EP2420443A1 - Electric nacelle drive for a floating device with internal stator cooling - Google Patents

Electric nacelle drive for a floating device with internal stator cooling Download PDF

Info

Publication number
EP2420443A1
EP2420443A1 EP11165672A EP11165672A EP2420443A1 EP 2420443 A1 EP2420443 A1 EP 2420443A1 EP 11165672 A EP11165672 A EP 11165672A EP 11165672 A EP11165672 A EP 11165672A EP 2420443 A1 EP2420443 A1 EP 2420443A1
Authority
EP
European Patent Office
Prior art keywords
space
stator
underwater housing
drive
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11165672A
Other languages
German (de)
French (fr)
Other versions
EP2420443B1 (en
Inventor
Dierk SCHRÖDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2420443A1 publication Critical patent/EP2420443A1/en
Application granted granted Critical
Publication of EP2420443B1 publication Critical patent/EP2420443B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • B63H21/383Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like for handling cooling-water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1258Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors

Definitions

  • the invention relates to an electric nacelle drive for a floating device such as a ship or an offshore platform according to the preamble of patent claim 1;
  • a pod drive is for example from the DE 877 254 C known.
  • Electric pod drives are mostly used as a propulsion drive for larger floating equipment, e.g. Ships and offshore platforms, and are often referred to as pod drives, thrusters or rudder propellers. They are rotatable by means of a shaft on a body of the floating device, e.g. mounted in the stern of a ship, and typically have a power of more than 0.5 MW, usually from about 0.5 to 30 MW.
  • Electric nacelle propulsion systems typically include a gondola underwater housing circumscribed by water having a propeller shaft rotatably mounted therein with at least one propeller disposed thereon and an electric motor disposed in the underwater housing having a stator and a rotor for driving the propeller shaft.
  • On the propeller shaft can be arranged at both ends in each case a propeller.
  • the propellers can be driven in the same direction or in opposite directions by means of a gearbox.
  • a pod drive may also include two electric motors disposed in the underwater housing, each driving a propeller shaft with a propeller disposed thereon.
  • the electric motors in such gondola drives must be characterized by the smallest possible diameter and low speed with the highest possible torque. This requires special measures to dissipate the resulting engine heat, especially at high power levels.
  • One way to dissipate engine heat is to circulate air axially around the engine in a housing and recool this air in the vessel.
  • a relatively large space between the stator and the underwater housing is required, which leads to an increase in the diameter of the underwater housing, and large air ducts must be guided by the shaft and a twisting device for rotating the nacelle drive.
  • a relatively large recooling device is needed in the floating device, which must be near the nacelle drive, where there is often no space (e.g., for landing craft and ferries).
  • Another possibility is to dehumidify the engine directly via the underwater housing through the water flowing around the underwater housing.
  • the stator is pressed directly into the underwater housing.
  • the stator housing particularly good heat conducting materials must be used.
  • a pod drive is known in which there is a ring-shaped gap between a housing of the engine and the underwater housing, which is flowed through by the gondola flooding water, so that the heat of the engine is dissipated.
  • the problem here is that the gondola flooding water can lead to impurities that can clog the gap and thus can lead to losses in heat dissipation.
  • the gondola flooding water may have different temperatures depending on the location of the floating device. A heat dissipation over the gondola flooding water can therefore not be sufficient at high power.
  • the space in which flows for cooling the motor a cooling liquid for which the underwater housing flowing around water, i. the engine is not cooled directly by the water flowing around the underwater housing. Instead, heat is transferred from the stator via the cooling liquid in the space to the portion of the underwater housing that defines the space and thence to the water that flows around the underwater housing. Since the water flowing around the underwater housing does not flow in the room, it is possible to prevent clogging of the room by contaminants.
  • a liquid coolant the comparatively better heat transfer capacity of liquids to air is used for good heat dissipation.
  • a rapid distribution of heat over a large area can be carried out, which can be avoided overheating punctual.
  • Another advantage over a direct heat dissipation through the underwater housing is that it is more independent of the temperature of the water flowing around the underwater housing and the cooling of the engine can be tested without this water.
  • the space extends in the longitudinal direction of the stator over at least the entire length of the stator, preferably including winding heads of the stator. This creates a large cooling surface for good heat dissipation of the engine.
  • a particularly good heat dissipation is possible if the space in the circumferential direction of the stator extends over at least a major part of its circumference, preferably even over its entire circumference.
  • the stator is supported on the housing via a plurality of support elements that run through the space.
  • the support elements can also be used to stiffen the housing and the motor arranged therein.
  • the support elements can be of particular advantage for the steering of the cooling liquid in the room.
  • the support elements are designed for this purpose as ribs, which preferably extend in the longitudinal direction of the motor.
  • the removal of the other part of the engine heat can then take place via a cooling circuit which is connected to the room.
  • the refrigeration cycle may comprise a heat exchanger, e.g. a double-walled shaft of the nacelle drive, which is cooled by seawater.
  • the heat exchanger can also be arranged in the floating device and connected via a pipe power system.
  • the cooling liquid is distilled water.
  • Conductivity measurement of the distilled water makes it very easy to monitor the cooling for a leak. If necessary, an antifreeze can be added to the water for ice travel.
  • the electric motor is designed as a permanent magnetically excited motor, since such motors generate comparatively little heat.
  • FIG. 1 shows in a simplified and schematic representation a longitudinal section through a nacelle drive 1, which serves as a drive device for a floating device, such as a ship or an offshore platform, and this purpose is rotatably mounted about an axis A on the hull of the floating device 2.
  • a gondola drive is often referred to as a rudder propeller or pod drive and usually has a drive power of 0.5 to 30 MW.
  • the nacelle drive 1 comprises a hydrodynamically optimized designed underwater housing 3, which is arranged by means of a shaft 4 rotatably mounted on the hull of the floating device 2.
  • a propeller shaft 5 is rotatably supported by bearing 6 within the housing 3 and led out of the housing 3.
  • On the propeller shaft 5 is seated at both ends in each case a arranged outside the housing 3 propeller 7.
  • the propeller shaft 5 is driven by a likewise disposed within the housing 3 electric motor 8.
  • the two propellers 7 are driven by the motor 8 in the same direction.
  • the two propellers 7 can also be driven in opposite directions by means of a transmission arranged in the underwater housing 3.
  • two electric motors arranged back to back in the underwater housing 3 may also be present, each of which has an electric motor Propeller shaft drive only one of the two propellers 7.
  • the electric motor 8 comprises a stator 9 and a rotator or rotor 10 connected in a rotationally fixed manner to the shaft 5.
  • the electric motor 8 is preferably a motor permanently magnetically excited on the rotor side.
  • the housing 3 in this case has two end portions 13, which form the end face of the housing 3 and in which the propeller shaft 5 is rotatably mounted, and arranged between the two end portions 13 central housing portion 14, which forms the peripheral surface of the housing 3 and in its area the motor 8 is arranged.
  • a space 15 is formed between the stator 9 and the central housing portion 14 of the underwater housing 3, which is bounded for the most part by the stator 9 and a designated 16 portion of the underwater housing and in which for cooling the motor 8, a cooling liquid, preferably distilled water, circulated. If necessary, an anti-freeze agent may be added to the water for ice travel.
  • a cooling liquid preferably distilled water
  • the space 15 is closed for the water flowing around the underwater housing, i. this water can not flow through the space 15.
  • cooling liquid Via the circulating between the outer diameter of the stator 9 and the inner diameter of the central housing portion 14 cooling liquid is a heat transfer from the stator 9 to the portion 16 of the underwater housing, which limits the space 15, and from there to the underwater housing 3 around flowing water.
  • the space 15 extends in the longitudinal direction of the stator 9 over the entire length of the stator 9 including the winding heads of the stator and in the circumferential direction of the stator 9 over its entire peripheral surface. Through the space 15 is thus a cooling liquid ring is formed around the electric motor 8.
  • this can - as in the case of the embodiment - be difficult in the region of the connection of the housing 3 to the shaft 4.
  • the outer surface of the underwater housing 3 flowed around by water increases and thus good heat dissipation to the water flowing around can be achieved.
  • the stator 9 is supported on the housing 3 via a plurality of support elements 17 which extend through the space 15.
  • the support elements 17 are formed as ribs extending in the longitudinal direction of the motor 8 and stator 9.
  • the support members 17 are used for torque transmission from the motor 8 to the housing 3, for guiding the cooling liquid in the space 15 and for stiffening the entire arrangement.
  • the motor 8 may be positively or frictionally connected to the support members 17.
  • the stator 9 can be fixed in the housing 3 by shrinking into a housing 3 provided with the support elements 17.
  • FIG. 3 is shown in a partial plan view of the space 15 and the underlying stator 9, are formed by the arrangement and the course of the rib-shaped support members 17 in the space 15 channels for the cooling liquid through which the cooling liquid in the longitudinal direction of the stator 9 alternately from a End of the stator 9 flows to the other end of the stator 9.
  • the cooling liquid is deflected by passages 18 at the ends of the stator 9 in each case by 180 ° in its flow direction.
  • a part of the engine heat can be dissipated via a cooling circuit 20 which is connected to the space 15 and comprising a pump 21 and a heat exchanger 22 for a re-cooling of the cooling liquid.
  • the heat exchanger 22 may for example be designed by a double wall of the shaft 4, which is cooled by the water flowing around the shaft 4.
  • the heat exchanger 22 may also be arranged in the floating device heat exchanger which is connected via a piping system. It is also possible to carry out the recooling via a refrigeration unit (air conditioning).
  • the stator 9 is usually constructed from a plurality of individual components, here for example a stator tube 9a with iron teeth 9b, in which stator windings with winding heads 9c are inserted.
  • the stator 9 with the cooling chamber 15 with the rib-shaped support elements 17 may together with a cable connection box 31 and parts of the underwater housing 3 also form a unit 30, attached to the not shown flanges of the shaft 4 and the bilge hoods 34 of the underwater housing 3 of the nacelle drive can be.

Abstract

The nacelle drive (1) comprises a water flow around underwater housing (3) having propeller shaft (5) with a propeller (7). An electric motor (8) having a stator (9) and a rotor (10), is arranged with underwater housing for driving the propeller shaft, where a space (15) is designed between the stator and the underwater housing. The space is closed for flowing water around the underwater housing.

Description

Die Erfindung betrifft einen elektrischen Gondelantrieb für eine schwimmende Einrichtung wie z.B. ein Schiff oder eine Offshore-Platform gemäß Oberbegriff des Patentanspruchs 1; ein derartiger Gondelantrieb ist beispielsweise aus der DE 877 254 C bekannt.The invention relates to an electric nacelle drive for a floating device such as a ship or an offshore platform according to the preamble of patent claim 1; Such a pod drive is for example from the DE 877 254 C known.

Elektrische Gondelantriebe dienen zumeist als Propulsionsantrieb für größere schwimmende Einrichtungen, wie z.B. Schiffe und Offshore-Plattformen, und werden häufig auch als Pod-Antriebe, Thruster oder als Ruderpropeller bezeichnet. Sie werden mittels eines Schafts drehbar an einem Rumpf der schwimmenden Einrichtung, z.B. im Heck eines Schiffes, angebracht und haben typischerweise eine Leistung von mehr als 0.5 MW, meist von ca. 0.5 bis 30 MW.Electric pod drives are mostly used as a propulsion drive for larger floating equipment, e.g. Ships and offshore platforms, and are often referred to as pod drives, thrusters or rudder propellers. They are rotatable by means of a shaft on a body of the floating device, e.g. mounted in the stern of a ship, and typically have a power of more than 0.5 MW, usually from about 0.5 to 30 MW.

Elektrische Gondelantriebe umfassen üblicherweise ein von Wasser umströmtes gondelförmiges Unterwassergehäuse mit einer darin drehbar gelagerten Propellerwelle mit zumindest einem daran angeordneten Propeller und mit einem in dem Unterwassergehäuse angeordneten elektrischen Motor mit einem Stator und einem Läufer zum Antrieb der Propellerwelle. Auf der Propellerwelle kann dabei auch zu beiden Enden jeweils ein Propeller angeordnet sein. Die Propeller können dabei gleichsinnig oder mittels eines Getriebes auch gegensinnig angetrieben sein. Ein Gondelantrieb kann auch zwei in dem Unterwassergehäuse angeordnete elektrische Motoren umfassen, die jeweils eine Propellerwelle mit einem daran angeordneten Propeller antreiben.Electric nacelle propulsion systems typically include a gondola underwater housing circumscribed by water having a propeller shaft rotatably mounted therein with at least one propeller disposed thereon and an electric motor disposed in the underwater housing having a stator and a rotor for driving the propeller shaft. On the propeller shaft can be arranged at both ends in each case a propeller. The propellers can be driven in the same direction or in opposite directions by means of a gearbox. A pod drive may also include two electric motors disposed in the underwater housing, each driving a propeller shaft with a propeller disposed thereon.

Die elektrischen Motoren in solchen Gondelantrieben müssen sich durch einen möglichst geringen Durchmesser und geringe Drehzahl bei einem möglichst hohen Drehmoment auszeichnen. Dies erfordert besonders bei hohen Leistungen besondere Maßnahmen zur Abfuhr der dabei entstehenden Motorwärme.The electric motors in such gondola drives must be characterized by the smallest possible diameter and low speed with the highest possible torque. This requires special measures to dissipate the resulting engine heat, especially at high power levels.

Eine Möglichkeit zur Abfuhr der Motorwärme besteht darin, in einem Kreislauf Luft axial um den Motor herum im Gehäuse zu führen und diese Luft im Schiff rückzukühlen. Für die Luftführung wird jedoch ein verhältnismäßig großer Raum zwischen dem Stator und dem Unterwassergehäuse benötigt, der zu einer Vergrößerung des Durchmessers des Unterwassergehäuses führt, und es müssen große Luftkanäle durch den Schaft und eine Verdreheinrichtung zur Drehung des Gondelantriebs geführt werden. Außerdem wird eine verhältnismäßig große Rückkühleinrichtung in der schwimmenden Einrichtung benötigt, die sich in der Nähe des Gondelantriebs befinden muss, wo oftmals (z.B. bei Landungsschiffen und Fähren) kein Platz vorhanden ist.One way to dissipate engine heat is to circulate air axially around the engine in a housing and recool this air in the vessel. However, for the air guide, a relatively large space between the stator and the underwater housing is required, which leads to an increase in the diameter of the underwater housing, and large air ducts must be guided by the shaft and a twisting device for rotating the nacelle drive. In addition, a relatively large recooling device is needed in the floating device, which must be near the nacelle drive, where there is often no space (e.g., for landing craft and ferries).

Eine weitere Möglichkeit besteht darin, den Motor direkt über das Unterwassergehäuse durch das das Unterwassergehäuse umströmende Wasser zu entwärmen. Hierzu wird der Stator direkt in das Unterwassergehäuse eingepresst. Für das Statorgehäuse müssen dabei besonders gut wärmeleitende Materialien zum Einsatz kommen.Another possibility is to dehumidify the engine directly via the underwater housing through the water flowing around the underwater housing. For this purpose, the stator is pressed directly into the underwater housing. For the stator housing particularly good heat conducting materials must be used.

Aus der DE 877 254 C ist ein Gondelantrieb bekannt, bei dem zwischen einem Gehäuse des Motors und dem Unterwassergehäuse ein ringförmiger Zwischenraum vorhanden ist, der von dem die Gondel überflutenden Wasser durchströmt wird, so dass die Wärme des Motors abgeführt wird. Problematisch ist hierbei, dass das die Gondel überflutende Wasser Verunreinigungen mit sich führen kann, die den Zwischenraum verstopfen können und somit zu Einbußen in der Wärmeabfuhr führen können. Weiterhin kann das die Gondel überflutende Wasser je nach Standort der schwimmenden Einrichtung unterschiedliche Temperaturen aufweisen. Eine Wärmeabfuhr über das die Gondel überflutende Wasser kann bei hohen Leistungen deshalb nicht ausreichend sein kann.From the DE 877 254 C a pod drive is known in which there is a ring-shaped gap between a housing of the engine and the underwater housing, which is flowed through by the gondola flooding water, so that the heat of the engine is dissipated. The problem here is that the gondola flooding water can lead to impurities that can clog the gap and thus can lead to losses in heat dissipation. Furthermore, the gondola flooding water may have different temperatures depending on the location of the floating device. A heat dissipation over the gondola flooding water can therefore not be sufficient at high power.

Ausgehend hiervon ist es Aufgabe vorliegender Erfindung, einen Gondelantrieb anzugeben, der mit geringem konstruktiven Aufwand und ohne nennenswerte Vergrößerung des Durchmessers des Unterwassergehäuses eine zuverlässige Entwärmung des Motors, insbesondere in hohen Leistungsbereichen von über 5 MW, ermöglicht.Proceeding from this, it is an object of the present invention to provide a nacelle drive, which allows for low design complexity and without significant increase in the diameter of the underwater housing reliable cooling of the engine, especially in high power ranges of over 5 MW.

Die Lösung dieser Aufgabe gelingt durch einen Gondelantrieb gemäß Patentanspruch 1. Vorteilhafte Ausgestaltungen sind jeweils Gegenstand der Unteransprüche.The solution of this problem is achieved by a nacelle drive according to claim 1. Advantageous embodiments are the subject of the dependent claims.

Erfindungsgemäß ist der Raum, in dem zur Kühlung des Motors eine Kühlflüssigkeit strömt, für das das Unterwassergehäuse umströmende Wasser verschlossen, d.h. der Motor wird nicht direkt von dem das Unterwassergehäuse umströmende Wasser gekühlt. Stattdessen erfolgt eine Wärmeübertragung von dem Stator über die Kühlflüssigkeit in dem Raum an den Abschnitt des Unterwassergehäuses, der den Raum begrenzt, und von dort an das Wasser, welches das Unterwassergehäuse umströmt. Da in dem Raum nicht das das Unterwassergehäuse umströmende Wasser fließt, kann eine Verstopfung des Raumes durch Verunreinigungen vermieden werden. Auf der anderen Seite wird durch die Verwendung eines flüssigen Kühlmittels die vergleichsweise bessere Wärmeübertragungskapazität von Flüssigkeiten gegenüber Luft für eine gute Wärmeabfuhr genutzt. Mit Hilfe einer strömenden Kühlflüssigkeit kann zudem eine schnelle Verteilung der Wärme über eine große Fläche erfolgen, wodurch sich punktuelle Überhitzungen vermeiden lassen. Ein weiterer Vorteil gegenüber einer direkten Entwärmung über das Unterwassergehäuse liegt darin, dass in größerem Maße eine Unabhängigkeit gegenüber der Temperatur des das Unterwassergehäuse umströmenden Wassers besteht und die Kühlung des Motors kann dabei auch ohne dieses Wasser getestet werden.According to the invention, the space in which flows for cooling the motor, a cooling liquid for which the underwater housing flowing around water, i. the engine is not cooled directly by the water flowing around the underwater housing. Instead, heat is transferred from the stator via the cooling liquid in the space to the portion of the underwater housing that defines the space and thence to the water that flows around the underwater housing. Since the water flowing around the underwater housing does not flow in the room, it is possible to prevent clogging of the room by contaminants. On the other hand, by using a liquid coolant, the comparatively better heat transfer capacity of liquids to air is used for good heat dissipation. In addition, with the help of a flowing cooling liquid, a rapid distribution of heat over a large area can be carried out, which can be avoided overheating punctual. Another advantage over a direct heat dissipation through the underwater housing is that it is more independent of the temperature of the water flowing around the underwater housing and the cooling of the engine can be tested without this water.

Durch die erfindungsgemäßen Maßnahmen ist im Vergleich zu einer direkten Entwärmung über das Unterwassergehäuse keine nennenswerte Vergrößerung des Durchmessers des Unterwassergehäuses nötig. Im Vergleich zu einer Luftkühlung ist ein wesentlich geringerer Durchmesser des Unterwassergehäuses notwendig, so dass bei gleichbleibendem Gehäusedurchmesser die Leistung des elektrischen Motors vergrößert werden kann. Da keine direkte Wärmeübertragung von dem Stator an das Unterwassergehäuse, sondern nur eine indirekte Wärmeübertragung über die strömende Kühlflüssigkeit an das Unterwassergehäuse erfolgt, muss der Stator nicht in das Gehäuse eingepresst werden und es entfallen sämtliche Maßnahmen zur Herstellung einer guten direkten thermischen Verbindung zwischen Stator und Unterwassergehäuse. Hierdurch ist eine einfache Herstellung des Gondelantriebs möglich und es können kostengünstige Materialien für das Unterwassergehäuse zum Einsatz kommen (z.B. eine Schweißkonstruktion aus Standardmaterialien anstatt eines Bronzegusses).Due to the measures according to the invention no appreciable increase in the diameter of the underwater housing is necessary in comparison to a direct heat dissipation through the underwater housing. Compared to air cooling is essential smaller diameter of the underwater housing necessary, so that with the same housing diameter, the power of the electric motor can be increased. Since no direct heat transfer from the stator to the underwater housing, but only an indirect heat transfer via the flowing cooling liquid to the underwater housing, the stator does not have to be pressed into the housing and it eliminates all measures to establish a good direct thermal connection between the stator and underwater housing , As a result, a simple production of the nacelle drive is possible and inexpensive materials for the underwater housing can be used (eg a welded construction of standard materials instead of a bronze casting).

Gemäß einer vorteilhaften Ausgestaltung erstreckt sich der Raum in Längsrichtung des Stators mindestens über die gesamte Länge des Stators, vorzugsweise einschließlich von Wickelköpfen des Stators. Hierdurch wird eine große kühlende Oberfläche für eine gute Wärmeabfuhr des Motors geschaffen.According to an advantageous embodiment, the space extends in the longitudinal direction of the stator over at least the entire length of the stator, preferably including winding heads of the stator. This creates a large cooling surface for good heat dissipation of the engine.

Eine besonders gute Wärmeabfuhr ist möglich, wenn sich der Raum in Umfangsrichtung des Stators zumindest über einen größten Teil von dessen Umfang, vorzugsweise sogar über dessen gesamten Umfang, erstreckt.A particularly good heat dissipation is possible if the space in the circumferential direction of the stator extends over at least a major part of its circumference, preferably even over its entire circumference.

Gemäß einer vorteilhaften Ausgestaltung stützt sich der Stator über mehrere Stützelemente, die durch den Raum verlaufen, an dem Gehäuse ab. Hierdurch ist eine gute Drehmomentenübertragung zwischen dem Motor und dem Unterwassergehäuse mölich. Durch die Stützelemente kann auch eine Versteifung des Gehäuses und des darin angeordneten Motors erfolgen. Außerdem können die Stützelemente von besonderem Vorteil zur Lenkung der Kühlflüssigkeit in dem Raum dienen.According to an advantageous embodiment, the stator is supported on the housing via a plurality of support elements that run through the space. As a result, a good torque transmission between the engine and the underwater housing is possible. The support elements can also be used to stiffen the housing and the motor arranged therein. In addition, the support elements can be of particular advantage for the steering of the cooling liquid in the room.

Gemäß einer besonders vorteilhaften Ausgestaltung sind die Stützelemente hierzu als Rippen ausgebildet, die sich vorzugsweise in Längsrichtung des Motors erstrecken.According to a particularly advantageous embodiment, the support elements are designed for this purpose as ribs, which preferably extend in the longitudinal direction of the motor.

Gemäß einer weiteren besonders vorteilhaften Ausgestaltung erfolgt die Abfuhr der gesamten Motorwärme über die Kühlflüssigkeit in dem Raum an den Abschnitt des Unterwassergehäuses, der den Raum begrenzt, und von dort an das das Unterwassergehäuse umströmende Wasser.According to a further particularly advantageous embodiment, the removal of the entire engine heat via the cooling liquid in the room to the portion of the underwater housing which limits the space, and from there to the water flowing around the underwater housing.

Alternativ kann die Abfuhr nur eines Teils der gesamten Motorwärme über die Kühlflüssigkeit in dem Raum an den Abschnitt des Unterwassergehäuses, der den Raum begrenzt, und von dort an das das Unterwassergehäuse umströmende Wasser erfolgen. Die Abfuhr des anderen Teils der Motorwärme kann dann über einen Kühlkreislauf erfolgen, der an dem Raum angeschlossen ist. Der Kühlkreislauf kann einen Wärmetauscher umfassen, der z.B. ein doppelwandiger Schaft des Gondelantriebs ist, der durch Seewasser gekühlt wird. Der Wärmetauscher kann aber auch in der schwimmenden Einrichtung angeordnet und über ein Rohrleistungssystem angebunden sein. Außerdem ist es auch möglich, eine Rückkühlung über eine Kühlaggregat (Klimaanlage) durchzuführen. Ein derartiger Kühlkreislauf kann ggf. auch noch nachgerüstet werden.Alternatively, the removal of only a portion of the total engine heat via the cooling liquid in the room to the portion of the underwater housing which limits the space, and from there to the water flowing around the underwater housing. The removal of the other part of the engine heat can then take place via a cooling circuit which is connected to the room. The refrigeration cycle may comprise a heat exchanger, e.g. a double-walled shaft of the nacelle drive, which is cooled by seawater. However, the heat exchanger can also be arranged in the floating device and connected via a pipe power system. In addition, it is also possible to perform a re-cooling via a refrigeration unit (air conditioning). If necessary, such a cooling circuit can also be retrofitted.

Gemäß einer besonders vorteilhaften Ausgestaltung ist die Kühlflüssigkeit destilliertes Wasser. Durch eine Leitfähigkeitsmessung des destillierten Wassers kann die Kühlung sehr einfach auf ein Leck überwacht werden. Für eine Eisfahrt kann dem Wasser ggf. noch ein Frostschutzmittel zugesetzt werden.According to a particularly advantageous embodiment, the cooling liquid is distilled water. Conductivity measurement of the distilled water makes it very easy to monitor the cooling for a leak. If necessary, an antifreeze can be added to the water for ice travel.

Bevorzugt ist der elektrische Motor als ein permanentmagnetisch erregter Motor ausgebildet, da derartige Motoren vergleichsweise wenig Wärme erzeugen.Preferably, the electric motor is designed as a permanent magnetically excited motor, since such motors generate comparatively little heat.

Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß Merkmalen der Unteransprüche werden im Folgenden anhand von Ausführungsbeispielen in den Figuren näher erläutert. Darin zeigen:

FIG 1
in vereinfachter Darstellung einen Längsschnitt durch einen an einer schwimmenden Einrichtung angeordneten erfindungsgemäßen Gondelantrieb,
FIG 2
einen Querschnitt entlang der Linie II - II des Gondelantriebs von FIG 1,
FIG 3
eine besonders vorteilhafte Anordnung von Stützelementen zwischen Stator und Unterwassergehäuse und
FIG 4
eine Baueinheit für einen Gondelantrieb mit einem zusätzlichen Kühlkreislauf.
The invention and further advantageous embodiments of the invention according to features of the subclaims are explained in more detail below with reference to exemplary embodiments in the figures. Show:
FIG. 1
in a simplified representation of a longitudinal section through an arranged on a floating device according to the invention nacelle drive,
FIG. 2
a cross section along the line II - II of the nacelle drive of FIG. 1 .
FIG. 3
a particularly advantageous arrangement of support elements between the stator and underwater housing and
FIG. 4
a unit for a nacelle drive with an additional cooling circuit.

Die Figur 1 zeigt in vereinfachter und schematischer Darstellung einen Längsschnitt durch einen Gondelantrieb 1, der als Antriebseinrichtung für eine schwimmende Einrichtung, wie z.B. ein Schiff oder eine Offshore-Plattform, dient und hierzu um eine Achse A drehbar am Rumpf der schwimmenden Einrichtung 2 befestigt ist. Ein derartiger Gondelantrieb wird häufig auch als Ruderpropeller oder als Pod-Antrieb bezeichnet und hat üblicherweise eine Antriebsleistung von 0,5 bis 30 MW.The FIG. 1 shows in a simplified and schematic representation a longitudinal section through a nacelle drive 1, which serves as a drive device for a floating device, such as a ship or an offshore platform, and this purpose is rotatably mounted about an axis A on the hull of the floating device 2. Such a gondola drive is often referred to as a rudder propeller or pod drive and usually has a drive power of 0.5 to 30 MW.

Der Gondelantrieb 1 umfasst ein hydrodynamisch optimiert gestaltetes Unterwassergehäuse 3, das mittels eines Schaftes 4 drehbar an dem Rumpf der schwimmenden Einrichtung 2 angeordnet ist. Eine Propellerwelle 5 ist mittels Lager 6 drehbar innerhalb des Gehäuses 3 gelagert und aus dem Gehäuse 3 herausgeführt. Auf der Propellerwelle 5 sitzt zu beiden Enden jeweils ein außerhalb des Gehäuses 3 angeordneter Propeller 7. Die Propellerwelle 5 wird von einem ebenfalls innerhalb des Gehäuses 3 angeordneten elektrischen Motor 8 angetrieben. In diesem Ausführungsbeispiel werden die beiden Propeller 7 durch den Motor 8 gleichsinnig angetrieben. Es sind jedoch auch andere Ausführungsformen möglich. Beispielsweise können die beiden Propeller 7 mittels eines in dem Unterwassergehäuse 3 angeordneten Getriebes auch gegensinnig angetrieben werden. Statt eines einzigen elektrischen Motors 8 können auch zwei Rücken an Rücken in dem Unterwassergehäuse 3 angeordnete elektrische Motoren vorhanden sein, die jeweils über eine Propellerwelle nur einen einzigen der beiden Propeller 7 antreiben.The nacelle drive 1 comprises a hydrodynamically optimized designed underwater housing 3, which is arranged by means of a shaft 4 rotatably mounted on the hull of the floating device 2. A propeller shaft 5 is rotatably supported by bearing 6 within the housing 3 and led out of the housing 3. On the propeller shaft 5 is seated at both ends in each case a arranged outside the housing 3 propeller 7. The propeller shaft 5 is driven by a likewise disposed within the housing 3 electric motor 8. In this embodiment, the two propellers 7 are driven by the motor 8 in the same direction. However, other embodiments are possible. For example, the two propellers 7 can also be driven in opposite directions by means of a transmission arranged in the underwater housing 3. Instead of a single electric motor 8, two electric motors arranged back to back in the underwater housing 3 may also be present, each of which has an electric motor Propeller shaft drive only one of the two propellers 7.

Der elektrische Motor 8 umfasst einen Stator 9 und einen drehfest mit der Welle 5 verbundenen Läufer oder Rotor 10. Bei dem elektrischen Motor 8 handelt es sich vorzugsweise um einen läuferseitig permanentmagnetisch erregten Motor.The electric motor 8 comprises a stator 9 and a rotator or rotor 10 connected in a rotationally fixed manner to the shaft 5. The electric motor 8 is preferably a motor permanently magnetically excited on the rotor side.

Das Gehäuse 3 weist dabei zwei Endabschnitte 13 auf, die die Stirnfläche des Gehäuses 3 bilden und in denen die Propellerwelle 5 drehbar gelagert ist, und einen zwischen den beiden Endabschnitten 13 angeordneten zentralen Gehäuseabschnitt 14, der die Umfangsfläche des Gehäuses 3 bildet und in dessen Bereich der Motor 8 angeordnet ist.The housing 3 in this case has two end portions 13, which form the end face of the housing 3 and in which the propeller shaft 5 is rotatably mounted, and arranged between the two end portions 13 central housing portion 14, which forms the peripheral surface of the housing 3 and in its area the motor 8 is arranged.

Wie in FIG 1 und in einem Querschnitt entlang der Linie II - II im Detail in FIG 2 gezeigt ist, ist zwischen dem Stator 9 und dem zentralen Gehäuseabschnitts 14 des Unterwassergehäuses 3 ein Raum 15 ausgebildet, der zum großen Teil von dem Stator 9 und einem mit 16 bezeichneten Abschnitt des Unterwassergehäuses begrenzt ist und in dem zur Kühlung des Motors 8 eine Kühlflüssigkeit, vorzugsweise destilliertes Wasser, zirkuliert. Für eine Eisfahrt kann dem Wasser ggf. ein Fristschutzmittel zugesetzt sein.As in FIG. 1 and in a cross section along the line II - II in detail in FIG. 2 is shown, a space 15 is formed between the stator 9 and the central housing portion 14 of the underwater housing 3, which is bounded for the most part by the stator 9 and a designated 16 portion of the underwater housing and in which for cooling the motor 8, a cooling liquid, preferably distilled water, circulated. If necessary, an anti-freeze agent may be added to the water for ice travel.

Der Raum 15 ist für das das Unterwassergehäuse umströmende Wasser verschlossen, d.h. dieses Wasser kann den Raum 15 nicht durchströmen. Über die zwischen dem Außendurchmesser des Stators 9 und dem Innendurchmesser des zentralen Gehäuseabschnitts 14 zirkulierende Kühlflüssigkeit erfolgt eine Wärmeübertragung von dem Stator 9 an den Abschnitt 16 des Unterwassergehäuses, der den Raum 15 begrenzt, und von dort an das das Unterwassergehäuse 3 umströmende Wasser.The space 15 is closed for the water flowing around the underwater housing, i. this water can not flow through the space 15. Via the circulating between the outer diameter of the stator 9 and the inner diameter of the central housing portion 14 cooling liquid is a heat transfer from the stator 9 to the portion 16 of the underwater housing, which limits the space 15, and from there to the underwater housing 3 around flowing water.

Der Raum 15 erstreckt sich dabei in Längsrichtung des Stators 9 über die gesamte Länge des Stators 9 einschließlich der Wickelköpfe des Stators und in Umfangsrichtung des Stators 9 über dessen gesamte Umfangsfläche. Durch den Raum 15 wird somit ein Kühlflüssigkeitsring um den elektrischen Motor 8 gebildet.The space 15 extends in the longitudinal direction of the stator 9 over the entire length of the stator 9 including the winding heads of the stator and in the circumferential direction of the stator 9 over its entire peripheral surface. Through the space 15 is thus a cooling liquid ring is formed around the electric motor 8.

Vorzugsweise wird der Abschnitt 16 des Unterwassergehäuses 3, der den Raum 15 begrenzt, zumindest über seine gesamte Außenfläche von Wasser umströmt. Dies kann allerdings - wie im Fall des Ausführungsbeispiels - im Bereich der Anbindung des Gehäuses 3 an den Schaft 4 erschwert sein. Hier kann beispielsweise durch Kanäle durch den Schaft 4 oder in der Außenwand des Schaftes 4 die von Wasser umströmte Außenfläche des Unterwassergehäuses 3 vergrößert und somit eine gute Wärmeabfuhr an das umströmende Wasser erzielt werden.Preferably, the portion 16 of the underwater housing 3, which limits the space 15, flows around at least over its entire outer surface of water. However, this can - as in the case of the embodiment - be difficult in the region of the connection of the housing 3 to the shaft 4. Here, for example, by channels through the shaft 4 or in the outer wall of the shaft 4, the outer surface of the underwater housing 3 flowed around by water increases and thus good heat dissipation to the water flowing around can be achieved.

Der Stator 9 stützt sich dabei über mehrere Stützelemente 17, die durch den Raum 15 verlaufen, an dem Gehäuse 3 ab. Die Stützelemente 17 sind dabei als Rippen ausgebildet, die sich in Längsrichtung des Motors 8 bzw. Stators 9 erstrecken. Die Stützelemente 17 dienen zur Drehmomentübertragung von dem Motor 8 an das Gehäuse 3, zur Lenkung der Kühlflüssigkeit in dem Raum 15 und zur Versteifung der gesamten Anordnung.The stator 9 is supported on the housing 3 via a plurality of support elements 17 which extend through the space 15. The support elements 17 are formed as ribs extending in the longitudinal direction of the motor 8 and stator 9. The support members 17 are used for torque transmission from the motor 8 to the housing 3, for guiding the cooling liquid in the space 15 and for stiffening the entire arrangement.

Der Motor 8 kann mit den Stützelementen 17 form- oder reibschlüssig verbunden sein. Beispielsweise kann der Stator 9 durch Einschrumpfen in ein mit den Stützelementen 17 versehenes Gehäuse 3 in dem Gehäuse 3 befestigt werden.The motor 8 may be positively or frictionally connected to the support members 17. For example, the stator 9 can be fixed in the housing 3 by shrinking into a housing 3 provided with the support elements 17.

Wie in FIG 3 in einer teilweisen Draufsicht auf den Raum 15 und den darunter liegenden Stator 9 gezeigt ist, werden durch die Anordnung und den Verlauf der rippenförmigen Stützelemente 17 in dem Raum 15 Kanäle für die Kühlflüssigkeit ausgebildet, durch die die Kühlflüssigkeit in Längsrichtung des Stators 9 abwechselnd von einem Ende des Stators 9 zu dem anderen Ende des Stators 9 strömt. Hierzu wird die Kühlflüssigkeit durch Durchlässe 18 an den Enden des Stators 9 jeweils um 180° in ihrer Strömungsrichtung umgelenkt.As in FIG. 3 is shown in a partial plan view of the space 15 and the underlying stator 9, are formed by the arrangement and the course of the rib-shaped support members 17 in the space 15 channels for the cooling liquid through which the cooling liquid in the longitudinal direction of the stator 9 alternately from a End of the stator 9 flows to the other end of the stator 9. For this purpose, the cooling liquid is deflected by passages 18 at the ends of the stator 9 in each case by 180 ° in its flow direction.

Bei dem Ausführungsbeispiel gemäß FIG 1 und 2 erfolgt die Abfuhr der gesamten Motorwärme über die Kühlflüssigkeit in dem Raum 15 an den Abschnitt 16 des Unterwassergehäuses 3, der den Raum 16 begrenzt, und von dort an das das Unterwassergehäuse 3 umströmende Wasser.In the embodiment according to FIG. 1 and 2 the Discharge of the entire engine heat via the cooling liquid in the space 15 to the portion 16 of the underwater housing 3, which limits the space 16, and from there to the underwater housing 3 flowing around water.

Falls - beispielsweise bei sehr großen Leistungen des Motors 8 - die Wärmeabfuhr hierüber nicht ausreicht, kann, wie in dem vereinfachten Teillängsschnitt von FIG 4 dargestellt, ein Teil der Motorwärme auch über einen Kühlkreislauf 20 abgeführt werden, der an den Raum 15 angeschlossen ist und der eine Pumpe 21 und einen Wärmetauscher 22 für eine Rückkühlung der Kühlflüssigkeit umfasst.If - for example, at very high power of the engine 8 - the heat dissipation over this is not sufficient, as in the simplified partial longitudinal section of FIG. 4 represented, a part of the engine heat can be dissipated via a cooling circuit 20 which is connected to the space 15 and comprising a pump 21 and a heat exchanger 22 for a re-cooling of the cooling liquid.

Der Wärmetauscher 22 kann beispielsweise durch eine Doppelwand des Schaftes 4 ausgeführt sein, der durch das den Schaft 4 umströmende Wasser gekühlt wird. Der Wärmetauscher 22 kann aber auch ein in der schwimmenden Einrichtung angeordneter Wärmetauscher sein, der über ein Rohrleitungssystem angebunden ist. Es ist auch möglich, die Rückkühlung über ein Kühlaggregat (Klimaanlage) durchzuführen.The heat exchanger 22 may for example be designed by a double wall of the shaft 4, which is cooled by the water flowing around the shaft 4. However, the heat exchanger 22 may also be arranged in the floating device heat exchanger which is connected via a piping system. It is also possible to carry out the recooling via a refrigeration unit (air conditioning).

Wie in FIG 4 gezeigt, ist der Stator 9 üblicherweise aus mehreren einzelnen Komponenten aufgebaut, hier beispielsweise aus einem Statorrohr 9a mit Eisenzähnen 9b, in die Statorwicklungen mit Wicklungsköpfen 9c eingelegt sind.As in FIG. 4 The stator 9 is usually constructed from a plurality of individual components, here for example a stator tube 9a with iron teeth 9b, in which stator windings with winding heads 9c are inserted.

Der Stator 9 mit dem Kühlraum 15 mit den rippenförmigen Stützelementen 17 kann dabei zusammen mit einer Kabelanschlußbox 31 und Teilen des Unterwassergehäuses 3 auch eine Baueinheit 30 bilden, an die über nicht näher dargestellte Flansche der Schaft 4 und die Bilgenhauben 34 des Unterwassergehäuses 3 des Gondelantriebs befestigt werden können.The stator 9 with the cooling chamber 15 with the rib-shaped support elements 17 may together with a cable connection box 31 and parts of the underwater housing 3 also form a unit 30, attached to the not shown flanges of the shaft 4 and the bilge hoods 34 of the underwater housing 3 of the nacelle drive can be.

Von besonderem Vorteil ist, dass für das Unterwassergehäuse 3 der FIG 1 bis 4 eine einfache und kostengünstige Schweißkonstruktion zum Einsatz kommen kann. Der Außendurchmesser des Gondelantriebs 1 wird dabei im Vergleich zu bisherigen Gondelantrieben, die direkt über das umströmende Wasser gekühlt werden, nur geringfügig größer. Durch die Verwendung einer Kühlflüssigkeit anstelle von Luft kann eine deutlich bessere Wärmeabfuhr ermöglicht werden. Bei gleichzeitiger Flüssigkeitskühlung der Wickelköpfe des Stators 9 kann das Moment des Motors 8 bei gleicher Größe aufgrund der besseren Kühlung vergrößert werden. Bei einem Anschluss an einen Kühlkreislauf kann die Kühlleistung sogar geregelt werden.Of particular advantage is that for the underwater housing 3 of the 1 to 4 a simple and inexpensive welded construction can be used. The outer diameter of the nacelle drive 1 is compared to previous gondola drives, which are cooled directly over the water flowing around only slightly larger. By using a cooling liquid instead of air, a significantly better heat dissipation can be made possible. With simultaneous liquid cooling of the winding heads of the stator 9, the torque of the motor 8 can be increased for the same size due to the better cooling. When connected to a cooling circuit, the cooling capacity can even be regulated.

Claims (10)

Gondelantrieb (1) für eine schwimmende Einrichtung (2) umfassend: - ein von Wasser umströmtes Unterwassergehäuse (3) mit einer darin drehbar gelagerten Propellerwelle (5) mit zumindest einem daran angeordneten Propeller (7), - einen in dem Unterwassergehäuse (3) angeordneten elektrischen Motor (8) mit einem Stator (9) und einem Läufer (10) zum Antrieb der Propellerwelle (5), wobei zwischen dem Stator (9) und dem Unterwassergehäuse (3) ein Raum (15) ausgebildet ist, der zumindest teilweise von dem Stator (15) und einem Abschnitt (16) des Unterwassergehäuses (15) begrenzt ist und in dem zur Kühlung des Motors (8) eine Kühlflüssigkeit strömt,
dadurch gekennzeichnet, dass der Raum (15) für das das Unterwassergehäuse (3) umströmende Wasser verschlossen ist und eine Wärmeübertragung von dem Stator (9) über die in dem Raum (15) strömende Kühlflüssigkeit an den Abschnitt (16) des Unterwassergehäuses (3), der den Raum (15) begrenzt, und von dort an das das Unterwassergehäuse (3) umströmende Wasser erfolgt.
A pod drive (1) for a floating device (2) comprising: an underwater housing (3) surrounded by water and having a propeller shaft (5) rotatably mounted therein with at least one propeller (7) arranged thereon, - an electric motor (8) arranged in the underwater housing (3) with a stator (9) and a rotor (10) for driving the propeller shaft (5), wherein between the stator (9) and the underwater housing (3) a space (15) is formed, which is at least partially bounded by the stator (15) and a portion (16) of the underwater housing (15) and in which for cooling the motor (8) a cooling liquid flows,
characterized in that the space (15) for the underwater housing (3) flowing around water is closed and a heat transfer from the stator (9) via the in the space (15) flowing coolant to the portion (16) of the underwater housing (3) , which limits the space (15), and from there to the underwater housing (3) flowing around water.
Gondelantrieb (1) nach Anspruch 1,
dadurch gekennzeichnet, dass sich der Raum (15) in Längsrichtung des Stators (9) mindestens über dessen gesamte Länge, vorzugsweise einschließlich von Wickelköpfen des Stators (9), erstreckt.
Pylon drive (1) according to claim 1,
characterized in that the space (15) extends in the longitudinal direction of the stator (9) at least over its entire length, preferably including winding heads of the stator (9).
Gondelantrieb (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass sich der Raum (15) in Umfangsrichtung des Stators (9) zumindest über den größten Teil von dessen Umfang, vorzugsweise über dessen gesamten Umfang, erstreckt.
Pylon drive (1) according to claim 1 or 2,
characterized in that the space (15) extends in the circumferential direction of the stator (9) at least over most of its circumference, preferably over its entire circumference.
Gondelantrieb (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der Stator (9) über mehrere Stützelemente (17), die durch den Raum (15) verlaufen, an dem Gehäuse (3) abstützt.A pod drive (1) according to any one of the preceding claims, characterized in that the stator (9) via a plurality of support elements (17) extending through the space (15), on the housing (3) is supported. Gondelantrieb (1) nach Anspruch 4,
dadurch gekennzeichnet, dass die Stützelemente (17) zur Lenkung der Kühlflüssigkeit in dem Raum (15) dienen.
Pylon drive (1) according to claim 4,
characterized in that the support elements (17) serve to guide the cooling liquid in the space (15).
Gondelantrieb (1) nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass die Stützelemente (17) als Rippen ausgebildet sind, die sich vorzugsweise in Längsrichtung des Motors (8) erstrecken.
Pylon drive (1) according to claim 4 or 5,
characterized in that the support elements (17) are formed as ribs, which preferably extend in the longitudinal direction of the motor (8).
Gondelantrieb (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abfuhr der gesamten Motorwärme über die Kühlflüssigkeit in dem Raum (15) an den Abschnitt (16) des Unterwassergehäuses (3), der den Raum (15) begrenzt, und von dort an das das Unterwassergehäuse (3) umströmende Wasser erfolgt.Passenger drive (1) according to one of the preceding claims, characterized in that the removal of the total engine heat via the cooling liquid in the space (15) to the portion (16) of the underwater housing (3), which limits the space (15), and of there to the underwater housing (3) flowing around water takes place. Gondelantrieb (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Abfuhr eines Teils der gesamten Motorwärme über die Kühlflüssigkeit in dem Raum (15) an den Abschnitt (16) des Unterwassergehäuses (3), der den Raum (15) begrenzt, und von dort an das das Unterwassergehäuse (3) umströmende Wasser erfolgt, und die Abfuhr des anderen Teils der Motorwärme über einen Kühlkreislauf (20) erfolgt, der an dem Raum (15) angeschlossen ist.Passenger drive (1) according to one of claims 1 to 6, characterized in that the removal of a portion of the total engine heat via the cooling liquid in the space (15) to the portion (16) of the underwater housing (3), the space (15) limited, and from there to the underwater housing (3) flowing around water, and the removal of the other part of the engine heat via a cooling circuit (20) which is connected to the space (15). Gondelantrieb (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlflüssigkeit destilliertes Wasser ist.Gondola drive (1) according to one of the preceding claims, characterized in that the cooling liquid is distilled water. Gondelantrieb (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Motor (8) als ein permanentmagnetisch erregter Motor ausgebildet ist.Gondola drive (1) according to one of the preceding claims, characterized in that the electric motor (8) is designed as a permanent magnetically excited motor.
EP20110165672 2010-08-20 2011-05-11 Electric nacelle drive for a floating device with internal stator cooling Active EP2420443B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010039609A DE102010039609A1 (en) 2010-08-20 2010-08-20 Electric nacelle drive for a floating device with internal stator cooling

Publications (2)

Publication Number Publication Date
EP2420443A1 true EP2420443A1 (en) 2012-02-22
EP2420443B1 EP2420443B1 (en) 2014-08-06

Family

ID=44993220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110165672 Active EP2420443B1 (en) 2010-08-20 2011-05-11 Electric nacelle drive for a floating device with internal stator cooling

Country Status (3)

Country Link
EP (1) EP2420443B1 (en)
DE (1) DE102010039609A1 (en)
ES (1) ES2500943T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229113A (en) * 2014-09-24 2014-12-24 江苏科技大学 Podded ship electric-power direct-drive propelling device, propelling system and propelling method
JP2015016857A (en) * 2013-07-09 2015-01-29 エービービー・オーワイ Ship propulsion unit
EP2876039A1 (en) * 2013-11-20 2015-05-27 Siemens Aktiengesellschaft Cooling of an electrical pod drive
EP2949574A1 (en) * 2014-05-30 2015-12-02 ABB Oy Pod propulsion unit of a ship
WO2015185302A1 (en) * 2014-06-03 2015-12-10 Rolls-Royce Ab Pod propulsion device and a method for cooling such
WO2019020358A1 (en) * 2017-07-24 2019-01-31 Siemens Aktiengesellschaft Electric motor and ship propulsion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020625A1 (en) 2014-11-13 2016-05-18 Siemens Aktiengesellschaft Electric nacelle drive
WO2017050447A1 (en) 2015-09-22 2017-03-30 Siemens Aktiengesellschaft Cooling an electric rotating machine
CN107070064B (en) * 2016-10-27 2023-11-24 中国人民解放军海军工程大学 Rubber double-sealing structure of underwater motor cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE877254C (en) 1949-11-29 1955-01-31 Pleuger K G Electric motor drive device for propellers or the like of ships
EP1010614A1 (en) * 1998-12-18 2000-06-21 ABB Industria S.p.A. Propulsion and steering module for naval craft
WO2003047962A2 (en) * 2001-11-29 2003-06-12 Siemens Aktiengesellschaft Ship propulsion system
WO2004101356A1 (en) * 2003-05-16 2004-11-25 Siemens Aktiengesellschaft Ship propulsion system comprising cooling devices for the stator and rotor of the synchronous machine thereof
DE102008045667A1 (en) * 2008-09-03 2010-03-04 Siemens Aktiengesellschaft Dynamoelectric machine with cooling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE877254C (en) 1949-11-29 1955-01-31 Pleuger K G Electric motor drive device for propellers or the like of ships
EP1010614A1 (en) * 1998-12-18 2000-06-21 ABB Industria S.p.A. Propulsion and steering module for naval craft
WO2003047962A2 (en) * 2001-11-29 2003-06-12 Siemens Aktiengesellschaft Ship propulsion system
WO2004101356A1 (en) * 2003-05-16 2004-11-25 Siemens Aktiengesellschaft Ship propulsion system comprising cooling devices for the stator and rotor of the synchronous machine thereof
DE102008045667A1 (en) * 2008-09-03 2010-03-04 Siemens Aktiengesellschaft Dynamoelectric machine with cooling

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016857A (en) * 2013-07-09 2015-01-29 エービービー・オーワイ Ship propulsion unit
EP2876039A1 (en) * 2013-11-20 2015-05-27 Siemens Aktiengesellschaft Cooling of an electrical pod drive
WO2015074937A1 (en) * 2013-11-20 2015-05-28 Siemens Aktiengesellschaft Cooling of an electric pod drive
EP2949574B1 (en) 2014-05-30 2018-07-11 ABB Schweiz AG Pod propulsion unit of a ship
EP2949574A1 (en) * 2014-05-30 2015-12-02 ABB Oy Pod propulsion unit of a ship
WO2015181043A1 (en) * 2014-05-30 2015-12-03 Abb Oy Pod propulsion unit of a ship
US10336430B2 (en) 2014-05-30 2019-07-02 Abb Schweiz Ag Pod propulsion unit of a ship
CN106573667A (en) * 2014-06-03 2017-04-19 劳斯莱斯股份公司 Pod propulsion device and a method for cooling such
JP2017516710A (en) * 2014-06-03 2017-06-22 ロールス−ロイス アクチボラグRolls−Royce Aktiebolag Pod propulsion device and method for cooling the same
JP2017518220A (en) * 2014-06-03 2017-07-06 ロールス−ロイス アクチボラグRolls−Royce Aktiebolag Pod propulsion device and method for cooling the same
US9902478B2 (en) 2014-06-03 2018-02-27 Rolls-Royce Aktiebolag Pod propulsion device and a method for cooling such
CN106573667B (en) * 2014-06-03 2018-04-06 劳斯莱斯股份公司 Pod propulsion equipment and its cooling means
KR20170013980A (en) * 2014-06-03 2017-02-07 롤스 로이스 아베 Pod propulsion device and a method for cooling such
EP3152110B1 (en) 2014-06-03 2018-07-11 Rolls-Royce AB Pod propulsion device and a method for cooling such
AU2015271160B2 (en) * 2014-06-03 2018-07-12 Kongsberg Maritime Sweden Ab Pod propulsion device and a method for cooling such
WO2015185302A1 (en) * 2014-06-03 2015-12-10 Rolls-Royce Ab Pod propulsion device and a method for cooling such
US11383808B2 (en) 2014-06-03 2022-07-12 Kongsberg Maritime Sweden Ab Pod propulsion device and a method for cooling such
CN104229113A (en) * 2014-09-24 2014-12-24 江苏科技大学 Podded ship electric-power direct-drive propelling device, propelling system and propelling method
WO2019020358A1 (en) * 2017-07-24 2019-01-31 Siemens Aktiengesellschaft Electric motor and ship propulsion device

Also Published As

Publication number Publication date
DE102010039609A1 (en) 2012-02-23
EP2420443B1 (en) 2014-08-06
ES2500943T3 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2420443B1 (en) Electric nacelle drive for a floating device with internal stator cooling
EP0998407B1 (en) Electric motor pod drive system for a vessel with a cooling device
DE102009051651B4 (en) Wind power generator with internal cooling circuit
DE60112889T2 (en) MOTOR UNIT FOR SHIPS
EP2994380B1 (en) Electric pod drive for a ship
EP2403751B1 (en) Modular gondola drive for a floating device
EP0996567B1 (en) Electromotive gondola or ship drive system with cooling device
WO2017050447A1 (en) Cooling an electric rotating machine
EP0660492B1 (en) Cooling system for a motor
DE102013214082A1 (en) Electric nacelle drive for a ship
WO2018059844A1 (en) Cooling of a pod drive
WO2012123547A1 (en) Ship
DE202015106564U1 (en) Electric drive, in particular for a vehicle moving in a fluid
EP3172128B1 (en) Electric nacelle drive
DE19826229A1 (en) Electromotive drive device for a ship
EP2403750B1 (en) Non-positive displacement engine with a housing having improved watertightness
EP2445783B1 (en) Ship having two propellers arranged one behind the other
EP3809565B1 (en) Drive for a boat with electric motor
DE102010037834A1 (en) Water transportation unit for towing swimmer or diver, has housing body and drive motor which carries drive torque on propeller that is connected with drive motor
DE102015219669A1 (en) Electric machine with a cooling device
WO2015074937A1 (en) Cooling of an electric pod drive
DE1456282C (en) Cross thruster for ships
DE102018222495A1 (en) Propulsion device for a ship
DE1965543C (en) Squirrel cage motor with attached, liquid-tight encapsulated transformer
DE1456282B2 (en) Cross thruster for ships

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120606

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 680902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003935

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2500943

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141001

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140806

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140806

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003935

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150511

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110511

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 680902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170508

Year of fee payment: 7

Ref country code: FR

Payment date: 20170526

Year of fee payment: 7

Ref country code: NO

Payment date: 20170522

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170511

Year of fee payment: 7

Ref country code: IT

Payment date: 20170526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170427

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170810

Year of fee payment: 7

Ref country code: DE

Payment date: 20170721

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011003935

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180511

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180511

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180511

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180512