control difference.
  • the invention further relates to a method for operating a power-controlled operating circuit for a light source, wherein a power-related with the circuit-specific power loss actual power value is determined by means of one or more of the performance yielding parameter and compared with a power setpoint, and wherein with a by the control difference obtained the comparison is controlled a large, which determines the power supplied to the bulbs.
  • Power-controlled operating circuits of the aforementioned type are widely used in electronic ballasts for lighting.
  • the actual power value associated with the circuit-specific power loss is compared with a predetermined setpoint power.
  • the resulting control difference is used as a control value for the inverter frequency. Due to unavoidable manufacturing tolerances of the components, the circuit-specific power dissipation is different from device to device. Without countermeasure this has the consequence that the light output of the light sources operated with such power-controlled operating circuits is different despite equal power setpoints.
  • ballasts It is known for a certain type of ballasts to first measure the lamp current at each device after its completion in the production station and to use a matched resistance corresponding to the measured value in the lamp circuit. In this way it is achieved that all devices after leaving the production point under otherwise identical conditions also have a same lamp current, which ensures that even the light bulbs operated with it give the same light output under the same conditions.
  • ballasts also to measure immediately after completion in the production of the difference between a predetermined setpoint power and the measured actual value performance and to digitize the measured value.
  • the digitized measured value is then stored by means of an external programming device in the ASIC, with which the operating circuit is at least partially realized.
  • the invention is therefore based on the object to outsource the elimination of the influence of the circuit-specific power loss of a power-controlled operating circuit from the production process and to automate as much as possible.
  • the invention further relates to an integrated control circuit, in particular ASIC, microcontroller or hybrid version thereof, which is designed to carry out a method according to one of the preceding claims, as well as an operating device for
  • Illuminant comprising such a control circuit.
  • the solution according to the invention for both the operating circuit and the method is that each operating circuit or each ballast, by incorporating such an operating circuit or implementing such a method, first of all activates a preliminary operation in the field after being switched on. Must go through routine.
  • the circuit-specific power loss is first determined in a first phase.
  • the control parameters, ie the measured actual value power or the predetermined setpoint power or the control difference determined from the comparison is corrected or modified in such a way that the power loss no longer has any influence on the control result.
  • the power loss is either added to the setpoint power or subtracted from the actual power or added to the control difference.
  • the power loss is thus calculated from the calculation process for the control difference.
  • the light output of the light source therefore always corresponds to the setpoint power. This is - with otherwise the same preconditions - the light output of bulbs that are operated with such corrected power-controlled operating circuits, always the same.
  • the measurement of the power loss during the pre-routine is carried out according to a first possibility with the regular operating parameters for the light source before it absorbs useful power for light emission in a time-starting process. It is known that certain light sources, in particular gas discharge lamps after switching on the operating circuit ignite only with a certain time delay before they absorb useful power for light emission. If one measures the actual powers within this phase, then the measurement result represents the power loss of the operating circuit.
  • a second possibility is that at least one operating parameter for the lighting means is selected such that the lighting means can not absorb any useful power for emitting light.
  • an operating parameter can be, for example, a Be inverter frequency. This can either be so much lower than the resonant frequency of the resonant circuit or be so much higher than the latter, that the operating voltage for the lamp is not sufficient for the lamp can absorb useful power for light emission. In the case of a gas discharge lamp, this means that the operating voltage is below the ignition voltage. In the case of a light emitting diode there is no recording of useful power, provided that the operating voltage is less than the breakdown voltage of the light emitting diode.
  • a third possibility may be to replace the bulbs with a known substitution resistance.
  • the operating circuit contains an inverter, then in this case, the inverter frequency can assume a value at which normally an ignition of the gas discharge lamp or a breakdown of the light emitting diode were carried out.
  • the measured power loss is then composed of the power loss of the operating circuit and the power loss of the substitution resistor.
  • the operating voltage across the substitution resistance or the current through the substitution resistance is additionally measured, then one can calculate the power loss of the substitution resistance, since its resistance value is known. In order to determine the power loss of the operating circuit, then the calculated power loss of the substitution resistance must be subtracted from the measured power loss.
  • the method of determining the power loss of the operating circuit using a substitution resistor has the advantage that the choice the inverter frequency during the pre-Routme- phase in which the power loss of the operating circuit is to be measured, subject to no restriction. This is important because the power dissipation of the operating circuit in this example is frequency dependent. This means that the correction values for the control parameters must also be frequency-dependent if the desired independence from the power loss is to apply for each operating frequency.
  • a first approximation of the desired goal is possible in that the measurement of the power loss in the pre-routine phase is carried out at a fixed frequency, which is chosen so that the operated with the operating circuit bulbs does not absorb useful power for light emission.
  • a further approximation is possible by measuring the power loss at a plurality of such frequencies, all of which are still in the frequency range at which the luminous means does not yet absorb any useful power for the light emission. Because of the plurality of measured values, extrapolation can then take place into those frequency ranges at which the luminous means normally absorbs useful power for light emission. The measured values and the extrapolation values can be recorded in a table, which is then queried in the control process to correct the relevant control parameter.
  • substitution resistance With the use of the substitution resistance, it is then possible to more accurately measure the frequency dependence of the power loss over the entire frequency range of interest Way to determine as a continuous function.
  • the function values of this function are then stored as well as the individual values or the extrapolation values and can be queried to correct the relevant control parameter.
  • the correction of the control parameters then takes place in an operating phase following the pre-routine phase, during which the light-emitting means absorbs useful power for light emission.
  • Figure 1 shows a first schematic embodiment of the power-controlled operating circuit for a gas discharge lamp, in which the power setpoint corrected and the power loss is measured and stored only at one frequency;
  • FIG. 2a shows a second schematic embodiment of the power-controlled operating circuit for a light-emitting diode, in which the power actual value is corrected and the power loss at several frequencies is measured and then extrapolated and stored;
  • FIG. 2b shows a modification of the embodiment of FIG. 2a,
  • FIG. 3 shows a third diagrammatic embodiment of the power-controlled operating circuit, again for a gas discharge lamp, in which the control difference is corrected and the power loss as a function of the frequency is measured and stored using a substitution resistor, and
  • Fig. 4 shows an example of the application of the invention to a DC-DC converter (here a buck converter or Buck converter) shown.
  • a DC-DC converter here a buck converter or Buck converter
  • the operating device can have a DC-DC converter and / or an inverter (DC / AC converter).
  • DC / AC converter DC / AC converter
  • the bulbs can be operated with AC or DC voltage within the scope of the invention.
  • Gemass of the invention therefore, a DC voltage converter or any other switching controller topology can be used.
  • FIG. 1 shows an operating circuit 1 for a gas discharge lamp LP.
  • an inverter formed by a half-bridge, which consists of a Se ⁇ enscaria of two switched in push-pull electronic switches Sl, S2 and a shunt resistor Rl.
  • This series circuit is powered by a DC voltage, which is characterized by a positive pole + and ground is marked.
  • the DC voltage is normally generated from the AC mains by rectification and smoothing.
  • a series resonant circuit is coupled, which is formed by an inductance L and a resonance capacitor Cl.
  • the series resonant circuit is located between the connection point of the two switches Sl, S2 and ground.
  • the voltage drop across the resonant capacitor Cl is supplied via a coupling capacitor C2 to a gas discharge lamp LP.
  • a series circuit of two resistors R2, R3 is connected in parallel, whose task will be described later in connection with Figure 3.
  • the two switches Sl, S2 of the inverter are controlled by a variable oscillator with a switching frequency f s , such that one switch is open and the other is closed.
  • a voltage dependent on the switching frequency f s arises above the resonance capacitor C 1. This can reach well over 1000 volts in the vicinity of the resonance frequency as a function of the circuit losses of the components for the operation of a gas discharge lamp.
  • the gas discharge lamp LP ignites and absorbs useful energy for emitting light.
  • the operating voltage is usually considerably lower.
  • the gas discharge lamp LP can be dimmed. Dimming is carried out with simultaneous power control. For example. via a bus 7, the operating circuit is next to a signal to and turn off a power set point P so ii supplied.
  • the power setpoint P so ii is normally compared in a controller 3 with a measured actual power value P lst .
  • the actual power value P lst is obtained in this example by means of the voltage drop across the shunt resistor Rl as a power-reproducing parameter (indirectly).
  • the controller 3 From the comparison of power set point Ps o ii and the power actual value P lst , the controller 3 forms a control difference P d i ff / which is the variable oscillator 2 as a control value for the switching frequency for f s is supplied.
  • the power control provides a power-determining size, which may be, for example, the timing of one or more switches (in this example: frequency of clocking the switch of the inverter) of a DC-DC converter or an inverter.
  • the object of the invention is therefore to eliminate or compensate for the power loss from the control process, so that the light output from the gas discharge lamp LP always corresponds to the predetermined power setpoint P so ii, regardless of the individual operating circuit, or the Ballast in which this operating circuit is used.
  • the actual power loss P v is measured and used to correct the power setpoint by increasing it by the power loss P v .
  • the corrected power setpoint Psoii (korr) is equal to the sum of the predetermined setpoint P S oii and the measured power loss P v -
  • the actual power loss P v is measured in the embodiment shown in Figure 1 at a switching frequency f s , which predetermines a processor 6 for a Vorab routine the variable oscillator 2 for the switching frequency f s .
  • This frequency is a fixed frequency and chosen so that the thereby falling voltage at the resonant capacitor Cl is not or no longer sufficient to cause the gas discharge lamp LP to absorb useful energy for light emission. If the switching frequency f s lies in the inductive range of the resonance curve, this means that the gas discharge lamp does not yet ignite at this frequency. If the switching frequency f s is in the capacitive range of the resonance curve, this means that the gas discharge lamp LP - after it was in operation - no longer emits light. Due to the fact that the gas discharge lamp LP is inoperative, the voltage drop across the shunt resistor Rl then gives the power loss of the operating circuit 1. The measured power loss P v is fed to a memory 5.
  • the processor 6 causes the oscillator 2 to change the switching frequency f s so that the Gas discharge lamp LP ignites or ignites again.
  • a voltage drops across the shunt resistor R 1, which voltage represents the sum of the actual power loss P v of the operating circuit 1 and the power consumed by the gas discharge lamp LP for the light emission.
  • This voltage is fed to the controller as power actual value P lst .
  • the power set point in block 4 is corrected by increasing it by the stored actual power loss P v . Accordingly, a corrected set value P is supplied ii (corr) to the controller as setpoint value, which is compared with the actual value P lf.
  • the embodiment of the power-controlled operating circuit according to Figure 2a differs from that of Figure 1 in that here not the power setpoint, but the actual power value is corrected.
  • the same components or function blocks have the same reference numerals.
  • the power loss P v is measured by means of the voltage drop across the shunt resistor Rl in a pre-routine phase and stored in a memory 15.
  • the power loss P v is frequency dependent, here are several power loss values at different frequencies measured and stored in the memory 15.
  • all frequencies are - as in the case of Figure 1 - chosen so that the light source, which is here a light emitting diode LD, which is connected in series with a series resistor R14, still no useful energy for light emission receives.
  • the operating voltage at the light-emitting diode LP is still below the breakdown voltage of the light-emitting diode.
  • additional loss power values are extrapolated from the measured power loss values for the frequency range at which the light-emitting diode LD emits light.
  • the measured values and the extrapolation values are stored as a table in the memory 15.
  • the corrected actual power value Pi s t (k o rr) is supplied to the controller simultaneously with the power setpoint P so ii.
  • the controller 13 forms from this the control difference, which is also adjusted in this case of the power loss P v .
  • a rectifier is present at the output of the inverter (preferably in front of the capacitor parallel to the LED) (diode DG) or the LED (s) are connected in antiparallel.
  • the inductance L may be formed as a transformer or in the output circuit an additional transformer may be present, so that a potential separation can be achieved.
  • FIG. 2b thus shows an example of the operation of lighting means by means of DC voltage, which is generated here by rectification of an AC voltage of an inverter, but can also be generated by a DC voltage converter.
  • the third embodiment of the power-controlled operating circuit according to FIG. 3 has three special features.
  • the first special feature is that the control difference is corrected here as a control parameter.
  • the second special feature is that in this case - as in FIG. 2a - several individual values of the power loss at different frequencies in the pre-routine phase are measured, extrapolated and stored, but the power loss over a whole frequency range of interest is a function measured and stored in a memory 25.
  • the frequency range should in particular include all those frequencies which are controlled during the power regulation of the luminous means that here again is a gas discharge lamp LP.
  • the operating circuit designated here by the reference numeral 21 has as a third feature a substitution resistor RS, which is connected to the operating circuit 21 by means of a switch S3 during the pre-routine phase instead of the gas discharge lamp LP.
  • the function memory 25 is now supplied not only with the power loss P v as a voltage drop across the shunt resistor R 1, but also with a voltage drop across the resistor R 3 of the voltage divider R 2 / R 3 ,
  • the voltage drop across the resistor R3 is a measure of the voltage drop across the substitution resistor RS whose resistance value is known. Accordingly, it is also possible to calculate the power loss P RS , which is absorbed by the substitution resistor RS. It is understood that the power loss P v measured as the voltage drop across the shunt resistor R 1 must be reduced by the power loss P RS .
  • the function memory 25 now supplies the correction block 23 with the power loss P v as a function of the switching frequency f s and the power loss P RS picked up by the substitution resistor RS .
  • the block 23 forms a control value thereof Pdiff (corr) / • is adjusted by both the power loss P v of the operation circuit as well as the substitution caused by the resistance RS power loss P RS.
  • the switching of the switch S3 from the gas discharge lamp LP to the substitution resistor RS is performed by the processor 6.
  • the processor 6 thus ensures that the operating phase precedes a pre-routine phase in which the power loss P v is determined and stored.
  • the stored values can then be used in the subsequent operating phase to correct a control parameter, in order in this way ensure that the control is independent of the circuit-specific power loss and therefore the light output emitted by the light source always corresponds to the specified power setpoint.
  • the substitution resistance RS can also be easily formed by a bridge (that is, a 0 ohm resistor), which bridges the light source in the pre-phase (ie during scanning), ie short-circuiting.
  • the switch S3 can also be arranged externally or the switchover or bridging can also take place externally (ie the user connects a reference load or a substitution resistance in the preliminary phase instead of the luminous means).
  • the values of the useful power of the luminous means or of the substitution resistor RS caused by the light emission PRS can also be determined by external circuitry (ie external connection of the voltage divider R2 / R3 and the series resistor R14) and via an existing control line Operating circuit 1 (in particular the function memory 25) are supplied. This offers the advantage that the circuit parts required for the measurement in the pre-phase need not be present in the operating circuit 1 itself, but only have to be connected to the operating circuit 1 for the measurement in the pre-phase.
  • the measurement in the pre-phase can be done as a kind of calibration measurement, for example during the production of the operating circuit 1 or during the first start-up or even installation of the operating circuit 1 and the only for the implementation of the measurement in the preliminary Phase required circuit parts can in one Art
  • Operating circuits can be used.
  • the existing in the operating circuit 1 control line can be used.
  • the measurement can also be repeated at regular intervals, if necessary, an error message can be issued (eg by signal via bus or optical).
  • the losses can also be integrated over predefined periods.
  • the measurement in the measurement phase (ie, the scanning) can be initiated by a control command or the like by the user or a control center, for example over pure Control command.
  • the detection of a substitution resistance as a load (instead of the luminous means) can also be detected by a load detection, and thus the measurement in the preliminary phase can be initiated with the aid of load detection.
  • FIG. 4 shows an example of the application of a DC-DC converter (here a buck converter or buck converter).
  • a DC-DC converter here a buck converter or buck converter.
  • Inductance L stored, after the opening of the switch S2, this energy is discharged via a demagnetization of the inductance L in the freewheeling path formed by the light emitting diode LD and the freewheeling diode DF.
  • the inductance L is magnetized, this magnetizing current also flows through the light-emitting diode LD, while the freewheeling diode DF is blocked.
  • LED LD recorded power can be determined
  • Measuring phase can be connected to the operating circuit 1).
  • the power absorbed by the operating circuit 1 can, for example, by a Stromuberwachung in the Supply of the operating circuit 1 (for example via a current measurement by means of differential measurement, current sensor such as current transformer or potential offset stage or by a current measurement between ground and the feedback of the operating circuit 1). Knowing the supply voltage can be concluded on the recorded power.
  • the capacitor Cl acts in this example as a smoothing capacitor (parallel to the light emitting diode LD).
  • the light-emitting diode LD can, as in the exemplary embodiment of FIG. 3, be used to measure the losses in the measurement phase, for example an advance phase (ie the scanning) by a substitution resistor RS (this can also simply be a bridge (ie a 0 ohm) Resistor)) can be bypassed or replaced.
  • a substitution resistor RS this can also simply be a bridge (ie a 0 ohm) Resistor)
  • RS this can also simply be a bridge (ie a 0 ohm) Resistor)
  • the switching or bridging can also take place externally (i.e., the user connects a reference load or a substitution resistance in the measuring phase instead of the luminous means).
  • the losses (ie, the power loss) of the operating circuit 1 can be determined.
  • the losses (ie, the power loss) of the operating circuit 1 can be determined.
  • the power loss over a whole range of interest of the duty cycle can be measured as a function and a memory 25 are stored.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Die Erfindung betrifft eine leistungsgeregelte Betriebsschaltung (1, 21) für ein Leuchtmittel (LP, LD) sowie ein Verfahren zum Betreiben derselben. Zur Leistungsregelung muss der Leistungs-Istwert (Pist) gemessen und mit einem vorgegebenen Leistungs-Sollwert ( Psoll) verglichen werden, um eine Regeldifferenz (Pdiff) zu gewinnen, die als Stellwert (2) verwendet wird. Der gemessene Leistungs-Istwert (Pist) ist jedoch mit der schaltungsspezifischen Verlustleistung (Pv) behaftet, die infolge von Fertigungstoleranzen bei den einzelnen Betriebsschaltungen unterschiedlich ist. Um dennoch zu gewahrleisten, dass die von dem Leuchtmittel (LP, LD) abgegebene Lichtleistung stets dem Leistungs-Sollwert (Psoll) entspricht, wird in einer Vorab-Routine-Phase, in der das Leuchtmittel noch keine Nutzleistung zur Lichtemission aufnimmt, die tatsächliche Verlustleistung (Pv) der Betriebsschaltung ermittelt und abgespeichert. In der darauffolgenden Betriebsphase wird dann, wenn das Leuchtmittel Nutzenergie zur Lichtemission aufgenommen hat, mindestens einer der Regelparameter (Leistungs- Istwert, Leistungs-Sollwert, Regeldifferenz) derart korrigiert, dass die Verlustleistung (Pv) ohne Einfluss auf den Regelprozess ist.

Description

Leistungsgeregelte Betriebsschaltung für ein Leuchtmittel sowie Verfahren zum Betreiben derselben
Die Erfindung betrifft eine leistungsgeregelte Betriebsschaltung für ein Leuchtmittel mit Mitteln zur Ermittlung eines mit der schaltungsspezifischen Verlustleistung behafteten Leistungs-Istwertes, mit einem Regler, dem ein Leistungs-Istwert sowie ein Leistungs- Sollwert zugeführt werden und der daraus eine Regeldifferenz erzeugt.
Die Erfindung betrifft ferner ein Verfahren zum Betreiben einer leistungsgeregelten Betriebsschaltung für ein Leuchtmittel, wobei zur Leistungsregelung ein mit der schaltungsspezifischen Verlustleistung behafteter Leistungs-Istwert mittels eines oder mehreren die Leistung weidergebenden Parameters ermittelt und mit einem Leistungs-Sollwert verglichen wird, und wobei mit einer durch den Vergleich gewonnenen Regeldifferenz die eine Grosse gesteuert wird, die die den Leuchtmitteln zugefuhrte Leistung bestimmt.
Leistungsgeregelte Betriebsschaltungen der vorstehend genannten Art werden vielfach in elektronischen Vorschaltgeraten für Leuchtmittel eingesetzt. Zur Leistungsregelung wird die mit der schaltungsspezifischen Verlustleistung behaftete Istwert-Leistung mit einer vorgegebenen Sollwert-Leistung verglichen. Die dadurch gewonnene Regeldifferenz wird als Stellwert für die Wechselrichterfrequenz verwendet . Infolge von unvermeidlichen Fertigungstoleranzen der Bauelemente ist die schaltungsspezifische Verlustleistung von Gerat zu Gerat verschieden. Ohne Gegenmaßnahme hat das zur Folge, dass die Lichtleistung der mit solchen leistungsgeregelten Betriebsschaltungen betriebenen Leuchtmittel trotz gleicher Leistungs-Sollwerte unterschiedlich ist.
Es ist für einen bestimmten Typ von Vorschaltgeraten bekannt, bei jedem Gerat nach dessen Fertigstellung in der Produktionsstatte zunächst den Lampenstrom zu messen und einen dem Messwert entsprechenden abgestimmten Widerstand in den Lampenstromkreis einzusetzen. Auf diese Weise wird erreicht, dass alle Gerate nach dem Verlassen der Produktionsstatte unter sonst gleichen Bedingungen auch einen gleichen Lampenstrom haben, wodurch gewahrleistet ist, dass auch die damit betriebenen Leuchtmittel unter gleichen Bedingungen eine gleiche Lichtleistung abgeben.
Ferner ist es für einen anderen Typ von Vorschaltgeraten bekannt, ebenfalls unmittelbar nach Fertigstellung in der Produktionsstatte die Differenz zwischen einer vorgegebenen Sollwert-Leistung und der gemessenen Istwert- Leistung zu messen und den Messwert zu digitalisieren. Der digitalisierte Messwert wird dann mittels eines externen Programmiergerätes in dem ASIC abgespeichert, mit dem die Betriebsschaltung zumindest teilweise realisiert ist.
Die vorstehend beschriebenen bekannten Justierungs- Maßnahmen sind allerdings zeitaufwandig und verringern daher der Produktivität Grenzen. Dies insbesondere auch deshalb, weil die Justierung erfolgt, bevor die Betriebsschaltungen in ein Gehäuse eingesetzt werden. Dabei sind individuelle Adapter erforderlich, welche einen zusatzlichen Kostenfaktor darstellen.
Der Erfindung liegt deshalb die Aufgabe zu Grunde, die Eliminierung des Einflusses der schaltungsspezifischen Verlustleistung einer leistungsgeregelten Betriebsschaltung aus dem Produktionsprozess auszugliedern und so weit wie möglich zu automatisieren.
Die Aufgabe ist durch die Merkmale der unabhängigen Ansprüche gelost. Die abhangigen Ansprüche bilden den Gedanken der Erfindung in besonders vorteilhafter Weise weiter.
Die Erfindung betrifft weiterhin eine Integrierte Steuerschaltung, insbesondere ASIC, Mikrokontroller oder Hybridversion davon, die dazu ausgelegt ist, ein Verfahren nach einem der vorhergehenden Ansprüche durchzufuhren, sowie ein Betriebsgerat für
Leuchtmittel, aufweisend eine derartige Steuerschaltung.
Mit anderen Worten besteht die erfindungsgemaße Losung sowohl für die Betriebsschaltung als auch für das Verfahren darin, dass jede Betriebsschaltung bzw. jedes Vorschaltgerat, indem eine solche Betriebsschaltung enthalten bzw. ein solches Verfahren realisiert ist, im Einsatz vor Ort nach dem Einschalten zunächst eine Vorab- Routine durchlaufen muss. Dabei wird in einer ersten Phase zunächst die schaltungsspezifische Verlustleistung ermittelt. In einer zweiten Phase werden dann die Regelparameter, d. h. die gemessenen Istwert-Leistung oder die vorgegebene Sollwert-Leistung oder die aus dem Vergleich ermittelte Regeldifferenz korrigiert bzw. modifiziert, derart, dass die Verlustleistung keinen Einfluss mehr auf das Regelergebnis hat. Das ist dadurch möglich, dass die Verlustleistung entweder zu der Sollwert-Leistung addiert oder von der Istwert-Leistung subtrahiert oder zu der Regeldifferenz addiert wird. Die Verlustleistung wird also praktisch aus dem Berechnungsprozess für die Regeldifferenz heraus gerechnet. Die Lichtleistung des Leuchtmittels entspricht demnach immer der Sollwert-Leistung. Damit ist - bei sonst gleichen Vorbedingungen - die Lichtleistung von Leuchtmitteln, die mit derartigen korrigierten leistungsgeregelten Betriebsschaltungen betrieben werden, stets gleich.
Die Messung der Verlustleistung wahrend der Vorab-Routine erfolgt gemäß einer ersten Möglichkeit mit den regulären Betriebsparametern für das Leuchtmittel bevor dieses in einem zeitlichen Anlaufprozess Nutzleistung zur Lichtemission aufnimmt. Es ist bekannt, dass bestimmte Leuchtmittel, insbesondere Gasentladungslampen nach dem Einschalten der Betriebsschaltung erst mit einer gewissen zeitlichen Verzögerung zünden bevor sie Nutzleistung zur Lichtemission aufnehmen. Wenn man die Ist-Leistungen innerhalb dieser Phase misst, so repräsentiert das Messergebnis die Verlustleistung der Betriebsschaltung.
Eine zweite Möglichkeit ist die, dass mindestens ein Betriebsparameter für das Leuchtmittel derart gewählt wird, dass das Leuchtmittel noch keine Nutzleistung zur Lichtemission aufnehmen kann. Ein solcher Betriebsparameter kann beispielsweise eine Wechselrichterfrequenz sein. Diese kann entweder so viel niedriger als die Resonanzfrequenz des Resonanzkreises oder so viel hoher als letztere gewählt werden, dass die Betriebsspannung für das Leuchtmittel nicht ausreichend ist, damit das Leuchtmittel Nutzleistung zur Lichtemission aufnehmen kann. Im Falle einer Gasentladungslampe bedeutet das, dass die Betriebsspannung unterhalb der Zündspannung liegt. Im Falle einer Leuchtdiode erfolgt keine Aufnahme von Nutzleistung, sofern die Betriebsspannung kleiner als die Durchbruchsspannung der Leuchtdiode ist.
Eine dritte Möglichkeit kann darin bestehen, dass man das Leuchtmittel durch einen bekannten Substitutionswiderstand ersetzt. Wenn die Betriebsschaltung einen Wechselrichter enthalt, so kann in diesem Fall kann die Wechselrichterfrequenz einen Wert annehmen, bei dem normalerweise eine Zündung der Gasentladungslampe oder ein Durchbruch der Leuchtdiode erfolgen wurden. Die gemessene Verlustleistung setzt sich dann aus der Verlustleistung der Betriebsschaltung und der Verlustleistung des Substitutionswiderstandes zusammen. Wenn nun die Betriebsspannung über dem Substitutionswiderstand oder der Strom durch den Substitutionswiderstand zusatzlich gemessen wird, so kann man die Verlustleistung des Substitutionswiderstandes berechnen, da dessen Widerstandswert bekannt ist. Um die Verlustleistung der Betriebsschaltung zu ermitteln, muss dann die berechnete Verlustleistung des Substitutionswiderstandes von der gemessenen Verlustleistung abgezogen werden.
Die Ermittlungsmethode der Verlustleistung der Betriebsschaltung unter Verwendung eines Substitutionswiderstandes hat den Vorteil, dass die Wahl der Wechselrichterfrequenz wahrend der Vorab-Routme- Phase, in der die Verlustleistung der Betriebsschaltung gemessen werden soll, keiner Beschrankung unterliegt. Dies ist deshalb wichtig, weil die Verlustleistung der Betriebsschaltung m diesem Beispiel frequenzabhangig ist. Das bedeutet, dass die Korrekturwerte für die Regelparameter ebenfalls frequenzabhangig sein müssen, wenn die angestrebte Unabhängigkeit von der Verlustleistung für jede Betriebsfrequenz gelten soll.
Eine erste Näherung der angestrebten Zieles ist dadurch möglich, dass die Messung der Verlustleistung in der Vorab-Routine-Phase bei einer Festfrequenz erfolgt, die so gewählt ist, dass das mit der Betriebsschaltung betriebene Leuchtmittel noch keine Nutzleistung zur Lichtemission aufnimmt .
Eine weitergehende Näherung ist dadurch möglich, dass man die Verlustleistung bei mehreren derartigen Frequenzen misst, die alle noch in dem Frequenzbereich liegen, bei denen das Leuchtmittel noch keine Nutzleistung für die Lichtemission aufnimmt. Aufgrund der Mehrzahl von Messwerten kann dann eine Extrapolation bis in jene Frequenz-Bereiche erfolgen, bei dem das Leuchtmittel normalerweise Nutzleistung zur Lichtemission aufnehmen wurde. Die Messwerte und die Extrapolationswerte können in einer Tabelle festgehalten werden, die dann im Regelprozess zur Korrektur des betreffenden Regelparameters abgefragt wird.
Mit dem Einsatz des Substitutionswiderstandes ist es dann möglich, die Frequenzabhangigkeit der Verlustleistung über den gesamten interessierenden Frequenzbereich m exakter Weise als kontinuierliche Funktion zu ermitteln. Die Funktionswerte dieser Funktion werden dann ebenso wie die Einzelwerte bzw. die Extrapolationswerte gespeichert und können zur Korrektur des betreffenden Regelparameters abgefragt werden.
Die Korrektur der Regelparameter erfolgt dann in einer auf die vorab-Routine-Phase folgenden Betriebsphase, bei der das Leuchtmittel Nutzleistung zur Lichtemission aufnimmt.
An dieser Stelle sei darauf hingewiesen, dass zur Vermeidung von Wiederholungen die Merkmale der Ansprüche vollinhaltlich zur Offenbarung der Beschreibung zahlen sollen.
Ausfuhrungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen beschrieben. Dabei zeigen:
Figur 1 eine erste schematisierte Ausfuhrungsform der leistungsgeregelten Betriebsschaltung für eine Gasentladungslampe, bei der der Leistungs-Sollwert korrigiert und die Verlustleistung nur bei einer Frequenz gemessen und gespeichert wird;
Figur 2a eine zweite schematisierte Ausfuhrungsform der leistungsgeregelten Betriebsschaltung für eine Leuchtdiode, bei der der Leistungs- Istwert korrigiert und die Verlustleistung bei mehreren Frequenzen gemessen und dann extrapoliert und gespeichert wird; Figur 2b eine Modifikation der Ausfuhrungsform von Figur 2a,
Figur 3 eine dritte schematisierte Ausfuhrungsform der leistungsgeregelten Betriebsschaltung, wiederum für eine Gasentladungslampe, bei der die Regeldifferenz korrigiert und die Verlustleistung als Funktion von der Frequenz unter Verwendung eines Substitutionswiderstandes gemessen und gespeichert wird, und
Fig. 4 zeigt Beispiel für die Anwendung der Erfindung auf einen Gleichspannungs-Wandler (hier ein Tiefsetzsteiler bzw. Buck-Konverter) dargestellt .
Diejenigen Schaltungsteile und Bezugszeichen in den Figuren 2 und 3, die gegenüber der Figur 1 neu bzw. anders sind, sind durch fette Linien gekennzeichnet.
Im Folgenden wird die Erfindung Bezug nehmend auf eine Betriebsschaltung mit einem Wechselrichter mit angeschlossenem Resonanzkreis erläutert. Die Erfindung lasst sich indessen auf alle Betriebsschaltungen anwenden, bei denen bspw. die Taktung eines oder mehrere Schalter eine Stellgrosse für die den Leuchtmitteln zugefuhrte Leistung ist. Zur Leistungsveranderung kann bspw. einer oder mehrere der folgenden Parameter verändert werden: - Frequenz
- Tastverhaltnis, und/oder
- Totzeiten. Auch andere Leistungregelungen, bspw. ein Linearregler sind grundsätzlich denkbar, bei denen also kein Schalter getaktet wird.
Erfindungsgemass kann also das Betriebsgerat einen Gleichspannungswandler und/oder einen Wechselrichter (DC/AC-Wandler) aufweisen. Auch eine Kombination eines Gleichspannungswandlers mit folgendem Wechselrichter ist möglich.
Allgemein könne im Rahmen der Erfindung die Leuchtmittel mit AC- oder DC-Spannung betrieben werden.
Gemass der Erfindung kann also auch ein Gleichspannungs- Wandler oder auch jede andere Schaltreglertopologie verwendet werden kann.
Es muß kein resonantes Verhalten im Ausgangskreis vorhanden sein (es kann auch ein Gleichspannungs-Wandler wie ein Bück oder Buck-Boost angewendet werden, wobei auch über PWM (also die Änderung des Tastverhaltnisses ) oder PFM (Puls-Frequenz-Modulation, also Frequenz und Tastverhaltnis wird geändert) gedimmt bzw. die Ausgangsleistung eingestellt werden kann.
Figur 1 zeigt eine Betriebsschaltung 1 für eine Gasentladungslampe LP. Zu der Betriebsschaltung gemass diesem Ausfuhrungsbeispiel gehört ein von einer Halbbrücke gebildeter Wechselrichter, der aus einer Seπenschaltung von zwei im Gegentakt geschalteten elektronischen Schaltern Sl, S2 und einem Shunt-Widerstand Rl besteht. Diese Serienschaltung wird von einer Gleichspannung gespeist, die durch einen Pluspol + und Masse gekennzeichnet ist. Die Gleichspannung wird normalerweise aus dem Wechselstromnetz durch Gleichrichtung und Glattung erzeugt. Mit dem Wechselrichter Sl, S2 ist ein Serienschwingkreis gekoppelt, der von einer Induktivität L und einem Resonanzkondensator Cl gebildet ist. Der Serienresonanzkreis liegt zwischen dem Verbindungspunkt der beiden Schalter Sl, S2 und Masse. Die über dem Resonanzkondensator Cl abfallende Spannung wird über einen Koppelkondensator C2 einer Gasentladungslampe LP zugeführt. Zu der Gasentladungslampe LP ist eine Serienschaltung aus zwei Widerstanden R2, R3 parallel geschaltet, deren Aufgabe spater noch in Verbindung mit Figur 3 beschrieben wird.
Die beiden Schalter Sl, S2 des Wechselrichters werden von einem variablen Oszillator mit einer Schaltfrequenz fs gesteuert, derart, dass jeweils ein Schalter offen und der andere geschlossen ist. Über dem Resonanzkondensator Cl entsteht dabei eine von der Schaltfrequenz fs abhangige Spannung. Diese kann in der Nahe der Resonanzfrequenz in Abhängigkeit von den Schaltungsverlusten der Bauelemente für den Betrieb einer Gasentladungslampe weit über 1000 Volt erreichen. Bei derartigen Spannungen zündet die Gasentladungslampe LP und nimmt Nutzenergie zur Abstrahlung von Licht auf. Für Leuchtdioden, die als Alternative für eine Gasentladungslampe infrage kommen, ist die Betriebsspannung üblicherweise erheblich niedriger .
Durch Verandern der Schaltfrequenz fs kann die Gasentladungslampe LP gedimmt werden. Das Dimmen erfolgt mit gleichzeitiger Leistungsregelung. Bspw. über einen Bus 7 wird der Betriebsschaltung neben einem Signal zum Ein- und Ausschalten ein Leistungs-Sollwert Psoii zugeführt. Der Leistungs-Sollwert Psoii wird normalerweise in einem Regler 3 mit einem gemessenen Leistungs-Istwert Plst verglichen. Der Leistungs-Istwert Plst wird in diesem Beispiel mittels des Spannungsabfalls über dem Shunt- Widerstand Rl als leistungswiedergebender Parameter (indirekt) gewonnen. Aus dem Vergleich von Leistungs- Sollwert Psoii und dem Leistungs- Istwert Plst bildet der Regler 3 eine Regeldifferenz Pdiff/ die dem variablen Oszillator 2 als Stellwert für die Schaltfrequenz für fs zugeführt wird.
Ganz allgemein ist bei der Erfindung vorgesehen, dass die Leistungsregelung eine leistungsbestimmende Grosse stellt, die bspw. die Taktung eines oder mehrerer Schalter (in diesem Beispiel: Frequenz der Taktung der Schalter des Wechselrichters) eines Gleichspannungswandlers oder eines Wechselrichters sein kann.
Aus dem Spannungsabfall über dem Shunt-Widerstand Rl lasst sich jedoch indirekt nicht exakt der Leistungs-Istwert ermitteln, da dieser Messwert noch mit einem Beitrag der Verlustleistung der Betriebsschaltung behaftet ist. Dies ist insofern nachteilig, als die Verlustleistung von Betriebsschaltung zu Betriebsschaltung bspw. infolge der unterschiedlichen Bauelemente-Toleranzen verschieden ist. Das Ziel der Erfindung ist es deshalb, die Verlustleistung aus dem Regelvorgang zu eliminieren bzw. kompensieren, so dass die von der Gasentladungslampe LP abgegebene Lichtleistung immer dem vorgegebenen Leistungs-Sollwert Psoii entspricht, und zwar unabhängig von der individuellen Betriebsschaltung, bzw. dem Vorschaltgerat , in dem diese Betriebsschaltung eingesetzt ist. Um dieses Ziel zu erreichen wird bei der Ausfuhrungsform der Betriebsschaltung nach Figur 1 die tatsachliche Verlustleistung Pv gemessen und zur Korrektur des Leistungs-Sollwertes verwendet, indem dieser um die Verlustleistung Pv erhöht wird. Der korrigierte Leistungs- Sollwert Psoii(korr) ist gleich der Summe aus dem vorgegebenen Sollwert PSoii und der gemessenen Verlustleistung Pv-
Die tatsachliche Verlustleistung Pv wird bei der in Figur 1 gezeigten Ausfuhrungsform bei einer Schaltfrequenz fs gemessen, die ein Prozessor 6 für eine Vorab-Routine dem variablen Oszillator 2 für die Schaltfrequenz fs vorgibt. Diese Frequenz ist eine Festfrequenz und so gewählt, dass die dadurch an dem Resonanzkondensator Cl abfallende Spannung noch nicht oder nicht mehr ausreicht, um die Gasentladungslampe LP zu veranlassen, Nutzenergie zur Lichtemission aufzunehmen. Wenn die Schaltfrequenz fs im induktiven Bereich der Resonanzkurve liegt, so bedeutet das, dass die Gasentladungslampe bei dieser Frequenz noch nicht zündet. Wenn die Schaltfrequenz fs im kapazitiven Bereich der Resonanzkurve liegt, so bedeutet das, dass die Gasentladungslampe LP - nachdem sie in Betrieb war - kein Licht mehr emittiert. Dadurch, dass die Gasentladungslampe LP außer Funktion ist, entspricht gibt der Spannungsabfall über dem Shunt-Widerstand Rl dann der Verlustleistung der Betriebsschaltung 1. Die gemessene Verlustleistung Pv wird einem Speicher 5 zugeführt.
In einer auf die Vorab-Routine folgenden Betriebsphase veranlasst der Prozessor 6 den Oszillator 2 die Schaltfrequenz fs so zu andern, dass die Gasentladungslampe LP zündet bzw. wieder zündet. Damit fallt an dem Shunt-Widerstand Rl eine Spannung ab, die die Summe aus der tatsächlichen Verlustleistung Pv der Betriebsschaltung 1 und der von der Gasentladungslampe LP für die Lichtemission aufgenommenen Nutzleistung wiedergibt. Diese Spannung wird dem Regler als Leistungs- Istwert Plst zugeführt. Gleichzeitig wird der Leistungs- Sollwert in dem Block 4 dadurch korrigiert, dass er um die gespeicherte tatsachliche Verlustleistung Pv erhöht wird. Als Sollwert wird demnach dem Regler ein korrigierter Sollwert Psoii(korr) zugeführt, der mit dem Istwert Plst verglichen wird. Da der in der Betriebsphase gemessene Leistungs-Istwert PiSt/ wie vorher erwähnt, selbst um die Verlustleistung Pv erhöht ist, ist die Regeldifferenz Pdiff verlustleistungsneutral. Dem Oszillator 2 wird demnach ein Stellwert zugeführt, der - bei heraus gerechneter Verlustleistung Pv - tatsachlich gleich der Differenz aus dem Leistungs-Sollwert Psoii und dem tatsachlichen Leistungs-Istwert Pist ist.
Die Ausfuhrungsform der leistungsgeregelten Betriebsschaltung nach Figur 2a unterscheidet sich von derjenigen nach Figur 1 dadurch, dass hier nicht der Leistungs-Sollwert, sondern der Leistungs-Istwert korrigiert wird. Gleiche Bauelemente bzw. Funktionsblocke haben die gleichen Bezugsziffern.
Auch m Figur 2a wird die Verlustleistung Pv mittels des Spannungsabfalls über dem Shunt-Widerstand Rl in einer Vorab-Routine-Phase gemessen und in einem Speicher 15 gespeichert. Da die Verlustleistung Pv jedoch frequenzabhangig ist, werden hier mehrere Verlustleistungs-Werte bei verschiedenen Frequenzen gemessen und in dem Speicher 15 abgespeichert. Alle Frequenzen sind jedoch - wie im Fall von Figur 1 - so gewählt, dass das Leuchtmittel, bei dem es sich hier um eine Leuchtdiode LD handelt, die mit einem Vorwiderstand R14 in Serie geschaltet ist, noch keine Nutzenergie zur Lichtemission aufnimmt. Das bedeutet mit anderen Worten, dass die Betriebsspannung an der Leuchtdiode LP noch unterhalb der Durchbruchsspannung der Leuchtdiode liegt. Wegen Frequenzabhangigkeit werden aus den gemessenen Verlustleistungs-Werten weitere Verlustleistungs-Werte für den Frequenzbereich extrapoliert, bei dem die Leuchtdiode LD Licht emittieren wurde. Die Messwerte und die Extrapolationswerte werden als Tabelle in dem Speicher 15 abgespeichert .
Der in der Betriebsphase gemessene Leistungs-Istwert Pist, der wie im Zusammenhang mit Figur 1 beschrieben wurde, noch mit der Verlustleistung Pv behaftet, d. h. überhöht ist, wird in diesem Fall einem Block 14 zur Korrektur zugeführt. Der ermittelte korrigierte Leistungs-Istwert Pχst(korr) ist demnach der um die Verlustleistung Pv reduzierte gemessene Leistungs-Istwert Plst-
Der korrigierte Leistungs-Istwert Pist(korr) wird dem Regler gleichzeitig mit dem Leistungs-Sollwert Psoii zugeführt. Der Regler 13 bildet daraus die Regeldifferenz, die auch in diesem Fall von der Verlustleistung Pv bereinigt ist.
Wie in der Modifikation gemass Figur 2b gezeigt ist optional am Ausgang des Wechselrichters (vorzugsweise vor dem Kondensator parallel zur LED) ein Gleichrichter vorhanden (Diode DG) oder die LED(s) sind antiparallel verschaltet. Bei allen Beispielen, insbesondere bei dem Beispiel der Fig. 2a, kann die Induktivität L als Transformator ausgebildet sein oder im Ausgangskreis ein zusatzlicher Transformator vorhanden sein, so dass eine Potentialtrennung erreicht werden kann.
Figur 2b zeigt also ein Beispiel des Betriebs von Leuchtmitteln mittel DC-Spannung, die hier durch Gleichrichtung einer AC-Spannung eines Wechselrichters erzeugt ist, aber auch von einem Gleichspannungswandler erzeugt werden kann.
Die dritte Ausfuhrungsform der leistungsgeregelten Betriebsschaltung nach Figur 3 hat drei Besonderheiten.
Die erste Besonderheit besteht darin, dass hier als Regelparameter die Regeldifferenz korrigiert wird. Die zweite Besonderheit ist die , dass in diesem Fall nicht - wie in Figur 2a - mehrere Einzelwerte der Verlustleistung bei verschiedenen Frequenzen in der Vorab-Routine-Phase gemessen, extrapoliert und gespeichert werden, sondern es wird die Verlustleistung über einen ganzen interessierenden Frequenzbereich als Funktion gemessen und in einem Speicher 25 abgespeichert. Der Frequenzbereich sollte dabei insbesondere alle jene Frequenzen umfassen, die wahrend der Leistungsregelung des Leuchtmittels, dass hier wieder eine Gasentladungslampe LP ist, angesteuert werden. Um dies zu gewahrleisten, weist die hier mit der Bezugsziffer 21 bezeichnete Betriebsschaltung als dritte Besonderheit einen Substitutions-Widerstand RS auf, der mittels eines Schalters S3 wahrend der Vorab-Routine-Phase anstelle der Gasentladungslampe LP mit der Betriebsschaltung 21 verbunden wird. In der Vorab-Routine-Phase wird dem Funktionsspeicher 25 nunmehr nicht nur die Verlustleistung Pv in Abhängigkeit von der Frequenz als Spannungsabfall über dem Shunt- Widerstand Rl zugeführt, sondern außerdem noch ein Spannungswert, der über dem Widerstand R3 des Spannungsteilers R2/R3 abfallt. Der Spannungsabfall über dem Widerstand R3 ist ein Maß für den Spannungsabfall über dem Substitutionswiderstand RS, dessen Widerstandswert bekannt ist. Demnach kann auch die Verlustleistung PRS errechnet werden, die von dem Substitutionswiderstand RS aufgenommen wird. Es versteht sich, dass die als Spannungsabfall über dem Shunt-Widerstand Rl gemessene Verlustleistung Pv um die Verlustleistung PRS reduziert werden muss.
Der Funktionsspeicher 25 fuhrt nun den Korrekturblock 23 die Verlustleistung Pv in Abhängigkeit von der Schaltfrequenz fs sowie die von dem Substitutionswiderstand RS aufgenommene Verlustleistung PRS zu. Der Block 23 bildet daraus einen Stellwert Pdiff (korr) /• der sowohl von der Verlustleistung Pv der Betriebsschaltung als auch von der von dem Substitutionswiderstand RS verursachten Verlustleistung PRS bereinigt ist.
Die Umschaltung des Schalters S3 von der Gasentladungslampe LP auf den Substitutionswiderstand RS erfolgt durch den Prozessor 6. Der Prozessor 6 sorgt also dafür, dass der Betriebsphase eine Vorab-Routine-Phase vorausgeht, in der die Verlustleistung Pv ermittelt und gespeichert wird. Die gespeicherten Werte können dann in der nachfolgenden Betriebsphase zur Korrektur eines Regelparameters verwendet werden, um auf diese Weise zu gewährleisten, dass die Regelung unabhängig von der schaltungsspezifischen Verlustleistung erfolgt und demnach die von dem Leuchtmittel abgegebene Lichtleistung immer dem vorgegebenen Leistungs-Sollwert entspricht.
Der Substitutionswiderstand RS kann auch einfach durch eine Brücke gebildet werden (also ein 0 Ohm Widerstand) , der in der Vorab-Phase (also beim Scannmg) das Leuchtmittel überbrückt, also kurzschliesst .
Der Schalter S3 kann auch extern angeordnet sein bzw. die Umschaltung oder Uberbruckung kann auch extern erfolgen (d.h. der Nutzer schließt in der Vorab-Phase anstelle des Leuchtmittels eine Referenzlast oder einen Substitutionswiderstand an) . Dabei können die Werte der für die Lichtemission aufgenommenen Nutzleistung des Leuchtmittels bzw. der von dem Substitutionswiderstand RS verursachten Verlustleistung PRS auch durch eine externe Beschaltung (d.h. eine externe Zuschaltung des Spannungsteilers R2/R3 und des Vorwiderstandes R14) ermittelt werden und über eine vorhandene Steuerleitung der Betriebsschaltung 1 (insbesondere dem Funktionsspeicher 25) zugeführt werden. Dies bietet den Vorteil, dass die für die Messung in der Vorab-Phase erforderlichen Schaltungsteile nicht in der Betriebsschaltung 1 selbst vorhanden sein müssen, sondern nur für die Messung in der Vorab-Phase mit der Betriebsschaltung 1 verbunden werden müssen. Somit kann die Messung in der Vorab-Phase als eine Art Kalibrierungsmessung beispielsweise wahrend der Fertigung der Betriebsschaltung 1 oder bei der ersten Inbetriebnahme oder auch Installation der Betriebsschaltung 1 erfolgen und die nur für die Durchfuhrung der Messung in der Vorab- Phase erforderlichen Schaltungsteile können in einer Art
Programmiergerät angeordnet sein, wobei das Programmiergerat für eine Mehrzahl von erfindungsgemaßen
Betriebsschaltungen eingesetzt werden kann. Die bei der Betriebsschaltung 1 vorhandene Steuerleitung kann ein
Programmiereingang oder eine digitale Schnittstelle zum
Empfangen von Steuerbefehlen (insbesondere von Dimmbefehlen) sein.
Als weitere Ergänzung kann festgehalten werden, dass in Kenntnis der erfassten Verlustleistungs-Kennlinie (Verlustleistung abhangig von der Lampenleistung oder abhangig von der Taktung eines oder mehrerer Schalter) auch die aktuell auftretenden Verluste oder die über einen gewissen (Betriebs-) Zeitraum aufgetretenen Verluste über ein Steuersystem oder ein Auslesegerat zuruckgemeldet bzw. ausgelesen werden können. Diese Ruckmeldung kann auch verknüpft mit der aktuell oder die über einen gewissen (Betriebs-) Zeitraum abgegebene Leuchtmittel-Leistung über ein Steuersystem oder ein Auslesegerat zuruckgemeldet bzw. ausgelesen werden. Es kann also eine Überwachung der Effizienz der Betriebsschaltung 1 (Effizienz-Monitoring) erfolgen .
Die Messung (Scannen der Verluste) kann auch in regelmäßigen Abstanden wiederholt werden, gegebenenfalls kann eine Fehlermeldung abgegeben werden (bspw. per Signal über Busleitung oder optisch) . Die Verluste konnnen auch über vorgegeben Zeiträume integriert werden.
Die Messung in der Messphase (d.h. das Scanning) kann durch einen Steuerbefehl o.a. durch den Nutzer oder eine Zentrale initiiert werden, beispielsweise übe reinen Steuerbefehl. Dabei kann bspw. auch durch eine Lasterkennung das Anschliessen eines Substitutionswiderstandes als Last (anstelle des Leuchtmittels) erkannt werden und somit kann die Messung in der Vorab-Phase mit Hilfe der Lasterkennung initiiert werden .
In Fig. 4 ist ein Beispiel für die Anwendung eines Gleichspannungs-Wandlers (hier ein Tiefsetzsteiler bzw. Buck-Konverter) dargestellt. Es ist nur ein Schalter S2 vorhanden, der über eine Veränderung des Tastverhaltnisses
(also PWM) angesteuert wird. Durch die hochfrequente
Ansteuerung des Schalters S2 wird Energie in der
Induktivität L gespeichert, wobei nach dem Offnen des Schalters S2 sich diese Energie über eine Entmagnetisierung der Induktivität L in dem durch die Leuchtdiode LD und die Freilaufdiode DF gebildeten Freilaufpfad entladt. Wahrend der Einschaltphase des Schalters S2 wird die Induktivität L aufmagnetisiert , dieser Magnetisierungsstrom fließt auch durch die Leuchtdiode LD, wahrend die Freilaufdiode DF gesperrt ist.
Über den Spannungsteiler R2/R3 kann die Spannung über der Leuchtdiode LD und über den Vorwiderstand R14 durch die Leuchtdiode LD ermittelt werden, womit die von der
Leuchtdiode LD aufgenommene Leistung ermittelt werden kann
(zumindest in der Messphase, wobei diese Komponenten ahnlich wie bei Fig. 3 beschrieben speziell für die
Messphase mit der Betriebsschaltung 1 verbunden werden können) .
Die von der Betriebsschaltung 1 aufgenommene Leistung kann beispielsweise durch eine Stromuberwachung in der Versorgung der Betriebsschaltung 1 (bspw. über eine Strommessung mittels Differenzmessung, Stromsensor wie bspw. Stromtransformator oder Potentialversatzstufe oder aber durch eine Strommessung zwischen Masse und der Ruckspeisung der Betriebsschaltung 1) . In Kenntnis der speisenden Spannung kann auf die aufgenommene Leistung geschlossen werden.
Der Kondensator Cl wirkt in diesem Beispiel als Glattungskondensator (parallel zu der Leuchtdiode LD) .
Die Leuchtdiode LD können wie bereits bei dem Ausfuhrungsbeispiel zur Fig. 3 für die Messung der Verluste in der Messphase, bspw. einer Vorab-Phase (d.h. das Scanning) durch einen Substitutionswiderstand RS (dieser kann auch einfach eine Brücke sein (also ein 0 Ohm Widerstand)) überbrückt oder ersetzt werden.
Durch einen (hier nicht dargestellten) Schalter S3 kann die Umschaltung oder Uberbruckung auch extern erfolgen (d.h. der Nutzer schließt in der Messphase anstelle des Leuchtmittels eine Referenzlast oder einen Substitutionswiderstand an) .
Somit können auch bei diesem Beispiel in einer Messphase, bspw. einer Vorab-Phase, die Verluste (d.h. die Verlustleistung) der Betriebsschaltung 1 ermittelt werden. Dabei kann auch über den für die Helligkeitssteuerung (d.h. das Dimmen) genutzten Bereich der möglichen Änderung des Tastverhaltnisses (also PWM) eine Bestimmung der Verlustleistung der Betriebsschaltung 1 bei unterschiedlichen Tastverhaltnissen durchgeführt werden und die bestimmten Werte können in einer Tabelle abgelegt werden. Aus diesen Werten kann auch wieder eine Extrapolation für weitere Wertepaare erfolgen. Es können also mehrere Einzelwerte der Verlustleistung bei verschiedenen Tastverhaltnissen in der Vorab-Phase gemessen, extrapoliert und gespeichert werden (ahnlich wie bei dem Beispiel der Fig. 3), alternativ kann auch die Verlustleistung über einen ganzen interessierenden Bereich des Tastverhaltnisses als Funktion gemessen und in einem Speicher 25 abgespeichert werden.

Claims

Patentansprüche :
1. Verfahren zum Betreiben einer leistungsgeregelten Betriebsschaltung (1, 21) für ein Leuchtmittel, wobei zur Leistungsregelung ein mit der schaltungsspezifischen Verlustleistung (Pv) behafteter die Leistung wiedergebender Parameter gemessen wird, der den Leistungs-Istwert wiedergibt, und mit einem Leistungs-Sollwert verglichen wird, und wobei abhangig von einer durch den Vergleich gewonnenen Regeldifferenz eine leistungsbestimmende Grosse, insbesondere die Taktung eines oder mehrere Schalter eingestellt wird, dadurch gekennzeichnet, dass wahrend einer Messphase, in der das Leuchtmittel keine Nutzleistung zur Lichtemission aufnimmt, die tatsachliche Verlustleistung (Pv) der Betriebsschaltung ermittelt und abgespeichert wird, und dass in einer Betriebsphase - wenn das Leuchtmittel Nutzenergie zur Lichtemission aufnimmt - mindestens einer der Regelparameter wie bspw. Leistungs-Istwert, Leistungs-Sollwert, Regeldifferenz, derart korrigiert wird, dass die von den Leuchtmitteln abgegebene Lichtleistung besser dem Leistungs-Sollwert entspricht.
2. Verfahren nach Anspruch 1, wobei die Betriebsschaltung (1, 21) ein von einer Gleichspannungsquelle gespeister Wechselrichter (Sl, S2, Rl) mit einem nachgeschalteten Resonanzkreis (L, Cl) ist, /J
wobei das Leuchtrnittel mit dem Resonanzkreis (LP, LD) derart gekoppelt ist, dass diesem eine von der Wechselrichterfrequenz und der Resonanzkurve bestimmte Betriebsspannung zugeführt wird.
3. Verfahren Anspruch 2, dadurch gekennzeichnet, dass die Messung der Verlustleistung während der Messphase bei mindestens zwei unterschiedlichen Frequenzen (fsi, fSn) erfolgt, und dass aufgrund der Messwerte durch Extrapolation eine die Verlustleistung (Pvi, Pvn) in Abhängigkeit von den Frequenzen (fsi, fsn) darstellende Tabelle erstellt wird, anhand welcher in der Betriebsphase die bei der jeweiligen Wechselrichter-Frequenz (fsi, fSn) relevante Verlustleistung (Pvi, Pvn) zur Korrektur des gemessenen Leistungs-Istwertes (P1St) zur Verfügung gestellt wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet , dass die Messung der Verlustleistung während der Messphase über einen relevanten Frequenzbereich erfolgt, und dass aufgrund der Messwerte eine die
Verlustleistung (Pv) in Abhängigkeit von der Frequenz
(fs) darstellende Tabelle erstellt wird, anhand welcher in der Betriebsphase die bei der jeweiligen
Wechselrichterfrequenz (fs) relevante Verlustleistung (Pv) zur Korrektur des gemessenen Leistungs-Istwertes (P1St) zur Verfügung gestellt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verlustleistung (Pv) der Betriebsschaltung (1, 31) wahrend der Messphase gemessen wird
(a) mit den regulären Betriebsparametern für das Leuchtmittel (LP, LD) bevor dieses in einem zeitlichen Anlaufprozesses Nutzleistung zur Lichtemission aufnimmt, oder
(b) mit mindestens einem Betriebsparameter (Betriebsspannung, Betriebsstrom oder
Wechselrichterfrequenz) für das Leuchtmittel, welcher derart gewählt ist, dass das Leuchtmittel (LP, LD) noch keine Nutzleistung zur Lichtemission aufnimmt, oder
(c) mit einem das Leuchtmittel (LP, LD) ersetzenden bekannten Substitutionswiderstand (RS), um dessen Substitutionsleistung (PRS) die gemessene Verlustleistung (Pv) reduziert werden muss.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Korrektur eines Regelparameters in der Betriebsphase in der Weise erfolgt, dass die Verlustleistung (Pv) entweder zu dem Leistungs- Sollwert (Psoii) addiert oder von dem Leistungs- Istwert (P1St) subtrahiert oder zu der Regeldifferenz (Pdiff) addiert wird.
7. Verfahren nach einem der vorher stehenden Ansprüche, dadurch gekennzeichnet, dass der die Leistung wiedergebende Parameter aus dem Bereich der Leuchtmittel und/oder aus dem Bereich einer vorgelagerten Versorgungsschaltung zurückgeführt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Leuchtmittel mit Gleichspannung, bspw. gleichgerichteter Wechselspannung, oder mit Wechselspannung betrieben werden.
9. Verfahren nach einem der vorher stehenden Ansprüche, dadurch gekennzeichnet, dass das Leuchtmittel eine Gasentladungslampe (LP) oder eine oder mehrere LED/s (LD) ist/sind.
10. Integrierte Steuerschaltung, insbesondere ASIC, Mikrokontroller oder Hybridversion davon, die dazu ausgelegt ist, ein Verfahren nach einem der vorhergehenden Ansprüche durchzuführen.
11. Betriebsgerät für Leuchtmittel, aufweisend eine Steuerschaltung nach Anspruch 10.
12. Leistungsgeregelte Betriebsschaltung (1, 21) für ein
Leuchtmittel (LP, LD) , mit einem Regler (3, 13, 23), dem ein Leistungs- Istwert sowie ein Leistungs-Sollwert zugeführt werden und der daraus eine Regeldifferenz erzeugt, gekennzeichnet, durch Mittel (Rl, R3) zum Messen und Speichern der tatsächlichen Verlustleistung (Pv) der Betriebsschaltung (1, 31) während einer Messphase, in der das Leuchtmittel (LP, LD) keine Nutzleistung zur
Lichtemission aufnimmt, und durch Mittel zum Korrigieren mindestens einer der Regelparameter in einer Betriebsphase, in der das Leuchtmittel Nutzenergie zur Lichtemission aufnimmt derart, dass die von den Leuchtmitteln abgegebene Lichtleistung besser dem Leistungs-Sollwert entspricht .
13. Leistungsgeregelte Betriebsschaltung nach Anspruch 12, dadurch gekennzeichnet, dass sie einen vorzugsweise mittels eines oder mehrerer Schalter getakteten Gleichspannungswandler und oder DC/AC-Wandler aufweist, wobei die , Taktung des/der Schalter die leistungsbestimmende Steuergrosser der Leistungsregelung ist.
14. Leistungsgeregelte Betriebsschaltung nach Anspruch 12 oder 13, mit einem von einer Gleichspannungsquelle gespeister Wechselrichter (Sl, S2, Rl), mit einem dem Wechselrichter (Sl, S2, Rl) nachgeschalteten Resonanzkreis (L, Cl) , wobei das Leuchtmittel (LP, LD) mit dem Resonanzkreis
(L, Cl) derart gekoppelt ist, dass diesem eine von der
Wechselrichterfrequenz (fs) und der Resonanzkurve bestimmte Betriebsspannung zugeführt wird, mit Mitteln zur Ermittlung eines mit der schaltungsspezifischen Verlustleistung (Pv) behafteten Leistungs-Istwertes (PiSt),
15. Leistungsgeregelte Betriebsschaltung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Verlustleistung (Pv) der Betriebsschaltung (1, 21) wahrend der Messphase gemessen wird
(a) mit den regulären Betriebsparametern für das Leuchtmittel (LP, LD) bevor dieses in einem zeitlichen Anlaufprozesses Nutzleistung zur Lichtemission aufnimmt, oder
(b) mit mindestens einem Betriebsparameter für das Leuchtmittel (LP, LD) , welcher derart gewählt ist, dass das Leuchtmittel noch keine Nutzleistung zur Lichtemission aufnimmt, oder
(c) mit einem das Leuchtmittel (LP, LD) ersetzenden bekannten Substitutionswiderstand (RS), um dessen Substitutionsleistung (PRS) die gemessene Verlustleistung (Pv) reduziert werden muss.
16. Leistungsgeregelte Betriebsschaltung nach einem der
Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Mittel (4, 14, 23, 34) zum Korrigieren mindestens eines Regelparameters m der Betriebsphase dergestalt sind, dass die Verlustleistung (Pv) entweder zu dem Leistungs-Sollwert (PSoii) addiert oder von dem Leistungs-Istwert (PiSt) subtrahiert oder zu der Regeldifferenz (Pdiff) addiert wird.
17. Leistungsgeregelte Betriebsschaltung nach einem der
Ansprüche 12 bis 16, dadurch gekennzeichnet, dass die Mittel (Rl, R3) zum Messen und Speichern der tatsächlichen Verlustleistung (Pv) der Betriebsschaltung (1, 31) wahrend einer Messphase von einem Prozessor (6) gebildet sind.
EP10716534.2A 2009-04-28 2010-04-27 Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben Active EP2425684B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009019229A DE102009019229A1 (de) 2009-04-28 2009-04-28 Leistungsgeregelte Betriebsschaltung für ein Leuchtmittel sowie Verfahren zum Betreiben derselben
PCT/EP2010/055610 WO2010125053A1 (de) 2009-04-28 2010-04-27 Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben

Publications (2)

Publication Number Publication Date
EP2425684A1 true EP2425684A1 (de) 2012-03-07
EP2425684B1 EP2425684B1 (de) 2016-06-29

Family

ID=42262670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716534.2A Active EP2425684B1 (de) 2009-04-28 2010-04-27 Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben

Country Status (4)

Country Link
EP (1) EP2425684B1 (de)
CN (1) CN102428761A (de)
DE (2) DE102009019229A1 (de)
WO (1) WO2010125053A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612543B (zh) * 2017-09-26 2024-12-24 南京美辰微电子有限公司 应用于光通信的自动功率调节电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928810A1 (de) * 1989-08-31 1991-03-07 Philips Patentverwaltung Schaltungsanordnung zum speisen einer last
TW235383B (de) * 1991-04-04 1994-12-01 Philips Nv
DE10018860A1 (de) * 2000-04-14 2001-10-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Stabilisierung des Betriebs von Gasentladungslampen
JP4429696B2 (ja) * 2003-11-18 2010-03-10 パナソニック株式会社 高圧放電灯装置
KR101245121B1 (ko) * 2005-06-10 2013-03-25 에이저 시스템즈 엘엘시 저항 부하를 통한 전류 조정
DE102006030655A1 (de) * 2006-04-21 2007-10-25 Tridonicatco Gmbh & Co. Kg Notlichtgerät zum Betreiben einer Lichtquelle, insbesondere einer LED

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010125053A1 *

Also Published As

Publication number Publication date
WO2010125053A1 (de) 2010-11-04
EP2425684B1 (de) 2016-06-29
CN102428761A (zh) 2012-04-25
DE112010001791A5 (de) 2012-11-08
DE102009019229A1 (de) 2010-11-04

Similar Documents

Publication Publication Date Title
DE69919138T2 (de) Electronischer dimmer
DE102012007478B4 (de) Wandler für ein Leuchtmittel, LED-Konverter und Verfahren zum Betreiben eines Wandlers
DE102011055071B4 (de) Kompatibilität elektronischer transformatoren für leuchtdiodensysteme
DE112015002658B4 (de) Boost-Schaltung zur Leistungsfaktorkorrektur, Treiberschaltung für eine lichtemittierende Diode und Beleuchtungsvorrichtung
DE112009002082T5 (de) Leistungsfaktorkorrektur in und Dimmen von Festkörper-Beleuchtungseinrichtungen
DE19923945A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
DE102012007477A1 (de) Verfahren zum Betreiben eines LLC-Resonanzwandlers für ein Leuchtmittel, Wandler und LED-Konverter
DE102013226120A1 (de) Verfahren und schaltung für eine led-treiber-leuchtstärkeregelung
EP1872627B1 (de) Parametrisierbarer digitaler pfc
DE69911493T2 (de) Beleuchtungssystem einer Entladungslampe mit Überstromschutz für die Schalter eines Wechselrichters
EP2368410B1 (de) Verfahren und betriebsgerät zum betreiben eines leuchtmittels mit geregeltem strom
WO2013185157A1 (de) Leistungsfaktorkorrekturschaltung, betriebsgerät für ein leuchtmittel und verfahren zum steuern einer leistungsfaktorkorrekturschaltung
DE202009001708U1 (de) Niedervolt Beleuchtungssystem und Regelschaltung zur Verwendung in einem Niedervolt Beleuchtungssystem
EP2425684B1 (de) Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben
DE112015005931B4 (de) Leuchtsystem und Verfahren zum Steuern des Leuchtsystems
AT15534U1 (de) Betriebsschaltung für LEDs
EP3449692A1 (de) Verfahren zur regelung eines led-moduls
EP2474206B1 (de) Cosinus (phi) - korrektur bei strom- oder leistungsgeregelten betriebsgeräten für leuchtmittel
EP2849538B1 (de) Vorrichtung und Verfahren zur indirekten Bestimmung einer elektrischen Versorgung
WO2006122525A1 (de) Elektronisches vorschaltgerät für eine niederdruck-entladungslampe mit einem mikro-controller
DE102014102843A1 (de) Eingangsspannung erkennendes Betriebsgerät für Leuchtmittel
DE202018101982U1 (de) PFC-Schaltung
AT15719U1 (de) PFC-Schaltung
AT14041U1 (de) Betriebsschaltung für Leuchtdioden mit Filterelement
AT13386U1 (de) LED-Konverter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011915

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011915

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

26N No opposition filed

Effective date: 20170330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170428

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010011915

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200429

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250422

Year of fee payment: 16