EP2423101A2 - Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs - Google Patents

Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs Download PDF

Info

Publication number
EP2423101A2
EP2423101A2 EP11178897A EP11178897A EP2423101A2 EP 2423101 A2 EP2423101 A2 EP 2423101A2 EP 11178897 A EP11178897 A EP 11178897A EP 11178897 A EP11178897 A EP 11178897A EP 2423101 A2 EP2423101 A2 EP 2423101A2
Authority
EP
European Patent Office
Prior art keywords
sensor
sensor unit
underwater vehicle
positioning device
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11178897A
Other languages
English (en)
French (fr)
Other versions
EP2423101B1 (de
EP2423101A3 (de
Inventor
Jörg Kalwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP2423101A2 publication Critical patent/EP2423101A2/de
Publication of EP2423101A3 publication Critical patent/EP2423101A3/de
Application granted granted Critical
Publication of EP2423101B1 publication Critical patent/EP2423101B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/42Diving chambers with mechanical link, e.g. cable, to a base of closed type with independent propulsion or direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/38Arrangement of visual or electronic watch equipment, e.g. of periscopes, of radar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating

Definitions

  • the invention relates to an unmanned underwater vehicle having at least one sensor unit according to the preamble of claim 1.
  • the invention further relates to a method for operating an unmanned underwater vehicle according to the preamble of claim 9.
  • Unmanned submersibles unlike manned missions, can reach greater working depths and work in environments too dangerous for divers or manned submersibles. Unmanned underwater vehicles are also able to perform most of the tasks previously performed by larger research vessels. As a result, unmanned underwater vehicles offer a high cost advantage over manned systems. Unmanned underwater vehicles can be broadly divided into remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs).
  • ROVs remotely operated vehicles
  • AUVs autonomous underwater vehicles
  • Remote Controlled Underwater Vehicles are typically remotely controlled by a patch cord, usually by a human operator.
  • Remote-controlled underwater vehicles are preferably used for missions with localized, closer investigations under real-time conditions, whereby the underwater vehicle must often also act on an object under water, for example for repair purposes.
  • Autonomous Underwater Vehicles perform their mission without constant human operator supervision and follow a predetermined mission program.
  • Autonomous underwater vehicles have their own power supply and do not require external communication during the mission. After the mission program has been completed, the autonomous underwater vehicle will automatically emerge and be recovered afterwards.
  • An autonomous underwater vehicle is particularly suitable for long-range reconnaissance under water and examines the underwater environment usually without contact with detected objects under water.
  • Unmanned underwater vehicles ie both guided underwater vehicles (ROV) and autonomous underwater vehicles (AUV) comprise at least one sensor unit by means of which sensor information about objects in the surroundings of the underwater vehicle can be detected.
  • Long-hauled submersibles often use a camera as a sensor unit to take pictures under water, which are displayed to the operator in order to enable the operator to inspect or manipulate under real-time conditions based on images of an object.
  • Autonomous underwater vehicles require sensor units for detecting objects in the environment of the underwater vehicle for various tasks. Among other things, the sensor information is used for the navigation. The sensor information is also used to locate objects or to calculate maneuvers for closer inspection of found underwater objects.
  • DE 10 2004 062 122 B3 discloses a method for detecting and neutralizing underwater objects, in particular mines, by means of optical and / or acoustic sensors of an unmanned underwater vehicle.
  • WO 87/00501 discloses a window for an underwater vehicle which forms part of the spherical pressure hull of the underwater vehicle and comprises a transparent ring surrounding the pressure hull.
  • a camera is like that rotatably received in the pressure body, that a rotation of the camera is possible with a view through the window.
  • the sensor units are permanently mounted, but no adaptation of the sensor unit to changing structures and contours of the object to be examined is possible. Therefore, regular control maneuvers of the underwater vehicle are necessary in order to bring the sensors into new positions with respect to the underwater body to be examined in order to obtain suitable sensor information. Often, therefore, in the investigation of large underwater bodies such as underwater walls or ship walls adjustment maneuver by an operator to make, which slows down the implementation of the mission is.
  • Pan-tilt units are known, which is a mechanical transmission, which coordinates pitching movements and can perform panning movements and a camera tracking a target. Such pan-tilt units are used in particular for room monitoring, wherein the camera detects movements, in particular of invading persons.
  • the pan-tilt units are not suitable because the adjustment or alignment of camera and possibly light source is done manually by an operator and therefore a great deal of time for the adjustment of the sensors is required. Due to the remote-controlled operation of the pan-tilt units, such systems are not suitable in particular for autonomously operating underwater vehicles (AUVs).
  • AUVs autonomously operating underwater vehicles
  • the invention is based on the problem of detecting structures and contours of objects under water as quickly and accurately as possible.
  • the at least one sensor unit is movable in a tangential direction of the underwater vehicle, in particular pivotable, rotatable or displaceable, and can be positioned in the tangential direction by a positioning device, which can be used to predetermine the sensor information.
  • Mobility in the tangential direction refers to a mobility tangential to the longitudinal axis of the underwater vehicle or to an axis parallel to the longitudinal axis.
  • the tangential direction is in particular a direction of rotation about this longitudinal axis or the axis extending parallel to the longitudinal axis.
  • the tangential direction in which the sensor unit is movably disposed lies in a plane which is perpendicular to a longitudinal axis of the underwater vehicle.
  • the longitudinal axis corresponds to the straight ahead of the underwater vehicle.
  • the sensor unit Due to the alignability of the sensor unit, the sensor unit can detect a considerably larger area by changing the detection range of the sensor unit in the case of large structures, such as quay walls or ship hulls.
  • the alignment according to the invention makes it possible to detect structures and contours which lie outside the detection range of the sensor unit in a specific position. For example. An alignment of the sensor unit can also detect overhangs, in particular on steep slopes or in general of objects under water.
  • the detected structures are advantageously stored in order to compare the thus stored data of these structures with the sensor information of a later investigation of the same structure. As soon as changes or peculiarities of the structure are detected, the sensor unit is positioned in the direction of the found particularity, for example damage to a harbor wall or abnormalities on a ship's hull.
  • the sensor unit is arranged on a sensor carrier, which is rotatably arranged in the tangential direction on a hull of the underwater vehicle, i. the sensor carrier is rotatable about the longitudinal axis or an axis parallel to the longitudinal axis.
  • the positioning device Via an actuator of the sensor carrier, the positioning device can rotate the sensor carrier, so that the sensor unit is pivoted in the tangential direction of the underwater vehicle and thus positioned. In the tangential direction, the angular position of a rotatable sensor carrier is changed during positioning.
  • the sensor carrier is designed as a rotatable sensor head, which is arranged on a bow of the underwater vehicle. In this way, the area lying ahead of the underwater vehicle is optimally detected and, moreover, the sensor unit is provided at a location favorable in terms of flow mechanics.
  • the sensor carrier is designed as a sensor ring, which is rotatably arranged on the circumference of the hull.
  • the sensor unit is pivotally arranged in a pivoting direction tangentially to an axis which is perpendicular to the longitudinal axis or perpendicular to an axis extending parallel to the longitudinal axis.
  • the sensor unit can be positioned by the positioning device.
  • the sensor unit can be moved by the positioning device both in the tangential direction and in the pivoting direction, i. with a movement over two axes of rotation, accurately and quickly aligned to the object to be examined or the section of a structure.
  • the positioning device positions the sensor unit according to a criterion related to the sensor information.
  • the sensor information determined by the sensor unit is evaluated and act on itself during a displacement of the sensor unit, so that the sensor unit can be positioned very quickly according to a certain criterion.
  • a distance from an object is determined for each detected sensor information, and the size of the determined distances is used as a criterion for the positioning of the sensor unit.
  • the information for the removal of the object can be derived from the respective sensor information in each angular position of the sensor unit.
  • an active sensor unit is advantageously provided, which comprises a transmitting unit and a receiver unit with which reflected sensor information can be detected. In this way, the distance to the target can be determined from the sensor information.
  • the active sensor unit also detects emissions-free objects, for example objects that emit no noise.
  • the active sensor unit comprises optical sensors whose camera provides images as sensor information. From the images of the camera, the structure of the object to be examined and also local zones of particular interest, such as. Damage, easily visible or derivable.
  • the sensor unit comprises acoustic sensors.
  • a sonar sensor unit distances to an object as well as the direction to this object can be determined.
  • a contour of an object in the surroundings of the underwater vehicle is determined from the detected sensor information, and the sensor unit is aligned in a direction predetermined for the determined contour.
  • the positioning device detects a variation of sensor information from different directions and determines the respective distance to the object in the environment of the underwater vehicle. From the variation of distances thus obtained, the contour of the object in the vicinity of the underwater vehicle can be derived.
  • the sensor unit is then aligned in the direction of one of the sensor information, which is selected according to a predetermined criterion for the determined contour from the variation of sensor information. Guidelines for aligning the sensor unit are electronically stored or stored in an advantageous embodiment for certain contours in the positioning.
  • the sensor information is provided by a multi-beam active sonar, ie, a sonar having a plurality of reception directivity characteristics pointing in different directions.
  • the multibeam active sonar provides in a detection sector a plurality of sensor information, each associated with a direction and a distance. With a suitable tuning of the active sonar and appropriate evaluation contours are derived from the acoustic sensor information, which can also be visualized if necessary, for example. On monitors. With a sonar will also be in Situations in which optical sensor units are less effective, such as in murky waters, accurate positioning of the sensor carrier and adjustments to changing contours and structures possible.
  • the criterion for the alignment of the sensor unit is preferably the size of the determined distances.
  • An orientation according to the largest determined distance or the smallest distance can be predetermined for the respective contour. Also certain distances corresponding to certain angular relationships between the sensor unit and the structure or contour to be examined may be specified as a criterion for the orientation.
  • the sensor unit is advantageously aligned in the direction corresponding to the shortest distance of an object, so that the detection range of the sensor unit is optimally utilized.
  • other criteria for the distance to the positioning of the sensor unit may be predetermined.
  • the sensor unit is positioned at the furthest distance previously determined in the evaluation of the sensor information.
  • the position of the sensor unit is tracked to the criterion.
  • the rotatable sensor carrier is moved with the at least one sensor unit in an automated process until the alignment corresponds to the predetermined criterion.
  • the sensor unit When evaluating the sensor information, the projection is compared with the transmitted light image and an incongruity of the projection of the original light image is determined and the geometry of the original light image used as a criterion for the positioning of the sensor unit.
  • the sensor carrier and thus the sensor unit is aligned by movement in the circumferential direction and / or pivoting direction in accordance with a determined deviation such that the thus detected projection is as congruent with the light image. This procedure is based on the knowledge that when the light image does not strike the surface perpendicular to a surface, the projection is distorted in accordance with the inclined structure of the object.
  • the light image is generated with laser light, so that a high range is given.
  • a laser projection system is provided in the sensor carrier, for example the sensor head.
  • the geometry of the projection also changes, from which it is possible to draw conclusions about the deviation of the actual position of the sensor unit from the optimum target sensor unit.
  • a light image with parallel lines is used, resulting in a non-frontal position of the sensor unit an oblique, that is no longer parallel position of the lines on the projection.
  • a light image is transmitted with crossed line bundles, each with parallel lines, so that conclusions about the orientation of the sensor unit in two dimensions are possible.
  • the movable sensor carrier comprises both a laser projection system with camera as an optical sensor unit and an active sonar (multibeam sonar). Both systems can be used together if required.
  • Fig. 1 shows an unmanned underwater vehicle 1 with an at least partially cylindrical, in particular tubular or torpedo-shaped hull 2, at the rear 3, a main drive 4 is arranged.
  • the unmanned underwater vehicle 1 is an autonomous underwater vehicle in the illustrated embodiment, which carries out its mission without communication.
  • a control device 5 is arranged in the hull 2, which is preset by operating software and / or a mission program, which is stored in a memory 6, control information.
  • the underwater vehicle 1 has at least one sensor unit 7, the sensor information 8 of the control device 5 are entered.
  • the control device 5 autonomously determines control commands for the operating devices of the underwater vehicle on the basis of the control information given by the mission program 6 and the sensor information 8 with its operating software 1, eg. For the navigation or to control the drive 4 and steering the underwater vehicle. 1
  • the unmanned underwater vehicle 1 is remotely steered and receives control information 9 via a connection cable 10 from a system platform, which in Fig. 1 is shown as a seagoing ship 11.
  • the system platform 11 may also be localized to perform underwater underwater inspections with a ROV.
  • the at least one sensor unit 7 is movably arranged in a tangential direction 12 of the underwater vehicle and can be positioned by a positioning device 13 in the tangential direction 12.
  • the positioning device 13 comprises an electronic computer unit with which the received sensor information 8 is evaluated in accordance with operating software and output values are determined.
  • the positioning device 13 can be an independent computer unit or can also be integrated in the control device 5.
  • the tangential direction 12, in which the sensor unit 7 can be positioned, lies tangentially to the longitudinal axis 14 of the underwater vehicle 1.
  • the longitudinal axis 14 corresponds to the straight ahead of the underwater vehicle 1 and extends between its tail 3 and its bow 15th
  • a mobility of the sensor unit 7 in the circumferential direction 12 is given by the fact that the sensor unit 7 is arranged on a sensor carrier which is rotatably arranged in the tangential direction 12 on the hull 2.
  • the sensor carrier is designed as a rotatable sensor head 16, which is arranged on the bow 15 of the underwater vehicle 1.
  • the bow 15 provides a flow-mechanically favorable location for the arrangement of the sensor unit 7.
  • the sensor head 16 is rotatable by an actuator 17 in the circumferential direction 12, wherein the actuator 17 for adjusting the angular position of the sensor head 16th and the associated positioning of the sensor unit 7 receives setting commands from the positioning device 13.
  • the sensor unit 7 is arranged in addition to the tangential direction 12 in a pivoting direction 18 movable, i. pivotable about an axis perpendicular to the longitudinal axis 14 or perpendicular to a plane parallel to the longitudinal axis 14 of the underwater vehicle 1 axis.
  • the sensor unit 7 can be positioned in the swivel direction 18 by the positioning device 13.
  • the sensor head 16 not shown here adjusting means, which are controlled by the positioning device 13.
  • As a means for positioning in the pivoting direction 18 may also be provided an actuator, which is controlled by the positioning device 13 via setting commands.
  • the rotatable sensor carrier is designed as a sensor ring 19, which is rotatably arranged on the circumference of the hull 2.
  • the rotatable sensor ring 19 is instead of the rotatable sensor head 16 in the embodiment according to Fig. 1 intended.
  • the sensor ring 19 is rotatable in the tangential direction 12 of the underwater vehicle 1, wherein the sensor units 7 of the sensor ring 19 - as already to Fig. 1 described - are positionable in a pivoting direction 18.
  • the sensor ring is advantageously mounted on a rotary belt and comprises a housing made of a material which is permeable to the operating signal of the sensor unit 7.
  • the sensor ring 19 is advantageously made of glass, which is translucent, and / or of a material which is sound-permeable.
  • the unmanned underwater vehicle 1 ' according to Fig. 2 Incidentally, this already corresponds to the already too Fig. 1 described structure.
  • the sensor units 7 of a in Fig. 2 Not shown positioning positioned in tangential direction 12 and in the pivoting direction 18, so that an optimal alignment is carried out on an object to be examined.
  • the sensor unit 7 is an active sensor, which comprises a transmitting unit and a receiver unit, so that the sensor unit can detect signals transmitted from it after reflection on an object and can provide corresponding sensor information 8 about the object.
  • the respective distance to the destination can be derived from the sensor information 8 of an active sensor unit.
  • the sensor unit 7, which is used for positioning the sensor head 16, may be an optical sensor unit or a sonar sensor unit.
  • the sensor head 16 may have a plurality of sensor units 7 which are distributed in the tangential direction, so that rotational movements of the sensor head 16 during positioning are reduced.
  • both optical sensor units and sonar sensor units are arranged on the sensor head 16, or further sensor units are provided for examining the surroundings of the underwater vehicle 1.
  • the sensor units arranged on the sensor head 16 at least one is used for positioning the sensor head 16 and connected to the positioning device 13. In this case, an alignment of other sensor units arranged on the sensor head 16 can also take place via the sensor signals 8 of the sensor unit 7 used for positioning. Corresponding algorithms can be stored in the positioning device.
  • the sensor head 16 comprises a camera and a laser projection system as well as an active sonar (multibeam sonar).
  • the control information acts back on itself, so that an optimization of the sensor alignment takes place during the positioning processes.
  • the positioning device detects the sensor information 8, the information about may contain an object in the vicinity of the underwater vehicle or contains in the environment of an object.
  • the distance 21 to the object is determined.
  • the determined distance 21 is compared in a comparison step 22 with a predetermined criterion 23 with respect to the size of the distance.
  • the predetermined criterion 23 can be as small a distance as possible or as large a distance as possible, or else another indication of the distance.
  • comparison step 22 the distance of the current sensor information 8 is compared with previously acquired values.
  • an adjustment command 24 is sent to the actuator 17. In that case, the rotatable sensor carrier is further rotated, so that the sensor unit is positioned differently. As soon as the determined distance meets the criterion, the sensor unit is optimally positioned.
  • the criterion 23 is given based on the respective contour of an object.
  • the distance 21 next to the comparison step 22 in a contour determination 25 is used.
  • the positioning device detects a variation of sensor information 8 from different directions. From the sensor information 8 determines the respective distance 21 to the object in the environment of the underwater vehicle. From the variation of distances thus obtained, a contour 26 of the object in the vicinity of the underwater vehicle can be derived.
  • a criterion specification 27 determines the appropriate criterion 23 of the size of the distance for the determined contour 26. For certain contours 26, corresponding criteria 23 are determined and stored in advance.
  • the sensor unit By positioning in accordance with the predetermined size of the distance 21, the sensor unit is automatically aligned in the direction of that sensor information 8 which is selected according to the criterion 23 predetermined for the determined contour 26 from the variation of sensor information.
  • Embodiments for the orientation of the sensor unit after the determined distance show 4 and FIG. 5 in each of which a plan view of the sensor head 16 of an underwater vehicle is shown.
  • the underwater vehicle is in front of a flat contour, for example a vertical harbor wall 28. As soon as the sensor unit 7 of the sensor head 16 locates the harbor wall 28, the sensor unit 7 is positioned.
  • the sensor head 16 For positioning the sensor unit 7 with respect to the wall 28, the sensor head 16 is rotated in the circumferential direction 12, whereby the sensor unit 7 sends and receives signals in different angular positions and therefore the positioning means a variation of sensor information 8, 8 ', 8 ", 8"' of the Detected sensor unit 7 from different directions.
  • a distance to the object is determined. From the different distances in different directions, the contour of the wall 28 in the detection range of the sensor unit can be determined. After determining the contour of the object, namely here the flat surface of a wall 28, the sensor unit 7 is brought into an angular position corresponding to the direction of those sensor information 8, 8 ', 8 ", 8"' whose determined distance the predetermined criterion corresponds to the size of the distance, for example, corresponds to the criterion of the largest distance. In the illustrated embodiment of a flat surface, the shortest distance is specified as a criterion for the size of the distance for the positioning of the sensor unit.
  • the sensor head continues its positioning movement.
  • the achievement of the criterion of the smallest distance is determined as soon as an increasing distance is determined for the first time.
  • the sensor unit 7 is thus positioned exactly frontally in front of the wall and thereby captures the largest possible area.
  • the positioning of the sensor unit 7 is automatic and thereby very quickly.
  • changing structures can be detected and several structures in shorter Shown time, for example, vertical walls with different structures, ship hulls or overhangs on underwater mountains.
  • the sensor head and a sector in the vicinity of the underwater vehicle to be examined which was poorly detectable in the previous orientation of the sensor unit.
  • the sensor can be turned upwards from a downward position.
  • larger sensor areas can be detected by the automatic positioning, since the sensor unit is automatically aligned in the respectively optimum position with respect to the surface to be examined.
  • the positioning of the sensor unit 7 is carried out automatically and independently of an operator, so that in a remote-controlled underwater vehicle (ROV), the vehicle can still be controlled manually, while simultaneously with changing surface structures of the objects to be examined, the sensor unit is automatically positioned.
  • ROV remote-controlled underwater vehicle
  • the sensor unit 7 is a sonar
  • positioning can be carried out in a simple embodiment with a three-point measurement, wherein sensor information is recorded in three different positions of the sensor carrier, from which the respective distance of the reflective object is determined. From the variation of three distances, the shortest distance, the direction of the shortest distance for the positioning of the sensor unit is selected after the criterion specified for the contour, ie for a flat surface, the shortest distance.
  • the sensor information is detected by a multi-beam active sonar so that a variation of many sensor information from different directions is provided for the determination of the contour.
  • the positioning device is provided with different criteria for determining the direction from the variation of the determined sensor information and associated distances.
  • Fig. 5 By way of example, a situation is shown in which an object to be examined forms a corner 29. This situation is typical for the study of port installations, where, for example, vertical walls 28 are erected on a ground 30. Close examination and fast and precise positioning is desirable, particularly in the region of the bottom 30, to detect under-flushing of the wall 28.
  • corner 29 is examined, this contour is given the longest distance as a criterion for the size of the distance after which the sensor unit 7 is positioned.
  • a variation of sensor information 8, 8 ', 8 is detected during movement of the sensor head 16 in the circumferential direction 12. If the result of an evaluation of the sensor information 8, 8', 8" is the presence of a corner contour, the criterion for the Positioning of the sensor unit 7 given the largest distance. The sensor unit 7 is automatically positioned in the direction of the sensor information 8 with the longest distance to the underwater object, which exactly corresponds to the orientation of the corner 29.
  • Fig. 6 illustrates the positioning of an optical sensor unit, wherein the sensor unit 7 (FIG. Fig. 1 to 4 ) transmits a light image 31 and detects a projection 32 of the light image 31 on a wall 28 to be examined.
  • the sensor unit comprises a laser projection system and a camera for this purpose. With the high energy density of the laser light, light images 31 can be projected onto the structures to be examined even in murky waters.
  • the projection 32 is distorted.
  • a deviation of the geometry of the projection 32 from the transmitted light image is determined and the sensor unit is positioned such that the projection 32 is as congruent as possible to the original light image 31.
  • the (original) geometry of the light image 31 is used by the positioning device as a criterion for the orientation of the sensor unit 7.
  • the light image 31 has two crossed line bundles, each with parallel lines 33, 34. These line structures can be accurately with the laser light of the laser projection system.
  • the projection 32 will not reproduce the crossed line bundles in parallel, but askew or askew. From the angle between the original parallel lines, the appropriate alignment measure can be derived.
  • the sensor unit With the light image 31 with crossed line bundles and the resulting two-dimensional information about the surface of the wall 28 to be examined, the sensor unit can be positioned precisely in the tangential direction 12 and in the pivoting direction 18 (FIG. Fig. 1 ) are matched and adapted to the structure of the wall 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

Die Erfindung betrifft ein unbemanntes Unterwasserfahrzeug mit mindestens einer Sensoreinheit (7), mittels welcher Sensorinformationen (8) über Gegenstände in der Umgebung des Unterwasserfahrzeugs (1) erfassbar sind. Die Erfindung betrifft ferner ein Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs (1).
Um Strukturen und Konturen von Gegenständen unter Wasser möglichst schnell und genau zu erfassen ist erfindungsgemäß vorgesehen, dass die mindestens eine Sensoreinheit (7) in einer Tangentialrichtung (12) des Unterwasserfahrzeugs, d.h. tangential zur der Längsachse (14) des Unterwasserfahrzeugs (1) oder eine parallel zur Längsachse verlaufenden Achse, beweglich angeordnet ist und von einer Positioniereinrichtung (13), der die Sensorinformationen (8) vorgebbar sind, in der Umfangsrichtung (12) positionierbar ist.

Description

  • Die Erfindung betrifft ein unbemanntes Unterwasserfahrzeug mit mindestens einer Sensoreinheit gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft ferner ein Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs gemäß dem Oberbegriff des Anspruchs 9.
  • Unbemannte Unterwasserfahrzeuge können im Unterschied zu bemannten Missionen größere Arbeitstiefen erreichen und in Umgebungen arbeiten, die zu gefährlich für Taucher oder bemannte Unterwasserfahrzeuge sind. Unbemannte Unterwasserfahrzeuge sind zudem in der Lage die meisten Aufgaben zu erfüllen, die zuvor von größeren Forschungsschiffen wahrgenommen wurden. Dadurch bieten unbemannte Unterwasserfahrzeuge einen hohen Kostenvorteil gegenüber bemannten Systemen. Unbemannte Unterwasserfahrzeuge können grob unterteilt werden in ferngelenkte Unterwasserfahrzeuge (ROV = Remotely Operated Vehicle) und autonome Unterwasserfahrzeuge (AUV = Autonomous Underwater Vehicle).
  • Ferngesteuerte Unterwasserfahrzeuge (ROV) werden in der Regel über ein Verbindungskabel ferngesteuert, meistens von einer menschlichen Bedienperson. Ferngelenkte Unterwasserfahrzeuge werden bevorzugt für Missionen mit örtlich begrenzten, näheren Untersuchungen unter Echtzeitbedingungen eingesetzt, wobei das Unterwasserfahrzeug oft auch auf einen Gegenstand unter Wasser einwirken muss, bspw. zu Reparaturzwecken.
  • Autonome Unterwasserfahrzeuge (AUV) erfüllen ihre jeweilige Mission ohne ständige Überwachung durch menschliche Bedienpersonen und folgen vielmehr einem vorgegeben Missionsprogramm. Autonome Unterwasserfahrzeuge umfassen eine eigene Stromversorgung und erfordern keine externe Kommunikation während der Mission. Nach Durchführung des Missionsprogramms taucht das autonome Unterwasserfahrzeug selbstständig auf und wird anschließend geborgen. Ein autonomes Unterwasserfahrzeug eignet sich insbesondere für weiträumige Aufklärung unter Wasser und untersucht die Unterwasserumgebung in der Regel ohne Berührung mit erfassten Gegenständen unter Wasser.
  • Unbemannte Unterwasserfahrzeuge, also sowohl ferngelenkte Unterwasserfahrzeuge (ROV) als auch autonome Unterwasserfahrzeuge (AUV), umfassen wenigstens eine Sensoreinheit, mittels welcher Sensorinformationen über Gegenstände in der Umgebung des Unterwasserfahrzeugs erfassbar sind. Ferngelenkte Unterwasserfahrzeuge nehmen oft mit einer Kamera als Sensoreinheit Bilder unter Wasser auf, welche der Bedienperson angezeigt werden, um der Bedienperson anhand von Bildern eines Gegenstandes eine Inspektion oder Manipulationen unter Echtzeitbedingungen zu ermöglichen. Autonome Unterwasserfahrzeuge benötigen Sensoreinheiten zur Erfassung von Gegenständen in der Umgebung des Unterwasserfahrzeugs für verschiedene Aufgaben. Unter Anderem werden die Sensorinformationen für die Navigation herangezogen. Die Sensorinformationen werden außerdem für die Ortung von Gegenständen herangezogen oder zur Berechnung von Manövern zur näheren Inspektion von aufgefundenen Unterwasser-Gegenständen.
  • DE 10 2004 062 122 B3 offenbart ein Verfahren zum Detektieren und Neutralisieren von Unterwasserobjekten, insbesondere Minen, mittels optischer und/oder akustischer Sensoren eines unbemannten Unterwasserfahrzeugs.
  • WO 87/00501 offenbart ein Fenster für ein Unterwasserfahrzeug, welches einen Teil des sphärischen Druckkörpers des Unterwasserfahrzeugs bildet und einen transparenten Ring umfasst, der den Druckkörper umgibt. Eine Kamera ist derart drehbar im Druckkörper aufgenommen, dass eine Drehung der Kamera mit Blick durch das Fenster ermöglicht ist.
  • Bei einer Vielzahl von Unterwassermissionen sind sowohl weiträumige Aufklärung oder Untersuchung als auch örtlich begrenzte Arbeiten unter Echtzeitbedingungen erforderlich, bspw. bei der Inspektion und ggf. Reparatur von Offshore-Installationen wie bspw. Pipelines. Oft sind Wände, insbesondere senkrechte Wände, unter Wasser zu untersuchen, wobei die Wände entsprechend ihrer Länge unter Wasser über einen langen Inspektionsbereich abzufahren sind. Bei Feststellung von Schäden müssen die Schäden näher diagnostiziert und ggf. repariert werden. Derartige Einsatzgebiete für unbemannte Unterwasserfahrzeuge sind bspw. Hafeninspektionen einschließlich der Inspektion von Kanalwänden, Kaimauern, Spundwänden usw., insbesondere im Hinblick auf die Unterspülung solcher Unterwasserwände. Hafeninspektionen können auch die Untersuchung und ggf. Manipulation von Schiffskörpern betreffen. Bei derartigen Unterwassermissionen sind Gegenstände mit großflächigen Strukturen und Konturen zu untersuchen und müssen von den Sensoren des Unterwasserfahrzeugs umfassend abgetastet werden. Dabei können sich die Strukturen und Konturen des untersuchten Objekts ändern, so dass die Sensoreinheit die Strukturen und Konturen des Gegenstands nur unzureichend oder gar nicht erfassen kann.
  • Bei bekannten unbemannten Unterwasserfahrzeugen sind die Sensoreinheiten fest montiert, wobei jedoch keine Adaption der Sensoreinheit auf wechselnde Strukturen und Konturen des zu untersuchenden Gegenstandes möglich ist. Es sind daher regelmäßig Steuermanöver des Unterwasserfahrzeugs nötig, um die Sensoren in neue Positionen gegenüber dem zu untersuchenden Unterwasserkörper zu bringen, um geeignete Sensorinformationen zu erhalten. Oft sind daher bei der Untersuchung von großflächigen Unterwasserkörpern wie Unterwasserwänden oder Schiffswänden Justiermanöver von einer Bedienperson vorzunehmen, wodurch die Durchführung der Mission verlangsamt wird.
  • Aus der Überwachungstechnik sind sog. Pan-Tilt-Units bekannt, wobei es sich um ein mechanisches Getriebe handelt, welches koordiniert Nickbewegungen und Schwenkbewegungen ausführen kann und eine Kamera einem Ziel nachführt. Derartige Pan-Tilt-Units werden insbesondere zur Raumüberwachung eingesetzt, wobei die Kamera Bewegungen erfasst, insbesondere von eindringenden Personen. Für einen Einsatz in unbemannten Unterwasserfahrzeugen eignen sich derartige Pan-Tilt-Units nicht, da die Einstellung bzw. Ausrichtung von Kamera und gegebenenfalls Lichtquelle manuell durch einen Bediener erfolgt und daher ein großer Zeitaufwand für die Justierung der Sensoren erforderlich ist. Aufgrund der ferngesteuerten Betätigung der Pan-Tilt-Units eignen sich derartige Systeme insbesondere nicht für autonom operierende Unterwasserfahrzeuge (AUVs).
  • Der Erfindung liegt das Problem zugrunde, Strukturen und Konturen von Gegenständen unter Wasser möglichst schnell und genau zu erfassen.
  • Dieses Problem wird erfindungsgemäß mit einem Unterwasserfahrzeug mit den Merkmalen des Anspruchs 1 und mit einem Verfahren mit den Merkmalen des Anspruchs 9 gelöst.
  • Erfindungsgemäß ist die mindestens eine Sensoreinheit in einer Tangentialrichtung des Unterwasserfahrzeugs beweglich, insbesondere schwenkbar, drehbar oder verschiebbar, angeordnet und von einer Positioniereinrichtung, der die Sensorinformationen vorgebbar sind, in der Tangentialrichtung positionierbar. Eine Beweglichkeit in Tangentialrichtung bezeichnet eine Beweglichkeit tangential zur Längsachse des Unterwasserfahrzeugs oder zu einer parallel zur Längsachse verlaufenden Achse. Die Tangentialrichtung ist insbesondere eine Drehrichtung um diese Längsachse bzw. die parallel zur Längsachse verlaufende Achse. Die Tangentialrichtung, in der die Sensoreinheit beweglich angeordnet ist, liegt in einer Ebene, welche senkrecht zu einer Längsachse des Unterwasserfahrzeugs steht. Die Längsachse entspricht der Geradeausfahrt des Unterwasserfahrzeugs. Durch Bewegen der Sensoreinheit lässt sich die Sensoreinheit sehr rasch auf einen zu untersuchenden Bereich ausrichten und an die Struktur des zu untersuchenden Gegenstands anpassen. Die erfindungsgemäße Ausrichtung der Sensoreinheit kann dabei automatisch durch die Positioniereinrichtung erfolgen, ohne dass eine Bedienperson einbezogen sein muss.
  • Durch die Ausrichtbarkeit der Sensoreinheit kann die Sensoreinheit einen erheblich größeren Bereich erfassen, indem bei großen Strukturen wie bspw. Kaimauern oder Schiffsrümpfen der Erfassungsbereich der Sensoreinheit verändert wird. Zudem ermöglicht die erfindungsgemäße Ausrichtung die Erfassung von Strukturen und Konturen, die außerhalb des Erfassungsbereichs der Sensoreinheit in einer bestimmten Position liegen. Bspw. kann eine Ausrichtung der Sensoreinheit auch Überhänge, insbesondere an Steilhängen oder allgemein von Gegenständen unter Wasser erfassen. Bei der Erfassung großer Strukturen mit der erfindungsgemäßen Positionierung der Sensoreinheit werden vorteilhaft die erfassten Strukturen abgespeichert, um die somit abgespeicherten Daten dieser Strukturen mit den Sensorinformationen einer späteren Untersuchung der gleichen Struktur zu vergleichen. Sobald Änderungen oder Besonderheiten der Struktur erfasst werden, erfolgt eine Positionierung der Sensoreinheit in die Richtung der aufgefundenen Besonderheit, bspw. eines Schadens an einer Hafenmauer oder Auffälligkeiten an einem Schiffsrumpf.
  • Vorteilhaft ist die Sensoreinheit auf einem Sensorträger angeordnet, welcher in der Tangentialrichtung drehbar an einem Bootskörper des Unterwasserfahrzeugs angeordnet ist, d.h. der Sensorträger ist um die Längsachse oder eine parallel zur Längsachse verlaufende Achse drehbar. Über einen Stellantrieb des Sensorträgers kann die Positioniereinrichtung den Sensorträger verdrehen, so dass die Sensoreinheit in der Tangentialrichtung des Unterwasserfahrzeugs verschwenkt und somit positioniert wird. In der Tangentialrichtung wird bei der Positionierung die Drehwinkellage eines drehbaren Sensorträgers verändert.
  • In bevorzugter Ausgestaltung der Erfindung ist der Sensorträger als drehbarer Sensorkopf ausgebildet, welcher an einem Bug des Unterwasserfahrzeugs angeordnet ist. Auf diese Weise wird der voraus liegende Bereich des Unterwasserfahrzeugs optimal erfasst und darüber hinaus die Sensoreinheit an einem strömungsmechanisch günstigen Ort vorgesehen.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist der Sensorträger als Sensorring ausgebildet, welcher am Umfang des Bootskörpers drehbar angeordnet ist.
  • Vorteilhaft ist die Sensoreinheit in einer Schwenkrichtung tangential zu einer Achse schwenkbar angeordnet, die senkrecht zur Längsachse oder senkrecht zu eine parallel zur Längsachse verlaufenden Achse verläuft. In dieser Schwenkrichtung ist die Sensoreinheit von der Positioniereinrichtung positionierbar. Auf diese Weise kann die Sensoreinheit von der Positioniereinrichtung sowohl in Tangentialrichtung als auch in Schwenkrichtung, d.h. mit einer Bewegung über zwei Drehachsen, genau und schnell auf den zu untersuchenden Gegenstand bzw. den Abschnitt einer Struktur ausgerichtet werden.
  • Bei einer bevorzugten automatischen Ausrichtung der Sensoreinheit positioniert die Positioniereinrichtung die Sensoreinheit nach einem auf die Sensorinformationen bezogenen Kriterium. Die von der Sensoreinheit ermittelten Sensorinformationen werden dabei ausgewertet und wirken während einer Verschiebung der Sensoreinheit auf sich selbst zurück, so dass die Sensoreinheit sehr rasch nach einem bestimmten Kriterium positioniert werden kann.
  • Vorteilhaft wird zu jeder erfassten Sensorinformation eine Entfernung von einem Gegenstand ermittelt und als Kriterium für die Positionierung der Sensoreinheit die Größe der ermittelten Entfernungen herangezogen. Die Information zur Entfernung des Gegenstandes lässt sich dabei aus der jeweiligen Sensorinformation in jeder Drehwinkellage der Sensoreinheit herleiten. Zur Erfassung der Sensorinformationen über Gegenstände in der Umgebung des Unterwasserfahrzeugs ist vorteilhaft eine aktive Sensoreinheit vorgesehen, welche eine Sendeeinheit und eine Empfängereinheit umfasst, mit der reflektierte Sensorinformationen erfassbar sind. Auf diese Weise lässt sich aus der Sensorinformation die Entfernung zum Ziel bestimmen. Die aktive Sensoreinheit erfasst dabei auch emissionslose Gegenstände, bspw. Gegenstände, die keine Geräusche abstrahlen.
  • In einer vorteilhaften Ausführungsform der Erfindung umfasst die aktive Sensoreinheit optische Sensoren, deren Kamera Bilder als Sensorinformationen zur Verfügung stellt. Aus den Aufnahmen der Kamera sind die Struktur des zu untersuchenden Objekts und auch lokale Zonen von besonderem Interesse, wie bspw. Schäden, leicht ersichtlich bzw. herleitbar.
  • In einer bevorzugten Ausführungsform der Erfindung umfasst die Sensoreinheit akustische Sensoren. Mittels einer Sonar-Sensoreinheit lassen sich Entfernungen zu einem Gegenstand sowie die Richtung zu diesem Gegenstand bestimmen.
  • Vorteilhaft wird aus den erfassten Sensorinformationen eine Kontur eines Gegenstands in der Umgebung des Unterwasserfahrzeugs ermittelt und die Sensoreinheit in eine für die ermittelte Kontur vorgegebene Richtung ausgerichtet. Dabei erfasst die Positioniereinrichtung eine Variation von Sensorinformationen aus unterschiedlichen Richtungen und ermittelt die jeweilige Entfernung zum Gegenstand in der Umgebung des Unterwasserfahrzeugs. Aus der so erhaltenen Variation von Entfernungen ist die Kontur des Gegenstandes in der Umgebung des Unterwasserfahrzeugs herleitbar. Die Sensoreinheit wird anschließend in Richtung einer der Sensorinformationen ausgerichtet, welche nach einem für die ermittelte Kontur vorgegebenen Kriterium aus der Variation von Sensorinformationen ausgewählt wird. Vorgaben zur Ausrichtung der Sensoreinheit sind in einer vorteilhaften Ausführungsform für bestimmte Konturen in der Positioniereinrichtung elektronisch abgespeichert bzw. abspeicherbar.
  • Vorteilhaft werden die Sensorinformationen von einem Mulitbeam-Aktivsonar, d.h. einem Sonar mit einer Vielzahl von Empfangsrichtcharakteristiken, welche in unterschiedliche Richtungen weisen, bereitgestellt. Das Multibeam-Aktivsonar liefert in einem Erfassungssektor eine Vielzahl von Sensorinformationen, denen jeweils eine Richtung und eine Entfernung zugeordnet wird. Bei geeigneter Abstimmung des Aktivsonars und entsprechender Auswertung werden aus den akustischen Sensorinformationen Konturen hergeleitet, welche bei Bedarf auch optisch darstellbar sind, bspw. auf Monitoren. Mit einem Sonar werden auch in Situationen, in denen optische Sensoreinheiten weniger wirksam sind wie bspw. in trüben Gewässern, genaue Positionierungen des Sensorträgers und Anpassungen an wechselnde Konturen und Strukturen möglich.
  • Das Kriterium für die Ausrichtung der Sensoreinheit ist bevorzugt die Größe der ermittelten Entfernungen. Dabei kann für die jeweilige Kontur eine Ausrichtung nach der größten ermittelten Entfernung oder der kleinsten Entfernung vorgegeben sein. Auch bestimmte Entfernungen entsprechend bestimmter Winkelverhältnisse zwischen Sensoreinheit und der zu untersuchenden Struktur oder Kontur können als Kriterium für die Ausrichtung vorgegeben sein.
  • Bei flächigen Konturen wie Unterwasserwänden wird die Sensoreinheit vorteilhaft in die der kürzesten Entfernung von einem Gegenstand entsprechende Richtung ausgerichtet, so dass der Erfassungsbereich der Sensoreinheit optimal genutzt ist. Bei anderen Konturen können andere Kriterien für die Entfernung zur Positionierung der Sensoreinheit vorgegeben sein. Bspw. wird vorteilhaft bei Eckenstrukturen, bspw. bei der Untersuchung einer Ecke, die von einer Wand auf einem Boden eingeschlossen wird, die Sensoreinheit auf die weiteste Entfernung positioniert, welche zuvor bei der Auswertung der Sensorinformationen ermittelt wurde.
  • Wird im Betrieb des Unterwasserfahrzeugs festgestellt, dass die augenblickliche Position der Sensoreinheit nicht mehr dem für die Kontur vorgegebenen Kriterium entspricht, so wird die Position der Sensoreinheit dem Kriterium nachgeführt. Der drehbare Sensorträger wird mit der mindestens einen Sensoreinheit in einem automatisierten Vorgang so lange bewegt, bis die Ausrichtung dem vorgegebenen Kriterium entspricht. So erfolgt beispielsweise beim Betrieb eines ferngelenkten Unterwasserfahrzeugs eine selbsttätige Ausrichtung, ohne dass eine Bedienperson eingreifen muss.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, zur Ausrichtung einer Sensoreinheit gegenüber einem zu untersuchenden Gegenstand ein Lichtbild zu senden, wobei die Sensoreinheit eine Projektion des Lichtbilds auf dem Gegenstand erfasst. Bei einer Auswertung der Sensorinformation wird die Projektion mit dem gesendeten Lichtbild verglichen und eine Inkongruenz der Projektion von dem originalen Lichtbild ermittelt und die Geometrie des originalen Lichtbilds als Kriterium für die Positionierung der Sensoreinheit herangezogen. Der Sensorträger und damit die Sensoreinheit wird durch Bewegung in Umfangsrichtung und/oder Schwenkrichtung entsprechend einer ermittelten Abweichung derart ausgerichtet, dass die mithin erfasste Projektion möglichst kongruent zu dem Lichtbild ist. Dieser Vorgehensweise liegt die Erkenntnis zugrunde, dass bei einem nicht senkrechten Auftreffen des Lichtbilds auf eine Fläche die Projektion entsprechend der geneigten Struktur des Gegenstands verzerrt ist.
  • Vorzugsweise wird das Lichtbild mit Laserlicht erzeugt, so dass eine hohe Reichweite gegeben ist. Hierzu ist in dem Sensorträger, bspw. dem Sensorkopf, ein Laserprojektionssystem vorgesehen.
  • Durch Veränderung der Ausrichtung der Sensoreinheit ändert sich auch die Geometrie der Projektion, woraus sich Rückschlüsse auf die Abweichung der IstPosition der Sensoreinheit gegenüber der optimalen Soll-Sensoreinheit ziehen lassen. Vorteilhaft wird ein Lichtbild mit parallelen Linien eingesetzt, wobei sich bei einer nicht frontalen Position der Sensoreinheit eine schräge, das heißt nicht mehr parallele Lage der Linien auf der Projektion ergeben. Bevorzugt wird ein Lichtbild mit gekreuzten Linienbündeln mit jeweils parallelen Linien gesendet, so dass Rückschlüsse auf die Ausrichtung der Sensoreinheit in zwei Dimensionen möglich sind.
  • Vorteilhaft umfasst der bewegliche Sensorträger sowohl ein Laserprojektionssystem mit Kamera als optische Sensoreinheit als auch ein Aktivsonar (Multibeam-Sonar). Beide Systeme können dabei bei Bedarf gemeinsam eingesetzt werden.
  • Weitere vorteilhafte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen sowie aus den Ausführungsbeispielen, die nachstehend anhand der Zeichnung näher erläutert sind. Es zeigen:
  • Fig. 1
    eine schematische Seitenansicht eines unbemannten Unterwasserfahrzeugs,
    Fig. 2
    eine schematische Seitenansicht eines zweiten Ausführungsbeispiels eines unbemannten Unterwasserfahrzeugs,
    Fig. 3
    ein Flussbild einer Ausrichtung einer Sensoreinheit,
    Fig. 4 und Fig. 5
    Draufsichten eines drehbaren Sensorträger eines unbemannten Unterwasserfahrzeugs gemäß Fig. 1 oder Fig. 2 in der Umgebung eines Unterwasserkörpers und
    Fig. 6
    eine schematische Darstellung eines Gegenstandes mit der Projektion einer optischen Sensoreinheit des Unterwasserfahrzeugs gemäß Fig. 1 oder Fig. 2.
  • Fig. 1 zeigt ein unbemanntes Unterwasserfahrzeugs 1 mit einem zumindest abschnittsweise zylindrischen, insbesondere röhrenförmigen bzw. torpedoförmigen, Bootskörper 2, an dessen Heck 3 ein Hauptantrieb 4 angeordnet ist. Das unbemannte Unterwasserfahrzeug 1 ist im gezeigten Ausführungsbeispiel ein autonomes Unterwasserfahrzeug, welches seine Mission ohne Kommunikation ausführt. Hierzu ist in dem Bootskörper 2 eine Steuereinrichtung 5 angeordnet, der von einer Betriebssoftware und/oder einem Missionsprogramm, welches in einem Speicher 6 abgelegt ist, Steuerinformationen vorgegeben wird.
  • Das Unterwasserfahrzeug 1 weist mindestens eine Sensoreinheit 7 auf, deren Sensorinformationen 8 der Steuereinrichtung 5 eingegeben werden. Die Steuereinrichtung 5 ermittelt auf der Grundlage der ihr vom Missionsprogramm 6 vorgegebenen Steuerinformationen sowie der Sensorinformationen 8 mit ihrer Betriebssoftware autonom Steuerbefehle für die Betriebseinrichtungen des Unterwasserfahrzeugs 1, bspw. für die Navigation oder zur Steuerung des Antriebs 4 und Lenkung des Unterwasserfahrzeugs 1.
  • In einem alternativen Ausführungsbeispiel ist das unbemannte Unterwasserfahrzeug 1 fernlenkbar und erhält Steuerinformationen 9 über ein Verbindungskabel 10 von einer Systemplattform, welche in Fig. 1 als Seeschiff 11 dargestellt ist. Die Systemplattform 11 kann auch ortsgebunden sein, um mit einem ferngelenkten Unterwasserfahrzeug (ROV) örtlich gebundene Unterwasserinspektionen durchzuführen.
  • Die mindestens eine Sensoreinheit 7 ist einer Tangentialrichtung 12 des Unterwasserfahrzeugs beweglich angeordnet und ist von einer Positioniereinrichtung 13 in der Tangentialrichtung 12 positionierbar. Die Positioniereinrichtung 13 umfasst eine elektronische Rechnereinheit, mit der die empfangenen Sensorinformationen 8 nach einer Betriebssoftware ausgewertet werden und Ausgabewerte ermittelt werden. Die Positioniereinrichtung 13 kann eine eigenständige Rechnereinheit sein oder auch in die Steuereinrichtung 5 integriert sein.
  • Die Tangentialrichtung 12, in der die Sensoreinheit 7 positionierbar ist, liegt dabei tangential zur Längsachse 14 des Unterwasserfahrzeugs 1. Die Längsachse 14 entspricht dabei der Geradeausfahrt des Unterwasserfahrzeugs 1 und verläuft zwischen seinem Heck 3 und seinem Bug 15.
  • Eine Beweglichkeit der Sensoreinheit 7 in Umfangsrichtung 12 ist dadurch gegeben, dass die Sensoreinheit 7 auf einem Sensorträger angeordnet ist, welcher in der Tangentialrichtung 12 drehbar an dem Bootskörper 2 angeordnet ist. Im gezeigten Ausführungsbeispiel ist der Sensorträger als drehbarer Sensorkopf 16 ausgebildet, welcher an dem Bug 15 des Unterwasserfahrzeugs 1 angeordnet ist. Der Bug 15 bietet einen strömungsmechanisch günstigen Ort zur Anordnung der Sensoreinheit 7.
  • Der Sensorkopf 16 ist von einem Stellantrieb 17 in Umfangsrichtung 12 drehbar, wobei der Stellantrieb 17 zur Einstellung der Drehwinkellage des Sensorkopfs 16 und der damit verbundenen Positionierung der Sensoreinheit 7 Stellbefehle von der Positioniereinrichtung 13 empfängt.
  • Die Sensoreinheit 7 ist zusätzlich zu der Tangentialrichtung 12 noch in einer Schwenkrichtung 18 beweglich angeordnet, d.h. schwenkbar um eine senkrecht zur Längsachse 14 oder senkrecht zu eine parallel zur Längsachse 14 des Unterwasserfahrzeugs 1 liegenden Achse. Die Sensoreinheit 7 ist in der Schwenkrichtung 18 von der Positioniereinrichtung 13 positionierbar. Zur Positionierung in der Schwenkrichtung 18 umfasst der Sensorkopf 16 hier nicht dargestellte Stellmittel, welche von der Positioniereinrichtung 13 angesteuert werden. Als Mittel zur Positionierung in Schwenkrichtung 18 kann ebenfalls ein Stellantrieb vorgesehen sein, welcher von der Positioniereinrichtung 13 über Stellbefehle angesteuert wird.
  • In dem Ausführungsbeispiel gemäß Fig. 2 ist der drehbare Sensorträger als Sensorring 19 ausgebildet ist, welcher am Umfang des Bootskörpers 2 drehbar angeordnet ist. Der drehbare Sensorring 19 ist anstelle des drehbaren Sensorkopfs 16 in dem Ausführungsbeispiel gemäß Fig. 1 vorgesehen. Der Sensorring 19 ist in Tangentialrichtung 12 des Unterwasserfahrzeugs 1 drehbar, wobei die Sensoreinheiten 7 des Sensorrings 19 - wie bereits zu Fig. 1 beschrieben - in einer Schwenkrichtung 18 positionierbar sind. Der Sensorring ist vorteilhaft drehbandgelagert und umfasst ein Gehäuse aus einem Material, welches für das Arbeitssignal der Sensoreinheit 7 durchlässig ist. Der Sensorring 19 besteht vorteilhaft aus Glas, welches lichtdurchlässig ist, und/oder aus einem Material, das schalldurchlässig ist.
  • Das unbemannte Unterwasserfahrzeug 1' gemäß Fig. 2 entspricht im Übrigen dem bereits zu Fig. 1 beschriebenen Aufbau. Insbesondere werden die Sensoreinheiten 7 von einer in Fig. 2 nicht dargestellten Positioniereinrichtung in Tangentialrichtung 12 und in Schwenkrichtung 18 positioniert, so dass eine optimale Ausrichtung auf einen zu untersuchenden Gegenstand erfolgt.
  • Die Sensoreinheit 7 ist ein aktiver Sensor, welcher eine Sendeeinheit und eine Empfängereinheit umfasst, so dass die Sensoreinheit von ihr aus gesendete Signale nach einer Reflexion an einem Gegenstand erfassen kann und entsprechende Sensorinformationen 8 über den Gegenstand zur Verfügung stellen kann. Insbesondere lässt sich aus den Sensorinformationen 8 einer aktiven Sensoreinheit die jeweilige Entfernung zum Ziel herleiten. Die Sensoreinheit 7, welche zur Positionierung des Sensorkopfs 16 herangezogen wird, kann eine optische Sensoreinheit oder eine Sonar-Sensoreinheit sein.
  • Der Sensorkopf 16 kann mehrere Sensoreinheiten 7 aufweisen, welche in Tangentialrichtung verteilt sind, so dass Drehbewegungen des Sensorkopfs 16 bei der Positionierung reduziert sind. In einem vorteilhaften Ausführungsbeispiel sind an dem Sensorkopf 16 sowohl optische Sensoreinheiten als auch Sonar-Sensoreinheiten angeordnet oder auch weitere Sensoreinheiten zur Untersuchung der Umgebung des Unterwasserfahrzeugs 1 vorgesehen. Von den am Sensorkopf 16 angeordneten Sensoreinheiten wird mindestens eine zur Positionierung des Sensorkopfs 16 herangezogen und mit der Positioniereinrichtung 13 verbunden. Dabei kann über die Sensorsignale 8 der zur Positionierung herangezogenen Sensoreinheit 7 auch eine Ausrichtung anderer am Sensorkopf 16 angeordneter Sensoreinheiten erfolgen. Entsprechende Algorithmen können in der Positioniereinrichtung abgelegt sein.
  • In einem bevorzugten Ausführungsbeispiel umfasst der Sensorkopf 16 eine Kamera und ein Laserprojektionssystem sowie ein Aktivsonar (Multibeam-Sonar).
  • Da die Sensorinformationen 8 der Positioniereinrichtung 13 vorgegeben werden und die Positioniereinrichtung 13 die Sensoreinrichtung 7 verstellt und positioniert, wirken die Steuerinformationen auf sich zurück, so dass während der Positioniervorgänge eine Optimierung der Sensorausrichtung erfolgt.
  • Ein Ausführungsbeispiel zur Positionierung der Sensoreinheit 7 ist nachstehend anhand des Flussdiagramms gemäß Fig. 3 erläutert. Ausgehend vom Start erfasst die Positioniereinrichtung die Sensorinformation 8, die Informationen über einen Gegenstand in der Umgebung des Unterwasserfahrzeugs enthalten kann bzw. in der Umgebung eines Gegenstandes enthält. In einer Rechenoperation zur Entfernungsbestimmung 20 wird die Entfernung 21 zu dem Gegenstand ermittelt. Die ermittelte Entfernung 21 wird in einem Vergleichsschritt 22 mit einem vorgegebenen Kriterium 23 bezüglich der Größe der Entfernung verglichen. Das vorgegebene Kriterium 23 kann dabei eine möglichst kleine Entfernung oder eine möglichst große Entfernung oder aber eine andere Angabe zur Entfernung sein. Im Vergleichschritt 22 wird die Entfernung der aktuellen Sensorinformation 8 mit vorher erfassten Werten verglichen. Entspricht die Veränderung der ermittelten Entfernung dem Kriterium nicht, wird ein Stellbefehl 24 an den Stellantrieb 17 gesendet. In dem Fall wird der drehbare Sensorträger weiter verdreht, so dass die Sensoreinheit anders positioniert wird. Sobald die ermittelte Entfernung dem Kriterium genügt, ist die Sensoreinheit optimal positioniert.
  • Das Kriterium 23 wird auf die jeweilige Kontur eines Gegenstands bezogen vorgegeben. Hier wird die Entfernung 21 neben dem Vergleichsschritt 22 in einer Konturermittlung 25 herangezogen. Während des Positioniervorganges, d.h. wenn sich der Sensorträger bewegt, erfasst die Positioniereinrichtung eine Variation von Sensorinformationen 8 aus unterschiedlichen Richtungen. Aus den Sensorinformationen 8 die jeweilige Entfernung 21 zum Gegenstand in der Umgebung des Unterwasserfahrzeugs ermittelt. Aus der so erhaltenen Variation von Entfernungen lässt sich eine Kontur 26 des Gegenstandes in der Umgebung des Unterwasserfahrzeugs herleiten. Eine Kriteriumsvorgabe 27 ermittelt das passende Kriterium 23 der Größe der Entfernung für die ermittelte Kontur 26. Für bestimmte Konturen 26 sind entsprechende Kriterien 23 im Voraus ermittelt und abgespeichert.
  • Durch die Positionierung entsprechend der vorgegebenen Größe der Entfernung 21 wird die Sensoreinheit automatisch in Richtung derjenigen Sensorinformationen 8 ausgerichtet, welche nach dem für die ermittelte Kontur 26 vorgegebenen Kriterium 23 aus der Variation von Sensorinformationen ausgewählt wird. Ausführungsbeispiele für die Ausrichtung der Sensoreinheit nach der ermittelten Entfernung zeigen Fig. 4 und Fig. 5, in denen jeweils eine Draufsicht auf den Sensorkopf 16 eines Unterwasserfahrzeugs dargestellt ist. Im Ausführungsbeispiel gemäß Fig. 4 befindet sich das Unterwasserfahrzeug vor einer flächigen Kontur, bspw. einer senkrechten Hafenwand 28. Sobald die Sensoreinheit 7 des Sensorkopfs 16 die Hafenwand 28 ortet, wird die Sensoreinheit 7 positioniert. Zur Positionierung der Sensoreinheit 7 gegenüber der Wand 28 wird der Sensorkopf 16 in Umfangsrichtung 12 gedreht, wodurch die Sensoreinheit 7 in unterschiedlichen Drehwinkellagen Signale sendet und empfängt und daher die Positioniereinrichtung eine Variation von Sensorinformationen 8, 8', 8", 8"' von der Sensoreinheit 7 aus unterschiedlichen Richtungen erfasst.
  • Zu jeder erfassten Sensorinformation 8, 8', 8", 8"' wird eine Entfernung zu dem Gegenstand, hier der Wand 28, ermittelt. Aus den unterschiedlichen Entfernungen in verschiedenen Richtungen lässt sich die Kontur der Wand 28 in dem Erfassungsbereich der Sensoreinheit bestimmen. Nach der Bestimmung der Kontur des Gegenstands, nämlich hier die ebene Fläche einer Wand 28, wird die Sensoreinheit 7 in eine Drehwinkellage gebracht, welche der Richtung derjenigen Sensorinformation 8, 8', 8", 8"' entspricht, deren ermittelte Entfernung dem vorgegebenen Kriterium für die Größe der Entfernung entspricht, bspw. dem Kriterium der größten Entfernung entspricht. Im gezeigten Ausführungsbeispiel einer ebenen Fläche wird für die Positionierung der Sensoreinheit 7 die kürzeste Entfernung als Kriterium für die Größe der Entfernung vorgegeben.
  • Solange die Entfernungen der aktuellen Sensorinformationen kleiner werden, setzt der Sensorkopf seine Positionierbewegung fort. Das Erreichen des Kriteriums der kleinsten Entfernung wird festgestellt, sobald erstmals eine größer werdende Entfernung festgestellt wird. Die Sensoreinheit 7 wird somit genau frontal vor der Wand positioniert und erfasst dabei einen größtmöglichen Bereich.
  • Die Positionierung der Sensoreinheit 7 erfolgt automatisch und dadurch sehr rasch. Mit der automatischen Positionierung und Justierung der Sensoreinheit lassen sich wechselnde Strukturen erfassen und mehrere Strukturen in kürzerer Zeit abbilden, bspw. senkrechte Wände mit unterschiedlichen Strukturen, Schiffsrümpfe oder auch Überhänge an Unterwassergebirgen. Dabei kann durch die Positionierung des Sensorkopfes auch ein Sektor in der Umgebung des Unterwasserfahrzeugs untersucht werden, welcher in der bisherigen Ausrichtung der Sensoreinheit schlecht erfassbar war. So kann bspw. bei der Untersuchung von Überhängen der Sensor von einer nach unten gerichteten Stellung nach oben gedreht werden. Darüber hinaus sind durch die automatische Positionierung größere Sensorbereiche erfassbar, da die Sensoreinheit selbsttätig in die jeweils optimale Position gegenüber der zu untersuchenden Oberfläche ausgerichtet wird.
  • Die Positionierung der Sensoreinheit 7 erfolgt selbsttätig und unabhängig von einer Bedienperson, so dass bei einem ferngelenkten Unterwasserfahrzeug (ROV) das Fahrzeug weiterhin manuell gesteuert werden kann, während gleichzeitig bei wechselnden Oberflächenstrukturen der zu untersuchenden Gegenstände die Sensoreinheit selbsttätig positioniert wird.
  • Ist die Sensoreinheit 7 ein Sonar, so kann eine Positionierung in einer einfachen Ausgestaltung mit einer Dreipunktmessung erfolgen, wobei Sensorinformationen in drei unterschiedlichen Stellungen des Sensorträgers aufgenommen werden, daraus die jeweilige Entfernung des reflektierenden Gegenstands ermittelt wird. Aus der Variation von drei Entfernungen wird nach dem für die Kontur vorgegebenen Kriterium, also bei einer ebenen Fläche die kürzeste Entfernung, die Richtung der kürzesten Entfernung für die Positionierung der Sensoreinheit ausgewählt. Vorzugsweise werden die Sensorinformationen von einem Mulitbeam-Aktivsonar erfasst, so dass eine Variation vieler Sensorinformationen aus unterschiedlichen Richtungen für die Bestimmung der Kontur bereitgestellt sind.
  • Für unterschiedliche Konturen sind der Positioniereinrichtung unterschiedliche Kriterien für die Bestimmung der Richtung aus der Variation der ermittelte Sensorinformationen und zugeordneten Entfernungen vorgegeben. In Fig. 5 ist beispielhaft eine Situation gezeigt, bei der ein zu untersuchender Gegenstand eine Ecke 29 ausbildet. Diese Situation ist typisch für die Untersuchung von Hafeninstallationen, wo bspw. senkrechte Wände 28 auf einem Grund 30 errichtet sind. Eine genaue Untersuchung und schnelle und präzise Positionierung ist gerade im Bereich des Grundes 30 wünschenswert, um Unterspülungen der Wand 28 festzustellen. Bei der Untersuchung von Ecken 29 wird für diese Kontur die längste Entfernung als Kriterium für die Größe der Entfernung vorgegeben, nach dem die Sensoreinheit 7 positioniert wird.
  • In der bereits zu Fig. 4 beschriebenen Weise wird während einer Bewegung des Sensorkopfes 16 in Umfangsrichtung 12 eine Variation von Sensorinformationen 8, 8', 8" erfasst. Ergibt sich aus einer Auswertung der Sensorinformationen 8, 8', 8" das Vorliegen einer Eckenkontur, so wird als Kriterium für die Positionierung der Sensoreinheit 7 die größte Entfernung vorgegeben. Die Sensoreinheit 7 wird automatisch in die Richtung der Sensorinformation 8 mit der längsten Entfernung zum Unterwassergegenstand positioniert, was genau der Ausrichtung auf die Ecke 29 entspricht.
  • Fig. 6 veranschaulicht die Positionierung einer optischen Sensoreinheit, wobei die Sensoreinheit 7 (Fig. 1 bis 4) ein Lichtbild 31 sendet und eine Projektion 32 des Lichtbilds 31 auf einer zu untersuchenden Wand 28 erfasst. Die Sensoreinheit umfasst hierfür ein Laserprojektionssystem und eine Kamera. Mit der hohen Energiedichte vom Laserlicht lassen sich auch in trüberen Gewässern Lichtbilder 31 auf die zu untersuchenden Strukturen projizieren.
  • Steht die Wand 28 nicht frontal vor der Sensoreinheit, so wird die Projektion 32 verzerrt. Um die Sensoreinheit optimal auf den zu untersuchenden Bereich der Wand 28 auszurichten, wird eine Abweichung der Geometrie der Projektion 32 von dem gesendeten Lichtbild ermittelt und die Sensoreinheit derart positioniert, dass die Projektion 32 möglichst kongruent zu dem ursprünglichen Lichtbild 31 ist. Die (originale) Geometrie des Lichtbilds 31 wird von der Positioniereinrichtung als Kriterium für die Ausrichtung der Sensoreinheit 7 herangezogen.
  • Im gezeigten Ausführungsbeispiel weist das Lichtbild 31 zwei gekreuzte Linienbündel mit jeweils parallelen Linien 33, 34 auf. Diese Linienstrukturen lassen sich präzise mit dem Laserlicht des Laserprojektionssystems darstellen. Bei einer Projektion des Lichtbilds 31 auf eine schräg zur Sensoreinheit liegende Wand 28 wird die Projektion 32 die gekreuzten Linienbündel nicht parallel, sondern schief oder windschief wiedergeben. Aus dem Winkel zwischen den originär parallelen Linien lässt sich die geeignete Ausrichtungsmaßnahme herleiten. Mit dem Lichtbild 31 mit gekreuzten Linienbündeln und der damit erhaltenen zweidimensionalen Information über die Oberfläche der zu untersuchenden Wand 28 kann die Sensoreinheit präzise durch Positionierung im Tangentialrichtung 12 und in Schwenkrichtung 18 (Fig. 1) auf die Struktur der Wand 28 abgestimmt und angepasst werden.
  • Alle in der vorgenannten Figurenbeschreibung, in den Ansprüchen und in der Beschreibungseinleitung genannten Merkmale sind sowohl einzeln als auch in beliebiger Kombination miteinander einsetzbar. Die Offenbarung der Erfindung ist daher nicht auf die beschriebenen bzw. beanspruchten Merkmalskombinationen beschränkt. Vielmehr sind alle Merkmalskombinationen als offenbart zu betrachten.

Claims (15)

  1. Unbemanntes Unterwasserfahrzeug mit mindestens einer Sensoreinheit (7), mittels welcher Sensorinformationen (8, 8', 8", 8") über Gegenstände (28, 29, 30) in der Umgebung des Unterwasserfahrzeugs (1, 1') erfassbar sind,
    dadurch gekennzeichnet, dass
    die mindestens eine Sensoreinheit (7) in einer Tangentialrichtung (12) des Unterwasserfahrzeugs (1, 1') tangential zu einer Langsachse (14) des Unterwasserfahrzeugs (1, 1') oder eine parallel zur Längsachse (14) verlaufenden Achse beweglich angeordnet ist und von einer Positioniereinrichtung (13), der die Sensorinformationen (8, 8', 8", 8"') vorgebbar sind, in der Tangentialrichtung (12) positionierbar ist.
  2. Unbemanntes Unterwasserfahrzeug nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Sensoreinheit (7) auf einem Sensorträger (16, 19) angeordnet ist, welcher in der Tangentialrichtung (12) drehbar an einem Bootskörper (2) des Unterwasserfahrzeugs (1, 1') angeordnet ist, wobei ein Stellantrieb (17) des Sensorträgers (16, 19) an die Positioniereinrichtung (13) steuerbar angeschlossen ist.
  3. Unbemanntes Unterwasserfahrzeug nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    der Sensorträger als drehbarer Sensorkopf (16) ausgebildet ist, welcher an einem Bug (15) des Unterwasserfahrzeugs (1, 1') angeordnet ist.
  4. Unbemanntes Unterwasserfahrzeug nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Sensorträger als Sensorring (19) ausgebildet ist, welcher am Umfang des Bootskörpers (2) drehbar angeordnet ist.
  5. Unbemanntes Unterwasserfahrzeug nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Sensoreinheit (7) in einer Schwenkrichtung (18) tangential zu einer Achse positionierbar ist, die senkrecht zur Längsachse (14) oder senkrecht zu eine parallel in Längsachse (14) verlaufenden Achse verläuft.
  6. Unbemanntes Unterwasserfahrzeug nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    eine aktive Sensoreinheit (7) vorgesehen ist, welche eine Sendeeinheit und eine Empfängereinheit umfasst.
  7. Unbemanntes Unterwasserfahrzeug nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Sensoreinheit (7) optische Sensoren aufweist.
  8. Unbemanntes Unterwasserfahrzeug nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Sensoreinheit (7) akustische Sensoren aufweist.
  9. Verfahren zum Betrieb eines unbemannte Unterwasserfahrzeugs (1, 1'), wobei mit mindestens einer Sensoreinheit (7) Sensorinformationen (8, 8', 8", 8"') über Gegenstände (28, 29, 30) in der Umgebung des Unterwasserfahrzeugs (1, 1') erfasstwerden,
    dadurch gekennzeichnet, dass
    die Sensorinformationen (8, 8', 8", 8"') einer Positioniereinrichtung (13) vorgegeben werden und die Positioniereinrichtung (13) die Sensoreinheit (7) durch Bewegen der Sensoreinheit in einer Tangentialrichtung (12) des Unterwasserfahrzeugs (1, 1') tangential zur Längsachse (14) des Unterwasserfahrzeugs (1, 1') oder eine parallel zur Längsachse (14) verlaufenden Achse positioniert.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass
    die Positioniereinrichtung (13) die Sensoreinheit (7) in einer Schwenkrichtung (18) tangential zu einer Achse positioniert, die senkrecht zur Achse (14) oder senkrecht zu einer parallel zur Längsachse (14) verlaufenden Achse verläuft.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass die Positioniereinrichtung (13) die Sensoreinheit (7) nach einem auf die Sensorinformationen (8, 8', 8", 8"') bezogenen Kriterium (23) positioniert.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, dass
    die Positioniereinrichtung (13) eine Variation von Sensorinformationen (8, 8', 8", 8"') aus unterschiedlichen Richtungen erfasst, die jeweilige Entfernung (21) zum Gegenstand (28, 29, 30) in der Umgebung des Unterwasserfahrzeugs (1, 1') ermittelt und aus der so erhaltenen Variation von Entfernungen (21) eine Kontur (26) des Gegenstandes (28, 29, 30) in der Umgebung des Unterwasserfahrzeugs (1, 1') ermittelt, wobei die Sensoreinheit (7) in Richtung einer der Sensorinformationen (8, 8', 8", 8"') positioniert wird, welche nach einem für die ermittelte Kontur (26) vorgegebenen Kriterium (23) ausgewählt wird.
  13. Verfahren nach Anspruch 11 oder 12,
    dadurch gekennzeichnet, dass
    als Kriterium für die Ausrichtung der Sensoreinheit (7) die Größe der ermittelten Entfernungen (21) herangezogen wird.
  14. Verfahren nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, dass
    die Sensoreinheit (7) ein Lichtbild (31) sendet und eine Projektion (32) des Lichtbilds (21) auf einem Gegenstand (28, 29, 30) erfasst, wobei eine Inkongruenz der Projektion (32) von dem Lichtbild (31) ermittelt und die Geometrie des Lichtbilds (31) als Kriterium für die Positionierung der Sensoreinheit (7) herangezogen wird.
  15. Verfahren nach Anspruch 14,
    gekennzeichnet durch
    ein Lichtbild (31) mit gekreuzten Linienbündeln mit jeweils parallelen Linien (33, 34).
EP11178897.2A 2010-08-31 2011-08-25 Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs Active EP2423101B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010035898A DE102010035898B3 (de) 2010-08-31 2010-08-31 Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs

Publications (3)

Publication Number Publication Date
EP2423101A2 true EP2423101A2 (de) 2012-02-29
EP2423101A3 EP2423101A3 (de) 2018-02-28
EP2423101B1 EP2423101B1 (de) 2019-12-04

Family

ID=44514573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11178897.2A Active EP2423101B1 (de) 2010-08-31 2011-08-25 Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs

Country Status (6)

Country Link
US (1) US8701584B2 (de)
EP (1) EP2423101B1 (de)
JP (1) JP2012051561A (de)
AU (1) AU2011204919B2 (de)
CA (1) CA2747128C (de)
DE (1) DE102010035898B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620367A1 (de) * 2018-09-05 2020-03-11 ATLAS MARIDAN ApS Optische erfassung von fischen in schwärmen

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358320B1 (ko) 2012-07-13 2014-02-11 삼성중공업 주식회사 작업 로봇
DE102012016052A1 (de) * 2012-08-14 2014-02-20 Atlas Elektronik Gmbh Einrichtung und Verfahren zum Abbau von Feststoffen am Meeresgrund
AU2013204965B2 (en) 2012-11-12 2016-07-28 C2 Systems Limited A system, method, computer program and data signal for the registration, monitoring and control of machines and devices
US20140319076A1 (en) * 2013-04-29 2014-10-30 Sergey Galushko Oil spill response submarine and method of use thereof
FR3010799B1 (fr) 2013-09-13 2015-08-28 Thales Sa Systeme de detection et de localisation d'objets immerges flottant entre deux eaux tels que des mines a orins et procede associe
IL228660B (en) 2013-10-01 2020-08-31 Elta Systems Ltd Underwater system and method therefor
WO2015176132A1 (en) * 2014-05-23 2015-11-26 Whitsunday Mooring And Marine Construction Pty Ltd Data capture device and system
JP6591301B2 (ja) * 2016-01-27 2019-10-16 国立研究開発法人産業技術総合研究所 水上ロボットの位置制御システムおよび位置制御方法
US10450040B2 (en) 2017-03-03 2019-10-22 Houston Mechatronics, Inc. Re-configurable subsea robot
FR3066996B1 (fr) 2017-06-02 2022-07-01 Kopadia Systeme collaboratif de vehicules subaquatiques de suivi d'elements lineaires immerges et procede mettant en oeuvre ce systeme
KR102107020B1 (ko) * 2018-01-04 2020-05-06 국방과학연구소 양상태 음향 탐지가 적용된 어뢰 위치 정보 획득 장치 및 방법
CN108759725B (zh) * 2018-03-27 2020-05-08 广船国际有限公司 一种水下轴线测量方法及测量装置
KR101901819B1 (ko) * 2018-04-11 2018-11-07 한국해양과학기술원 Rov 위험 경고 및 충돌방지 시스템 및 방법
DE102018110659A1 (de) * 2018-05-03 2019-11-07 Subdron Gmbh Verfahren zum Steuern eines Unterwasserfahrzeugs
DE102018217211A1 (de) * 2018-10-09 2020-04-09 Siemens Aktiengesellschaft Drohne zur Auslösung von Seeminen mit elektrischem Antrieb
CN109541625B (zh) * 2018-11-27 2020-10-09 中国农业大学 植保无人机飞行参数测量方法及系统
CN111623777B (zh) * 2020-05-12 2021-10-15 清华大学 一种基于场强信息的等值线跟踪方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000501A1 (en) 1985-07-23 1987-01-29 Hydrovision Ltd. View port for an underwater vehicle
DE102004062122B3 (de) 2004-12-23 2005-12-22 Atlas Elektronik Gmbh Verfahren zum Detektieren und Neutralisieren von Unterwasserobjekten

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757725A (en) * 1971-09-24 1973-09-11 Us Navy Right spherical segment-glass shell-to metal-joint
US3880103A (en) * 1972-08-21 1975-04-29 Us Navy Tethered mine hunting system
WO1985003269A1 (en) * 1984-01-17 1985-08-01 John Thomas Pado Remotely operated underwater vehicle
FR2583902A1 (fr) * 1985-06-24 1986-12-26 Cavalero Caroline Dispositif de reperage, de positionnement et de guidage de vehicules automoteurs sous l'eau
DE3908575A1 (de) 1989-03-16 1990-09-20 Laukien Guenther Unterwasserfahrzeug mit einem passiven optischen beobachtungssystem
US5596549A (en) 1995-07-06 1997-01-21 Northrop Grumman Corporation Side look sonar apparatus and method
JP2796086B2 (ja) * 1996-10-28 1998-09-10 運輸省第一港湾建設局長 可搬式水中レーザーテレビ
SE523115C2 (sv) * 2001-07-30 2004-03-30 Martin Pehrson Autonomt system för undervattensinspektion
DE102004055372A1 (de) * 2004-11-08 2006-05-11 Valeo Schalter Und Sensoren Gmbh Einparkhilfe für ein Fahrzeug und Einparkhilfeverfahren
JP4780614B2 (ja) * 2006-04-10 2011-09-28 アルパイン株式会社 車体挙動測定装置
US8220408B2 (en) * 2007-07-31 2012-07-17 Stone William C Underwater vehicle with sonar array
US20100153050A1 (en) * 2008-11-11 2010-06-17 Zumberge Mark A Autonomous Underwater Vehicle Borne Gravity Meter
CA2716451A1 (fr) * 2010-10-01 2012-04-01 Hydro-Quebec Robot submersible de fraisage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000501A1 (en) 1985-07-23 1987-01-29 Hydrovision Ltd. View port for an underwater vehicle
DE102004062122B3 (de) 2004-12-23 2005-12-22 Atlas Elektronik Gmbh Verfahren zum Detektieren und Neutralisieren von Unterwasserobjekten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620367A1 (de) * 2018-09-05 2020-03-11 ATLAS MARIDAN ApS Optische erfassung von fischen in schwärmen

Also Published As

Publication number Publication date
AU2011204919B2 (en) 2012-08-23
AU2011204919A1 (en) 2012-03-15
EP2423101B1 (de) 2019-12-04
US8701584B2 (en) 2014-04-22
JP2012051561A (ja) 2012-03-15
DE102010035898B3 (de) 2012-02-16
US20120048171A1 (en) 2012-03-01
EP2423101A3 (de) 2018-02-28
CA2747128C (en) 2014-07-08
CA2747128A1 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
DE102010035898B3 (de) Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs
DE102010035899B4 (de) Unbemanntes Unterwasserfahrzeug und Verfahren zum Betrieb eines unbemannten Unterwasserfahrzeugs
EP1761759B1 (de) Verfahren zur steuerung einer rohrrevisionsanlage und zur auswertung der revisionsdaten
EP2435998A1 (de) Verfahren zur rechnergestützten steuerung eines schiffes
EP2838788B1 (de) Bergeverfahren zum bergen eines unterwasserfahrzeugs, bergevorrichtung, unterwasserfahrzeug und u-boot
EP1827964B1 (de) Verfahren zum detektieren und neutralisieren von unterwasserobjekten
EP2830934B1 (de) Unterwasserarbeitssystem und verfahren zum betrieb eines unterwasserarbeitssystems
WO2006042665A1 (de) Verfahren zur bestimmung von deichsel- und trailerwinkel
WO2010007115A2 (de) System und verfahren zur kollisionsvermeidung
EP2471707A2 (de) Kopplungskopf, Kopplungseinrichtung mit Kopplungskopf, daran ankoppelbarer Rendezvouskopf, Rendezvouseinrichtung mit Rendezvouskopf, Unterwasserfahrzeug damit, Kopplungssystem, Kopplungsverfahren und Einsatzverfahren für ein Unterwasserfahrzeug
DE202012100128U1 (de) Erfassungssystem zur Informationsgewinnung in rohrartigen Elementen
EP1827965A1 (de) Einrichtung und verfahren zum tracken eines unterwasserfahrzeugs
WO2013139563A1 (de) Abstandsermittlungsverfahren, abstandsregelverfahren und verfahren zum untersuchen eines gefluteten tunnels damit sowie abstandsermittlungseinrichtung, abstandsregeleinrichtung und unterwasserfahrzeug damit
EP2440449B1 (de) Verfahren zum aufspüren von anomalien an einem unterwasserobjekt
EP3722197A1 (de) System zur bewegungskompensation zwischen zwei objekten, fahrzeug mit dem system, feststehende struktur mit dem system und verfahren mit dem system
EP1798621B1 (de) System zum führen und operieren eines Fahrzeugs ohne Fahrer
EP3599510B1 (de) Hohlrauminspektionssystem
EP1915239B1 (de) Verfahren zum erzeugen eines umgebungsbildes
DE102019135340A1 (de) Verfahren sowie 3D-Sensoreinheit zum Bestimmen von dreidimensionalen Koordinaten von Punkten auf der Oberfläche eines Objekts
DE102018215052B3 (de) Optische Erfassung von Fischen in Schwärmen
DE102019211674A1 (de) Verfahren und Vorrichtung zum Ausgeben eines Steuersignals an eine Einheit einer mobilen Arbeitsmaschine, insbesondere einer Hubarbeitsbühne
EP4284012A1 (de) Verfahren zur steuerung einer kamera eines kanalrohrinspektionsgerätes
DE3213709A1 (de) Vorrichtung zur erfassung eines im wasser befindlichen objektes und zur relativen vermessung des objektes unter ausnutzung von referenzobjekten
DE102011000509A1 (de) Verfahren zum Aufnehmen eines verlegbaren Brückenelements und Brückenverlegefahrzeug
DE19726999A1 (de) Verfahren zum horizontalen Ausrichten der Empfangsebene eines Aktivsonars

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B63G 8/38 20060101ALI20180123BHEP

Ipc: B63C 11/42 20060101AFI20180123BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATLAS ELEKTRONIK GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180828

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190612

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20191021

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1209064

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016292

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016292

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011016292

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200825

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200825

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1209064

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 13

Ref country code: GB

Payment date: 20230822

Year of fee payment: 13