EP2423384B1 - Spray device for a construction machine for earth works, construction machine with a spray device and method for operating a spray device - Google Patents

Spray device for a construction machine for earth works, construction machine with a spray device and method for operating a spray device Download PDF

Info

Publication number
EP2423384B1
EP2423384B1 EP11004500.2A EP11004500A EP2423384B1 EP 2423384 B1 EP2423384 B1 EP 2423384B1 EP 11004500 A EP11004500 A EP 11004500A EP 2423384 B1 EP2423384 B1 EP 2423384B1
Authority
EP
European Patent Office
Prior art keywords
fluid
fluid delivery
delivery device
spraying device
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11004500.2A
Other languages
German (de)
French (fr)
Other versions
EP2423384A3 (en
EP2423384A2 (en
Inventor
Jürgen Heusinger
Johannes Forster
Andreas Nacke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP2423384A2 publication Critical patent/EP2423384A2/en
Publication of EP2423384A3 publication Critical patent/EP2423384A3/en
Application granted granted Critical
Publication of EP2423384B1 publication Critical patent/EP2423384B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/12Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for distributing granular or liquid materials
    • E01C19/16Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for distributing granular or liquid materials for applying or spreading liquid materials, e.g. bitumen slurries
    • E01C19/17Application by spraying or throwing
    • E01C19/178Elements or attachments for spreading-out or smoothing-down the applied material, e.g. brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/005Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 mounted on vehicles or designed to apply a liquid on a very large surface, e.g. on the road, on the surface of large containers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/12Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for distributing granular or liquid materials
    • E01C19/16Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for distributing granular or liquid materials for applying or spreading liquid materials, e.g. bitumen slurries
    • E01C19/17Application by spraying or throwing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/065Recycling in place or on the road, i.e. hot or cold reprocessing of paving in situ or on the traffic surface, with or without adding virgin material or lifting of salvaged material; Repairs or resurfacing involving at least partial reprocessing of the existing paving
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums

Definitions

  • the invention relates to a spraying device for a construction machine for soil cultivation, a construction machine with such a spraying device and a method for operating a spraying device.
  • construction machines in particular construction machines for working floors or roadways, such as a cold milling machine for the milling of road surfaces and floor coverings, a stabilizer for stabilizing non-load-bearing soils and a recycler for repairing repaired road pavements, have Einsprüh adopteden to the dust during the To reduce working process and / or the soil material to be processed fluid, especially water, add to obtain desired properties.
  • construction machines are provided with a work roll with which the floor or the road can be broken up and / or mixed. For example, if the processing involves an asphalt or concrete pavement, a typical operation is milling the pavement.
  • the work roll is horizontal with respect to its cylinder axis directly or indirectly mounted on a machine frame of the construction machine and extending transversely to the longitudinal direction and working direction of the construction machine.
  • the work roll is also usually stored in a working space open to the floor, in which the work roll rotates in the working insert and comes into contact with the soil to be processed.
  • the work roll is usually shielded, for example by a guard or a Fräswalzenkasten.
  • the closed design of the working space prevents, inter alia, that the material milled off from the work roll rotating about its longitudinal axis is uncontrollably thrown into the surroundings of the construction machine.
  • the work space limited to the outside also serves the transport of material in order to be able to remove material milled off from the milling drum in a controlled manner.
  • the task of the working space is to provide a mixing room in which the processed raw material can be mixed with an additive, for example, to achieve a Bodenbefest Trent or stabilization.
  • Typical additives in this context are, for example, hydraulic or bituminous binders or water.
  • the construction machine has a spraying device.
  • the spraying device usually comprises a fluid delivery device, via which the fluid can be introduced into the working space.
  • a fluid delivery device may comprise, for example, a valve and an outlet opening or outlet nozzle opening into the working space.
  • the part of the fluid delivery device, via which the fluid exits into the working space is arranged in the interior of the working space.
  • the term fluid delivery device includes all those means that are available for immediate delivery of the fluid into the working space. This is thus at least a suitable fluid outlet opening, for example an opening of a nozzle.
  • the fluid dispenser also often includes a valve or similar regulating means.
  • a conduit system is provided, via which the fluid is passed to the fluid dispenser.
  • the conduit system may optionally include other components, such as one or more pumps via which the fluid is pumped from the reservoir into the conduit system and finally to the at least one exit nozzle, filters, valves, etc.
  • the fluid supply to the construction machine itself is either via one or more several own entrained fluid tanks and / or via a connection of the construction machine with a suitable tanker vehicle.
  • the construction machine can be designed to supply the working space with different fluids or a fluid mixture. For this purpose, for example, several fluid tanks may be integrated in the construction machine or suitable connections for a tanker vehicle may be present.
  • a generic spraying device therefore further comprises a control unit which controls the fluid supply through the piping system to the fluid delivery device.
  • the control unit thus represents the central control and control component of the spraying device and is responsible for controlling the spraying device or the individual components of the spraying device.
  • the control unit may, for example, specifically be a suitably programmed microcontroller which has suitable Signal connections controls the corresponding components of the sprayer.
  • the control unit may further comprise an input unit via which the machine operator can input control parameters such as, for example, the nature of the ground, the delivery line of the injection device, the type of fluid, etc.
  • Typical control functions which are controlled by the control unit, are, for example, the switching on and off of the fluid supply or a corresponding pump, the regulation of the fluid pressure or the delivered amount of fluid per unit time that emerges through the fluid dispenser, or the flow rate, the type of the fluid, etc.
  • a typical application in which the introduction of a fluid into the working space of the construction machine is desired for example, the blending of the work roll processed material in the working space with water to improve together with previously applied to the soil to be processed binders such as lime Material properties of the soil material to achieve.
  • binders such as lime Material properties of the soil material to achieve.
  • by moistening the soil material but also a reduction of dust development in the working mode can be achieved.
  • Other exemplary applications include the incorporation of bituminous binders, the production and introduction of foam bitumen, etc.
  • the required quantities of fluid can vary greatly depending on the conditions of use.
  • a recycler which provides a fluid delivery device for a milling unit and a further fluid delivery device for a downstream mixing unit.
  • a fluid delivery device for a milling unit and a further fluid delivery device for a downstream mixing unit.
  • the prior art are from the US 3,782,634 A and the US 2008/0193215 A1 also known tank vehicles with a spray, with which a liquid can be distributed on the soil surface.
  • the spraying devices may comprise subunits with which an optimized distribution of the liquid on the soil surface in terms of quantity and width is possible.
  • the object of the invention is therefore to provide a spraying device for a generic construction machine, the uniform introduction of a fluid into the working space over a wide range, ie from small amounts of fluid to relatively high amounts of fluid per time and / or distance, continuously and reliably guaranteed.
  • the sprayer should be robust and fail-safe.
  • the spraying device for introducing a fluid into the working space of a construction machine for working floors or roadways has at least one first and at least one second fluid delivery device, via which the fluid can be introduced into the working space.
  • the first fluid delivery device is designed to deliver a larger amount of fluid than the second fluid delivery device at a predetermined operating pressure.
  • the specified operating pressure is thus a certain pressure during operation of the injection device, for example in the line system upstream of the at least first and the at least second fluid delivery device or a specific section in the line system. In this comparison pressure, the at least first and the at least second fluid delivery device deliver different amounts of fluid into the working space.
  • the at least first fluid delivery device is thus more efficient than the at least second fluid delivery device and, at the same operating pressure, delivers a larger volume of fluid per unit time into the working space than the at least second fluid delivery device.
  • the operating pressure relevant here prevails only at those points in the injection device at which the fluid pressure changes depending on the amount of fluid conveyed in the line system or increases with increasing delivery rate and vice versa.
  • Essential for the inventive design of the sprayer is thus that the sprayer has at least two fluid dispensers, which differ in their performance from each other.
  • the "large” fluid delivery device makes it possible at the particular operating pressure, for example at a bar, to deliver a significantly larger volume of fluid into the working space than the "smaller” second fluid delivery device at precisely this operating pressure. It goes without saying that both fluid dispensers deliver more fluid into the working space as the operating pressure is increased. However, a larger volume always flows at comparable operating pressure through the larger first fluid delivery device.
  • the sprayer according to the invention thus comprises a "high performance fluid delivery device” for delivering large volumes of fluid per unit time to the working space and a "low power fluid delivery device” as compared to the high performance fluid delivery device lower fluid deliveries per unit time into the workspace.
  • the introduction of the fluid into the working space preferably takes place via the second fluid delivery device and with an increased fluid requirement via the first fluid delivery device or even via the at least two fluid delivery devices.
  • the first fluid dispensing device is designed in such a way that it emits a larger amount of fluid than the second fluid dispensing device at a predetermined operating pressure, the sprayer can bring in a comparatively narrow operating pressure range reliably highly varying fluid volumes homogeneously distributed in the working space.
  • the line system comprises all line parts from the fluid tank or fluid inlet of the construction machine to the respective fluid delivery device.
  • the task of the line system is summarized in passing the fluid from a feed or storage area to the fluid dispenser.
  • Typical components of the conduit system may be, for example, pipelines, hoses, valves, one or more pumps, filter units, line bars, etc.
  • An essential element of the injection device also represents a control unit, which is designed to control the fluid delivery via the at least first and the at least second fluid delivery device.
  • the control unit regulates the fluid delivery of the at least first and at least the second fluid delivery device in such a way that it individually or individually controls the first fluid delivery device and the second fluid delivery device or both, as will be explained in more detail below.
  • Under an individual control is in particular, for example, only a partial activation of one of the at least first or at least second fluid dispensing devices to understand, depending on the embodiment.
  • the control unit thus regulates the at least first and the at least second fluid delivery device independently of each other.
  • control unit can be designed self-regulating. In this embodiment, the operator thus set desired values. Based on these setpoints, the control unit determines and regulates the required Flow rate. Typical parameters that can be taken into account by the control unit are the desired fluid distribution or moisture in the soil material to be processed, the depth of cut, the soil density, the ground speed, etc.
  • the depth of cut in this embodiment is thus changed during operation, for example increased, increases the control unit at the same time the flow rate fluid or the volume of the introduced into the working space fluid per unit time in a corresponding extent, so that despite different cutting depths, the introduced into the soil amount of fluid per volume of soil material is constant.
  • Each fluid delivery device comprises at least one metering element, with which the fluid is discharged directly into the working space, in particular sprayed.
  • metering elements may be, for example, holes in a line bar, which can be opened and closed via a corresponding valve or to which metered fluid can be supplied.
  • the dosing elements are outlet nozzles, since a particularly homogeneous distribution of the fluid in the working space can be achieved via outlet nozzles.
  • a metering element is thus a subunit of the fluid delivery device and refers solely to that component which is responsible for the introduction of the fluid into the working space in the last step of the fluid delivery.
  • the metering element is the element through which the fluid leaves the spraying device into the working space.
  • the fluid delivery device may further comprise at least one regulation element, for example a valve, which is actuated by the control unit to activate, deactivate and regulate the flow rate.
  • the specific arrangement of the metering elements may vary.
  • the individual metering elements of a fluid delivery device are preferably arranged distributed uniformly parallel to the longitudinal axis of the work roll in the axial direction one behind the other over the entire width of the working space. This ensures that the fluid entry into the working space over the entire width of the working space is as even as possible.
  • the at least first and the at least second fluid delivery device comprises a plurality of metering elements, in particular outlet nozzles, for example three to twenty, in particular eight to fifteen and in particular ten.
  • the specific relative arrangement of the at least first fluid delivery device to the at least second fluid delivery device may also vary.
  • one metering element of the at least first fluid delivery device is arranged in the direction of rotation of the work roll or in the working direction of the construction machine in front of or behind a metering element, in particular outlet nozzle, of the at least second fluid delivery device.
  • the number of metering elements of the at least first fluid delivery device and the at least second fluid delivery device is the same, both fluid delivery devices thus each comprise, for example, ten metering elements, in particular outlet nozzles.
  • the metering elements of the at least first and the at least second fluid delivery device can be arranged distributed as evenly as possible in the axial direction of the work roll over the entire width of the working space, in particular on a common part of the line system, for example a line bar.
  • unequal numbers of metering elements of the at least first and the at least second fluid delivery device have proven to be advantageous in order to ensure the homogeneity of the fluid entry.
  • the number of metering elements of one fluid delivery device preferably exceeds that of the other by a metering element, so that in each case a metering element of a fluid delivery device is present in each case for the two outer sides in the axial direction of the longitudinal axis.
  • the individual metering elements are further preferably formed exchangeable. Specifically, for example, screwed nozzles are used, which can be replaced if necessary by nozzles of a different size.
  • the design of the line system to the at least first or at least second fluid dispenser may also vary.
  • a separate line section for example a separate line bar, to be provided in the line system.
  • the metering elements of the at least first and the at least second fluid delivery device are connected to the line system via a common element, for example a line bar; Both fluid dispensers thus deliver the same fluid into the working space and have an adjoining and in particular partially overlapping operating range with regard to the flow volume or discharge volume of the fluid into the working space per unit time.
  • first fluid delivery device and the second fluid delivery device differ with regard to the quantity of fluid delivered at a defined operating pressure essentially depends on the range of use of the construction machine equipped with such a spraying device.
  • the metering elements of the at least first and at least second fluid delivery devices are preferably designed such that at the specified operating pressure the flow rate of the fluid through a metering element of the first fluid delivery device relative to the flow rate of the fluid through a metering element the second fluid delivery device in the range of 1.8: 1 to 5: 1, in particular in the range from 2: 1 to 3: 1.
  • the outlet nozzles of the first fluid delivery device are thus dimensioned so that they deliver about 25 l / min at 1 bar operating pressure and the outlet nozzles of the second fluid delivery device dimensioned so that they at the operating pressure of 1 bar about 10 l / min spray into the work space. If the metering elements of the fluid delivery devices are selected in this ratio, it is ensured that the construction machine can be used in particular over the entire range of typical recycler and stabilizer applications.
  • the control unit is designed, for example, such that it controls the respective metering elements, in particular the at least two metering elements, of the first and the second fluid delivery device, together. If the first fluid delivery device is activated, fluid is thus conveyed through all metering elements of the first fluid delivery device into the working space. The same applies to the metering elements of the second fluid delivery device.
  • the control unit is designed in such a way that it groups and in particular individually controls the at least two metering elements of the at least first fluid delivery device and / or the at least second fluid delivery device. In an individual control, it is thus possible to activate individual dosing of the first and second fluid delivery device separately.
  • this also includes the possibility of activating several or all metering elements of a fluid delivery device at the same time or to use them for delivering fluid into the working space. Based on the entire working space is obtained with this embodiment, the possibility to introduce only in partial areas of the working space fluid in the soil material to be processed. This can be desired, for example, in the working mode, if only one in the direction of travel of the construction machine extending portion of the machining width of the construction machine to be offset with fluid. For this type of injection device, however, it is necessary for each dosing element to have a corresponding device, for example a valve, which can be controlled and regulated by the control unit. The at least first and / or at least second fluid delivery device are therefore relatively expensive to manufacture.
  • a meaningful and thus also advantageous compromise represents a spraying device according to another preferred embodiment of the invention, in which the control unit is designed in such a way that it controls the metering of the at least first fluid dispensing device and / or the at least second fluid dispensing device grouped.
  • the control unit controls the metering of the at least first fluid dispensing device and / or the at least second fluid dispensing device grouped.
  • at least two dosing each form a Dosierelementoli.
  • Metering elements of the at least first and / or the at least second fluid delivery device in this embodiment are at least partially in groups within the scope of the fluid delivery device arranged, so that for example with a valve a Dosierelementoli, in particular two metering elements can be activated.
  • the number of individual dosing elements of each group can be varied and adapted to the respective needs.
  • control unit can be designed in such a way that it controls the at least first and the at least second fluid delivery device in such a way that a defined volume of fluid per unit time is discharged into the working space or the flow rate of fluid is kept constant in the working space.
  • the work settings such as depth of cut, driving speed, etc.
  • the desired fluid volume per time or the flow rate of fluid per time into the working space can vary widely.
  • different fluids may, for example, have different viscosities, which requires consideration of different operating pressures to obtain a desired fluid flow into the working space.
  • the invention proposes, in a further aspect, to design the control unit in such a way that it switches over from the at least first fluid dispensing device to the at least second fluid dispensing device as a function of exceeding or falling below a threshold value, and vice versa.
  • the essential basic idea of this embodiment is initially that the control unit automatically controls the discharge capacity of fluid into the working space on the basis of at least one relevant measuring parameter and regulates the amount of fluid introduced into the working space per unit of time as a function of this measuring parameter.
  • At least one threshold value is stored in the control unit, the exceeding of which triggers a switchover from the at least second fluid delivery device to the more powerful at least first fluid delivery device.
  • a threshold may be, for example, the flow rate, the line pressure, etc.
  • a plurality of threshold values may be present, the exceeding of which triggers each switching. This can be ensured that the amount of fluid introduced into the working space can be relatively varied and the operating pressure is maintained at the same time in a relatively narrow range.
  • the threshold value is undershot, the control unit reacts in the opposite direction and switches over from the at least one first fluid delivery device to the at least second fluid delivery device.
  • the at least first fluid delivery device is correspondingly deactivated and the at least second fluid delivery device is activated by the control unit. This succeeds, despite a possibly drastic reduction in the work space To keep the operating pressure in a significant range per unit time and to prevent excessive sagging of the operating pressure. As a result, on the one hand, a uniform distribution of the fluid over the entire fluid delivery device is ensured and at the same time, for example, clogging of the metering elements, in particular outlet nozzles, can be counteracted with soil material of the respective fluid delivery device, since even at low volume flow the fluid exits the metering elements with a certain minimum pressure ,
  • control unit may also be designed in such a way that it automatically switches on at least one of the at least two fluid delivery devices of the at least one other fluid delivery device as a function of exceeding or falling below a maximum value. This is typically done, for example, when the more powerful at least first fluid delivery device has reached its maximum injection level from the volume of fluid per unit time or from the flow rate.
  • the delivery rate of the injection device can then be further increased according to this further preferred embodiment by activating the less powerful at least second fluid delivery device in addition to the more powerful fluid delivery device or, as it were, adding it. In the case of this embodiment, this happens automatically when the maximum value of a suitable control parameter stored in the control unit and / or the maximum flow rate are exceeded.
  • This may be, for example, the line pressure in the line system of the injection device, the flow rate or the discharge volume per unit of time in the working space or the like.
  • at least one corresponding suitable sensor device must be integrated into the injection device as part of the control device, such as a pressure sensor which determines the fluid pressure in the line system and transmits it to the control unit . If the maximum value is undershot, the power-weaker at least second fluid delivery device is first deactivated by the control unit. If the corresponding parameter continues to fall and then falls below the threshold value, the control unit switches from the more powerful at least first fluid delivery device to the less powerful at least second fluid delivery device.
  • a multiplicity of operating parameters are suitable for defining and determining the threshold value and / or the maximum value.
  • Particularly preferred in this connection are the monitoring and the basis of the line pressure, the flow rate of fluid per unit time, the depth of cut, the soil moisture, the soil density and / or the ground speed.
  • the line pressure can be taken into account in addition to the driving speed and / or in addition to the flow rate fluid per unit time by a correspondingly formed control unit.
  • control unit is designed in such a way that the threshold value and / or the maximum value vary depending on the respective fluid or are respectively adapted to the specific properties of the fluid. For each fluid, individual threshold values and / or maximum values are thus stored in the control unit in this embodiment.
  • a cleaning device or cleaning function for cleaning the at least first and the at least second fluid dispensing device is present. This can be formed, for example, in such a way that the control unit for performing the cleaning function at regular intervals a cleaning pulse by the respective existing fluid dispensing devices triggers.
  • a further development further provides for the integration of a fluid filter into the line system, in particular in the conveying direction of the fluid before and / or behind a fluid pump.
  • a fluid filter into the line system, in particular in the conveying direction of the fluid before and / or behind a fluid pump.
  • it can be ensured particularly well that the fluid delivered to the at least first and the at least second second fluid delivery device is free of contaminants. Overall, so deposits and blockages in the pipe system can be better avoided.
  • it is also possible to integrate a plurality of pumps in the line system for example, to promote fluid to the at least first and the at least second fluid delivery device with separate pumps and / or provide a separate line system for each fluid.
  • the solution of the problem also succeeds with a construction machine for tillage, in particular a recycler to restore repaired street fixtures, a stabilizer for stabilizing non-load-bearing floors and a milling machine, especially cold planer, for milling roadway and floor coverings in the manner described above trained spraying device.
  • These various types of construction machinery are consistent in the essential design of their work tool and the arrangement of this work tool in the construction machine.
  • Each comprise a horizontal and transversely to the longitudinal axis or working direction of the construction machine arranged work roll, which is designed to rotate about its horizontal axis for substrate processing, for example for milling of road surfaces, for stabilizing soil or for recycling defective road pavement.
  • the working space in which the work roll is arranged to rotate is designed to be substantially closed to the sides and upwards, for example with a cover hood, so that the work space is only opened toward the floor and, for example, for mixing the soil to be worked with Additives and / or fluids, etc., can be used.
  • the working device or work roll is arranged directly or indirectly on the machine frame of the construction machine.
  • the construction machine is also preferably self-propelled and has at least one front wheel and at least two rear wheels, which may have a suitable drive, for example via corresponding hydraulic motors. Alternatively, embodiments with corresponding drive crawlers are possible.
  • the construction machine may further comprise either at least one fluid reservoir for carrying the fluid or, alternatively, be connected via the conduit system with a tanker vehicle or the like for fluid supply of the spraying device.
  • the invention provides to integrate the spraying device described above in a construction machine for soil cultivation, in particular a construction machine with the above features.
  • the object is also achieved by a method for operating a spraying device, in particular the spraying device of the above-described construction machine.
  • the flow rate of the injection device is controlled by controlling at least one first fluid delivery device and at least one second fluid delivery device by a control unit, wherein the first fluid delivery device is designed to deliver a larger fluid quantity than the second one at a predetermined operating pressure Fluid dispenser is formed.
  • the method according to the invention is therefore characterized in that for the delivery of the same fluid into the working space at least two with respect to their respective performance at a specified reference operating pressure staggered mutually formed fluid dispensing devices are controlled by the control unit and regulated with respect to their output into the working space amount of fluid.
  • the operating pressure in the line system of the spraying device can be kept within a comparatively narrow range and at the same time the amount of fluid dispensed into the working space per unit of time can be varied widely.
  • a refinement of the method according to the invention provides for the regulation of the flow rate of the injection device or of the delivery of the fluid volume per unit of time into the working space as a function of overshooting and / or falling below at least one defined threshold value of at least one specific operating parameter.
  • the control unit automatically switches over from the activated at least second at least second fluid delivery device to the more powerful at least first fluid delivery device if, for example, the flow rate of the fluid per unit time and / or the operating pressure in the line system exceeds the threshold value.
  • a similar control process may, for example, take place when the travel speed of the construction machine or the line pressure as a result of an acceleration of the engine exceeds a threshold value in order to keep the fluid input per unit volume of soil material constant.
  • the threshold taking into account the operating pressure, the depth of cut and / or simultaneously the travel speed of the construction machine and the switching between the at least first fluid delivery device and the at least second fluid delivery device depending on both the operating pressure in the line system and / or the milling depth and or to control the driving speed of the construction machine.
  • the switching between the fewest first and the least second fluid delivery device can basically take place without transition. This means that the at least first fluid delivery device is deactivated in the moment in which the second fluid delivery device is activated and vice versa. However, in this switching method, comparatively large pressure fluctuations in the line system can occur. In order to avoid the pressure peaks occurring during switching, the invention therefore proposes overlapping the switching between the at least first and the at least second fluid delivery device. For example, from the at least first fluid delivery device to the at least second fluid delivery device, for example when reducing the travel speed of the construction machine, from the control unit When the at least one first fluid dispensing device is activated, at least one parallel activation of the at least second fluid dispensing device takes place.
  • the at least first fluid dispensing device is deactivated and the entry of the fluid into the working space is continued solely by the at least second fluid dispensing device.
  • This process is correspondingly reversed when the amount of fluid dispensed into the working space per unit time is to be increased. It is therefore essential for this embodiment of the method according to the invention that, when switching over for a transitional time interval, the at least first and the at least second fluid delivery devices are activated overlapping each other simultaneously and with respect to their activation state and release the fluid together into the working space within this time interval. After this time interval has elapsed, the desired deactivation of the respectively no longer required fluid delivery device takes place. In this way, the emergence of pressure peaks during switching is effectively prevented and significantly reduces the pressure load on the piping system.
  • Fig. 1 relates to a construction machine 1, specifically in Fig. 1 a so-called stabilizer or, depending on the application, a recycler.
  • the construction machine 1 initially comprises a machine frame 2, a pair of front wheels 3 and a pair of rear wheels 4, wherein only the respective wheel located in the working direction a on the left side is visible.
  • the machine frame 2 further has a two-part construction, comprising two frame members, which are connected to each other with an articulated joint 5. At the height of the articulated joint 5, a height-adjustable arrow direction b along the driver's cab 6 is further arranged.
  • the drive energy required is obtained by means of a drive device 7, which both the driving energy required for driving the construction machine 1 as well as for driving the work device to be explained in more detail below Provides.
  • the construction machine 1 is used for processing of floors or roadways and has to the working device in the form of a work roll on (in Fig. 1 not visible).
  • the work roll is mounted rotatably about its cylinder axis indirectly on the machine frame 2 of the construction machine 1 and surrounded by a protective hood 8, which closes the space around the working device upwards and to the sides. Downwards or towards the bottom 9, the protective cover 8 is open.
  • the protective cover 8 thus encloses a working space in which the work roll is mounted.
  • the work roll is relative to the protective cover 8 and the machine frame 2 in the direction of arrow c adjustable in height and has for this purpose a corresponding adjustment or pivoting device.
  • This position of the work roll is assumed, for example, in the transport mode of the construction machine, whereas the work roll is lowered in working mode or tillage mode down and immersed in the ground with the desired depth , For tillage the construction machine 1 is moved in the direction of arrow a (forward direction) on the ground 9.
  • the concrete structure of the protective hood 8 bell-like covered working space 10 is in the sectional view through the guard 8 from Fig. 1 perpendicular to the axis of rotation of the work roll and in the direction of a in Fig. 2 shown in more detail.
  • the protective cover 8 accordingly encloses the working space 10 upwards and towards the sides.
  • the hood 8 is designed to be open, so that the work roll 11 surrounded by the hood 8 is in contact with the ground 9 to be processed by lowering the work roll 11 in the direction of the arrow c (FIG. Fig. 1 ) can be brought.
  • the work roll 11 is disposed inside the protective hood 8.
  • the longitudinal axis 12 of the work roll 11 extends horizontally and perpendicular to the finished movement direction a of the construction machine 1.
  • On the outside of the cylindrical work roll 11 is a plurality of teeth 13, specifically arranged on a unspecified bit holder or, depending on the embodiment, chisel change holder system.
  • the work roll 11 rotates about its cylinder axis 12 in the direction of arrow d, ie counter to the direction of movement of the construction machine 1.
  • the work roll 11 thus carries soil material in the depth .DELTA.T, comprising the roadway bottom 9 and a portion of the underlying lower layer 14 and places them in the direction of travel a behind the work roll again.
  • the lying between the work roll and the protective cover 8 interior can be used as a mixing room.
  • outlet nozzle 15 For introducing fluid, in particular water, into the working space 10 which is delimited outwardly from the protective hood 8, an outlet nozzle 15 ("large” outlet nozzle) protrudes from the outside. and an outlet nozzle 16 ("small” outlet nozzle) located in front of it in the axial direction of the cylinder axis 12 with its respective fluid outlet opening into the interior of the working space 10.
  • Both outlet nozzles 15 and 16 each have a respective regulating element, in each case a valve (not indicated; Responding to valves, wherein other suitable control elements can be used instead), to a line bar 17, which is part of a line system connected.
  • outlet nozzles 15 and 16 are provided, which are arranged along the axis of rotation alternately in the viewing direction behind the two outlet nozzles 15 and 16 on the line bar 17, available.
  • outlet nozzles 15 and 16 simple holes are used in the line beam, but exit nozzles are preferred.
  • the piping system further comprises a water reservoir, which is mounted on the construction machine 1 (in Fig. 2 not visible), as well as a pump (in Fig. 2 also not visible), which promotes the water from the reservoir via the line system to the outlet nozzles 15 and 16 out.
  • the pump is further configured to pressurize the conduit system 17. If the respective valve of the large outlet nozzle 15 and / or the small outlet nozzle 16 is opened, the fluid coming from the conduit bar 17 passes through the outlet nozzle 15 and / or the outlet nozzle 16 and thereby passes into the working space 10.
  • the outlet nozzle 15 is part of a first fluid dispensing device and the outlet nozzle 16 is part of a second fluid dispensing device.
  • the basic structure of the concrete spraying device Fig. 2 is in different embodiments in the FIGS. 4 and 5 illustrated in more detail.
  • two line bars 17.1 and 17.2 are arranged one behind the other in the direction of rotation. Further details of the sprayer in various embodiments are further illustrated below.
  • Fig. 3 relates to a spraying device 18a according to a first embodiment.
  • the fluid in the present case water, is at the sprayer 18a from a discharge point 19, which is for example a tank connection or a connection to a tanker, via a line system 20 to a first fluid dispenser 21, comprising the large outlet nozzles 15.1 to 15.6 and the valve 22, and to a second fluid dispenser 23, comprising the small outlet nozzles 16.1 to 16.6 and the valve 24, passed.
  • the line system 20 has a water pump 25, a pressure sensor 26, a flow meter 27 and a Stopcock 28 on.
  • a filter 29 (in FIGS. 4 and 5 ) between the water pump 25 and the stopcock 28 in the wiring harness of the conduit system 20 may be integrated.
  • the line system 20 further comprises a first line bar 17.1 and a second line bar 17.2.
  • the first line bar 17. 1 is fluidically connected to the remaining part of the line system 20 via the valve 22 of the first fluid delivery device 21.
  • On the line bar 17.1, the six large outlet nozzles 15.1 to 15.6 are also arranged in parallel. If the valve 22 is opened, fluid flows through the valve 22 upstream of the part of the line system (driven by the pump 25) through the valve 22 in the line bar 17.1 and is distributed from there to the individual outlet nozzles 15.1 to 15.6 and passes through the outlet nozzles 15.1 to 15.6 in the working space 10 off.
  • the outlet nozzles 15.1 to 15.6 are thus the metering elements of the first fluid delivery device 21.
  • the second fluid delivery device 23 has a comparable structure.
  • the small outlet nozzles 16.1 to 16.6 are connected to the second line bar 17.2, which communicates with the remaining part of the line system 20 via the valve 24 of the second fluid dispensing device 23. If the valve 24 is open and the pump 25 is in operation, fluid is pumped through the conduit system 20 through the valve 24 into the conduit bar 17.2 and leaves it in the working space 10 through the individual metering of the second fluid delivery device 23 and through the outlet nozzles 16.1 to 16.6, which are also connected in parallel.
  • the large outlet nozzles 15.1 to 15.6 are outlet nozzles which at 1 bar operating pressure (measured with the pressure sensor 26 in the line system 20) per nozzle 25 l / min fluid and at 5 bar operating pressure 60 l / min fluid in the working space per nozzle submit.
  • the small nozzles 16.1 to 16.6 are designed in such a way that they deliver 10 l / min of fluid per nozzle and at operating pressure of 5 bar 25 l / min in the working space at an operating pressure of 1 bar.
  • the large and the small outlet nozzles 15.1 to 16.6 are thus selected in relation to each other so that their respective outlet volumes at a certain operating pressure of 1 to 5 bar complement each other almost without overlap.
  • control unit 30a Another essential element of the spraying device 18 is a control unit 30a. This is, as indicated by the dashed and dotted lines, connected to the pump 25, the pressure sensor 26, the flow meter 27, the stopcock 28, the valve 22 of the first fluid dispenser 21 and the valve 24 of the second fluid dispenser 23.
  • the control unit 30 is configured to regulate and control the flow rate of the fluid through the spray means 18 and the first fluid discharge device 21 and the second fluid discharge device 23 into the work space 10, respectively.
  • the control unit 30 is also in the way designed to include an input field, via which an operator can enter desired values, fluid properties, ground properties, etc., or parameters that are generally relevant for the machining process.
  • the basic idea of the invention is to design the spraying device 18 such that it comprises at least two fluid delivery devices (in the present case the first fluid delivery device 21 and the second fluid delivery device 23) with different capacities per unit time with respect to the flow rate of fluid at a fixed operating pressure or time unit. Comparative pressure and these coordinated with each other to control.
  • the control unit 30 opens the valve 22 of the first fluid delivery device 21, so that 25 l / min of fluid exits into the working space 10 per nozzle at an operating pressure of, for example, 1 bar in the line system 20 . If, on the other hand, a smaller amount of fluid is desired, the control unit 30 closes the valve 22 of the first fluid delivery device 21, whereby the fluid entry into the working space 10 is shut off by the large outlet nozzles 15.1 to 15.6. By contrast, the control unit 30 opens the valve 24 of the second fluid delivery device 23, so that the fluid exits through the small outlet nozzles 16.1 to 16.3 into the working space 10.
  • the control unit switches from the second fluid dispenser 23 with small nozzles to the first fluid dispenser 21 with large nozzles lowers the operating pressure accordingly, in the present case specifically initially to 1 bar.
  • control unit 30a the control process for controlling the sprayer 18 thus taking into account measurement parameters, in the specific example, for example, the milling depth and / or the travel speed of the construction machine adapt.
  • the control unit 30 can detect the cutting depth and / or travel speed of the construction machine or the processing speed via suitable sensors and the fluid discharge or the flow rate fluid per unit time by regulating the pump 25 and / or the valves 22 and 24 of the first fluid delivery device 21 or the second fluid delivery device 23 adapt to the travel speed of the construction machine.
  • Other measurement parameters may be, for example, the operating pressure of the fluid in the line system 20, the applied power of the pump 25, etc.
  • control unit in order to obtain the maximum flow rate per unit time of the injection device 18, it is also possible for the control unit to control both the first fluid delivery device 21 as well as the second fluid dispensing device 23 is activated so that fluid can simultaneously escape through the outlet nozzles 15.1 to 15.6 and 16.1 to 16.6 into the working space 10.
  • the control unit 30a is with the help of the control unit 30a and the Einsprüh worn 18a Fig. 3
  • the flow rate of the fluid over a wide range presents between 10 l / min at a 1 bar operating pressure and activated second fluid dispenser 23 and deactivated first fluid dispenser 21 to to 85 l / min at 5 bar and activated first fluid dispenser 21 and simultaneously activated second fluid dispenser 23
  • the operating pressure in the present example, between 1 bar and 5 bar
  • the flow rate of the fluid over a wide range presents between 10 l / min at a 1 bar operating pressure and activated second fluid dispenser 23 and deactivated first fluid dispenser 21 to to 85 l / min at 5 bar and activated first fluid dispenser 21 and simultaneously activated second fluid dispenser 23
  • FIG Fig. 4 Another embodiment of a spraying device 18b is shown in FIG Fig. 4 illustrated.
  • the second fluid delivery device comprises an additional metering element 16.7, thus has the number of metering elements of the first fluid delivery device +1.
  • the essential difference between the spray-in device 18b and the spray-in device 18a lies in the control of the large outlet nozzles 15.1 to 15.6 and the small outlet nozzles 16.1 to 16.7.
  • the control of the individual outlet nozzles takes place here individually and separately, ie individually, from the control unit 30b.
  • Each of the metering elements or outlet nozzles 15.1 to 15.6 and 16.1 to 16.7 has for this purpose in each case a suitable valve which can be controlled and regulated by the control unit 30b, for example opened and closed.
  • the individual valves are for clarity in Fig. 4 not specified and there graphically each part of the corresponding outlet nozzle 15.1 to 15.6 and 16.1 to 16.7.
  • the first fluid delivery device 21 accordingly comprises the entirety of the individual large metering elements or the outlet nozzles 15.1 to 15.6 including their separately controlled by the control unit valves.
  • the second fluid delivery device 23 designates the entirety of the small metering elements or the outlet nozzles 16.1 to 16.7, including the in Fig. 4 also not specified and controlled by the control unit 30b valves.
  • a further special feature of the spraying device 18b is that both the metering elements of the first fluid delivery device 21 (outlet nozzles 15.1 to 15.6) and the metering elements of the second fluid delivery device 23 (metering elements 16.1 to 16.7) are arranged together on the conduit bar 17.
  • the space requirement in the direction of rotation of the work roll in the working space 10 in the protective hood of the sprayer 18b for example, much lower than the space requirement of the sprayer 18a with the two in the direction of rotation d of the work roll one behind the other line beams 17.1 and 17.2.
  • the sprayer 18B therefore allows a highly selective and individualized displacement of the soil to be processed with the fluid. It is also important that to the two outer sides of the line beam 17 and in the axial direction of the working space (that direction in which the longitudinal axis 12 of the work roll extends in the working space) similar dosing 16.6 and 16.7 are arranged. This feature also contributes to the homogeneous distribution of the fluid in the working space.
  • the filter 29 is arranged in the flow direction of the fluid behind the pump 25 or between the pump 25 and the line bar 17 and the branch of the line system in front of the line bar 17.
  • FIG Fig. 5 Another embodiment of a spraying device 18c is shown in FIG Fig. 5 which represents a particularly well-proven in practice compromise between the sprayer 18a and 18b.
  • the basic arrangement of the individual components of the spraying device 18c corresponds to the spraying device 18b (wherein the external metering element 16.7 is missing in the spraying device of FIG. 18c).
  • the essential difference lies in the fact that the metering elements 15.1 to 16.6 are grouped, specifically grouped in pairs, interconnected and controlled by the control unit 30c.
  • the two outlet nozzles 15.1 and 15.2 form the metering element group G1
  • the outlet nozzles 15.3 and 15.4 the metering element group G2 and the outlet nozzles 15.5 and 15.6 the metering element group G3.
  • the metering element groups G1 to G3 (including the valves (also not shown upstream of each discharge nozzle 15.1 to 15.6) form the first fluid delivery device 21 overall.
  • the metering elements of the second fluid delivery device 23 are also arranged in pairs.
  • the outlet nozzles 16.1 and 16.2 form the metering element group K1, the outlet nozzles 16.3 and 16.4 the metering element group K2 and the outlet nozzles 16.5 and 16.6 the metering element group K3.
  • the control unit 30c can now individually control and regulate the operating state of each individual group G1, G2, G3, K1, K2 and K3 (in FIG Fig. 5 indicated by the indicated in different thickness dotted and dashed switching connections between the control unit 30c and the individual metering elements 15.1 to 16.6).
  • the injection device 18 c to control individual segments of the first fluid delivery device 21 and / or the second fluid delivery device 23 individually and independently of one another with respect to operating state and flow rate.
  • the interconnection of the control unit 30c with the respective fluid dispensers 21 and 23 can be simplified, since not every metering element must be in contact with the control unit 30c via a single and individual signal connection, but only the metering element groups G1 to G3 and K1 to K3 respectively.
  • Fig. 6 illustrates the operation of the control method of the groups G1 to G3 and K1 to K3 of the sprayer 18c Fig. 5 , In its fundamental principles, this control method can also be applied to the two spray-in devices 18a and 18b to a reasonable extent.
  • Fig. 6a relates to the increase in the working space 10 of the sprayer 18 fluid volume per time (V / t) (V1 ⁇ V2). The timeline is directed downwards and marked with t. To the right of the V / t diagram, the metering element groups G1 to G3 of the first fluid delivery device 21 and K1 to K3 of the second fluid delivery device 23 are indicated.
  • the respective metering element group G1 to G3 and K1 to K3 is activated or is traversed by fluid or releases fluid into the working space. If there is no bar under the corresponding metering element group at a certain point in time, the respective metering element group is deactivated or closed or does not deliver any fluid into the working space.
  • the control of the activation states takes place via the control unit 30c.
  • Fig. 6a illustrates in the left diagram that at time t1, the flow rate of the per unit time to be dispensed into the working space fluid volume from the volume V 1 to the volume V 2 by control measures of the control unit 30 c is increased. From time t 1 to time t 2 , the corresponding volume flow is increased from V 1 to V 2 . At the time t 3 , which is between the time t 1 and t 2 , a predetermined threshold value S w is exceeded. The control unit 30c registers this exceeding and changes from the small outlet nozzles or the dosing element groups K1 to K3 toward the large outlet nozzles or the dosing element groups G1 to G3.
  • the control unit When the threshold value S w is exceeded, the control unit thus switches over between the second fluid delivery device 23 and the first fluid delivery device 21. It is essential in this step that this switching does not take place ad hoc at the time t 3 , but extends over a period t u , which begins with the exceeding of the threshold value S w . Over the period ⁇ t u , both the originally activated and not yet switched-off second fluid delivery device 23 and the first fluid delivery device 21 newly activated by the control unit are activated jointly or overlapping. Only after the expiration of the time window .DELTA.t u , the control unit switches off the second fluid delivery device 23. If the amount of fluid to be metered, however, lowered in the working mode, takes place in Fig. 6a specified procedure in reverse order. Characterized in that there is an overlap region when switching between the two fluid dispensers 21 and 23, the emergence of pressure spikes in the conduit system 20 when switching the fluid dispensers 21 and 23 can be avoided or at least substantially reduced.
  • the spraying device 18c Fig. 5 also allows the individual control of each two as a group G1, G2, G3, K1, K2 or K3 circuitry summarized Dosierelementfare or outlet nozzle pairs. This should be in Fig. 6a are illustrated by the black colored webs of groups G1 and K1. In addition to the common activation with the respective additional two gray-colored groups, the sole activation and switching between the groups K1 and G1 is thus possible, for example.
  • Fig. 6b Finally, the control of the spraying device 18c is illustrated by the control unit 30c Fig. 5 taking into account the driving speed v of a suitably equipped construction machine.
  • the driving speed is here only an example to illustrate the basic operation.
  • the depth of cut, changing soil properties, the flow rate, etc. can be used for the regulation in order to ensure a continuous distribution of fluid in the soil material to be processed.
  • the speed v or the speed of the construction machine is reproduced.
  • the machine accelerates, exceeding the threshold value S w .
  • the control unit 30c triggers, comparable to the process Fig. 6a , the switching from the Dosierelement proceed the second fluid dispenser 23 K1 to K3 on the Dosierelement phenomenon G1 to G3 of the first fluid dispenser 21 to allow even at increased operating speed the desired fluid entry into the soil material to be processed.
  • Fig. 6b the course of the volume flow is not specified. However, this ultimately runs parallel to the development of the driving speed.
  • the driving speed increases, the amount of fluid discharged from the spraying device 18c into the working space increases and vice versa. This ensures that a constant amount of fluid is introduced into the soil material to be processed per section even at different speeds.
  • the construction machine accelerates until time t 5 , exceeding maximum value M w at time t 6 .
  • the maximum value is based on the maximum output quantity of the fluid in the working space by means of the more efficient fluid dispensing device 21.
  • the control unit switches on exceeding the maximum value M w in addition to the first Fluid dispenser 21 the Dosierelement phenomenon K1 to K3 of the second fluid dispenser 23 added so that afterwards both fluid dispensers 21 and 23 are operated in parallel.
  • the control unit first inactivates the fluid delivery of the metering element groups K1 to K3 of the second fluid delivery device 23.
  • the control unit switches from the metering element groups G1 to G3 of the first fluid delivery device 21 to the metering element groups K1 to K3 of the second fluid delivery device, in which case switching takes place overlappingly over the time interval ⁇ t u in order to prevent pressure peaks in the line system.
  • control of the spraying device 18c adapted to the driving speed can also be carried out selectively with one or two metering element groups of the first fluid delivery device 21 and / or the second fluid delivery device 23.
  • This is in Fig. 6b by the respective average Dosierelementtik G2 and K2, which are colored black, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Road Paving Machines (AREA)
  • Catching Or Destruction (AREA)

Description

Die Erfindung betrifft eine Einsprüheinrichtung für eine Baumaschine zur Bodenbearbeitung, eine Baumaschine mit einer solchen Einsprüheinrichtung sowie ein Verfahren zum Betrieb einer Einsprüheinrichtung.The invention relates to a spraying device for a construction machine for soil cultivation, a construction machine with such a spraying device and a method for operating a spraying device.

Viele Baumaschinen, insbesondere Baumaschinen zum Bearbeiten von Böden oder Fahrbahnen, wie beispielsweise einer Kaltfräse für das Abfräsen von Fahrbahn- und Bodenbelägen, einem Stabilisierer zur Stabilisierung von nicht-tragfähigen Böden und einem Recycler zur Wiederherstellung reparaturbedürftiger Straßenbefestigungen, weisen Einsprüheinrichtungen auf, um die Staubentwicklung beim Arbeitsprozess zu reduzieren und/oder dem zu bearbeitenden Bodenmaterial Fluid, insbesondere Wasser, zum Erhalt gewünschter Eigenschaften zuzusetzen. Üblicherweise sind solche Baumaschinen mit einer Arbeitswalze versehen, mit der der Boden oder die Fahrbahn aufgebrochen und/oder durchmischt werden kann. Betrifft die Bearbeitung beispielsweise eine Asphalt- oder Betonfahrbahn, ist ein typischer Arbeitsvorgang das Abfräsen der Fahrbahn. Die Arbeitswalze ist bezüglich ihrer Zylinderachse horizontal unmittelbar oder mittelbar an einen Maschinenrahmen der Baumaschine gelagert und erstreckt sich quer zur Längsrichtung und Arbeitsrichtung der Baumaschine. Die Arbeitswalze ist ferner üblicherweise in einem zum Boden hin offenen Arbeitsraum gelagert, in dem die Arbeitswalze im Arbeitseinsatz rotiert und in Kontakt mit dem zu bearbeitenden Boden kommt. Zu den übrigen Seiten ist die Arbeitswalze üblicherweise abgeschirmt, beispielsweise von einer Schutzhaube oder einem Fräswalzenkasten. Durch die geschlossene Ausbildung des Arbeitsraums wird unter anderem verhindert, dass das von der um ihre Längsachse rotierenden Arbeitswalze abgefräste Material unkontrollierbar in die Umgebung der Baumaschine geschleudert wird. Der nach außen begrenzte Arbeitsraum dient ferner dem Materialtransport, um beispielsweise von der Fräswalze abgefrästes Material kontrolliert abtransportieren zu können. In einer weiteren Anwendung liegt die Aufgabe des Arbeitsraums darin, einen Mischraum zur Verfügung zu stellen, in dem das abgearbeitete Rohmaterial mit einem Zusatz vermischt werden kann, um beispielsweise eine Bodenbefestigung bzw. -stabilisierung zu erreichen. Typische Zusätze sind in diesem Zusammenhang beispielsweise hydraulische oder bituminöse Bindemittel oder Wasser.Many construction machines, in particular construction machines for working floors or roadways, such as a cold milling machine for the milling of road surfaces and floor coverings, a stabilizer for stabilizing non-load-bearing soils and a recycler for repairing repaired road pavements, have Einsprüheinrichtungen to the dust during the To reduce working process and / or the soil material to be processed fluid, especially water, add to obtain desired properties. Usually, such construction machines are provided with a work roll with which the floor or the road can be broken up and / or mixed. For example, if the processing involves an asphalt or concrete pavement, a typical operation is milling the pavement. The work roll is horizontal with respect to its cylinder axis directly or indirectly mounted on a machine frame of the construction machine and extending transversely to the longitudinal direction and working direction of the construction machine. The work roll is also usually stored in a working space open to the floor, in which the work roll rotates in the working insert and comes into contact with the soil to be processed. To the other pages, the work roll is usually shielded, for example by a guard or a Fräswalzenkasten. The closed design of the working space prevents, inter alia, that the material milled off from the work roll rotating about its longitudinal axis is uncontrollably thrown into the surroundings of the construction machine. The work space limited to the outside also serves the transport of material in order to be able to remove material milled off from the milling drum in a controlled manner. In another application The task of the working space is to provide a mixing room in which the processed raw material can be mixed with an additive, for example, to achieve a Bodenbefestigung or stabilization. Typical additives in this context are, for example, hydraulic or bituminous binders or water.

Um dem Arbeitsraum ein Fluid im Arbeitsbetrieb zusetzen zu können, weist die Baumaschine eine Einsprüheinrichtung auf. Konkret umfasst die Einsprüheinrichtung üblicherweise eine Fluidabgabevorrichtung, über die jeweils das Fluid in den Arbeitraum einbringbar ist. Eine solche Fluidabgabevorrichtung kann beispielsweise ein Ventil und eine in den Arbeitsraum mündende Austrittsöffnung oder Austrittsdüse umfassen. Häufig ist der Teil der Fluidabgabevorrichtung, über den das Fluid in den Arbeitsraum austritt, im Inneren des Arbeitsraums angeordnet. Nachfolgend umfasst der Begriff Fluidabgabevorrichtung all diejenigen Mittel, die zur unmittelbaren Abgabe des Fluids in den Arbeitsraum vorhanden sind. Dabei handelt es sich somit wenigstens um eine geeignete Fluidaustrittsöffnung, beispielsweise eine Öffnung einer Düse. Die Fluidabgabevorrichtung weist ferner häufig ein Ventil oder ein vergleichbares Regulationsmittel auf. Dieses muss nicht zwingend eine bauliche Einheit mit der wenigstens einen Fluidaustrittsöffnung bilden. Wesentlich ist, dass das Regulationsmittel den Fluidstrom durch die Austrittsöffnung regulieren, beispielsweise freigeben und sperren, kann. Ferner ist ein Leitungssystem vorhanden, über das das Fluid zu der Fluidabgabevorrichtung hingeleitet wird. Das Leitungssystem kann optional weitere Komponenten umfassen, wie beispielsweise eine oder mehrere Pumpen, über die das Fluid vom Vorratsbehälter in das Leitungssystem und schließlich zur wenigstens einen Austrittsdüse hin gepumpt wird, Filter, Ventile, etc. Die Fluidversorgung der Baumaschine selbst erfolgt entweder über einen oder mehrere eigene mitgeführten Fluidtanks und/oder über eine Verbindung der Baumaschine mit einem geeigneten Tankfahrzeug. Auch kann die Baumaschine zur Versorgung des Arbeitsraums mit verschiedenen Fluids oder einem Fluidgemisch ausgebildet sein. Hierzu können beispielsweise mehrere Fluidtanks in die Baumaschine integriert sein oder geeignete Anschlüsse für ein Tankfahrzeug vorhanden sein.In order to be able to add a fluid in working mode to the working space, the construction machine has a spraying device. Concretely, the spraying device usually comprises a fluid delivery device, via which the fluid can be introduced into the working space. Such a fluid dispensing device may comprise, for example, a valve and an outlet opening or outlet nozzle opening into the working space. Frequently, the part of the fluid delivery device, via which the fluid exits into the working space, is arranged in the interior of the working space. Hereinafter, the term fluid delivery device includes all those means that are available for immediate delivery of the fluid into the working space. This is thus at least a suitable fluid outlet opening, for example an opening of a nozzle. The fluid dispenser also often includes a valve or similar regulating means. This does not necessarily have to form a structural unit with the at least one fluid outlet opening. It is essential that the regulation means can regulate the fluid flow through the outlet opening, for example, release and lock. Further, a conduit system is provided, via which the fluid is passed to the fluid dispenser. The conduit system may optionally include other components, such as one or more pumps via which the fluid is pumped from the reservoir into the conduit system and finally to the at least one exit nozzle, filters, valves, etc. The fluid supply to the construction machine itself is either via one or more several own entrained fluid tanks and / or via a connection of the construction machine with a suitable tanker vehicle. Also, the construction machine can be designed to supply the working space with different fluids or a fluid mixture. For this purpose, for example, several fluid tanks may be integrated in the construction machine or suitable connections for a tanker vehicle may be present.

Die Fluidmenge bzw. die Durchflussmenge Fluid, die dem zu bearbeitenden Bodenmaterial zugesetzt werden soll, kann je nach Anwendungsfall stark variieren. Eine gattungsgemäße Einsprüheinrichtung umfasst daher ferner eine Steuereinheit, die die Fluidzufuhr durch das Leitungssystem hin zur Fluidabgabevorrichtung steuert. Die Steuereinheit stellt somit die zentrale Regel- und Steuerkomponente der Einsprüheinrichtung dar und ist für die Steuerung der Einsprüheinrichtung bzw. der einzelnen Komponenten der Einsprüheinrichtung zuständig. Bei der Steuereinheit kann es sich beispielsweise konkret um einen entsprechend programmierten Mikrocontroller handeln, der über geeignete Signalverbindungen die entsprechenden Komponenten der Einsprüheinrichtung ansteuert. Die Steuereinheit kann ferner eine Eingabeeinheit umfassen, über die der Maschinenbediener Steuerparameter, wie beispielsweise Bodenbeschaffenheit, Förderleitung der Einsprüheinrichtung, Art des Fluids, etc., eingeben kann. Typische Steuerfunktionen, die von der Steuereinheit geregelt werden, sind beispielsweise das Ein- und Ausschalten der Fluidzufuhr bzw. einer entsprechenden Pumpe, die Regulation des Fluiddrucks bzw. der abgegebenen Fluidmenge pro Zeiteinheit, die durch die Fluidabgabevorrichtung austritt, bzw. die Durchflussmenge, die Art des Fluids, etc.The amount of fluid or the flow rate of fluid to be added to the soil material to be processed, depending on the application, can vary widely. A generic spraying device therefore further comprises a control unit which controls the fluid supply through the piping system to the fluid delivery device. The control unit thus represents the central control and control component of the spraying device and is responsible for controlling the spraying device or the individual components of the spraying device. The control unit may, for example, specifically be a suitably programmed microcontroller which has suitable Signal connections controls the corresponding components of the sprayer. The control unit may further comprise an input unit via which the machine operator can input control parameters such as, for example, the nature of the ground, the delivery line of the injection device, the type of fluid, etc. Typical control functions, which are controlled by the control unit, are, for example, the switching on and off of the fluid supply or a corresponding pump, the regulation of the fluid pressure or the delivered amount of fluid per unit time that emerges through the fluid dispenser, or the flow rate, the type of the fluid, etc.

Ein typischer Anwendungsfall, bei dem das Einbringen eines Fluids in den Arbeitsraum der Baumaschine gewünscht ist, ist beispielweise das Vermengen des von der Arbeitswalze abgearbeiteten Materials im Arbeitsraum mit Wasser, um zusammen mit vorher auf den zu bearbeitenden Boden aufgebrachten Bindemitteln, wie beispielsweise Kalk, verbesserte Materialeigenschaften des Bodenmaterials zu erzielen. Alternativ oder ergänzend kann durch ein Anfeuchten des Bodenmaterials aber auch eine Reduktion der Staubentwicklung im Arbeitsbetrieb erreicht werden. Weitere beispielhafte Anwendungen sind das Einbringen bituminöser Bindemittel, das Erzeugen und Einbringen von Schaumbitumen, etc.
Die benötigten Fluidmengen können in Abhängigkeit von den Einsatzbedingungen jedoch stark variieren. Bei Recyclinganwendungen wird häufig beispielsweise vergleichsweise wenig Wasser (z. B. ca. 100 - 300 l/min) benötigt, wohingegen bei Stabilisierungsanwendungen beispielsweise bis zu 700 - 1000 l/min von der Einsprüheinrichtung in den Arbeitsraum gefördert werden sollen. Bei den üblichen Einsprüheinrichtungen ergeben sich daher über das gesamte Einsatzspektrum hinweg erhebliche Druckschwankungen bzw. ungenügende Dosiergenauigkeiten und eine ungleichmäßige Verteilung des Fluids im Arbeitsraum. Insbesondere bei niedrigen Drücken treten daher bei herkömmlichen Einsprüheinrichtungen häufig ungleichmäßige und somit unbefriedigende Verteilergebnisse auf. Darüber hinaus besteht insbesondere bei niedrigen Drücken die Gefahr, dass sich die Fluidabgabevorrichtung mit zu bearbeitendem Bodenmaterial zusetzt und daher für den weiteren Einsatz ausfällt.
A typical application in which the introduction of a fluid into the working space of the construction machine is desired, for example, the blending of the work roll processed material in the working space with water to improve together with previously applied to the soil to be processed binders such as lime Material properties of the soil material to achieve. Alternatively or additionally, by moistening the soil material but also a reduction of dust development in the working mode can be achieved. Other exemplary applications include the incorporation of bituminous binders, the production and introduction of foam bitumen, etc.
However, the required quantities of fluid can vary greatly depending on the conditions of use. In recycling applications, for example, comparatively little water (eg about 100-300 l / min) is often required, whereas in stabilization applications, for example, up to 700-1000 l / min should be conveyed from the spraying device into the working space. In the case of the usual injection devices, therefore, considerable pressure fluctuations or insufficient dosing accuracies and an uneven distribution of the fluid in the working space arise over the entire range of application. In particular, at low pressures, therefore, uneven and therefore unsatisfactory distribution results frequently occur in conventional injection devices. In addition, there is a risk, especially at low pressures, that the fluid delivery device becomes clogged with soil material to be processed and therefore fails for further use.

Aus der US 2003/0194273 A1 ist ein Recycler bekannt, der eine Fluidabgabevorrichtung für eine Fräseinheit und eine weitere Fluidabgabeeinrichtung für eine in Arbeitsrichtung nachgeschaltete Mischereinheit vorsieht. Im Stand der Technik sind aus der US 3,782,634 A und der US 2008/0193215 A1 ferner Tankfahrzeuge mit einer Sprüheinrichtung bekannt, mit der eine Flüssigkeit auf der Bodenoberfläche verteilt werden kann. Die Sprüheinrichtungen können dabei Untereinheiten umfassen, mit denen eine optimierte Verteilung der Flüssigkeit auf der Bodenoberfläche hinsichtlich Menge und Weite möglich ist.From the US 2003/0194273 A1 a recycler is known, which provides a fluid delivery device for a milling unit and a further fluid delivery device for a downstream mixing unit. In the prior art are from the US 3,782,634 A and the US 2008/0193215 A1 also known tank vehicles with a spray, with which a liquid can be distributed on the soil surface. The spraying devices may comprise subunits with which an optimized distribution of the liquid on the soil surface in terms of quantity and width is possible.

Die Aufgabe der Erfindung besteht somit darin, eine Einsprüheinrichtung für eine gattungsgemäße Baumaschine anzugeben, die ein gleichmäßiges Einbringen eines Fluids in den Arbeitsraum über einen breiten Förderbereich, d.h. von geringen Fluidmengen bis hin zu vergleichsweise hohen Fluidmengen pro Zeit und/oder Wegstrecke, kontinuierlich und zuverlässig gewährleistet. Darüber hinaus soll die Einsprüheinrichtung robust und ausfallsicher sein.The object of the invention is therefore to provide a spraying device for a generic construction machine, the uniform introduction of a fluid into the working space over a wide range, ie from small amounts of fluid to relatively high amounts of fluid per time and / or distance, continuously and reliably guaranteed. In addition, the sprayer should be robust and fail-safe.

Die Lösung der Erfindung gelingt mit einer Einsprüheinrichtung zum Einbringen eines Fluids in den Arbeitsraum einer Baumaschine, mit einer Baumaschine mit einer solchen Einsprüheinrichtung und mit einem Verfahren zum Betrieb einer solchen Einsprüheinrichtung gemäß den unabhängigen Ansprüchen. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.The solution of the invention is achieved with a spraying device for introducing a fluid into the working space of a construction machine, with a construction machine having such a spraying device and with a method for operating such a spraying device according to the independent claims. Preferred developments are specified in the dependent claims.

Erfindungsgemäß ist es vorgesehen, dass die Einsprüheinrichtung zum Einbringen eines Fluids in den Arbeitsraum einer Baumaschinen zum Bearbeiten von Böden oder Fahrbahnen wenigstens eine erste und wenigstens eine zweite Fluidabgabevorrichtung aufweist, über die jeweils das Fluid in den Arbeitsraum einbringbar ist. Die erste Fluidabgabevorrichtung ist dabei zur Abgabe einer größeren Fluidmenge als die zweite Fluidabgabevorrichtung bei einem festgelegten Betriebsdruck ausgebildet. Der festgelegte Betriebsdruck ist somit ein bestimmter Druck im Betrieb der Einsprüheinrichtung, beispielsweise im Leitungssystem vor der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung oder einem bestimmten Abschnitt im Leitungssystem. Bei diesem Vergleichsdruck geben die wenigstens erste und die wenigstens zweite Fluidabgabevorrichtung unterschiedliche Fluidmengen in den Arbeitsraum ab. Bezogen auf diesen Vergleichsdruck ist die wenigstens erste Fluidabgabevorrichtung somit leistungsfähiger als die wenigstens zweite Fluidabgabevorrichtung und gibt bei gleichem Betriebsdruck ein größeres Fluidvolumen pro Zeiteinheit in den Arbeitsraum ab als die wenigstens zweite Fluidabgabevorrichtung. Es versteht sich von selbst, dass der hier relevante Betriebsdruck nur an solchen Stellen in der Einsprüheinrichtung vorherrscht, an dem sich der Fluiddruck in Abhängigkeit von der im Leitungssystem geförderten Fluidmenge verändert bzw. mit steigender Fördermenge ansteigt und umgekehrt. Hierzu wird insbesondere auf den Fluiddruck im Leitungssystem zwischen der Pumpe und der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung zurück gegriffen. Wesentlich für die erfindungsgemäße Ausbildung der Einsprüheinrichtung ist somit, dass die Einsprüheinrichtung wenigstens zwei Fluidabgabevorrichtungen aufweist, die sich in ihrer Leistungsfähigkeit voneinander unterscheiden. Die "große" Fluidabgabevorrichtung ermöglicht es, bei dem bestimmten Betriebsdruck, beispielsweise bei einem bar, ein wesentlich größeres Fluidvolumen in den Arbeitsraum abzugeben als die "kleinere" zweite Fluidabgabevorrichtung bei eben diesem Betriebsdruck. Es versteht sich von selbst, dass beide Fluidabgabevorrichtungen mehr Fluid in den Arbeitsraum abgeben, wenn der Betriebsdruck gesteigert wird. Allerdings fließt stets ein größeres Volumen bei vergleichbaren Betriebsdruck durch die größere erste Fluidabgabevorrichtung. Die erfindungsgemäße Einsprüheinrichtung umfasst mit anderen Worten somit eine "Hochleistungs-Fluidabgabevorrichtung" für die Abgabe großer Fluidvolumen pro Zeiteinheit in den Arbeitsraum und eine "Niedrigleistungs-Fluidabgabevorrichtung" für im Vergleich zur Hochleistungs-Fluidabgabevorrichtung niedrigere Fluidabgaben pro Zeiteinheit in den Arbeitsraum. Damit kann in einem kleineren Bereich des Betriebsdruckes ein besonders breites Spektrum bzw. ein besonders breiter Bereich an in den Arbeitsraum dosierbarem Fluidvolumen pro Zeiteinheit zuverlässig abgedeckt werden. Wird der Eintrag einer nur niedrigen Fluidmenge benötigt, erfolgt das Einbringen des Fluids in den Arbeitsraum bevorzugt über die zweite Fluidabgabevorrichtung und bei einem erhöhten Fluidbedarf über die erste Fluidabgabevorrichtung oder sogar über die wenigstens zwei Fluidabgabevorrichtungen. Dadurch, dass die erste Fluidabgabevorrichtung in der Weise ausgebildet ist, dass sie bei einem festgelegten Betriebsdruck eine größere Fluidmenge als die zweite Fluidabgabevorrichtung abgibt, kann die Einsprüheinrichtung in einem vergleichsweise engen Betriebsdruckbereich zuverlässig stark variierende Fluidvolumina homogen verteilt in den Arbeitsraum einbringen.According to the invention, it is provided that the spraying device for introducing a fluid into the working space of a construction machine for working floors or roadways has at least one first and at least one second fluid delivery device, via which the fluid can be introduced into the working space. The first fluid delivery device is designed to deliver a larger amount of fluid than the second fluid delivery device at a predetermined operating pressure. The specified operating pressure is thus a certain pressure during operation of the injection device, for example in the line system upstream of the at least first and the at least second fluid delivery device or a specific section in the line system. In this comparison pressure, the at least first and the at least second fluid delivery device deliver different amounts of fluid into the working space. Based on this comparison pressure, the at least first fluid delivery device is thus more efficient than the at least second fluid delivery device and, at the same operating pressure, delivers a larger volume of fluid per unit time into the working space than the at least second fluid delivery device. It goes without saying that the operating pressure relevant here prevails only at those points in the injection device at which the fluid pressure changes depending on the amount of fluid conveyed in the line system or increases with increasing delivery rate and vice versa. For this purpose, use is made in particular of the fluid pressure in the line system between the pump and the at least first and the at least second fluid delivery device. Essential for the inventive design of the sprayer is thus that the sprayer has at least two fluid dispensers, which differ in their performance from each other. The "large" fluid delivery device makes it possible at the particular operating pressure, for example at a bar, to deliver a significantly larger volume of fluid into the working space than the "smaller" second fluid delivery device at precisely this operating pressure. It goes without saying that both fluid dispensers deliver more fluid into the working space as the operating pressure is increased. However, a larger volume always flows at comparable operating pressure through the larger first fluid delivery device. In other words, the sprayer according to the invention thus comprises a "high performance fluid delivery device" for delivering large volumes of fluid per unit time to the working space and a "low power fluid delivery device" as compared to the high performance fluid delivery device lower fluid deliveries per unit time into the workspace. This can be reliably covered in a smaller range of operating pressure, a particularly wide range or a particularly wide range of metered into the working space fluid volume per unit time. If it is necessary to introduce only a small amount of fluid, the introduction of the fluid into the working space preferably takes place via the second fluid delivery device and with an increased fluid requirement via the first fluid delivery device or even via the at least two fluid delivery devices. Characterized in that the first fluid dispensing device is designed in such a way that it emits a larger amount of fluid than the second fluid dispensing device at a predetermined operating pressure, the sprayer can bring in a comparatively narrow operating pressure range reliably highly varying fluid volumes homogeneously distributed in the working space.

Ein weiterer wesentlicher Bestandteil der erfindungsgemäßen Einsprüheinrichtung ist das Leitungssystem, über das das Fluid zu der wenigstens ersten und zu der wenigsten zweiten Fluidabgabevorrichtung hingeleitet wird. Das Leitungssystem umfasst sämtliche Leitungsteile vom Fluidtank bzw. Fluideingang der Baumaschine bis hin zu der jeweiligen Fluidabgabevorrichtung. Die Aufgabe des Leitungssystems liegt zusammenfassend darin, das Fluid von einem Einspeise- bzw. Vorratsbereich bis an die Fluidabgabevorrichtung weiterzuleiten. Typische Bestandteile des Leitungssystems können beispielsweise Rohrleitungen, Schläuche, Ventile, eine oder mehrere Pumpen, Filtereinheiten, Leitungsbalken, etc., sein.Another essential component of the injection device according to the invention is the line system, via which the fluid is passed to the at least first and the at least second fluid delivery device. The line system comprises all line parts from the fluid tank or fluid inlet of the construction machine to the respective fluid delivery device. The task of the line system is summarized in passing the fluid from a feed or storage area to the fluid dispenser. Typical components of the conduit system may be, for example, pipelines, hoses, valves, one or more pumps, filter units, line bars, etc.

Ein wesentliches Element der erfindungsgemäßen Einsprüheinrichtung stellt ferner eine Steuereinheit dar, die zur Regelung der Fluidabgabe über die wenigstens erste und die wenigstens zweite Fluidabgabevorrichtung ausgebildet ist. Die Steuereinheit regelt die Fluidabgabe der wenigstens ersten und der wenigsten zweiten Fluidabgabevorrichtung dabei in der Weise, dass sie separat bzw. individuell die erste Fluidabgabevorrichtung und die zweite Fluidabgabevorrichtung oder beide zusammen ansteuert, wie nachstehend noch näher ausgeführt werden wird. Unter einer individuellen Ansteuerung ist insbesondere auch beispielsweise eine lediglich teilweise Aktivierung einer der wenigstens ersten oder wenigstens zweiten Fluidabgabevorrichtungen zu verstehen, je nach Ausführungsform. Die Steuereinheit regelt somit die wenigstens erste und die wenigstens zweite Fluidabgabevorrichtung unabhängig voneinander. Selbstverständlich ist es auch möglich, dass neben der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung weitere Fluidabgabevorrichtungen vorhanden sind, die von der Steuereinheit ebenfalls separat angesteuert werden. Die Steuereinheit kann dabei selbstregulierend ausgebildet sein. Bei dieser Ausführungsform werden vom Bediener somit Sollwerte vorgegeben. Anhand dieser Sollwerte bestimmt und regelt die Steuereinheit die erforderliche Durchflussmenge. Typische Parameter, die von der Steuereinheit dabei berücksichtigt werden können sind die gewünschte Fluidverteilung bzw. Feuchte im zu bearbeitenden Bodenmaterial, die Frästiefe, die Bodendichte, die Fahrgeschwindigkeit, etc. Wird die Frästiefe bei dieser Ausführungsform somit im laufenden Betrieb geändert, beispielsweise vergrößert, steigert die Steuerungseinheit gleichzeitig die Durchflussmenge Fluid bzw. das Volumen des in den Arbeitsraum eingebrachten Fluids pro Zeiteinheit in entsprechendem Maße, so dass trotz unterschiedlicher Frästiefen die in den Boden eingebrachte Fluidmenge pro Volumen Bodenmaterial konstant ist.An essential element of the injection device according to the invention also represents a control unit, which is designed to control the fluid delivery via the at least first and the at least second fluid delivery device. The control unit regulates the fluid delivery of the at least first and at least the second fluid delivery device in such a way that it individually or individually controls the first fluid delivery device and the second fluid delivery device or both, as will be explained in more detail below. Under an individual control is in particular, for example, only a partial activation of one of the at least first or at least second fluid dispensing devices to understand, depending on the embodiment. The control unit thus regulates the at least first and the at least second fluid delivery device independently of each other. Of course, it is also possible that in addition to the at least first and the at least second fluid delivery device further fluid delivery devices are present, which are also controlled separately by the control unit. The control unit can be designed self-regulating. In this embodiment, the operator thus set desired values. Based on these setpoints, the control unit determines and regulates the required Flow rate. Typical parameters that can be taken into account by the control unit are the desired fluid distribution or moisture in the soil material to be processed, the depth of cut, the soil density, the ground speed, etc. If the depth of cut in this embodiment is thus changed during operation, for example increased, increases the control unit at the same time the flow rate fluid or the volume of the introduced into the working space fluid per unit time in a corresponding extent, so that despite different cutting depths, the introduced into the soil amount of fluid per volume of soil material is constant.

Jede Fluidabgabevorrichtung umfasst wenigstens ein Dosierelement, mit dem das Fluid unmittelbar in den Arbeitsraum abgegeben, insbesondere eingesprüht, wird. Derartige Dosierelemente können beispielsweise Löcher in einem Leitungsbalken sein, die über ein entsprechendes Ventil geöffnet und geschlossen werden können bzw. denen dosiert Fluid zugeführt werden kann. Bevorzugt handelt es sich jedoch bei den Dosierelementen um Austrittsdüsen, da über Austrittsdüsen eine besonders homogene Verteilung des Fluids im Arbeitsraum erreicht werden kann. Ein Dosierelement ist somit eine Untereinheit der Fluidabgabevorrichtung und bezieht sich allein auf dasjenige Bauteil, welches im letzten Schritt der Fluidförderung für das Einbringen des Fluids in den Arbeitsraum zuständig ist. Das Dosierelement ist mit anderen Worten das Element, über dass das Fluid die Einsprüheinrichtung in den Arbeitsraum hinein verlässt. Die Fluidabgabevorrichtung kann daneben ferner wenigstens eine Regulationselement, beispielsweise ein Ventil, umfassen, das zur Aktivierung, Deaktivierung und Regulation der Durchflussmenge von der Steuereinheit angesteuert wird.Each fluid delivery device comprises at least one metering element, with which the fluid is discharged directly into the working space, in particular sprayed. Such metering elements may be, for example, holes in a line bar, which can be opened and closed via a corresponding valve or to which metered fluid can be supplied. Preferably, however, the dosing elements are outlet nozzles, since a particularly homogeneous distribution of the fluid in the working space can be achieved via outlet nozzles. A metering element is thus a subunit of the fluid delivery device and refers solely to that component which is responsible for the introduction of the fluid into the working space in the last step of the fluid delivery. In other words, the metering element is the element through which the fluid leaves the spraying device into the working space. The fluid delivery device may further comprise at least one regulation element, for example a valve, which is actuated by the control unit to activate, deactivate and regulate the flow rate.

Auch die konkrete Anordnung der Dosierelemente kann variieren. Die einzelnen Dosierelemente einer Fluidabgabevorrichtung sind vorzugsweise parallel zur Längsachse der Arbeitswalze in Axialrichtung hintereinander liegend über die gesamte Breite des Arbeitsraumes gleichmäßig verteilt angeordnet. Damit ist gewährleistet, dass der Fluideintrag in den Arbeitsraum über die gesamte Breite des Arbeitsraum möglichst gleichmäßig erfolgt. Häufig umfasst die wenigstens erste und die wenigstens zweite Fluidabgabevorrichtung mehrere Dosierelemente, insbesondere Austrittsdüsen, beispielsweise drei bis zwanzig, besonders acht bis fünfzehn und insbesondere zehn. Die konkrete Relativanordnung der wenigstens ersten Fluidabgabevorrichtung zur wenigstens zweiten Fluidabgabevorrichtung kann ebenfalls variieren. So ist es beispielsweise möglich, dass je ein Dosierelement der wenigstens ersten Fluidabgabevorrichtung in Rotationsrichtung der Arbeitswalze bzw. in Arbeitsrichtung der Baumaschine vor oder hinter einem Dosierelement, insbesondere Austrittsdüse, der wenigstens zweiten Fluidabgabevorrichtung angeordnet ist. Insbesondere für diese Anordnungsalternative ist es bevorzugt, dass die Anzahl der Dosierelemente der wenigstens ersten Fluidabgabevorrichtung und der wenigstens zweiten Fluidabgabevorrichtung gleich ist, beide Fluidabgabevorrichtungen somit beispielsweise jeweils zehn Dosierelemente, insbesondere Austrittsdüsen, umfassen. Alternativ ist es möglich, dass die Dosierelemente der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung alternierend in Axialrichtung der Arbeitswalze nebeneinander über die gesamte Breite des Arbeitsraums möglichst gleichmäßig verteilt angeordnet sind, insbesondere an einem gemeinsamen Teil des Leitungssystems, beispielsweise einem Leitungsbalken. Ganz besonders für diese Ausführungsform haben sich ungleiche Anzahlen von Dosierelementen von der wenigstens ersten und der wenigstens zweiten Fluidabgabvorrichtung als vorteilhaft erwiesen, um die Homogenität des Fluideintrags zu gewährleisten. So übersteigt die Anzahl der Dosierelemente der einen Fluidabgabevorrichtung die der anderen vorzugsweise um ein Dosierelement, so dass beispielsweise zu den beiden Außenseiten in Axialrichtung der Längsachse jeweils ein Dosierelement einer Fluidabgabevorrichtung vorhanden ist. Ferner bevorzugt ist eine symmetrische Anordnung der Dosierelemente. Um die Einsatzvariabilität der Einsprüheinrichtung noch zu steigern, sind die einzelnen Dosierelemente ferner bevorzugt austauschbar ausgebildet. Konkret werden dazu beispielsweise eingeschraubte Düsen verwendet, die im Bedarfsfall durch Düsen einer anderen Größe ersetzt werden können. Auch die Ausbildung des Leitungssystems zu der wenigstens ersten oder wenigstens zweiten Fluidabgabevorrichtung kann variieren. So ist es beispielsweise möglich, dass für die einzelnen Dosierelemente der wenigstens ersten und für die einzelnen Dosierelemente der wenigstens zweiten Fluidabgabevorrichtung je ein separater Leitungsabschnitt, beispielsweise ein separater Leitungsbalken, im Leitungssystem vorgesehen ist. Bevorzugt ist es jedoch, wenn die Dosierelemente der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung über einen gemeinsames Element, beispielsweise einen Leitungsbalken, an das Leitungssystem angeschlossen sind; beide Fluidabgabevorrichtungen geben somit dasselbe Fluid in den Arbeitsraum ab und weisen einen aneinander angrenzenden und insbesondere teilweise überlappenden Betriebsbereich hinsichtlich des Durchflussvolumens bzw. Austragsvolumens des Fluids in den Arbeitsraum pro Zeiteinheit auf.The specific arrangement of the metering elements may vary. The individual metering elements of a fluid delivery device are preferably arranged distributed uniformly parallel to the longitudinal axis of the work roll in the axial direction one behind the other over the entire width of the working space. This ensures that the fluid entry into the working space over the entire width of the working space is as even as possible. Often, the at least first and the at least second fluid delivery device comprises a plurality of metering elements, in particular outlet nozzles, for example three to twenty, in particular eight to fifteen and in particular ten. The specific relative arrangement of the at least first fluid delivery device to the at least second fluid delivery device may also vary. It is thus possible, for example, for one metering element of the at least first fluid delivery device to be arranged in the direction of rotation of the work roll or in the working direction of the construction machine in front of or behind a metering element, in particular outlet nozzle, of the at least second fluid delivery device. In particular for this arrangement alternative, it is preferred that the number of metering elements of the at least first fluid delivery device and the at least second fluid delivery device is the same, both fluid delivery devices thus each comprise, for example, ten metering elements, in particular outlet nozzles. Alternatively, it is possible for the metering elements of the at least first and the at least second fluid delivery device to be arranged distributed as evenly as possible in the axial direction of the work roll over the entire width of the working space, in particular on a common part of the line system, for example a line bar. Especially for this embodiment, unequal numbers of metering elements of the at least first and the at least second fluid delivery device have proven to be advantageous in order to ensure the homogeneity of the fluid entry. Thus, the number of metering elements of one fluid delivery device preferably exceeds that of the other by a metering element, so that in each case a metering element of a fluid delivery device is present in each case for the two outer sides in the axial direction of the longitudinal axis. Further preferred is a symmetrical arrangement of the metering elements. In order to increase the versatility of use of the spraying device, the individual metering elements are further preferably formed exchangeable. Specifically, for example, screwed nozzles are used, which can be replaced if necessary by nozzles of a different size. The design of the line system to the at least first or at least second fluid dispenser may also vary. Thus, it is possible, for example, for the individual metering elements of the at least first and for the individual metering elements of the at least second fluid delivery device a separate line section, for example a separate line bar, to be provided in the line system. However, it is preferred if the metering elements of the at least first and the at least second fluid delivery device are connected to the line system via a common element, for example a line bar; Both fluid dispensers thus deliver the same fluid into the working space and have an adjoining and in particular partially overlapping operating range with regard to the flow volume or discharge volume of the fluid into the working space per unit time.

Wie stark sich die erste Fluidabgabevorrichtung und die zweite Fluidabgabevorrichtung hinsichtlich der abgegebenen Fluidmenge bei einem festgelegten Betriebsdruck unterscheiden, hängt im Wesentlichen vom Einsatzspektrum der Baumaschine, die mit einer solchen Einsprüheinrichtung ausgerüstet ist, ab. Im praktischen Einsatz hat es sich gezeigt, dass die Dosierelemente der wenigstens ersten und der wenigsten zweiten Fluidabgabevorrichtung bevorzugt in der Weise ausgebildet sind, dass bei dem festgelegten Betriebsdruck die Durchflussmenge des Fluids durch ein Dosierelement der ersten Fluidabgabevorrichtung im Verhältnis zur Durchflussmenge des Fluids durch ein Dosierelement der zweiten Fluidabgabevorrichtung im Bereich von 1,8:1 bis 5:1, insbesondere im Bereich von 2:1 bis 3:1, liegt. Bei einem bevorzugten Ausführungsbeispiel sind somit die Austrittsdüsen der ersten Fluidabgabevorrichtung so dimensioniert, dass sie bei 1 bar Betriebsdruck ca. 25 l/min abgeben und die Austrittsdüsen der zweiten Fluidabgabevorrichtung so dimensioniert, dass sie bei dem Betriebsdruck von 1 bar ca. 10 l/min in den Arbeitsraum einsprühen. Werden die Dosierelemente der Fluidabgabevorrichtungen in diesem Verhältnis gewählt, ist sichergestellt, dass die Baumaschine insbesondere über den gesamten Bereich typischer Recycler - und Stabilisiereranwendungen eingesetzt werden kann.The extent to which the first fluid delivery device and the second fluid delivery device differ with regard to the quantity of fluid delivered at a defined operating pressure essentially depends on the range of use of the construction machine equipped with such a spraying device. In practice, it has been found that the metering elements of the at least first and at least second fluid delivery devices are preferably designed such that at the specified operating pressure the flow rate of the fluid through a metering element of the first fluid delivery device relative to the flow rate of the fluid through a metering element the second fluid delivery device in the range of 1.8: 1 to 5: 1, in particular in the range from 2: 1 to 3: 1. In a preferred embodiment, the outlet nozzles of the first fluid delivery device are thus dimensioned so that they deliver about 25 l / min at 1 bar operating pressure and the outlet nozzles of the second fluid delivery device dimensioned so that they at the operating pressure of 1 bar about 10 l / min spray into the work space. If the metering elements of the fluid delivery devices are selected in this ratio, it is ensured that the construction machine can be used in particular over the entire range of typical recycler and stabilizer applications.

Die Steuereinheit ist beispielsweise derart ausgebildet, dass sie die jeweiligen Dosierelemente, insbesondere die wenigstens zwei Dosierelemente, der ersten und der zweiten Fluidabgabevorrichtung, gemeinsam ansteuert. Wird die erste Fluidabgabevorrichtung aktiviert, wird Fluid somit durch alle Dosierelemente der ersten Fluidabgabevorrichtung in den Arbeitsraum gefördert. Entsprechendes gilt für die Dosierelemente der zweiten Fluidabgabevorrichtung. Eine besonders hohe Einsatzvielfalt wird jedoch dann ermöglicht, wenn die Steuereinheit in der Weise ausgebildet ist, dass sie die wenigstens zwei Dosierelemente der wenigstens ersten Fluidabgabevorrichtung und/oder der wenigstens zweiten Fluidabgabevorrichtung gruppiert und insbesondere individuell ansteuert. Bei einer individuellen Ansteuerung ist es somit möglich, einzelne Dosierelement der ersten bzw. zweiten Fluidabgabevorrichtung separat zu aktivieren. Dies umfasst selbstverständlich auch die Möglichkeit, gleichzeitig mehrere oder alle Dosierelemente einer Fluidabgabevorrichtung zu aktivieren bzw. zur Abgabe von Fluid in den Arbeitsraum zu nutzen. Bezogen auf den gesamten Arbeitsraum ergibt sich mit dieser Ausführungsform die Möglichkeit, lediglich in Teilbereichen des Arbeitsraums Fluid in das zu bearbeitende Bodenmaterial einzubringen. Dies kann beispielsweise im Arbeitsbetrieb dann gewünscht sein, wenn lediglich ein sich in Fahrtrichtung der Baumaschine erstreckender Teilbereich der Bearbeitungsbreite der Baumaschine mit Fluid versetzt werden soll. Für diese Art der Einsprüheinrichtung ist es jedoch erforderlich, dass jedes Dosierelement über eine entsprechende Einrichtung, beispielsweise ein Ventil, verfügt, welches von der Steuereinheit angesteuert und geregelt werden kann. Die wenigstens erste und/oder wenigstens zweite Fluidabgabevorrichtung sind daher vergleichsweise kostenintensiv in der Fertigung. Einen sinnvollen und somit auch vorteilhaften Kompromiss stellt eine Einsprüheinrichtung gemäß einer weiteren bevorzugten Ausbildung der Erfindung dar, bei der die Steuereinheit in der Weise ausgebildet ist, dass sie die Dosierelemente der wenigstens ersten Fluidabgabevorrichtung und/oder der wenigstens zweiten Fluidabgabevorrichtung gruppiert ansteuert. Jeweils beispielsweise wenigstens zwei Dosierelemente bilden dabei eine Dosierelementgruppe. Dosierelemente der wenigstens ersten und/oder der wenigstens zweiten Fluidabgabevorrichtung werden bei dieser Ausführungsform zumindest zum Teil in Gruppen im Rahmen der Fluidabgabevorrichtung angeordnet, sodass beispielsweise mit einem Ventil eine Dosierelementgruppe, insbesondere zwei Dosierelemente, aktiviert werden können. Selbstverständlich kann die Zahl der einzelnen Dosierelemente jeder Gruppe variieren und an den jeweiligen Bedarf angepasst werden.The control unit is designed, for example, such that it controls the respective metering elements, in particular the at least two metering elements, of the first and the second fluid delivery device, together. If the first fluid delivery device is activated, fluid is thus conveyed through all metering elements of the first fluid delivery device into the working space. The same applies to the metering elements of the second fluid delivery device. However, a particularly high variety of applications is made possible when the control unit is designed in such a way that it groups and in particular individually controls the at least two metering elements of the at least first fluid delivery device and / or the at least second fluid delivery device. In an individual control, it is thus possible to activate individual dosing of the first and second fluid delivery device separately. Of course, this also includes the possibility of activating several or all metering elements of a fluid delivery device at the same time or to use them for delivering fluid into the working space. Based on the entire working space is obtained with this embodiment, the possibility to introduce only in partial areas of the working space fluid in the soil material to be processed. This can be desired, for example, in the working mode, if only one in the direction of travel of the construction machine extending portion of the machining width of the construction machine to be offset with fluid. For this type of injection device, however, it is necessary for each dosing element to have a corresponding device, for example a valve, which can be controlled and regulated by the control unit. The at least first and / or at least second fluid delivery device are therefore relatively expensive to manufacture. A meaningful and thus also advantageous compromise represents a spraying device according to another preferred embodiment of the invention, in which the control unit is designed in such a way that it controls the metering of the at least first fluid dispensing device and / or the at least second fluid dispensing device grouped. For example, at least two dosing each form a Dosierelementgruppe. Metering elements of the at least first and / or the at least second fluid delivery device in this embodiment are at least partially in groups within the scope of the fluid delivery device arranged, so that for example with a valve a Dosierelementgruppe, in particular two metering elements can be activated. Of course, the number of individual dosing elements of each group can be varied and adapted to the respective needs.

Grundsätzlich kann die Steuereinheit in der Weise ausgelegt sein, dass sie die wenigstens erste und die wenigstens zweite Fluidabgabevorrichtung in der Weise selbsttätig steuert, dass ein festgelegtes Fluidvolumen pro Zeiteinheit in den Arbeitsraum abgegeben wird bzw. die Durchflussmenge Fluid in den Arbeitsraum konstant gehalten wird. Je nach Untergrundbeschaffenheit (insbesondere der Bodendichte), der Umgebungssituation auf der Baustelle, den Arbeitseinstellungen, wie beispielsweise Frästiefe, der Fahrgeschwindigkeit, etc., kann das gewünschte Fluidvolumen pro Zeit bzw. die Durchflussmenge Fluid pro Zeit in den Arbeitsraum stark variieren. Darüber hinaus können unterschiedliche Fluide beispielsweise unterschiedliche Viskositäten aufweisen, was die Berücksichtigung unterschiedlicher Betriebsdrücke zum Erhalt eines gewünschten Fluidstroms in den Arbeitsraum erforderlich macht. Ergänzend können weitere Parameter auftreten, die einen unmittelbaren oder mittelbaren Einfluss auf die Förderungmenge des Fluids bzw. den Fluiddurchsatz des zu bearbeitenden Bodenguts haben. Um dennoch konstante Arbeitsergebnisse zu gewährleisten, schlägt die Erfindung in einem weiteren Aspekt vor, die Steuereinheit in der Weise auszubilden, dass sie in Abhängigkeit vom Über- oder Unterschreiten eines Schwellenwertes von der wenigstens ersten Fluidabgabevorrichtung auf die wenigstens zweite Fluidabgabevorrichtung umschaltet und umgekehrt. Der wesentliche Grundgedanke dieser Ausführungsform liegt zunächst darin, dass die Steuereinheit die Austragleistung von Fluid in den Arbeitsraum anhand zumindest eines relevanten Messparameters selbsttätig steuert und in Abhängigkeit dieses Messparameters die in den Arbeitsraum eingebrachte Fluidmenge pro Zeiteinheit reguliert. Dazu ist wenigstens ein Schwellenwert in der Steuereinheit hinterlegt, dessen Überschreitung ein Umschalten von der wenigstens zweiten Fluidabgabevorrichtung auf die leistungsfähigere wenigstens erste Fluidabgabevorrichtung auslöst. Ein solcher Schwellenwert kann beispielsweise die Durchflussmenge, der Leitungsdruck, etc. sein. Selbstverständlich können auch mehrere Schwellenwerte vorhanden sein, deren Überschreiten jeweils ein Umschalten auslöst. Damit kann gewährleistet werden, dass die in den Arbeitsraum eingebrachte Fluidmenge verhältnismäßig stark variiert werden kann und der Betriebsdruck gleichzeitig in einem vergleichsweise engen Bereich gehalten wird. Wird der Schwellenwert dagegen unterschritten, reagiert die Steuereinheit in Gegenrichtung und schaltet von der wenigstens ersten Fluidabgabevorrichtung auf die wenigstens zweite Fluidabgabevorrichtung um. Die wenigstens erste Fluidabgabevorrichtung wird entsprechend deaktiviert und die wenigstens zweite Fluidabgabevorrichtung von der Steuereinheit aktiviert. Damit gelingt es, trotz einer unter Umständen drastischen Verringerung des in den Arbeitsraum pro Zeiteinheit abgegebenen Fluidvolumens den Betriebsdruck in einem nennenswerten Bereich zu halten und ein übermäßiges Absacken des Betriebsdrucks zu verhindern. Im Ergebnis ist einerseits eine gleichmäßige Verteilung des Fluids über die gesamte Fluidabgabevorrichtung gewährleistet und gleichzeitig kann effektiv beispielsweise einem Zusetzen der Dosierelemente, insbesondere Austrittsdüsen, mit Bodenmaterial der jeweiligen Fluidabgabevorrichtung entgegengewirkt werden, da auch bei niedrigem Volumenstrom das Fluid mit einem gewissen Mindestdruck aus den Dosierelementen austritt.In principle, the control unit can be designed in such a way that it controls the at least first and the at least second fluid delivery device in such a way that a defined volume of fluid per unit time is discharged into the working space or the flow rate of fluid is kept constant in the working space. Depending on the nature of the ground (in particular the soil density), the environmental situation on the construction site, the work settings such as depth of cut, driving speed, etc., the desired fluid volume per time or the flow rate of fluid per time into the working space can vary widely. In addition, different fluids may, for example, have different viscosities, which requires consideration of different operating pressures to obtain a desired fluid flow into the working space. In addition, other parameters may occur which have a direct or indirect influence on the delivery rate of the fluid or the fluid flow rate of the soil material to be processed. In order to nevertheless guarantee constant work results, the invention proposes, in a further aspect, to design the control unit in such a way that it switches over from the at least first fluid dispensing device to the at least second fluid dispensing device as a function of exceeding or falling below a threshold value, and vice versa. The essential basic idea of this embodiment is initially that the control unit automatically controls the discharge capacity of fluid into the working space on the basis of at least one relevant measuring parameter and regulates the amount of fluid introduced into the working space per unit of time as a function of this measuring parameter. For this purpose, at least one threshold value is stored in the control unit, the exceeding of which triggers a switchover from the at least second fluid delivery device to the more powerful at least first fluid delivery device. Such a threshold may be, for example, the flow rate, the line pressure, etc. Of course, a plurality of threshold values may be present, the exceeding of which triggers each switching. This can be ensured that the amount of fluid introduced into the working space can be relatively varied and the operating pressure is maintained at the same time in a relatively narrow range. On the other hand, if the threshold value is undershot, the control unit reacts in the opposite direction and switches over from the at least one first fluid delivery device to the at least second fluid delivery device. The at least first fluid delivery device is correspondingly deactivated and the at least second fluid delivery device is activated by the control unit. This succeeds, despite a possibly drastic reduction in the work space To keep the operating pressure in a significant range per unit time and to prevent excessive sagging of the operating pressure. As a result, on the one hand, a uniform distribution of the fluid over the entire fluid delivery device is ensured and at the same time, for example, clogging of the metering elements, in particular outlet nozzles, can be counteracted with soil material of the respective fluid delivery device, since even at low volume flow the fluid exits the metering elements with a certain minimum pressure ,

Selbstverständlich kann die Steuereinheit auch in der Weise ausgebildet sein, dass sie in Abhängigkeit vom Über- oder Unterschreiten eines Maximalwertes wenigstens eine der wenigstens zwei Fluidabgabevorrichtungen der wenigstens anderen Fluidabgabevorrichtung selbsttätig zuschaltet. Typischerweise geschieht dies beispielsweise dann, wenn die leistungsfähigere wenigstens erste Fluidabgabevorrichtung vom Volumen Fluid pro Zeiteinheit bzw. von der Durchflussmenge her ihr Einsprühmaximum erreicht hat. Die Förderleistung der Einsprüheinrichtung lässt sich dann gemäß dieser weiteren bevorzugten Ausführungsform zusätzlich steigern, indem die leistungsschwächere wenigstens zweite Fluidabgabevorrichtung zusätzlich zur leistungsstärkeren Fluidabgabevorrichtung aktiviert wird bzw. dieser sozusagen hinzugeschaltet wird. Dies geschieht bei dieser Ausführungsform automatisch, wenn der in der Steuereinheit hinterlegte Maximalwert eines geeigneten Steuerungsparameters und/oder die maximale Durchflussmenge überschritten wird. Dies kann beispielsweise der Leitungsdruck im Leitungssystem der Einsprüheinrichtung, die Durchflussmenge bzw. das Abgabevolumen pro Zeiteinheit in den Arbeitsraum oder ähnliches sein. Es versteht sich von selbst, dass zur Überwachung des Maximalwertes und auch des vorhergehend genannten Schwellenwertes wenigstens eine entsprechende geeignete Sensoreinrichtung als Teil der Steuereinrichtung in die Einsprüheinrichtung integriert sein muss., wie beispielsweise ein Drucksensor, der den Fluiddruck im Leitungssystem ermittelt und an die Steuereinheit übermittelt. Wird der Maximalwert unterschritten, wird zunächst die leistungsschwächere wenigstens zweite Fluidabgabevorrichtung von der Steuereinheit deaktiviert. Fällt der entsprechende Parameter weiter und unterschreitet anschließend den Schwellenwert, schaltet die Steuereinheit von der leistungsfähigeren wenigsten ersten Fluidabgabevorrichtung auf die leistungsschwächere wenigstens zweite Fluidabgabevorrichtung um.Of course, the control unit may also be designed in such a way that it automatically switches on at least one of the at least two fluid delivery devices of the at least one other fluid delivery device as a function of exceeding or falling below a maximum value. This is typically done, for example, when the more powerful at least first fluid delivery device has reached its maximum injection level from the volume of fluid per unit time or from the flow rate. The delivery rate of the injection device can then be further increased according to this further preferred embodiment by activating the less powerful at least second fluid delivery device in addition to the more powerful fluid delivery device or, as it were, adding it. In the case of this embodiment, this happens automatically when the maximum value of a suitable control parameter stored in the control unit and / or the maximum flow rate are exceeded. This may be, for example, the line pressure in the line system of the injection device, the flow rate or the discharge volume per unit of time in the working space or the like. It goes without saying that for monitoring the maximum value and also the aforementioned threshold at least one corresponding suitable sensor device must be integrated into the injection device as part of the control device, such as a pressure sensor which determines the fluid pressure in the line system and transmits it to the control unit , If the maximum value is undershot, the power-weaker at least second fluid delivery device is first deactivated by the control unit. If the corresponding parameter continues to fall and then falls below the threshold value, the control unit switches from the more powerful at least first fluid delivery device to the less powerful at least second fluid delivery device.

Grundsätzlich sind eine Vielzahl von Betriebsparametern geeignet, den Schwellenwert und/oder den Maximalwert zu definieren und festzulegen. Besonders bevorzugt sind in diesem Zusammenhang die Überwachung und Zugrundelegung des Leitungsdrucks, der Durchflussmenge Fluid pro Zeiteinheit, der Frästiefe, der Bodenfeuchte, der Bodendichte und/oder der Fahrgeschwindigkeit. Selbstverständlich ist es auch möglich, Kombinationen von Parametern zur Überwachung und Steuerung der Einsprüheinrichtung heranzuziehen. Beispielsweise kann der Leitungsdruck ergänzend zur Fahrgeschwindigkeit und/oder ergänzend zur Durchflussmenge Fluid pro Zeiteinheit von einer entsprechend ausgebildeten Steuereinheit berücksichtigt werden.In principle, a multiplicity of operating parameters are suitable for defining and determining the threshold value and / or the maximum value. Particularly preferred in this connection are the monitoring and the basis of the line pressure, the flow rate of fluid per unit time, the depth of cut, the soil moisture, the soil density and / or the ground speed. Of course, it is also possible to use combinations of parameters for monitoring and controlling the spraying device. For example, the line pressure can be taken into account in addition to the driving speed and / or in addition to the flow rate fluid per unit time by a correspondingly formed control unit.

Das am weitesten verbreitete eingesetzte Fluid ist Wasser. Es sind jedoch auch Anwendungen bekannt, bei denen zwischen verschiedenen Fluiden gewechselt wird. Diese Fluide weisen häufig große Unterschiede hinsichtlich ihrer spezifischen Eigenschaften, beispielsweise ihrer Viskosität, auf. In diesen Fällen ist es vorteilhaft, wenn die Steuereinheit in der Weise ausgebildet ist, dass der Schwellenwert und/oder der Maximalwert in Abhängigkeit vom jeweiligen Fluid variieren bzw. jeweils auf die spezifischen Eigenschaften des Fluids abgestimmt sind. Für jedes Fluid sind in der Steuereinheit bei dieser Ausführungsform somit individuelle Schwellenwerte und/oder Maximalwerte hinterlegt.The most widely used fluid is water. However, there are also known applications in which to switch between different fluids. These fluids often have great differences in their specific properties, for example their viscosity. In these cases, it is advantageous if the control unit is designed in such a way that the threshold value and / or the maximum value vary depending on the respective fluid or are respectively adapted to the specific properties of the fluid. For each fluid, individual threshold values and / or maximum values are thus stored in the control unit in this embodiment.

Durch die Verwendung wenigstens zweier bezüglich ihrer Fördermenge bei einem festgelegten Betriebsdruck bzw. Vergleichsdruck abgestuft ausgebildeter Fluidabgabevorrichtungen ist es möglich, insbesondere auch das Zusetzen von Dosierelementen, insbesondere Austrittdüsen, im Arbeitsbetrieb mit sich festsetzendem Bodenmaterial wesentlich zu reduzieren. Für den Fall, dass diesbezüglich besonders kritische Bodenmaterialen bearbeitet werden sollen, ist es weiter bevorzugt, dass eine Reinigungseinrichtung bzw. Reinigungsfunktion, insbesondere Düsenreinigungseinricnturng, zur Reinigung der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung vorhanden ist. Diese kann beispielsweise in der Weise ausgebildet sein, dass die Steuereinheit zur Durchführung der Reinigungsfunktion in regelmäßigen Zeitabständen einen Reinigungsimpuls durch die jeweils vorhandenen Fluidabgabevorrichtungen auslöst.By using at least two graduated fluid delivery devices with respect to their flow rate at a fixed operating pressure or comparative pressure, it is possible to substantially reduce the clogging of metering elements, in particular outlet nozzles, during operation with settling soil material. In the event that particularly critical soil materials are to be processed in this regard, it is further preferred that a cleaning device or cleaning function, in particular Düsenreinigungseinricnturng, for cleaning the at least first and the at least second fluid dispensing device is present. This can be formed, for example, in such a way that the control unit for performing the cleaning function at regular intervals a cleaning pulse by the respective existing fluid dispensing devices triggers.

Eine weitere Fortbildung sieht ferner die Integration eines Fluidfilters in das Leitungssystem vor, insbesondere in Förderrichtung des Fluids vor und/oder hinter einer Fluidpumpe. Auf diese Weise kann besonders gut gewährleistet werden, dass das zu der wenigstens ersten und der wenigsten zweiten Fluidabgabevorrichtung geförderte Fluid frei von Verunreinigungen ist. Insgesamt können damit Ablagerungen und Verstopfungen im Leitungssystem besser vermieden werden. Selbstverständlich ist es auch möglich, mehrere Pumpen ins Leitungssystem zu integrieren, um beispielsweise mit separaten Pumpen Fluid zu der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung zu fördern und/oder für jedes Fluid ein eigenes Leitungssystem vorzusehen.A further development further provides for the integration of a fluid filter into the line system, in particular in the conveying direction of the fluid before and / or behind a fluid pump. In this way, it can be ensured particularly well that the fluid delivered to the at least first and the at least second second fluid delivery device is free of contaminants. Overall, so deposits and blockages in the pipe system can be better avoided. Of course, it is also possible to integrate a plurality of pumps in the line system, for example, to promote fluid to the at least first and the at least second fluid delivery device with separate pumps and / or provide a separate line system for each fluid.

Die Lösung der Aufgabe gelingt ferner mit einer Baumaschine zur Bodenbearbeitung, insbesondere einem Recycler zur Wiederherstellung reparaturbedürftiger Straßenbefestigungen, einem Stabilisierer zur Stabilisierung von nicht-tragfähigen Böden und einer Fräse, insbesondere Kaltfräse, zum Abfräsen von Fahrbahn- und Bodenbelägen mit einer in der vorstehend beschriebenen Weise ausgebildeten Einsprüheinrichtung. Diese verschiedenen Baumaschinentypen stimmen in der wesentlichen Ausbildung ihres Arbeitswerkzeuges und der Anordnung dieses Arbeitswerkzeuges in der Baumaschine überein. Alle umfassen jeweils eine horizontal und quer zur Längsachse bzw. Arbeitsrichtung der Baumaschine angeordnete Arbeitswalze, die um ihre Horizontalachse rotierend zur Untergrundbearbeitung, beispielsweise zum Fräsen von Straßenbelägen, zum Stabilisieren von Erdboden oder zum Recyceln defekter Straßenbefestigung, ausgebildet ist. Der Arbeitsraum, in dem die Arbeitswalze rotierend angeordnet ist, ist zu den Seiten und nach oben im Wesentlichen geschlossen ausgebildet, beispielsweise mit einer Abdeck- bzw. Schutzhaube, sodass der Arbeitsraum lediglich zum Boden hin geöffnet ist und beispielsweise zum Durchmischen des zu bearbeitenden Bodens mit Zusatzstoffen und/oder Fluiden, etc., genutzt werden kann. Die Arbeitseinrichtung bzw. Arbeitswalze ist unmittelbar oder mittelbar an dem Maschinenrahmen der Baumaschine angeordnet. Die Baumaschine ist ferner vorzugsweise selbstfahrend ausgebildet und weist wenigstens ein Vorderrad und wenigstens zwei Hinterräder auf, die über einen geeigneten Antrieb, beispielsweise über entsprechende Hydromotoren, verfügen können. Alternativ sind auch Ausführungsformen mit entsprechenden Antriebsraupen möglich. Zur Fluidversorgung kann die Baumaschine ferner entweder wenigstens einen Fluidvorratsbehälter zum Mitführen des Fluids aufweisen oder, alternativ, über das Leitungssystem mit einem Tankfahrzeug oder ähnlichem zur Fluidversorgung der Einsprüheinrichtung verbunden sein. Die Erfindung sieht vor, die vorstehend beschriebene Einsprüheinrichtung in ein Baumaschine zur Bodenbearbeitung, insbesondere eine Baumaschine mit den vorstehenden Merkmalen, zu integrieren.The solution of the problem also succeeds with a construction machine for tillage, in particular a recycler to restore repaired street fixtures, a stabilizer for stabilizing non-load-bearing floors and a milling machine, especially cold planer, for milling roadway and floor coverings in the manner described above trained spraying device. These various types of construction machinery are consistent in the essential design of their work tool and the arrangement of this work tool in the construction machine. Each comprise a horizontal and transversely to the longitudinal axis or working direction of the construction machine arranged work roll, which is designed to rotate about its horizontal axis for substrate processing, for example for milling of road surfaces, for stabilizing soil or for recycling defective road pavement. The working space in which the work roll is arranged to rotate is designed to be substantially closed to the sides and upwards, for example with a cover hood, so that the work space is only opened toward the floor and, for example, for mixing the soil to be worked with Additives and / or fluids, etc., can be used. The working device or work roll is arranged directly or indirectly on the machine frame of the construction machine. The construction machine is also preferably self-propelled and has at least one front wheel and at least two rear wheels, which may have a suitable drive, for example via corresponding hydraulic motors. Alternatively, embodiments with corresponding drive crawlers are possible. For fluid supply, the construction machine may further comprise either at least one fluid reservoir for carrying the fluid or, alternatively, be connected via the conduit system with a tanker vehicle or the like for fluid supply of the spraying device. The invention provides to integrate the spraying device described above in a construction machine for soil cultivation, in particular a construction machine with the above features.

Die Lösung der Aufgabe gelingt schließlich auch mit einem Verfahren zum Betrieb einer Einsprüheinrichtung, insbesondere der Einsprüheinrichtung der vorstehend beschriebenen Baumaschine. Beim erfindungsgemäßen Verfahren erfolgt eine Regulierung der Durchflussmenge der Einsprüheinrichtung über das Ansteuern wenigstens einer ersten Fluidabgabevorrichtung und wenigstens einer zweiten Fluidabgabevorrichtung durch eine Steuereinheit, wobei die erste Fluidabgabevorrichtung in der Weise ausgebildet ist, dass sie bei einem festgelegten Betriebsdruck zur Abgabe einer größeren Fluidmenge als die zweite Fluidabgabevorrichtung ausgebildet ist. Das erfindungsgemäße Verfahren zeichnet sich somit dadurch aus, dass zur Abgabe desselben Fluids in den Arbeitsraum wenigstens zwei bezüglich ihrer jeweiligen Leistungsfähigkeit bei einem festgelegten Vergleichsbetriebsdruck gestaffelt zueinander ausgebildete Fluidabgabevorrichtungen von der Steuereinheit angesteuert und bezüglich ihrer in den Arbeitsraum abgegebenen Fluidmenge geregelt werden. Damit kann beispielsweise der Betriebsdruck im Leitungssystem der Einsprüheinrichtung in einem vergleichsweise engen Rahmen gehalten werden und gleichzeitig die in den Arbeitsraum pro Zeiteinheit abgegebene Fluidmenge breit variiert werden.Finally, the object is also achieved by a method for operating a spraying device, in particular the spraying device of the above-described construction machine. In the method according to the invention, the flow rate of the injection device is controlled by controlling at least one first fluid delivery device and at least one second fluid delivery device by a control unit, wherein the first fluid delivery device is designed to deliver a larger fluid quantity than the second one at a predetermined operating pressure Fluid dispenser is formed. The method according to the invention is therefore characterized in that for the delivery of the same fluid into the working space at least two with respect to their respective performance at a specified reference operating pressure staggered mutually formed fluid dispensing devices are controlled by the control unit and regulated with respect to their output into the working space amount of fluid. Thus, for example, the operating pressure in the line system of the spraying device can be kept within a comparatively narrow range and at the same time the amount of fluid dispensed into the working space per unit of time can be varied widely.

Eine Weiterbildung des erfindungsgemäßen Verfahrens sieht die Regulierung der Durchflussmenge der Einsprüheinrichtung bzw. der Abgabe des Fluidvolumens pro Zeiteinheit in den Arbeitsraum in Abhängigkeit vom Über- und/oder Unterschreiten wenigstens eines festgelegten Schwellenwertes wenigstens eines bestimmten Betriebsparameters vor. Die Steuereinheit schaltet so beispielsweise selbsttätig von der aktivierten leistungsschwächeren wenigstens zweiten Fluidabgabevorrichtung auf die leistungsfähigere wenigstens erste Fluidabgabevorrichtung um, wenn beispielsweise die Durchflussmenge des Fluids pro Zeiteinheit und/oder der Betriebsdruck im Leitungssystem den Schwellenwert überschreitet. Ein gleicher Regelvorgang kann beispielsweise ablaufen, wenn die Fahrgeschwindigkeit der Baumaschine bzw. der Leitungsdruck infolge eine Beschleunigung der Maschine einen Schwellenwert überschreitet, um den Fluideintrag pro Volumeneinheit Bodenmaterial konstant zu halten. Selbstverständlich ist es auch möglich, Kombinationen verschiedener Betriebsparameter zur Festlegung eines Schwellenwertes und zur Feststellung des aktuellen Betriebszustandes der Baumaschine in die Steuereinheit zu integrieren. So ist es beispielsweise möglich, den Schwellenwert unter Berücksichtigung des Betriebsdrucks, der Frästiefe und/oder gleichzeitig der Fahrgeschwindigkeit der Baumaschine festzulegen und die Umschaltung zwischen der wenigstens ersten Fluidabgabevorrichtung und der wenigstens zweiten Fluidabgabevorrichtung in Abhängigkeit sowohl vom Betriebsdruck im Leitungssystem und/oder der Frästiefe und oder der Fahrgeschwindigkeit der Baumaschine zu steuern.A refinement of the method according to the invention provides for the regulation of the flow rate of the injection device or of the delivery of the fluid volume per unit of time into the working space as a function of overshooting and / or falling below at least one defined threshold value of at least one specific operating parameter. Thus, for example, the control unit automatically switches over from the activated at least second at least second fluid delivery device to the more powerful at least first fluid delivery device if, for example, the flow rate of the fluid per unit time and / or the operating pressure in the line system exceeds the threshold value. A similar control process may, for example, take place when the travel speed of the construction machine or the line pressure as a result of an acceleration of the engine exceeds a threshold value in order to keep the fluid input per unit volume of soil material constant. Of course, it is also possible to integrate combinations of different operating parameters for establishing a threshold value and for determining the current operating state of the construction machine in the control unit. Thus, it is possible, for example, to set the threshold taking into account the operating pressure, the depth of cut and / or simultaneously the travel speed of the construction machine and the switching between the at least first fluid delivery device and the at least second fluid delivery device depending on both the operating pressure in the line system and / or the milling depth and or to control the driving speed of the construction machine.

Das Umschalten zwischen der wenigsten ersten und der wenigsten zweiten Fluidabgabevorrichtung kann grundsätzlich übergangslos erfolgen. Dies bedeutet, dass die wenigstens erste Fluidabgabevorrichtung in dem Moment deaktiviert wird, in dem die zweite Fluidabgabevorrichtung aktiviert wird und umgekehrt. Allerdings können bei diesem Umschaltverfahren vergleichsweise große Druckschwankungen im Leitungssystem auftreten. Zur Vermeidung der beim Umschalten auftretenden Druckspitzen schlägt die Erfindung daher vor, das Umschalten zwischen der wenigstens ersten und der wenigstens zweiten Fluidabgabevorrichtung überlappend auszuführen. Wird beispielsweise von der wenigstens ersten Fluidabgabevorrichtung auf die wenigstens zweite Fluidabgabevorrichtung, beispielsweise bei Verringerung der Fahrgeschwindigkeit der Baumaschine, von der Steuereinheit umgeschaltet, erfolgt bei aktivierter wenigstens erster Fluidabgabevorrichtung zunächst eine parallele Aktivierung der wenigstens zweiten Fluidabgabevorrichtung. Nach Ablauf eines festgelegten Zeitintervalls wird schließlich die wenigstens erste Fluidabgabevorrichtung deaktiviert und der Eintrag des Fluids in den Arbeitsraum allein von der wenigstens zweiten Fluidabgabevorrichtung fortgeführt. Dieser Vorgang läuft entsprechend umgekehrt ab, wenn die in den Arbeitsraum abgegebene Fluidmenge pro Zeiteinheit gesteigert werden soll. Wesentlich für diese Ausführung des erfindungsgemäßen Verfahrens ist es somit, dass beim Umschalten für ein Übergangszeitintervall die wenigstens erste und die wenigstens zweite Fluidabgabevorrichtung gleichzeitig bzw. bezüglich ihres Aktivierungszustandes zeitlich einander überlappend aktiviert sind und das Fluid innerhalb dieses Zeitintervalls gemeinsam in den Arbeitsraum abgeben. Nach Ablauf dieses Zeitintervalls erfolgt anschließend die gewünschte Deaktivierung der jeweils nicht mehr benötigten Fluidabgabevorrichtung. Auf diese Weise wird das entstehen von Druckspitzen beim Umschalten effektiv verhindert und die Druckbelastung des Leitungssystems erheblich reduziert.The switching between the fewest first and the least second fluid delivery device can basically take place without transition. This means that the at least first fluid delivery device is deactivated in the moment in which the second fluid delivery device is activated and vice versa. However, in this switching method, comparatively large pressure fluctuations in the line system can occur. In order to avoid the pressure peaks occurring during switching, the invention therefore proposes overlapping the switching between the at least first and the at least second fluid delivery device. For example, from the at least first fluid delivery device to the at least second fluid delivery device, for example when reducing the travel speed of the construction machine, from the control unit When the at least one first fluid dispensing device is activated, at least one parallel activation of the at least second fluid dispensing device takes place. After a predetermined time interval, finally, the at least first fluid dispensing device is deactivated and the entry of the fluid into the working space is continued solely by the at least second fluid dispensing device. This process is correspondingly reversed when the amount of fluid dispensed into the working space per unit time is to be increased. It is therefore essential for this embodiment of the method according to the invention that, when switching over for a transitional time interval, the at least first and the at least second fluid delivery devices are activated overlapping each other simultaneously and with respect to their activation state and release the fluid together into the working space within this time interval. After this time interval has elapsed, the desired deactivation of the respectively no longer required fluid delivery device takes place. In this way, the emergence of pressure peaks during switching is effectively prevented and significantly reduces the pressure load on the piping system.

Nachstehend wird die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen schematisch:

Fig. 1
Seitenansicht einer gattungsgemäßen Baumaschine;
Fig. 2
Seitenschnittansicht in den Arbeitsraum der Baumaschine aus Fig. 1;
Fig. 3
Aufbau einer Einsprüheinrichtung gemäß einer ersten Ausführungsform;
Fig. 4
Aufbau einer Einsprüheinrichtung gemäß einer zweiten Ausführungsform;
Fig. 5
Aufbau einer Einsprüheinrichtung gemäß einer dritten Ausführungsform; und
Fig. 6
Ablaufdiagramm eines Verfahrens zur Steuerung der Einsprüheinrichtung aus Fig. 5.
The invention will be explained in more detail with reference to several embodiments. They show schematically:
Fig. 1
Side view of a generic construction machine;
Fig. 2
Side sectional view into the working space of the construction machine Fig. 1 ;
Fig. 3
Structure of a spraying device according to a first embodiment;
Fig. 4
Structure of a spraying device according to a second embodiment;
Fig. 5
Structure of a spraying device according to a third embodiment; and
Fig. 6
Flowchart of a method for controlling the sprayer from Fig. 5 ,

Gleiche Bauteile sind in den Figuren mit gleichen Bezugszeichen angegeben.Identical components are indicated in the figures with the same reference numerals.

Fig. 1 betrifft eine Baumaschine 1, konkret in Fig. 1 einen sogenannten Stabilisierer oder, je nach Anwendungsfall, einen Recycler. Die Baumaschine 1 umfasst zunächst einen Maschinenrahmen 2, ein Vorderradpaar 3 und ein Hinterradpaar 4, wobei lediglich jeweils das in Arbeitsrichtung a auf der linken Seite befindliche Rad sichtbar ist. Der Maschinenrahmen 2 weist ferner einen zweigliedrigen Aufbau auf, umfassend zwei Rahmenglieder, die mit einer Knickgelenkverbindung 5 miteinander verbunden sind. Auf Höhe der Knickgelenkverbindung 5 ist ferner eine entlang Pfeilrichtung b höhenverstellbare Fahrerkabine 6 angeordnet. Die benötigt Antriebsenergie wird mittels einer Antriebsvorrichtung 7 erhalten, die sowohl die zum Antrieb der Baumaschine 1 als auch die zum Antrieb der nachstehend noch näher erläuterten Arbeitseinrichtung benötigte Antriebsenergie zur Verfügung stellt. Die Baumaschine 1 dient zum Bearbeiten von Böden oder Fahrbahnen und weist dazu die Arbeitseinrichtung in Form einer Arbeitswalze auf (in Fig. 1 nicht sichtbar). Die Arbeitswalze ist um ihre Zylinderachse rotierbar mittelbar am Maschinenrahmen 2 der Baumaschine 1 gelagert und von einer Schutzhaube 8 umgeben, die den Raum um die Arbeitseinrichtung nach oben und zu den Seiten hin abschließt. Nach unten bzw. zum Boden 9 hin ist die Schutzhaube 8 offen ausgebildet. Die Schutzhaube 8 umschließt somit einen Arbeitsraum, in dem die Arbeitswalze gelagert ist. Die Arbeitswalze ist relativ zur Schutzhaube 8 und zum Maschinenrahmen 2 in Pfeilrichtung c höhenverstellbar und weist dazu eine entsprechende Verstell- bzw. Verschwenkvorrichtung auf. In der in Fig. 1 gezeigten Stellung ist die Arbeitswalze hochgestellt und nicht in Kontakt mit dem zu bearbeitenden Boden 9. Diese Stellung der Arbeitswalze wird beispielsweise im Transportmodus der Baumaschine eingenommen, wohingegen die Arbeitswalze im Arbeitsmodus bzw. Bodenbearbeitungsmodus nach unten abgesenkt wird und in den Boden mit der gewünschten Tiefe eintaucht. Zur Bodenbearbeitung wird die Baumaschine 1 in Pfeilrichtung a (Vorwärtsrichtung) über den Boden 9 bewegt. Fig. 1 relates to a construction machine 1, specifically in Fig. 1 a so-called stabilizer or, depending on the application, a recycler. The construction machine 1 initially comprises a machine frame 2, a pair of front wheels 3 and a pair of rear wheels 4, wherein only the respective wheel located in the working direction a on the left side is visible. The machine frame 2 further has a two-part construction, comprising two frame members, which are connected to each other with an articulated joint 5. At the height of the articulated joint 5, a height-adjustable arrow direction b along the driver's cab 6 is further arranged. The drive energy required is obtained by means of a drive device 7, which both the driving energy required for driving the construction machine 1 as well as for driving the work device to be explained in more detail below Provides. The construction machine 1 is used for processing of floors or roadways and has to the working device in the form of a work roll on (in Fig. 1 not visible). The work roll is mounted rotatably about its cylinder axis indirectly on the machine frame 2 of the construction machine 1 and surrounded by a protective hood 8, which closes the space around the working device upwards and to the sides. Downwards or towards the bottom 9, the protective cover 8 is open. The protective cover 8 thus encloses a working space in which the work roll is mounted. The work roll is relative to the protective cover 8 and the machine frame 2 in the direction of arrow c adjustable in height and has for this purpose a corresponding adjustment or pivoting device. In the in Fig. 1 This position of the work roll is assumed, for example, in the transport mode of the construction machine, whereas the work roll is lowered in working mode or tillage mode down and immersed in the ground with the desired depth , For tillage the construction machine 1 is moved in the direction of arrow a (forward direction) on the ground 9.

Der konkrete Aufbau des von der Schutzhaube 8 glockenartig überdeckten Arbeitsraums 10 ist in der Schnittansicht durch die Schutzhaube 8 aus Fig. 1 senkrecht zur Rotationsachse der Arbeitswalze und in Arbeitsrichtung a in Fig. 2 näher dargestellt. Die Schutzhaube 8 umschließt demnach den Arbeitsraum 10 nach oben und zu den Seiten hin. Nach unten bzw. in Richtung des Fahrbahnbodens 9 ist die Haube 8 dagegen geöffnet ausgebildet, sodass die von der Haube 8 umgebene Arbeitswalze 11 in Kontakt mit dem zu bearbeitenden Boden 9 durch Absenken der Arbeitswalze 11 in Pfeilrichtung c (Fig. 1) gebracht werden kann. Die Arbeitswalze 11 ist im Inneren der Schutzhaube 8 angeordnet. Die Längsachse 12 der Arbeitswalze 11 verläuft horizontal und senkrecht zur Fertbewegungsrichtung a der Baumaschine 1. Auf der Außenseite der zylindrischen Arbeitswalze 11 ist eine Vielzahl von Zähnen 13, konkret über ein nicht näher bezeichnetes Meißelhaltersystem oder, je nach Ausführungsform, Meißel-Wechselhaltersystem, angeordnet. Die Arbeitswalze 11 rotiert um ihre Zylinderachse 12 in Pfeilrichtung d, also gegenläufig zur Fortbewegungsrichtung der Baumaschine 1. Die Arbeitswalze 11 trägt somit Bodenmaterial in der Tiefe ΔT ab, umfassend den Fahrbahnboden 9 und einen Teil der darunter liegenden Unterschicht 14 und legt diese in Fahrtrichtung a hinter der Arbeitswalze wieder ab. Der zwischen der Arbeitswalze und der Schutzhaube 8 liegende Innenraum kann als Mischraum genutzt werden.The concrete structure of the protective hood 8 bell-like covered working space 10 is in the sectional view through the guard 8 from Fig. 1 perpendicular to the axis of rotation of the work roll and in the direction of a in Fig. 2 shown in more detail. The protective cover 8 accordingly encloses the working space 10 upwards and towards the sides. On the other hand, downwards or in the direction of the roadway bottom 9, the hood 8 is designed to be open, so that the work roll 11 surrounded by the hood 8 is in contact with the ground 9 to be processed by lowering the work roll 11 in the direction of the arrow c (FIG. Fig. 1 ) can be brought. The work roll 11 is disposed inside the protective hood 8. The longitudinal axis 12 of the work roll 11 extends horizontally and perpendicular to the finished movement direction a of the construction machine 1. On the outside of the cylindrical work roll 11 is a plurality of teeth 13, specifically arranged on a unspecified bit holder or, depending on the embodiment, chisel change holder system. The work roll 11 rotates about its cylinder axis 12 in the direction of arrow d, ie counter to the direction of movement of the construction machine 1. The work roll 11 thus carries soil material in the depth .DELTA.T, comprising the roadway bottom 9 and a portion of the underlying lower layer 14 and places them in the direction of travel a behind the work roll again. The lying between the work roll and the protective cover 8 interior can be used as a mixing room.

Zum Einbringen von Fluid, insbesondere Wasser, in den von der Schutzhaube 8 nach außen abgegrenzten Arbeitsraum 10 ragen von der Außenseite eine Austrittsdüse 15 ("große" Austrittsdüse) und eine in Axialrichtung der Zylinderachse 12 davor liegende Austrittsdüse 16 ("kleine" Austrittsdüse) mit ihrer jeweiligen Fluidaustrittsöffnung in den Innenraum des Arbeitsraums 10. Beide Austrittsdüsen 15 und 16 sind über jeweils ein Regulationselement, konkret jeweils ein Ventil (nicht angegeben; nachstehend wird konkret jeweils auf Ventile eingegangen werden, wobei stattdessen auch andere geeignete Regelelemente verwendet werden können), an einen Leitungsbalken 17, der Teil eines Leitungssystems ist, angeschlossen. Es sind darüber hinaus weitere baugleiche Austrittsdüsen 15 und 16 vorhanden, die entlang der Rotationsachse einander abwechselnd in Blickrichtung hinter den beiden Austrittsdüsen 15 und 16 am Leitungsbalken 17 angeordnet sind, vorhanden. Grundsätzlich ist es zwar auch möglich, dass anstatt der Austrittsdüsen einfache Löcher im Leitungsbalken verwendet werden, Austrittsdüsen sind allerdings bevorzugt.For introducing fluid, in particular water, into the working space 10 which is delimited outwardly from the protective hood 8, an outlet nozzle 15 ("large" outlet nozzle) protrudes from the outside. and an outlet nozzle 16 ("small" outlet nozzle) located in front of it in the axial direction of the cylinder axis 12 with its respective fluid outlet opening into the interior of the working space 10. Both outlet nozzles 15 and 16 each have a respective regulating element, in each case a valve (not indicated; Responding to valves, wherein other suitable control elements can be used instead), to a line bar 17, which is part of a line system connected. There are also more identical outlet nozzles 15 and 16 are provided, which are arranged along the axis of rotation alternately in the viewing direction behind the two outlet nozzles 15 and 16 on the line bar 17, available. In principle, it is also possible that instead of the outlet nozzles simple holes are used in the line beam, but exit nozzles are preferred.

Das Leitungssystem umfasst ferner einen Wasservorratsbehälter, der an der Baumaschine 1 gelagert ist (in Fig. 2 nicht sichtbar), sowie eine Pumpe (in Fig. 2 ebenfalls nicht sichtbar), die das Wasser aus dem Vorratsbehälter über das Leitungssystem zu den Austrittsdüsen 15 und 16 hin fördert. Die Pumpe ist ferner in der Weise ausgebildet, dass sie das Leitungssystem 17 unter Druck setzt. Wird das jeweilige Ventil der großen Austrittsdüse 15 und/oder der kleinen Austrittsdüse 16 geöffnet, durchtritt das Fluid vom Leitungsbalken 17 kommend die Austrittsdüse 15 und/oder die Austrittsdüse 16 und gelangt dadurch in den Arbeitsraum 10.The piping system further comprises a water reservoir, which is mounted on the construction machine 1 (in Fig. 2 not visible), as well as a pump (in Fig. 2 also not visible), which promotes the water from the reservoir via the line system to the outlet nozzles 15 and 16 out. The pump is further configured to pressurize the conduit system 17. If the respective valve of the large outlet nozzle 15 and / or the small outlet nozzle 16 is opened, the fluid coming from the conduit bar 17 passes through the outlet nozzle 15 and / or the outlet nozzle 16 and thereby passes into the working space 10.

Die Austrittsdüse 15 ist Teil einer ersten Fluidabgabevorrichtung und die Austrittsdüse 16 Teil einer zweiten Fluidabgabevorrichtung. Der grundsätzliche Aufbau der konkreten Einsprüheinrichtung aus Fig. 2 ist in verschiedenen Ausführungsformen in den Figuren 4 und 5 näher veranschaulicht. Bei der Ausführungsform aus Fig. 3 sind zwei Leitungsbalken 17.1 und 17.2 in Rotationsrichtung hintereinander angeordnet. Weitere Einzelheiten der Einsprüheinrichtung in verschiedenen Ausführungsformen werden nachstehend näher veranschaulicht.The outlet nozzle 15 is part of a first fluid dispensing device and the outlet nozzle 16 is part of a second fluid dispensing device. The basic structure of the concrete spraying device Fig. 2 is in different embodiments in the FIGS. 4 and 5 illustrated in more detail. In the embodiment of Fig. 3 two line bars 17.1 and 17.2 are arranged one behind the other in the direction of rotation. Further details of the sprayer in various embodiments are further illustrated below.

Fig. 3 betrifft eine Einsprüheinrichtung 18a gemäß einer ersten Ausführungsform. Das Fluid, im vorliegenden Fall Wasser, wird bei der Einsprüheinrichtung 18a von einer Einleitstelle 19, bei der es sich beispielsweise um einen Tankanschluss oder einen Anschluss zu einem Tankwagen handelt, über ein Leitungssystem 20 hin zu einer ersten Fluidabgabevorrichtung 21, umfassend die großen Austrittsdüsen 15.1 bis 15.6 und das Ventil 22, und zu einer zweiten Fluidabgabevorrichtung 23, umfassend die kleinen Austrittsdüsen 16.1 bis 16.6 und das Ventil 24, geleitet. Das Leitungssystem 20 weist eine Wasserpumpe 25, einen Drucksensor 26, einen Durchflussmesser 27 sowie einen Absperrhahn 28 auf. Optional kann ferner ein Filter 29 (in Figuren 4 und 5) zwischen der Wasserpumpe 25 und dem Absperrhahn 28 in den Leitungsstrang des Leitungssystems 20 integriert sein. Fig. 3 relates to a spraying device 18a according to a first embodiment. The fluid, in the present case water, is at the sprayer 18a from a discharge point 19, which is for example a tank connection or a connection to a tanker, via a line system 20 to a first fluid dispenser 21, comprising the large outlet nozzles 15.1 to 15.6 and the valve 22, and to a second fluid dispenser 23, comprising the small outlet nozzles 16.1 to 16.6 and the valve 24, passed. The line system 20 has a water pump 25, a pressure sensor 26, a flow meter 27 and a Stopcock 28 on. Optionally, a filter 29 (in FIGS. 4 and 5 ) between the water pump 25 and the stopcock 28 in the wiring harness of the conduit system 20 may be integrated.

Das Leitungssystem 20 umfasst ferner einen ersten Leitungsbalken 17.1 und einen zweiten Leitungsbalken 17.2. Der erste Leitungsbalken 17.1 ist über das Ventil 22 der ersten Fluidabgabevorrichtung 21 fluidisch mit dem übrigen Teil des Leitungssystems 20 verbunden. Am Leitungsbalken 17.1 sind ferner parallel die sechs großen Austrittsdüsen 15.1 bis 15.6 angeordnet. Ist das Ventil 22 geöffnet, strömt Fluid durch den dem Ventil 22 vorgelagerten Teil des Leitungssystems (angetrieben durch die Pumpe 25) durch das Ventil 22 in den Leitungsbalken 17.1 und wird von da auf die einzelnen Austrittsdüsen 15.1 bis 15.6 verteilt und tritt durch die Austrittsdüsen 15.1 bis 15.6 in den Arbeitsraum 10 aus. Die Austrittsdüsen 15.1 bis 15.6 sind somit die Dosierelemente der ersten Fluidabgabevorrichtung 21. Die zweite Fluidabgabevorrichtung 23 weist einen vergleichbaren Aufbau auf. Dort sind die kleinen Austrittsdüsen 16.1 bis 16.6 an den zweiten Leitungsbalken 17.2 angeschlossen, der mit dem übrigen Teil des Leitungssystems 20 über das Ventil 24 der zweiten Fluidabgabevorrichtung 23 in Verbindung steht. Ist das Ventil 24 geöffnet und die Pumpe 25 in Betrieb, wird Fluid durch das Leitungssystem 20 durch das Ventil 24 hindurch in den Leitungsbalken 17.2 gepumpt und verlässt diesen in den Arbeitsraum 10 durch die einzelnen Dosierelemente der zweiten Fluidabgabevorrichtung 23 bzw. durch die Austrittsdüsen 16.1 bis 16.6, die ebenfalls parallel zueinander geschaltet sind. Bei den großen Austrittsdüsen 15.1 bis 15.6 handelt es sich um Austrittsdüsen, die bei 1 bar Betriebsdruck (gemessen mit dem Drucksensor 26 im Leitungssystem 20) pro Düse 25 l/min Fluid und bei 5 bar Betriebsdruck 60 l/min Fluid in den Arbeitsraum pro Düse abgeben. Die kleinen Düsen 16.1 bis 16.6 sind dagegen in der Weise ausgebildet, dass sie pro Düse bei einem Betriebsdruck von 1 bar 10 l/min Fluid und beim Betriebsdruck von 5 bar 25 l/min in den Arbeitsraum abgeben. Die großen und die kleinen Austrittsdüsen 15.1 bis 16.6 sind somit derart in Relation ausgewählt, dass sich ihre jeweiligen Austrittsvolumina bei einem bestimmten Betriebsdruck von 1 bis 5 bar nahezu überlappungsfrei ergänzen.The line system 20 further comprises a first line bar 17.1 and a second line bar 17.2. The first line bar 17. 1 is fluidically connected to the remaining part of the line system 20 via the valve 22 of the first fluid delivery device 21. On the line bar 17.1, the six large outlet nozzles 15.1 to 15.6 are also arranged in parallel. If the valve 22 is opened, fluid flows through the valve 22 upstream of the part of the line system (driven by the pump 25) through the valve 22 in the line bar 17.1 and is distributed from there to the individual outlet nozzles 15.1 to 15.6 and passes through the outlet nozzles 15.1 to 15.6 in the working space 10 off. The outlet nozzles 15.1 to 15.6 are thus the metering elements of the first fluid delivery device 21. The second fluid delivery device 23 has a comparable structure. There, the small outlet nozzles 16.1 to 16.6 are connected to the second line bar 17.2, which communicates with the remaining part of the line system 20 via the valve 24 of the second fluid dispensing device 23. If the valve 24 is open and the pump 25 is in operation, fluid is pumped through the conduit system 20 through the valve 24 into the conduit bar 17.2 and leaves it in the working space 10 through the individual metering of the second fluid delivery device 23 and through the outlet nozzles 16.1 to 16.6, which are also connected in parallel. The large outlet nozzles 15.1 to 15.6 are outlet nozzles which at 1 bar operating pressure (measured with the pressure sensor 26 in the line system 20) per nozzle 25 l / min fluid and at 5 bar operating pressure 60 l / min fluid in the working space per nozzle submit. The small nozzles 16.1 to 16.6, however, are designed in such a way that they deliver 10 l / min of fluid per nozzle and at operating pressure of 5 bar 25 l / min in the working space at an operating pressure of 1 bar. The large and the small outlet nozzles 15.1 to 16.6 are thus selected in relation to each other so that their respective outlet volumes at a certain operating pressure of 1 to 5 bar complement each other almost without overlap.

Ein weiteres wesentliches Element der Einsprüheinrichtung 18 ist eine Steuereinheit 30a. Diese ist, wie durch die gestrichelten und gepunkteten Linien verdeutlicht, mit der Pumpe 25, dem Drucksensor 26, dem Durchflussmesser 27, dem Absperrhahn 28, dem Ventil 22 der ersten Fluidabgabevorrichtung 21 und dem Ventil 24 der zweiten Fluidabgabevorrichtung 23 verbunden. Die Steuereinheit 30 ist in der Weise ausgebildet, dass sie die Fördermenge des Fluids durch die Einsprüheinrichtung 18 bzw. die erste Fluidabgabevorrichtung 21 und die zweite Fluidabgabevorrichtung 23 in den Arbeitsraum 10 reguliert und steuert. Die Steuereinheit 30 ist ferner in der Weise ausgebildet, dass sie ein Eingabefeld umfasst, über das ein Bediener Sollwerte, Fluideigenschaften, Bodeneigenschaften, etc., bzw. allgemein für den Bearbeitungsvorgang relevante Parameter eingeben kann. Die Grundidee der Erfindung besteht nun darin, die Einsprüheinrichtung 18 in der Weise auszubilden, dass sie wenigstens zwei Fluidabgabevorrichtungen (vorliegend die erste Fluidabgabevorrichtung 21 und die zweite Fluidabgabevorrichtung 23) mit in Bezug auf die Durchflussmenge Fluid pro Zeiteinheit unterschiedlichem Leistungsvermögen bei einem festgelegten Betriebsdruck bzw. Vergleichsdruck aufweist und diese abgestimmt aufeinander zu steuern. Ist das Einbringen großer Fluidmengen in den Arbeitsraum 10 gewünscht, öffnet die Steuereinheit 30 das Ventil 22 der ersten Fluidabgabevorrichtung 21, sodass im vorliegenden Fall bei einem Betriebsdruck von beispielsweise 1 bar in dem Leitungssystem 20 pro Düse 25 l/min Fluid in den Arbeitsraum 10 austreten. Ist dagegen eine geringere Fluidmenge erwünscht, schließt die Steuereinheit 30 das Ventil 22 der ersten Fluidabgabevorrichtung 21, wodurch der Fluideintrag in den Arbeitsraum 10 durch die großen Austrittsdüsen 15.1 bis 15.6 abgeschaltet wird. Die Steuereinheit 30 öffnet dagegen das Ventil 24 der zweiten Fluidabgabevorrichtung 23, sodass das Fluid durch die kleinen Austrittsdüsen 16.1 bis 16.3 in den Arbeitsraum 10 austritt. Liegt der Betriebsdruck bei 1 bar, werden in diesem Fall 10 l/min pro Düse in den Arbeitsraum eingetragen. Wird der Betriebsdruck erhöht, beispielsweise weil die Frästiefe vergrößert wird und/oder die Arbeitsgeschwindigkeit der Baumaschine gesteigert wird, schaltet die Steuereinheit schließlich beim Erreichen des Schwellenwertes von 5 bar von der zweiten Fluidabgabevorrichtung 23 mit kleinen Düsen auf die erste Fluidabgabevorrichtung 21 mit großen Düsen um und senkt dabei den Betriebsdruck entsprechend, vorliegend konkret zunächst auf 1 bar.Another essential element of the spraying device 18 is a control unit 30a. This is, as indicated by the dashed and dotted lines, connected to the pump 25, the pressure sensor 26, the flow meter 27, the stopcock 28, the valve 22 of the first fluid dispenser 21 and the valve 24 of the second fluid dispenser 23. The control unit 30 is configured to regulate and control the flow rate of the fluid through the spray means 18 and the first fluid discharge device 21 and the second fluid discharge device 23 into the work space 10, respectively. The control unit 30 is also in the way designed to include an input field, via which an operator can enter desired values, fluid properties, ground properties, etc., or parameters that are generally relevant for the machining process. The basic idea of the invention is to design the spraying device 18 such that it comprises at least two fluid delivery devices (in the present case the first fluid delivery device 21 and the second fluid delivery device 23) with different capacities per unit time with respect to the flow rate of fluid at a fixed operating pressure or time unit. Comparative pressure and these coordinated with each other to control. If it is desired to introduce large amounts of fluid into the working space 10, the control unit 30 opens the valve 22 of the first fluid delivery device 21, so that 25 l / min of fluid exits into the working space 10 per nozzle at an operating pressure of, for example, 1 bar in the line system 20 , If, on the other hand, a smaller amount of fluid is desired, the control unit 30 closes the valve 22 of the first fluid delivery device 21, whereby the fluid entry into the working space 10 is shut off by the large outlet nozzles 15.1 to 15.6. By contrast, the control unit 30 opens the valve 24 of the second fluid delivery device 23, so that the fluid exits through the small outlet nozzles 16.1 to 16.3 into the working space 10. If the operating pressure is 1 bar, 10 l / min per nozzle are entered into the working area in this case. When the operating pressure is increased, for example, because the depth of cut is increased and / or the working speed of the construction machine is increased, finally, upon reaching the threshold of 5 bar, the control unit switches from the second fluid dispenser 23 with small nozzles to the first fluid dispenser 21 with large nozzles lowers the operating pressure accordingly, in the present case specifically initially to 1 bar.

Insgesamt kann die Steuereinheit 30a den Regelvorgang zur Steuerung der Einsprüheinrichtung 18 somit unter Berücksichtigung von Messparametern, im konkreten Beispiel beispielsweise der Frästiefe und/oder der Fahrgeschwindigkeit der Baumaschine, anpassen. So kann die Steuereinheit 30 beispielsweise die Frästiefe und/oder Fahrgeschwindigkeit der Baumaschine bzw. die Bearbeitungsgeschwindigkeit über geeignete Sensoren erfassen und den Fluidaustrag bzw. die Durchflussmenge Fluid pro Zeiteinheit durch eine Regulation der Pumpe 25 und/oder der Ventile 22 und 24 der ersten Fluidabgabevorrichtung 21 bzw. der zweiten Fluidabgabevorrichtung 23 an die Fahrgeschwindigkeit der Baumaschine anpassen. Andere Messparameter können beispielsweise der Betriebsdruck des Fluids im Leitungssystem 20, die anliegende Leistung der Pumpe 25, etc., sein.Overall, the control unit 30a, the control process for controlling the sprayer 18 thus taking into account measurement parameters, in the specific example, for example, the milling depth and / or the travel speed of the construction machine adapt. For example, the control unit 30 can detect the cutting depth and / or travel speed of the construction machine or the processing speed via suitable sensors and the fluid discharge or the flow rate fluid per unit time by regulating the pump 25 and / or the valves 22 and 24 of the first fluid delivery device 21 or the second fluid delivery device 23 adapt to the travel speed of the construction machine. Other measurement parameters may be, for example, the operating pressure of the fluid in the line system 20, the applied power of the pump 25, etc.

Um die maximale Durchflussmenge pro Zeiteinheit der Einsprüheinrichtung 18 zu erhalten, ist es selbstverständlich auch möglich, dass die Steuereinheit sowohl die erste Fluidabgabevorrichtung 21 als auch die zweite Fluidabgabevorrichtung 23 aktiviert, so dass Fluid gleichzeitig durch die Austrittsdüsen 15.1 bis 15.6 und 16.1 bis 16.6 in den Arbeitsraum 10 austreten kann.Obviously, in order to obtain the maximum flow rate per unit time of the injection device 18, it is also possible for the control unit to control both the first fluid delivery device 21 as well as the second fluid dispensing device 23 is activated so that fluid can simultaneously escape through the outlet nozzles 15.1 to 15.6 and 16.1 to 16.6 into the working space 10.

Grundsätzlich ist es mit Hilfe der Steuereinheit 30a und der Einsprüheinrichtung 18a aus Fig. 3 somit möglich, bei vergleichsweise geringen Druckschwankungen im Betriebsdruck (vorliegend beispielsweise zwischen 1 bar und 5 bar) die Durchflussmenge des Fluids über einen großen Bereich (vorliegend zwischen 10 l/min bei einem 1 bar Betriebsdruck und aktivierter zweiter Fluidabgabevorrichtung 23 und deaktivierter erster Fluidabgabevorrichtung 21 bis hin zu 85 l/min bei 5 bar und aktivierter erster Fluidabgabevorrichtung 21 und gleichzeitig aktivierter zweiter Fluidabgabevorrichtung 23) einen breiten Bereich gewünschter Fördervolumina abzudecken. Da auf diese Weise ferner extreme Druckbereiche im Leitungssystem zumindest im Regelbetrieb ausgeschlossen werden können, ist beispielsweise gewährleistet, dass stets eine gleichmäßig Fluidmenge aus jeder Austrittsdüse 15.1 bis 15.6 bzw. je nach Aktivierungszustand, 16.1 bis 16.6 in den Arbeitsraum 10 austritt. Gleichzeitig kann ein gewisser Mindestdruck an den Austrittsdüsen 15.1 bis 15.6 bis 16.1 bis 16.6 im Betrieb über einen breiten Bereich gewährleistet werden, wodurch einem Zusetzen der entsprechenden Austrittsdüsen durch Bodenmaterial effektiv entgegengewirkt werden kann.Basically, it is with the help of the control unit 30a and the Einsprüheinrichtung 18a Fig. 3 Thus, at comparatively low pressure fluctuations in the operating pressure (in the present example, between 1 bar and 5 bar), the flow rate of the fluid over a wide range (present between 10 l / min at a 1 bar operating pressure and activated second fluid dispenser 23 and deactivated first fluid dispenser 21 to to 85 l / min at 5 bar and activated first fluid dispenser 21 and simultaneously activated second fluid dispenser 23) to cover a wide range of desired delivery volumes. Since, in this way, further extreme pressure ranges in the line system can be excluded, at least during normal operation, it is ensured, for example, that a uniform amount of fluid exits from each outlet nozzle 15.1 to 15.6 or, depending on the activation state, 16.1 to 16.6 into the working space 10. At the same time, a certain minimum pressure at the outlet nozzles 15.1 to 15.6 to 16.1 to 16.6 can be ensured during operation over a wide range, whereby clogging of the corresponding outlet nozzles by soil material can be effectively counteracted.

Ein weiteres Ausführungsbeispiel einer Einsprühvorrichtung 18b ist in Fig. 4 veranschaulicht. Hinsichtlich des grundsätzlichen Aufbaus des Leitungssystems 20 und der als Austrittsdüsen 15.1 bis 15.6 und 16.1 bis 16.6 ausgebildeten Dosierelemente wird auf die Ausführungen zum vorhergehenden Ausführungsbeispiel Bezug genommen. Die zweite Fluidabgabevorrichtung umfasst ein zusätzliches Dosierelement 16.7, weist somit die Anzahl der Dosierelemente der ersten Fluidabgabevorrichtung +1 auf.Another embodiment of a spraying device 18b is shown in FIG Fig. 4 illustrated. With regard to the basic construction of the conduit system 20 and the metering elements designed as outlet nozzles 15.1 to 15.6 and 16.1 to 16.6, reference is made to the statements on the preceding exemplary embodiment. The second fluid delivery device comprises an additional metering element 16.7, thus has the number of metering elements of the first fluid delivery device +1.

Der wesentliche Unterschied der Einsprüheinrichtung 18b gegenüber der Einsprüheinrichtung 18a liegt in der Steuerung der großen Austrittsdüsen 15.1 bis 15.6 und der kleinen Austrittsdüsen 16.1 bis 16.7. Im Gegensatz zum vorhergehenden Ausführungsbeispiel erfolgt die Ansteuerung der einzelnen Austrittsdüsen vorliegend individuell und getrennt voneinander, d.h. einzeln, von der Steuereinheit 30b. Jedes der Dosierelemente bzw. Austrittsdüsen 15.1 bis 15.6 und 16.1 bis 16.7 weist dazu jeweils ein geeignetes Ventil auf, welches von der Steuereinheit 30b gesteuert und geregelt, beispielsweise geöffnet und geschlossen, werden kann. Die einzelnen Ventile sind aus Übersichtlichkeitsgründen in Fig. 4 nicht extra angegeben und dort grafisch jeweils Teil der entsprechenden Austrittsdüse 15.1 bis 15.6 und 16.1 bis 16.7. Die erste Fluidabgabevorrichtung 21 umfasst demnach die Gesamtheit der einzelnen großen Dosierelemente bzw. der Austrittsdüsen 15.1 bis 15.6 inklusive ihrer von der Steuereinheit separat angesteuerten Ventile. Die zweite Fluidabgabevorrichtung 23 bezeichnet dagegen die Gesamtheit der kleinen Dosierelemente bzw. der Austrittsdüsen 16.1 bis 16.7 inklusive der in Fig. 4 ebenfalls nicht extra angegebenen und durch die Steuereinheit 30b angesteuerten Ventile.The essential difference between the spray-in device 18b and the spray-in device 18a lies in the control of the large outlet nozzles 15.1 to 15.6 and the small outlet nozzles 16.1 to 16.7. In contrast to the previous embodiment, the control of the individual outlet nozzles takes place here individually and separately, ie individually, from the control unit 30b. Each of the metering elements or outlet nozzles 15.1 to 15.6 and 16.1 to 16.7 has for this purpose in each case a suitable valve which can be controlled and regulated by the control unit 30b, for example opened and closed. The individual valves are for clarity in Fig. 4 not specified and there graphically each part of the corresponding outlet nozzle 15.1 to 15.6 and 16.1 to 16.7. The first fluid delivery device 21 accordingly comprises the entirety of the individual large metering elements or the outlet nozzles 15.1 to 15.6 including their separately controlled by the control unit valves. By contrast, the second fluid delivery device 23 designates the entirety of the small metering elements or the outlet nozzles 16.1 to 16.7, including the in Fig. 4 also not specified and controlled by the control unit 30b valves.

Eine weitere Besonderheit der Einsprüheinrichtung 18b liegt darin, dass sowohl die Dosierelemente der ersten Fluidabgabevorrichtung 21 (Austrittsdüsen 15.1 bis 15.6) als auch die Dosierelemente der zweiten Fluidabgabevorrichtung 23 (Dosierelemente 16.1 bis 16.7) gemeinsam an dem Leitungsbalken 17 angeordnet sind. Damit ist der Platzbedarf in Rotationsrichtung der Arbeitswalze im Arbeitsraum 10 in der Schutzhaube der Einsprüheinrichtung 18b beispielsweise wesentlich geringer als der Platzbedarf der Einsprüheinrichtung 18a mit den beiden in Rotationsrichtung d der Arbeitswalze hintereinander liegenden Leitungsbalken 17.1 und 17.2.A further special feature of the spraying device 18b is that both the metering elements of the first fluid delivery device 21 (outlet nozzles 15.1 to 15.6) and the metering elements of the second fluid delivery device 23 (metering elements 16.1 to 16.7) are arranged together on the conduit bar 17. Thus, the space requirement in the direction of rotation of the work roll in the working space 10 in the protective hood of the sprayer 18b, for example, much lower than the space requirement of the sprayer 18a with the two in the direction of rotation d of the work roll one behind the other line beams 17.1 and 17.2.

Wesentlich bei der Einsprüheinrichtung 18b ist ferner, dass einzelne Dosierelemente der ersten Fluidabgabevorrichtung 21 alternierend zu den Dosierelementen der zweiten Fluidabgabevorrichtung 23 über die gesamte Breite der Schutzhaube verteilt und in Axialrichtung der Rotationsachse 12 auf einer Linie liegend angeordnet sind. Die großen Austrittsdüsen 15.1 bis 15.6 wechseln sich somit mit den kleinen Austrittsdüsen 16.1 bis 16.7 in Axialrichtung 12 bzw. quer zur Arbeitsrichtung der Baumaschine in gleichmäßigen Abständen zueinander ab. Sind somit alle großen Austrittsdüsen 15.1 bis 15.6 bzw. alle kleinen Austrittsdüsen 16.1 bis 16.6 oder sogar sämtliche Austrittsdüsen 15.1 bis 15.6 und 16.1 bis 16.6 aktiviert bzw. werden vom Fluid durchströmt, verteilt sich das Fluid über die gesamte Breite des Arbeitsraums 10 gleichmäßig. Andererseits ermöglicht die individuelle Ansteuerung einzelner Austrittsdüsen die selektive Aktivierung einer Untergruppe der Austrittsdüsen 15.1 bis 15.6 der ersten Fluidabgabevorrichtung 21 und/oder der Austrittsdüsen 16.1 bis 16.6 der zweiten Fluidabgabevorrichtung 23. Damit ist es möglich, dass nur über einen Teil der gesamten Arbeitsbreite der Arbeitswalze 11 Fluid in den Arbeitsraum 10 eingebracht wird. Bezogen auf die gesamte Arbeitsbreite wird somit nur ein Teilstreifen im Arbeitsbetrieb mit Fluid versetzt. Insgesamt erlaubt die Einsprüheinrichtung 18B daher ein äußerst selektives und individualisiertes Versetzen des zu bearbeitenden Bodens mit dem Fluid. Wichtig ist ferner, dass zu den beiden Außenseiten des Leitungsbalkens 17 bzw. in Axialrichtung der Arbeitsraums (diejenige Richtung, in die sich die Längsachse 12 der Arbeitswalze im Arbeitsraum erstreckt) gleichartige Dosierelemente 16.6 und 16.7 angeordnet sind. Auch dieses Merkmal trägt zur homogenen Verteilung des Fluids im Arbeitsraum bei.It is also essential in the case of the spraying device 18b that individual metering elements of the first fluid delivery device 21 are distributed over the entire width of the protective cover alternately to the metering elements of the second fluid delivery device 23 and are arranged lying in a line in the axial direction of the rotation axis 12. The large outlet nozzles 15.1 to 15.6 thus alternate with the small outlet nozzles 16.1 to 16.7 in the axial direction 12 or transversely to the working direction of the construction machine at regular intervals from each other. Thus, if all the large outlet nozzles 15.1 to 15.6 or all small outlet nozzles 16.1 to 16.6 or even all the outlet nozzles 15.1 to 15.6 and 16.1 to 16.6 are activated or flowed through by the fluid, the fluid is distributed uniformly over the entire width of the working space 10. On the other hand, the individual control of individual outlet nozzles enables the selective activation of a subgroup of the outlet nozzles 15.1 to 15.6 of the first fluid dispenser 21 and / or the outlet nozzles 16.1 to 16.6 of the second fluid dispenser 23. It is thus possible that only over a part of the total working width of the work roll 11 Fluid is introduced into the working space 10. Based on the entire working width thus only a partial strip is added during operation with fluid. Overall, the sprayer 18B therefore allows a highly selective and individualized displacement of the soil to be processed with the fluid. It is also important that to the two outer sides of the line beam 17 and in the axial direction of the working space (that direction in which the longitudinal axis 12 of the work roll extends in the working space) similar dosing 16.6 and 16.7 are arranged. This feature also contributes to the homogeneous distribution of the fluid in the working space.

Ein weiterer Unterschied liegt schließlich in der Anordnung eines Filters 29 im Leitungssystem 20. Der Filter 29 ist dabei in Strömungsrichtung des Fluids hinter der Pumpe 25 bzw. zwischen der Pumpe 25 und dem Leitungsbalken 17 bzw. der Verzweigung des Leitungssystems vor dem Leitungsbalken 17 angeordnet.Another difference lies in the arrangement of a filter 29 in the line system 20. The filter 29 is arranged in the flow direction of the fluid behind the pump 25 or between the pump 25 and the line bar 17 and the branch of the line system in front of the line bar 17.

Ein weiteres Ausführungsbeispiel einer Einsprüheinrichtung 18c ist in Fig. 5 angegeben, die einen sich in der Praxis besonders bewährten Kompromiss zwischen der Einsprüheinrichtung 18a und 18b darstellt.Another embodiment of a spraying device 18c is shown in FIG Fig. 5 which represents a particularly well-proven in practice compromise between the sprayer 18a and 18b.

Die grundsätzliche Anordnung der einzelnen Bestandteile der Einsprüheinrichtung 18c entspricht der Einsprüheinrichtung 18b (wobei das außenstehende Dosierelement 16.7 bei der Einsprüheinrichtung aus Fig. 18c fehlt). Der wesentliche Unterschied liegt darin, dass die Dosierelemente 15.1 bis 16.6 gruppiert, konkret paarweise gruppiert, verschaltet und von der Steuereinheit 30c angesteuert werden. So bilden beispielsweise die beiden Austrittsdüsen 15.1 und 15.2 die Dosierelementgruppe G1, die Austrittsdüsen 15.3 und 15.4 die Dosierelementgruppe G2 und die Austrittsdüsen 15.5 und 15.6 die Dosierelementgruppe G3. Die Dosierelementgruppen G1 bis G3 (inklusive der ebenfalls nicht dargestellten jeder Austrittsdüse 15.1 bis 15.6 vorgeschalteten Ventile) bilden insgesamt die erste Fluidabgabevorrichtung 21. Auch die Dosierelemente der zweiten Fluidabgabevorrichtung 23 sind paarweise gruppiert angeordnet. Die Austrittsdüsen 16.1 und 16.2 bilden die Dosierelementgruppe K1, die Austrittsdüsen 16.3 und 16.4 die Dosierelementgruppe K2 und die Austrittsdüsen 16.5 und 16.6 die Dosierelementgruppe K3. Die Steuereinheit 30c kann nun den Betriebszustand jeder einzelnen Gruppe G1, G2, G3, K1, K2 und K3 individuell steuern und regeln (in Fig. 5 durch die in unterschiedlicher Dicke angegebenen punktierten und gestrichelten Schaltverbindungen zwischen der Steuereinheit 30c und den einzelnen Dosierelementen 15.1 bis 16.6 angedeutet). Somit ist es auch mit der Einsprüheinrichtung 18c möglich, einzelne Segmente der ersten Fluidabgabevorrichtung 21 und/oder der zweiten Fluidabgabevorrichtung 23 individuell und unabhängig voneinander hinsichtlich Betriebszustand und Durchflussmenge zu steuern. Gleichzeitig kann die Verschaltung der Steuereinheit 30c mit den jeweiligen Fluidabgabevorrichtungen 21 und 23 vereinfacht werden, da nicht jedes Dosierelement über eine einzelne und individuelle Signalverbindung mit der Steuereinheit 30c in Kontakt stehen muss, sondern lediglich jeweils die Dosierelementgruppen G1 bis G3 und K1 bis K3.The basic arrangement of the individual components of the spraying device 18c corresponds to the spraying device 18b (wherein the external metering element 16.7 is missing in the spraying device of FIG. 18c). The essential difference lies in the fact that the metering elements 15.1 to 16.6 are grouped, specifically grouped in pairs, interconnected and controlled by the control unit 30c. For example, the two outlet nozzles 15.1 and 15.2 form the metering element group G1, the outlet nozzles 15.3 and 15.4 the metering element group G2 and the outlet nozzles 15.5 and 15.6 the metering element group G3. The metering element groups G1 to G3 (including the valves (also not shown upstream of each discharge nozzle 15.1 to 15.6) form the first fluid delivery device 21 overall. The metering elements of the second fluid delivery device 23 are also arranged in pairs. The outlet nozzles 16.1 and 16.2 form the metering element group K1, the outlet nozzles 16.3 and 16.4 the metering element group K2 and the outlet nozzles 16.5 and 16.6 the metering element group K3. The control unit 30c can now individually control and regulate the operating state of each individual group G1, G2, G3, K1, K2 and K3 (in FIG Fig. 5 indicated by the indicated in different thickness dotted and dashed switching connections between the control unit 30c and the individual metering elements 15.1 to 16.6). Thus, it is also possible with the injection device 18 c to control individual segments of the first fluid delivery device 21 and / or the second fluid delivery device 23 individually and independently of one another with respect to operating state and flow rate. At the same time, the interconnection of the control unit 30c with the respective fluid dispensers 21 and 23 can be simplified, since not every metering element must be in contact with the control unit 30c via a single and individual signal connection, but only the metering element groups G1 to G3 and K1 to K3 respectively.

Fig. 6 verdeutlicht die Funktionsweise des Steuerverfahrens der Gruppen G1 bis G3 und K1 bis K3 der Einsprüheinrichtung 18c aus Fig. 5. In ihren grundsätzlichen Prinzipien kann dieses Steuerungsverfahren auch in sinnvollem Maße auf die beiden Einsprüheinrichtungen 18a und 18b angewendet werden. Fig. 6a) betrifft dabei die Erhöhung des in dem Arbeitsraum 10 von der Einsprüheinrichtung 18 Fluidvolumens pro Zeit (V/t) (V1 <V2). Der Zeitstrahl ist nach unten gerichtet und mit t gekennzeichnet. Rechts neben dem V/t-Diagramm sind die Dosierelementgruppen G1 bis G3 der ersten Fluidabgabevorrichtung 21 und K1 bis K3 der zweiten Fluidabgabevorrichtung 23 angegeben. Ist ein Balken vorhanden, ist die jeweilige Dosierelementgruppe G1 bis G3 und K1 bis K3 aktiviert bzw. wird von Fluid durchströmt bzw. gibt Fluid in den Arbeitsraum ab. Ist zu einem bestimmten Zeitpunkt kein Balken unter der entsprechenden Dosierelementgruppe vorhanden, ist die jeweilige Dosierelementgruppe deaktiviert bzw. geschlossen bzw. gibt kein Fluid in den Arbeitsraum ab. Die Steuerung der Aktivierungszustände erfolgt über die Steuereinheit 30c. Fig. 6 illustrates the operation of the control method of the groups G1 to G3 and K1 to K3 of the sprayer 18c Fig. 5 , In its fundamental principles, this control method can also be applied to the two spray-in devices 18a and 18b to a reasonable extent. Fig. 6a ) relates to the increase in the working space 10 of the sprayer 18 fluid volume per time (V / t) (V1 <V2). The timeline is directed downwards and marked with t. To the right of the V / t diagram, the metering element groups G1 to G3 of the first fluid delivery device 21 and K1 to K3 of the second fluid delivery device 23 are indicated. If a bar is present, the respective metering element group G1 to G3 and K1 to K3 is activated or is traversed by fluid or releases fluid into the working space. If there is no bar under the corresponding metering element group at a certain point in time, the respective metering element group is deactivated or closed or does not deliver any fluid into the working space. The control of the activation states takes place via the control unit 30c.

Fig. 6a verdeutlicht im linken Diagramm, dass zum Zeitpunkt t1 die Durchflussmenge des pro Zeiteinheit in den Arbeitsraum abzugebenden Fluidvolumens vom Volumen V1 hin zum Volumen V2 durch Steuerungsmaßnahmen der Steuereinheit 30c vergrößert wird. Vom Zeitpunkt t1 bis zum Zeitpunkt t2 wird der entsprechende Volumenstrom von V1 zu V2 gesteigert. Zum Zeitpunkt t3, der zwischen dem Zeitpunkt t1 und t2 liegt, wird ein vorher festgelegter Schwellenwert Sw überschritten. Die Steuereinheit 30c registriert dieses Überschreiten und wechselt von den kleinen Austrittsdüsen bzw. den Dosierelementgruppen K1 bis K3 hin zu den großen Austrittsdüsen bzw. den Dosierelementgruppen G1 bis G3. Die Steuereinheit schaltet beim Überschreiten des Schwellenwertes Sw somit zwischen der zweiten Fluidabgabevorrichtung 23 und der ersten Fluidabgabevorrichtung 21 um. Wesentlich an diesem Schritt ist, dass dieses Umschalten nicht ad hoc zum Zeitpunkt t3 erfolgt, sondern sich über einen Zeitraum tu, der mit dem Überschreiten des Schwettenwertes Sw beginnt, erstreckt. Über die Zeitspanne Δtu sind sowohl die ursprünglich aktivierte noch nicht abgeschaltete zweite Fluidabgabevorrichtung 23 und die von der Steuereinheit neu aktivierte erste Fluidabgabevorrichtung 21 gemeinsam bzw. überlappend aktiviert. Erst nach Ablauf des Zeitfensters Δtu schaltet die Steuereinheit die zweite Fluidabgabevorrichtung 23 ab. Wird die zu dosierende Fluidmenge dagegen im Arbeitsbetrieb gesenkt, erfolgt der in Fig. 6a angegebene Verfahrensablauf in umgekehrter Reihenfolge. Dadurch, dass sich beim Umschalten zwischen den beiden Fluidabgabevorrichtungen 21 und 23 ein Überlappungsbereich befindet, kann das Entstehen von Druckspitzen im Leitungssystem 20 beim Umschalten der Fluidabgabevorrichtungen 21 und 23 vermieden oder zumindest wesentlich vermindert werden. Fig. 6a illustrates in the left diagram that at time t1, the flow rate of the per unit time to be dispensed into the working space fluid volume from the volume V 1 to the volume V 2 by control measures of the control unit 30 c is increased. From time t 1 to time t 2 , the corresponding volume flow is increased from V 1 to V 2 . At the time t 3 , which is between the time t 1 and t 2 , a predetermined threshold value S w is exceeded. The control unit 30c registers this exceeding and changes from the small outlet nozzles or the dosing element groups K1 to K3 toward the large outlet nozzles or the dosing element groups G1 to G3. When the threshold value S w is exceeded, the control unit thus switches over between the second fluid delivery device 23 and the first fluid delivery device 21. It is essential in this step that this switching does not take place ad hoc at the time t 3 , but extends over a period t u , which begins with the exceeding of the threshold value S w . Over the period Δt u , both the originally activated and not yet switched-off second fluid delivery device 23 and the first fluid delivery device 21 newly activated by the control unit are activated jointly or overlapping. Only after the expiration of the time window .DELTA.t u , the control unit switches off the second fluid delivery device 23. If the amount of fluid to be metered, however, lowered in the working mode, takes place in Fig. 6a specified procedure in reverse order. Characterized in that there is an overlap region when switching between the two fluid dispensers 21 and 23, the emergence of pressure spikes in the conduit system 20 when switching the fluid dispensers 21 and 23 can be avoided or at least substantially reduced.

Die Einsprüheinrichtung 18c aus Fig. 5 erlaubt ferner die individuelle Ansteuerung jeweils zweier als Gruppe G1, G2, G3, K1, K2 oder K3 schaltungstechnisch zusammengefasster Dosierelementpaare bzw. Austrittsdüsenpaare. Dies soll in Fig. 6a durch die schwarz eingefärbten Bahnen der Gruppen G1 und K1 veranschaulicht werden. Neben der gemeinsamen Aktivierung mit den jeweils zusätzlichen beiden in grau eingefärbten Gruppen ist somit beispielsweise auch die alleinige Aktivierung und Umschaltung zwischen den Gruppen K1 und G1 möglich.The spraying device 18c Fig. 5 also allows the individual control of each two as a group G1, G2, G3, K1, K2 or K3 circuitry summarized Dosierelementpaare or outlet nozzle pairs. This should be in Fig. 6a are illustrated by the black colored webs of groups G1 and K1. In addition to the common activation with the respective additional two gray-colored groups, the sole activation and switching between the groups K1 and G1 is thus possible, for example.

Fig. 6b schließlich verdeutlicht die Steuerung der Einsprüheinrichtung 18c durch die Steuereinheit 30c aus Fig. 5 unter Berücksichtigung der Fahrgeschwindigkeit v einer entsprechend ausgerüsteten Baumaschine. Die Fahrgeschwindigkeit ist hierbei lediglich ein Beispiel zur Veranschaulichung der grundsätzlichen Funktionsweise. Alternativ oder ergänzend können auch die Frästiefe, sich ändernde Bodeneigenschaften, die Durchflussmenge, etc., zur Regulation herangezogen werden, um eine kontinuierliche Verteilung von Fluid in zu bearbeitenden Bodenmaterial zu gewährleisten. Im linken Graphen gemäß Fig. 6b ist somit die Geschwindigkeit v bzw. der Geschwindigkeitsverlauf der Baumaschine wiedergegeben. Fig. 6b Finally, the control of the spraying device 18c is illustrated by the control unit 30c Fig. 5 taking into account the driving speed v of a suitably equipped construction machine. The driving speed is here only an example to illustrate the basic operation. Alternatively or additionally, the depth of cut, changing soil properties, the flow rate, etc., can be used for the regulation in order to ensure a continuous distribution of fluid in the soil material to be processed. In the left graph according to Fig. 6b Thus, the speed v or the speed of the construction machine is reproduced.

Zum Zeitpunkt t1 beschleunigt die Maschine und überschreitet dabei den Schwellenwert Sw. Die Steuereinheit 30c löst, vergleichbar mit dem Vorgang aus Fig. 6a, die Umschaltung von der Dosierelementgruppe der zweiten Fluidabgabevorrichtung 23 K1 bis K3 auf die Dosierelementgruppen G1 bis G3 der ersten Fluidabgabevorrichtung 21 aus, um auch bei erhöhter Arbeitsgeschwindigkeit den gewünschten Fluideintrag in das zu bearbeitende Bodenmaterial zu ermöglichen. Aus Übersichtlichkeitsgründen ist in Fig. 6b]) der Verlauf der Volumenstroms nicht näher angegeben. Dieser verläuft letztendlich allerdings parallel zur Entwicklung der Fahrgeschwindigkeit. Mit steigender Fahrtgeschwindigkeit nimmt somit die von der Einsprüheinrichtung 18c in den Arbeitsraum abgegebene Fluidmenge zu und umgekehrt. Damit ist gewährleistet, dass pro Streckenabschnitt auch bei unterschiedlichen Fahrgeschwindigkeiten eine konstante Fluidmenge in das zu bearbeitende Bodenmaterial eingebracht wird.At time t 1 , the machine accelerates, exceeding the threshold value S w . The control unit 30c triggers, comparable to the process Fig. 6a , the switching from the Dosierelementgruppe the second fluid dispenser 23 K1 to K3 on the Dosierelementgruppen G1 to G3 of the first fluid dispenser 21 to allow even at increased operating speed the desired fluid entry into the soil material to be processed. For clarity, is in Fig. 6b ]) the course of the volume flow is not specified. However, this ultimately runs parallel to the development of the driving speed. As the driving speed increases, the amount of fluid discharged from the spraying device 18c into the working space increases and vice versa. This ensures that a constant amount of fluid is introduced into the soil material to be processed per section even at different speeds.

Zum Zeitpunkt t4 schließlich beschleunigt die Baumaschine bis zum Zeitpunkt t5 und überschreitet dabei zum Zeitpunkt t6 den Maximalwert Mw. Der Maximalwert orientiert sich an der maximalen Ausgabemenge des Fluids in den Arbeitsraum mit Hilfe der leistungsfähigeren Fluidabgabevorrichtung 21. Um dennoch auch bei maximaler Fahrtgeschwindigkeit im Arbeitsbetrieb eine ausreichende Versorgung des Arbeitraums mit Fluid zu gewährleisten, schaltet die Steuereinheit beim Überschreiten des Maximalwertes Mw ergänzend zur ersten Fluidabgabevorrichtung 21 die Dosierelementgruppen K1 bis K3 der zweiten Fluidabgabevorrichtung 23 hinzu, sodass danach beide Fluidabgabevorrichtungen 21 und 23 parallel betrieben werden. Wird die Arbeitsgeschwindigkeit der Baumaschine anschließend zum Zeitpunkt t7 bis zum Zeitpunkt t8 gesenkt, sinkt die Fahrgeschwindigkeit zunächst unter den Maximalwert Mw zum Zeitpunkt t9 und unter den Schwellenwert Sw zum Zeitpunkt t10. Beim Unterschreiten des Maximalwertes Mw inaktiviert die Steuereinheit zunächst die Fluidabgabe der Dosierelementgruppen K1 bis K3 der zweiten Fluidabgabevorrichtung 23. Beim Unterschreiten des Schwellenwertes schaltet die Steuereinheit von den Dosierelementgruppen G1 bis G3 der ersten Fluidabgabevorrichtung 21 um auf die Dosierelementgruppen K1 bis K3 der zweiten Fluidabgabevorrichtung, wobei hier zur Verhinderung von Druckspitzen im Leitungssystem das Umschalten überlappend über das Zeitintervall Δtu erfolgt.Finally, at time t 4 , the construction machine accelerates until time t 5 , exceeding maximum value M w at time t 6 . The maximum value is based on the maximum output quantity of the fluid in the working space by means of the more efficient fluid dispensing device 21. In order nevertheless to ensure adequate supply of the working space with fluid even at maximum travel speed during operation, the control unit switches on exceeding the maximum value M w in addition to the first Fluid dispenser 21 the Dosierelementgruppen K1 to K3 of the second fluid dispenser 23 added so that afterwards both fluid dispensers 21 and 23 are operated in parallel. Will the working speed of the Construction machine then lowered at the time t 7 to the time t 8 , the vehicle speed drops below the maximum value M w at the time t 9 and below the threshold value S w at the time t 10 . When the value falls below the maximum value M w , the control unit first inactivates the fluid delivery of the metering element groups K1 to K3 of the second fluid delivery device 23. When the threshold value is undershot, the control unit switches from the metering element groups G1 to G3 of the first fluid delivery device 21 to the metering element groups K1 to K3 of the second fluid delivery device, in which case switching takes place overlappingly over the time interval Δt u in order to prevent pressure peaks in the line system.

Selbstverständlich kann auch eine an die Fahrgeschwindigkeit angepasste Steuerung der Einsprüheinrichtung 18c selektiv mit einer oder zwei Dosierelementgruppen der ersten Fluidabgabevorrichtung 21 und/oder der zweiten Fluidabgabevorrichtung 23 erfolgen. Dies ist in Fig. 6b durch die jeweils mittlere Dosierelementgruppe G2 und K2, die jeweils schwarz eingefärbt sind, veranschaulicht.Of course, control of the spraying device 18c adapted to the driving speed can also be carried out selectively with one or two metering element groups of the first fluid delivery device 21 and / or the second fluid delivery device 23. This is in Fig. 6b by the respective average Dosierelementgruppe G2 and K2, which are colored black, respectively.

Weder in Fig. 6a) noch in Fig. 6b) sind dagegen weitere Regulationsprozesse angegeben, die von der Steuereinheit 30c kontrolliert und geregelt werden. Dies betrifft beispielsweise die Regulation der Pumpleistung, die Pumpendrehzahl, die Kontrolle des Leitungsdrucks, etc.Neither in Fig. 6a ) still in Fig. 6b On the other hand, further regulation processes are indicated, which are controlled and regulated by the control unit 30c. This concerns, for example, the regulation of the pump power, the pump speed, the control of the line pressure, etc.

Claims (16)

  1. A spraying device (18a, b, c) for introducing a fluid into a working chamber (10) of a working roller (11) of a construction machine (1) for processing the ground (9) or road surfaces, comprising
    - a line system (20) via which fluid is guided to an at least first (21) and an at least second (23) fluid delivery apparatus;
    - and a control unit (30a, b, c) for controlling the fluid delivery via the at least first (21) and the at least second (23) fluid delivery device,
    characterized in that
    fluid can be delivered to the working chamber (10) via the at least first (21) and the at least second (23) fluid delivery apparatus, and that the first fluid delivery apparatus (21) is implemented to deliver a larger fluid quantity than the second fluid delivery apparatus (23) at a fixed operating pressure, so that, per unit of time, the at least first fluid delivery apparatus (21) supplies a larger fluid volume to the working chamber than the at least second fluid delivery apparatus (23), and wherein the control unit (30a, b, c) is implemented in such a manner that it controls the at least first fluid delivery apparatus (21) and the at least second fluid delivery apparatus (23) independently from one another.
  2. The spraying device (18a, b, c) according to claim 1,
    characterized in that
    the at least first (21) and the at least second (23) fluid delivery device each comprise at least two dosing elements, especially outlet nozzles (15.1 to 15.6, 16.1 to 16.7).
  3. The spraying device (18a, b, c) according to claim 2,
    characterized in that
    the dosing elements (15.1 to 15.6, 16.1 to 16.7) of the at least first (21) and the at least second (23) fluid delivery device are arranged in the manner that at a fixed operating pressure the flow rate of the fluid through the dosing element (15.1 to 15.6) of the first fluid delivery device (21) is in the range of 1.8:1 to 5:1, especially in the range of 2:1 to 3:1, at a ratio to the flow rate of the fluid through a dosing element (16.1 to 16.6) of the second fluid delivery device (23).
  4. The spraying device (18b) according to any one of claims 2 or 3,
    characterized in that
    the control unit (30b) is arranged in the manner that it individually triggers the at least two dosing elements (15.1 to 15.6, 16.1 to 16.7) of the at least first fluid delivery device (21) and/or the at least second fluid delivery device (23).
  5. The spraying device (18c) according to any one of claims 2 or 3,
    characterized in that
    the control unit (30c) is arranged in the manner that it triggers the dosing elements (15.1 to 15.6, 16.1 to 16.7) of the at least first fluid delivery device (21) and/or the at least second fluid delivery device (23) in a grouped manner.
  6. The spraying device (18a, b, c) according to any one of the preceding claims,
    characterized in that
    the control unit (30a, b, c) is arranged in the manner that it switches over from the at least first fluid delivery device (21) to the at least second fluid delivery device (23) depending on exceeding or falling below a threshold value (Sw).
  7. The spraying device (18a, b, c) according to any one of the preceding claims,
    characterized in that
    the control unit (30a, b, c) is arranged in such a manner that, upon exceeding or falling below a maximum value (Mw), it will activate at least one of the at least two fluid delivery devices (21, 23) in addition to the at least other fluid delivery device (21, 23), or will deactivate at least one of the at least two fluid delivery devices (21, 23).
  8. The spraying device (18a, b, c) according to any one of claims 6 or 7,
    characterized in that
    the threshold value (Sw) or the maximum value (Mw) is a line pressure, a milling depth, a travelling speed and/or a flow rate.
  9. The spraying device (18a, b, c) according to any one of the claims 6 to 8,
    characterized in that
    the control unit (30a, b, c) is arranged in the manner that the threshold value (Sw) or the maximum value (Mw) vary depending on the fluid.
  10. The spraying device (18a, b, c) according to any one of the preceding claims,
    characterized in that
    a cleaning device, especially a nozzle cleaning device, is provided for cleaning the at least first and at least second fluid delivery apparatus (21, 23).
  11. The spraying device (18a, b, c) according to any one of the preceding claims,
    characterized in that
    the line system (20) comprises a fluid filter (29), especially before or after a fluid pump (19).
  12. A construction machine (1) for processing the ground, especially a recycler, stabilizer or cold milling machine, comprising a spraying device (18a, b, c) according to any one of claims 1 to 11.
  13. A method for operating a spraying device (18a, b, c) of a construction machine (1) according to claim 12,
    characterized in that
    it comprises control of the flow rate of the spraying device (18a, b, c) by triggering at least one first fluid delivery device (21) and at least one second fluid delivery device (23) by a control unit (30a, b, c), with the first fluid delivery device (23) being arranged in the manner that at fixed operating pressure it is arranged to supply a larger fluid quantity than the second fluid delivery device (23), so that, per unit of time, the at least first fluid delivery apparatus (21) supplies a larger fluid volume to the working chamber than the at least second fluid delivery apparatus (23).
  14. The method for operating a spraying device according to claim 13,
    characterized in that
    the control occurs depending on exceeding or falling beneath at least one fixed threshold value (Sw) of a specific operating parameter.
  15. The method for operating a spraying device according to any one of claims 13 or 14, characterized in that
    the control occurs depending on the travelling speed of a construction machine, especially the construction machine (1) according to claim 12, depending on the line pressure and/or depending on the flow rate.
  16. The method for operating a spraying device according to any one of claims 13 to 15,
    characterized in that
    the changeover between the at least first (21) and the at least second (23) fluid delivery device occurs in an overlapping manner.
EP11004500.2A 2010-08-23 2011-06-01 Spray device for a construction machine for earth works, construction machine with a spray device and method for operating a spray device Active EP2423384B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010035129A DE102010035129A1 (en) 2010-08-23 2010-08-23 Spraying device for a soil cultivation excavator, construction machine with a spraying device and method for operating a spraying device

Publications (3)

Publication Number Publication Date
EP2423384A2 EP2423384A2 (en) 2012-02-29
EP2423384A3 EP2423384A3 (en) 2012-06-06
EP2423384B1 true EP2423384B1 (en) 2013-10-09

Family

ID=44259851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11004500.2A Active EP2423384B1 (en) 2010-08-23 2011-06-01 Spray device for a construction machine for earth works, construction machine with a spray device and method for operating a spray device

Country Status (3)

Country Link
US (2) US20120043401A1 (en)
EP (1) EP2423384B1 (en)
DE (1) DE102010035129A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011039B2 (en) * 2011-03-24 2015-04-21 Rm Equipment, Llc Apparatuses for servicing roadways
DE102012221654A1 (en) 2012-11-27 2014-05-28 Wirtgen Gmbh Process for treating layers, and a construction machine, in particular a soil stabilizer or recycler
DE102014001921A1 (en) 2013-02-22 2014-08-28 Bomag Gmbh Milling roller with a, in particular interchangeable, Materialleiteinrichtung and Materialleiteinrichtung for a milling drum
DE102013007161A1 (en) 2013-04-24 2014-10-30 Bomag Gmbh Floor milling machine, in particular recycler or soil stabilizer
DE102013010866A1 (en) 2013-06-28 2014-12-31 Bomag Gmbh Ground milling machine with a sensor device for the contactless determination of wear on chisel devices and method for contactless determination of wear on chisel devices of a ground milling machine
US9103079B2 (en) * 2013-10-25 2015-08-11 Caterpillar Paving Products Inc. Ground characteristic milling machine control
US20150376847A1 (en) * 2015-09-04 2015-12-31 Caterpillar Paving Products Inc. Additive mixing and delivery system for rotary mixers
MD4494C1 (en) * 2016-03-04 2018-01-31 Geoteh Nova О.О.О. Soil stabilization equipment and process
DE102016004197A1 (en) * 2016-04-06 2017-10-12 Bomag Gmbh Method for operating a ground milling machine, ground milling machine with a handset and handset for a ground milling machine
US10407848B2 (en) 2016-08-02 2019-09-10 Caterpillar Paving Products Inc. System and method for controlling proportion of liquid in substrate material worked by machine
USD800796S1 (en) * 2016-08-25 2017-10-24 Bomag Gmbh Recycler
USD800797S1 (en) * 2016-08-25 2017-10-24 Bomag Gmbh Recycler
US10000894B1 (en) 2017-09-18 2018-06-19 Caterpillar Paving Products Inc. Spray bar assembly for machine system, and method
US11124926B2 (en) * 2018-02-02 2021-09-21 Kraton Polymers Llc Pavement repair method and system thereof
US11634875B2 (en) 2018-02-02 2023-04-25 Iemulsions Corporation Pavement repair method and system thereof
US10370802B1 (en) 2018-06-27 2019-08-06 Caterpillar Paving Products Inc. Automatic water spray milling for cold planer
IT201800007182A1 (en) * 2018-07-13 2020-01-13 MACHINE, PRODUCT AND METHOD FOR THE CONSTRUCTION OF DIRT ROADS
US10787773B2 (en) 2018-08-08 2020-09-29 Caterpillar Sarl Calibration system and method for a spraying machine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865109A (en) * 1928-05-21 1932-06-28 Koehring Co Sprinkling system for use with concrete paving machines
DE2161705A1 (en) * 1971-01-27 1972-08-10 Marini Off Mec Device for spray mixing of materials
US3782634A (en) * 1972-12-15 1974-01-01 Swenson Spreader & Mfg Co Vehicle mounted liquid distributor apparatus
GB1484681A (en) * 1974-01-09 1977-09-01 Jwi Ltd Guide shower for a paper making machine
US4990025A (en) * 1989-05-03 1991-02-05 Soil Stabilization Inc. Soil stabilizing method and apparatus
FR2665717B1 (en) * 1990-08-08 1993-08-06 Colas Sa DEVICE FOR SPREADING A FLUID SUBSTANCE AND MACHINE FOR THE SIMULTANEOUS APPLICATION OF SUCH SUBSTANCE AND COATING OF A PAVEMENT.
US5385426A (en) 1993-03-05 1995-01-31 Omann; James S. Apparatus, method and use for reduced shingles
US5895173A (en) * 1996-07-26 1999-04-20 E. D. Etnyre & Co. Roadway paving apparatus
DE29702162U1 (en) 1997-02-08 1998-06-10 Wirtgen GmbH, 53578 Windhagen Device for processing roadways, and device for producing foamed bitumen
JP3247849B2 (en) * 1997-02-24 2002-01-21 株式会社新潟鉄工所 Emulsion spraying apparatus and emulsion spraying method
US5911362A (en) * 1997-02-26 1999-06-15 Dickey-John Corporation Control system for a mobile material distribution device
DE10213017A1 (en) 2002-03-22 2003-10-09 Wirtgen Gmbh Process for optimizing a cutting process in road milling machines, as well as milling machine for processing road surfaces
US6769836B2 (en) * 2002-04-11 2004-08-03 Enviro-Pave, Inc. Hot-in-place asphalt recycling machine and process
DE10241067B3 (en) 2002-09-05 2004-04-22 Wirtgen Gmbh Device for working floors or roadways
FR2847598B1 (en) * 2002-11-25 2005-03-04 Famaro DEVICE FOR SPREADING LIQUID BINDER AND GRAVELS AT THE BACK OF A ROAD WORKS MACHINE
US7458645B2 (en) * 2006-12-01 2008-12-02 Hall David R Milling machine with cleaning moldboard
US20080193215A1 (en) * 2007-02-13 2008-08-14 Christian Rath Boom Sprayer Apparatus
CN201082956Y (en) 2007-07-27 2008-07-09 长沙中联重工科技发展股份有限公司 Self-cleaning asphalt solution sprinkling system for in-place heat regeneration remixer
US7942605B2 (en) * 2007-08-24 2011-05-17 Hall David R Milling drum
DE102010013982A1 (en) 2010-04-06 2011-10-06 Bomag Gmbh Apparatus for producing foam bitumen and method for its maintenance

Also Published As

Publication number Publication date
US20200063382A1 (en) 2020-02-27
US20120043401A1 (en) 2012-02-23
EP2423384A3 (en) 2012-06-06
DE102010035129A1 (en) 2012-02-23
EP2423384A2 (en) 2012-02-29
US11549223B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
EP2423384B1 (en) Spray device for a construction machine for earth works, construction machine with a spray device and method for operating a spray device
EP2857108B1 (en) Device and method for machining soil or roadways
DE841762C (en) Earthworking machine
DE102010014904A1 (en) Spraying device for a construction machine and method for operating a spraying device
EP1396581B3 (en) Apparatus for treating soil or roads
EP2150652B1 (en) Method and device for foaming ballast beds
EP2735650B1 (en) Method for treating layers, a construction machine and an auxiliary construction machine
EP2886717B1 (en) After-treatment machine and method for the subsequent processing of a freshly made concrete layer
EP1925736A1 (en) Method for producing a sprayed layer and paving machine with spraying system
CH712375A1 (en) Apparatus and method for discharging multicomponent adhesives to a granular mixture.
EP2547828B1 (en) Device, system and method for cleaning artificial lawns
EP3293310B1 (en) Road finisher with spraying device
DE2856635A1 (en) MACHINE FOR COATING MILLED OR SHELLED ROAD CEILINGS
EP3095916B1 (en) Method for shoulder stabilization, device for carrying out said method and special spraying lorry
DE202008012104U1 (en) Work train with a milling device
DE3921875A1 (en) Self propelling or tractor drawn machine for working on road surfaces - has milling roller in housing and can be reversed while roller continues to rotate in same direction
DE3101216C2 (en) Method for producing or renewing a shoulder of a roadway and shoulder paver for carrying out the method
DE2428068A1 (en) WATER FLUSHING DEVICE FOR STREET PAVING MACHINES
DE102012024769A1 (en) Construction machine for mixing bulk material-type aggregate into bottom substrate i.e. bottom stabilizer or recycler, has soil discharging unit adapted for introduction of bulk-type additives in mixing drum in working direction of machine
DE102018130023A1 (en) MILLING MACHINE WITH ADDITIONAL FLUID TANK
DE10145927A1 (en) Centrifugal muck spreader has arrangement for maintaining constant spreading width for ejected particles, including if spreader or spreader discs are inclined to ground and/or horizontal
EP2738310B1 (en) Method and device for creating markings from highly viscous marking material on a surface to be marked
EP2799156B1 (en) Method for cleaning road surfacing or charging devices
WO1997037943A1 (en) Method and installation for solidifying large quantities of slurry-like materials
EP2568079B1 (en) Cold asphalting device

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/17 20060101AFI20120427BHEP

17P Request for examination filed

Effective date: 20121206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 635636

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001434

Country of ref document: DE

Effective date: 20131205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001434

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

26N No opposition filed

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001434

Country of ref document: DE

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140601

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110601

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 635636

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001434

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE