EP2417608A1 - Metal pastes and use thereof in the production of silicon solar cells - Google Patents
Metal pastes and use thereof in the production of silicon solar cellsInfo
- Publication number
- EP2417608A1 EP2417608A1 EP10723425A EP10723425A EP2417608A1 EP 2417608 A1 EP2417608 A1 EP 2417608A1 EP 10723425 A EP10723425 A EP 10723425A EP 10723425 A EP10723425 A EP 10723425A EP 2417608 A1 EP2417608 A1 EP 2417608A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal
- metal pastes
- arc layer
- pastes
- glass frit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 83
- 239000002184 metal Substances 0.000 title claims abstract description 83
- 229910052710 silicon Inorganic materials 0.000 title claims description 47
- 239000010703 silicon Substances 0.000 title claims description 47
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052709 silver Inorganic materials 0.000 claims abstract description 42
- 239000004332 silver Substances 0.000 claims abstract description 42
- 239000011521 glass Substances 0.000 claims abstract description 37
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 15
- 229910011255 B2O3 Inorganic materials 0.000 claims abstract description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 12
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 12
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 12
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 23
- 238000010304 firing Methods 0.000 claims description 21
- 238000007639 printing Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 13
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 10
- 238000007650 screen-printing Methods 0.000 claims description 9
- 229910003087 TiOx Inorganic materials 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical group CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910004205 SiNX Inorganic materials 0.000 claims description 5
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 35
- 235000012431 wafers Nutrition 0.000 description 26
- 229910052782 aluminium Inorganic materials 0.000 description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 22
- 239000000203 mixture Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- -1 Na2θ Inorganic materials 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- RUJPNZNXGCHGID-UHFFFAOYSA-N (Z)-beta-Terpineol Natural products CC(=C)C1CCC(C)(O)CC1 RUJPNZNXGCHGID-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229960002380 dibutyl phthalate Drugs 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 229960004232 linoleic acid Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- QJVXKWHHAMZTBY-GCPOEHJPSA-N syringin Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QJVXKWHHAMZTBY-GCPOEHJPSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/16—Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/10—Frit compositions, i.e. in a powdered or comminuted form containing lead
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
- C03C8/18—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/22—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention is directed to metal pastes and their use in the production of silicon solar cells.
- a conventional solar cell structure with a p-type base has a negative electrode that is typically on the front-side or sun side of the cell and a positive electrode on the back-side. It is well known that radiation of an appropriate wavelength falling on a p-n junction of a semiconductor body serves as a source of external energy to generate electron-hole pairs in that body. The potential difference that exists at a p-n junction, causes holes and electrons to move across the junction in opposite directions, thereby giving rise to flow of an electric current that is capable of delivering power to an external circuit. Most solar cells are in the form of a silicon wafer that has been metallized, i.e., provided with metal contacts which are electrically conductive.
- Electrodes in particular are made by using a method such as screen printing from metal pastes.
- a silicon solar cell typically starts with a p-type silicon substrate in the form of a silicon wafer on which an n-type diffusion layer of the reverse conductivity type is formed by the thermal diffusion of phosphorus (P) or the like.
- Phosphorus oxychlohde (POCI3) is commonly used as the gaseous phosphorus diffusion source, other liquid sources are phosphoric acid and the like.
- the diffusion layer is formed over the entire surface of the silicon substrate.
- the p-n junction is formed where the concentration of the p-type dopant equals the concentration of the n-type dopant; conventional cells that have the p-n junction close to the sun side, have a junction depth between 0.05 and 0.5 ⁇ m.
- an ARC layer (antireflective coating layer) Of TiO x , SiO x , TiO x /SiO x , or, in particular, SiN x or SisN 4 is formed on the n-type diffusion layer to a thickness of between 0.05 and 0.1 ⁇ m by a process, such as, for example, plasma CVD (chemical vapor deposition).
- a conventional solar cell structure with a p-type base typically has a negative grid electrode on the front-side or sun side of the cell and a positive electrode on the back-side.
- the grid electrode is typically applied by screen printing and drying a front-side silver paste (front electrode forming silver paste) on the ARC layer on the front-side of the cell.
- the front-side grid electrode is typically screen printed in a so-called H pattern which comprises (i) thin parallel finger lines (collector lines) and (ii) two busbars intersecting the finger lines at right angle.
- a back-side silver or silver/aluminum paste and an aluminum paste are screen printed (or some other application method) and successively dried on the back- side of the substrate.
- the back-side silver or silver/aluminum paste is screen printed onto the silicon wafer's back-side first as two parallel busbars or as rectangles (tabs) ready for soldering interconnection strings (presoldered copper ribbons).
- the aluminum paste is then printed in the bare areas with a slight overlap over the back-side silver or silver/aluminum.
- the silver or silver/aluminum paste is printed after the aluminum paste has been printed. Firing is then typically carried out in a belt furnace for a period of 1 to 5 minutes with the wafer reaching a peak temperature in the range of 700 to 900 0 C.
- the front grid electrode and the back electrodes can be fired sequentially or co fired.
- the aluminum paste is generally screen printed and dried on the back-side of the silicon wafer. The wafer is fired at a temperature above the melting point of aluminum to form an aluminum-silicon melt, subsequently, during the cooling phase, an epitaxially grown layer of silicon is formed that is doped with aluminum. This layer is generally called the back surface field (BSF) layer.
- BSF back surface field
- the aluminum paste is transformed by firing from a dried state to an aluminum back electrode.
- the back-side silver or silver/aluminum paste is fired at the same time, becoming a silver or silver/aluminum back electrode.
- the aluminum electrode accounts for most areas of the back electrode, owing in part to the need to form a p+ layer.
- a silver or silver/aluminum back electrode is formed over portions of the back-side (often as 2 to 6 mm wide busbars) as an electrode for interconnecting solar cells by means of pre-soldered copper ribbon or the like.
- the front-side silver paste printed as front-side grid electrode sinters and penetrates through the ARC layer during firing, and is thereby able to electrically contact the n-type layer. This type of process is generally called "firing through”.
- WO 92/22928 discloses a process wherein the front-side grid electrode is printed in two steps; printing of the finger lines and of the busbars is decoupled. Whereas the finger lines are printed from a silver paste which is capable of firing through the ARC coating, this is not the case for the silver paste used for printing the busbars. The silver paste used for printing the busbars has no fire through capability. After firing a grid electrode is obtained consisting of fired-trough finger lines and so- called non-contact busbars (floating busbars, busbars which have not fired through the ARC layer). The advantage of the grid electrode only the finger lines of which are fired through is a reduction of recombination of holes and electrons at the metal/semiconductor interface.
- the reduction of recombination results in an increase of open circuit voltage and thus an increase of electrical yield of the silicon solar cell having such type of front- side grid electrode.
- the present invention relates to thick film conductive compositions comprising (a) at least one electrically conductive metal powder selected from the group consisting of silver, copper and nickel, (b) at least one lead-containing glass frit with a softening point temperature (glass transition temperature, determined by differential thermal analysis DTA at a heating rate of 10 K/min) in the range of 571 to 636 0 C and containing 53 to 57 wt.-% (weight-%) of PbO, 25 to 29 wt.-% of SiO 2 , 2 to 6 wt.-% of AI2O3 and 6 to 9 wt.-% of B2O3 and (c) an organic vehicle.
- a softening point temperature glass transition temperature, determined by differential thermal analysis DTA at a heating rate of 10 K/min
- the thick film conductive compositions of the present invention take the form of metal pastes that can be applied by printing, in particular, screen printing.
- the thick film conductive compositions will also be called "metal pastes”.
- the metal pastes of the present invention comprise at least one electrically conductive metal powder selected from the group consisting of silver, copper and nickel. Silver powder is preferred.
- the metal or silver powder may be uncoated or at least partially coated with a surfactant.
- the surfactant may be selected from, but is not limited to, stearic acid, palmitic acid, lauric acid, oleic acid, capric acid, myristic acid and linolic acid and salts thereof, for example, ammonium, sodium or potassium salts.
- the average particle size of the electrically conductive metal powder or, in particular, silver powder is in the range of, for example, 0.5 to 5 ⁇ m.
- the total content of the electrically conductive metal powder or, in particular, silver powder in the metal pastes of the present invention is, for example, 50 to 92 wt.-%, or, in an embodiment, 65 to 84 wt.-%.
- average particle size is used. It means the mean particle diameter (d50) determined by means of laser scattering. All statements made in the present description and the claims in relation to average particle sizes relate to average particle sizes of the relevant materials as are present in the metal pastes.
- the metal pastes of the present invention comprise only the at least one electrically conductive metal powder selected from the group consisting of silver, copper, and nickel.
- the electrically conductive metal selected from the group consisting of silver, copper and nickel by one or more other particulate metals.
- the proportion of such other particulate metal(s) is, for example, 0 to 10 wt.%, based on the total of particulate metals contained in the conductive metal paste.
- the metal pastes of the present invention comprise one or more lead-containing glass frits as inorganic binder.
- the at least one lead- containing glass frit has a softening point temperature in the range of 571 to 636 0 C and contains 53 to 57 wt.-% of PbO, 25 to 29 wt.-% of SiO 2 , 2 to 6 wt.-% of AI2O3 and 6 to 9 wt.-% of B2O3.
- the weight percentages of PbO, SiO 2 , AI 2 O 3 and B 2 O 3 may or may not total 100 wt.-%.
- the missing wt.-% may in particular be contributed by one or more other oxides, for example, alkali metal oxides like Na 2 O, alkaline earth metal oxides like MgO and metal oxides like TiO 2 and ZnO.
- alkali metal oxides like Na 2 O
- alkaline earth metal oxides like MgO
- metal oxides like TiO 2 and ZnO.
- the metal pastes of the present invention comprise one or more lead-free glass frits in addition to the at least one lead-containing glass frit.
- the metal pastes of the present invention comprise (a) at least one electrically conductive metal powder selected from the group consisting of silver, copper and nickel, (b) at least one lead-containing glass frit with a softening point temperature in the range of 571 to 636 0 C and containing 53 to 57 wt.-% of PbO, 25 to 29 wt.-% of SiO 2 , 2 to 6 wt.-% of AI 2 O 3 and 6 to 9 wt.-% of B 2 O 3 , (c) at least one lead-free glass frit with a softening point temperature in the range of 550 to 611 0 C and containing 11 to 33 wt.-% of SiO 2 , >0 to 7wt.-%, in particular 5 to 6 wt.-% Of AI 2 O 3 and 2 to 10 wt.-
- the weight percentages of SiO 2 , AI 2 O 3 and B 2 O 3 do not total 100 wt.-% and the missing wt.-% are in particular contributed by one or more other oxides, for example, alkali metal oxides like Na2 ⁇ , alkaline earth metal oxides like MgO and metal oxides like Bi 2 ⁇ 3, TiO 2 and ZnO.
- the at least one lead-free glass frit contains 40 to 73 wt.-%, in particular 48 to 73 wt.-% of Bi 2 O 3 .
- the metal pastes of the present invention comprise (a) at least one electrically conductive metal powder selected from the group consisting of silver, copper and nickel, (b) at least one lead-containing glass frit with a softening point temperature in the range of 571 to 636 0 C and containing 53 to 57 wt.-% of PbO, 25 to 29 wt.-% of SiO 2 , 2 to 6 wt.-% of AI 2 O 3 and 6 to 9 wt.-% of B 2 O 3 , (c) at least one lead-free glass frit with a softening point temperature in the range of 550 to 611 0 C and containing 40 to 73 wt.-% of Bi 2 O 3 , 11 to 33 wt.-% of SiO 2 , >0 to 7 wt.-%,
- the weight percentages of Bi 2 O 3 , SiO 2 , AI 2 O 3 and B 2 O 3 may or may not total 10O wt.-%. In case they do not total 100 wt.-% the missing wt.-% may in particular be contributed by one or more other oxides, for example, alkali metal oxides like Na 2 O, alkaline earth metal oxides like MgO and metal oxides like TiO 2 and ZnO.
- the metal pastes of the present invention comprise not only the at least one lead-containing glass frit but also the at least one lead-free glass frit
- the ratio between both glass frit types is anyone or, in other words, in the range of from >0 to infinity.
- the average particle size of the glass frit(s) is in the range of, for example, 0.5 to 4 ⁇ m.
- the total glass frit content (at least one lead-containing glass frit plus optionally present at least one lead-free glass frit) in the metal pastes of the present invention is, for example, 0.25 to 8 wt.-%, or, in an embodiment, 0.8 to 3.5 wt- %.
- the preparation of the glass frits is well known and consists, for example, in melting together the constituents of the glass in the form of the oxides of the constituents and pouring such molten composition into water to form the frit.
- heating may be conducted to a peak temperature and for a time such that the melt becomes entirely liquid and homogeneous.
- the glass may be milled in a ball mill with water or inert low viscosity, low boiling point organic liquid to reduce the particle size of the frit and to obtain a frit of substantially uniform size. It may then be settled in water or said organic liquid to separate fines and the supernatant fluid containing the fines may be removed. Other methods of classification may be used as well.
- the metal pastes of the present invention comprise an organic vehicle.
- organic vehicle may be one in which the particulate constituents (electrically conductive metal powder, glass frit) are dispersible with an adequate degree of stability.
- the properties, in particular, the rheological properties, of the organic vehicle may be such that they lend good application properties to the metal pastes, including: stable dispersion of insoluble solids, appropriate viscosity and thixotropy for application, in particular, for screen printing, appropriate wet ability of the ARC layer on the front-side of a silicon wafer and of the paste solids, a good drying rate, and good firing properties.
- the organic vehicle used in the metal pastes of the present invention may be a nonaqueous inert liquid.
- the organic vehicle may be an organic solvent or an organic solvent mixture; in an embodiment, the organic vehicle may be a solution of organic polymer(s) in organic solvent(s).
- Use can be made of any of various organic vehicles, which may or may not contain thickeners, stabilizers and/or other common additives.
- the polymer used as constituent of the organic vehicle may be ethyl cellulose.
- Other examples of polymers which may be used alone or in combination include ethyl hydroxyethyl cellulose, wood rosin, phenolic resins and poly(meth)acrylates of lower alcohols.
- suitable organic solvents comprise ester alcohols and terpenes such as alpha- or beta-terpineol or mixtures thereof with other solvents such as kerosene, dibutylphthalate, diethylene glycol butyl ether, diethylene glycol butyl ether acetate, hexylene glycol and high boiling alcohols.
- volatile organic solvents for promoting rapid hardening after application of the metal pastes can be included in the organic vehicle.
- Various combinations of these and other solvents may be formulated to obtain the viscosity and volatility requirements desired.
- the ratio of organic vehicle in the metal pastes of the present invention to the inorganic components is dependent on the method of applying the metal pastes and the kind of organic vehicle used, and it can vary.
- the metal pastes of the present invention will contain 58-95 wt.-% of inorganic components and 5-42 wt. -% of organic vehicle.
- the metal pastes of the present invention are viscous compositions, which may be prepared by mechanically mixing the electrically conductive metal powder(s) and the glass frit(s) with the organic vehicle.
- the manufacturing method power mixing a dispersion technique that is equivalent to the traditional roll milling, may be used; roll milling or other mixing technique can also be used.
- the metal pastes of the present invention can be used as such or may be diluted, for example, by the addition of additional organic solvent(s); accordingly, the weight percentage of all the other constituents of the metal pastes may be decreased.
- the metal pastes of the present invention may be used in the production of front-side grid electrodes of silicon solar cells or respectively in the production of silicon solar cells. Therefore the invention relates also to such production processes and to front-side grid electrodes and silicon solar cells made by said production processes.
- the process for the production of a front-side grid electrode may be performed by (1 ) providing a silicon wafer having an ARC layer on its front-side, (2) printing, in particular, screen printing and drying a metal paste of the present invention on the ARC layer on the front-side of the silicon wafer to form two or more parallel busbars, (3) printing, in particular, screen printing and drying a metal paste with fire through capability on the ARC layer to form thin parallel finger lines intersecting the busbars at right angle, and (4) firing the printed and dried metal pastes.
- a front-side grid electrode consisting of fired- through finger lines and non-contact busbars is obtained.
- the process for the production of such front-side grid electrode may however also be performed in the opposite sequence, i.e.
- a silicon wafer having an ARC layer on its front-side is provided.
- the silicon wafer is a conventional mono- or polycrystalline silicon wafer as is conventionally used for the production of silicon solar cells, i.e. it typically has a p-type region, an n-type region and a p-n junction.
- the silicon wafer has an ARC layer, for example, Of TiO x , SiO x , TiO x /SiO x , or, in particular, SiN x or Si 3 N 4 on its front-side.
- Such silicon wafers are well known to the skilled person; for brevity reasons reference is made to the section "TECHNICAL BACKGROUND OF THE INVENTION".
- the silicon wafer may already be provided with the conventional back-side metallizations, i.e. with a back-side aluminum paste and a back-side silver or back-side silver/aluminum paste as described above in the section "TECHNICAL BACKGROUND OF THE INVENTION".
- Application of the back-side metal pastes may be carried out before or after the front-side grid electrode is finished.
- the back-side pastes may be individually fired or co fired or even be co fired with the front-side metal pastes printed on the ARC layer in steps (2) and (3).
- metal paste with fire through capability means a conventional metal paste that fire through an ARC layer making electrical contact with the surface of the silicon substrate, as opposed to the metal pastes of the present invention which do not.
- metal pastes comprise in particular silver pastes with fire through capability; they are known to the skilled person and they have been described in various patent documents, an example of which is US 2006/0231801 A1.
- the metal pastes in steps (2) and (3) are dried, for example, for a period of 1 to 100 minutes with the silicon wafer reaching a peak temperature in the range of 100 to 300 0 C. Drying can be carried out making use of, for example, belt, rotary or stationary driers, in particular, IR (infrared) belt driers.
- the firing step (4) following steps (2) and (3) is a co firing step. It is however also possible, although not preferred, to perform an additional firing step between steps (2) and (3).
- steps (1 ) to (4) a grid electrode consisting of fired-through finger lines and non-contact busbars is produced on the ARC layer on the front-side of the silicon wafer.
- the parallel fired-through finger lines have a distance between each other of, for example, 2 to 5 mm, a layer thickness of, for example, 3 to 30 ⁇ m and a width of, for example, 50 to 150 ⁇ m.
- the fired but non-contact busbars have a layer thickness of, for example, 20 to 50 ⁇ m and a width of, for example, 1 to 3 mm.
- step (4) may be performed, for example, for a period of 1 to 5 minutes with the silicon wafer reaching a peak temperature in the range of 700 to 900 0 C.
- the firing can be carried out making use of, for example, single or multi-zone belt furnaces, in particular, multi-zone IR belt furnaces.
- the firing may happen in an inert gas atmosphere or in the presence of oxygen, for example, in the presence of air.
- the organic substance including non-volatile organic material and the organic portion not evaporated during the drying may be removed, i.e. burned and/or carbonized, in particular, burned and the glass frit sinters with the electrically conductive metal powder.
- the metal paste used for printing the parallel thin finger lines etches the ARC layer and fires through resulting in the finger lines making electrical contact with the silicon substrate, this is not the case for the metal paste of the present invention used for printing the busbars.
- the busbars remain as "non-contact" busbars after firing, i.e. the ARC layer survives at least essentially between the busbars and the silicon substrate.
- the grid electrodes or the silicon solar cells produced by the processes using the metal pastes of the present invention exhibit the advantageous electrical properties associated with non-contact busbars or busbars having only poor contact with the silicon substrate as opposed to fired through busbars.
- the busbars produced by the processes of the present invention are distinguished by good solder leach resistance and good adhesion to the front-side or, more precisely, to the ARC layer on the front-side of a silicon solar cell.
- a solar cell was formed as follows:
- a front-side silver paste (PV142 commercially available from E. I. Du Pont de Nemours and Company) was screen-printed and dried as 100 ⁇ m wide and 20 ⁇ m thin parallel finger lines having a distance of 2.2 mm between each other. Then a front-side busbar silver paste was screen-printed as two 2 mm wide and 25 ⁇ m thick parallel busbars intersecting the finger lines at right angle. All metal pastes were dried before cofiring.
- the example front-side busbar silver pastes comprised 81 wt.% silver powder (average particle size 2 ⁇ m), 19 wt.% organic vehicle (organic polymeric resins and organic solvents) plus glass frit (average particle size 0.8 ⁇ m).
- Table 1 provides composition data of the glass frit types that have been used.
- zone 5 925°C
- the metallized wafers became functional photovoltaic devices.
- the solar cells formed according to the method described above were placed in a commercial I-V tester (supplied by h.a.l.m. elektronik GmbH) for the purpose of measuring light conversion efficiencies.
- the lamp in the I-V tester simulated sunlight of a known intensity (approximately 1000 WIm 2 ) and illuminated the emitter of the cell.
- the metallizations on the cells were subsequently contacted by electrical probes.
- the photocurrent (Voc, open circuit voltage; Isc, short circuit current) generated by the solar cells was measured over a range of resistances to calculate the I-V response curve. Fire-through capability
- both the ribbon and the front-side busbars were wetted with liquid flux and soldered using a manual soldering iron moving along the complete length of the wafer at a constant rate.
- the soldering iron tip was adjusted to specified temperatures of 325°C. There was no pre-drying or pre-heating of the fluxes prior to soldering.
- Flux and solder ribbon used in this test were Kester® 952S and 62Sn-36Pb-2Ag (metal alloy consisting of 62 wt.-% tin, 36 wt.-% lead and 2 wt. -% silver) respectively.
- Adhesion was measured using a Mecmesin adhesion tester by pulling on the solder ribbon at multiple points along the busbar at a speed of 100 mm/s and a pull angle of 90°. The force to remove the busbar was measured in grams.
- Examples A to D cited in Table 2 illustrate the electrical properties of the front-side busbar silver pastes as a function of proportion and composition of the glass frit they contain.
- the data in Table 2 confirms that the electrical performance of the solar cells made using front-side busbar silver pastes according to Examples A to D improves significantly when compared to the solar cell made with the front-side busbar silver paste according to Comparative Example E.
- the open circuit voltage Voc increases, the adhesion is higher and the resistivity is lower.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Conductive Materials (AREA)
- Photovoltaic Devices (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16456609P | 2009-03-30 | 2009-03-30 | |
PCT/US2010/029181 WO2010117773A1 (en) | 2009-03-30 | 2010-03-30 | Metal pastes and use thereof in the production of silicon solar cells |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2417608A1 true EP2417608A1 (en) | 2012-02-15 |
Family
ID=42470577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10723425A Withdrawn EP2417608A1 (en) | 2009-03-30 | 2010-03-30 | Metal pastes and use thereof in the production of silicon solar cells |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2417608A1 (zh) |
JP (1) | JP2012522355A (zh) |
KR (1) | KR20120014131A (zh) |
CN (1) | CN102365688A (zh) |
TW (1) | TW201044415A (zh) |
WO (1) | WO2010117773A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130061918A1 (en) * | 2011-03-03 | 2013-03-14 | E. I. Dupont De Nemours And Company | Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell |
BE1020040A3 (fr) * | 2011-06-28 | 2013-04-02 | Agc Glass Europe | Vitrage chauffant. |
US20130192671A1 (en) | 2011-08-11 | 2013-08-01 | E I Du Pont De Nemours And Company | Conductive metal paste and use thereof |
KR101350960B1 (ko) * | 2012-01-13 | 2014-01-16 | 한화케미칼 주식회사 | 글래스 프릿, 이를 포함하는 도전성 페이스트 조성물 및 태양전지 |
US20130183795A1 (en) * | 2012-01-16 | 2013-07-18 | E I Du Pont De Nemours And Company | Solar cell back side electrode |
US8952245B2 (en) * | 2012-01-23 | 2015-02-10 | Heraeus Precious Metals North America Conshohocken Llc | Conductive thick film paste for solar cell contacts |
JP5908763B2 (ja) * | 2012-03-19 | 2016-04-26 | 京セラ株式会社 | 光電変換素子および光電変換素子の製造方法 |
US9082901B2 (en) * | 2012-04-11 | 2015-07-14 | E I Du Pont De Nemours And Company | Solar cell and manufacturing method of the same |
CN102855961B (zh) * | 2012-08-24 | 2014-12-31 | 西安交通大学苏州研究院 | 太阳能电池背面电极形成用浆料及其制备方法 |
EP2749545B1 (en) * | 2012-12-28 | 2018-10-03 | Heraeus Deutschland GmbH & Co. KG | Binary glass frits used in N-Type solar cell production |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542961B1 (en) * | 1991-06-11 | 1998-04-01 | Ase Americas, Inc. | Improved solar cell and method of making same |
US5178685A (en) * | 1991-06-11 | 1993-01-12 | Mobil Solar Energy Corporation | Method for forming solar cell contacts and interconnecting solar cells |
US7556748B2 (en) * | 2005-04-14 | 2009-07-07 | E. I. Du Pont De Nemours And Company | Method of manufacture of semiconductor device and conductive compositions used therein |
EP1993144A4 (en) * | 2006-03-07 | 2011-05-11 | Murata Manufacturing Co | CONDUCTIVE PASTE AND SOLAR CELL |
US7833439B2 (en) * | 2007-07-24 | 2010-11-16 | Ferro Corporation | Ultra low-emissivity (ultra low E) silver coating |
-
2010
- 2010-03-30 EP EP10723425A patent/EP2417608A1/en not_active Withdrawn
- 2010-03-30 CN CN2010800158640A patent/CN102365688A/zh active Pending
- 2010-03-30 JP JP2012503601A patent/JP2012522355A/ja active Pending
- 2010-03-30 TW TW099109691A patent/TW201044415A/zh unknown
- 2010-03-30 KR KR1020117025474A patent/KR20120014131A/ko not_active Application Discontinuation
- 2010-03-30 WO PCT/US2010/029181 patent/WO2010117773A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2010117773A1 * |
Also Published As
Publication number | Publication date |
---|---|
KR20120014131A (ko) | 2012-02-16 |
TW201044415A (en) | 2010-12-16 |
WO2010117773A1 (en) | 2010-10-14 |
JP2012522355A (ja) | 2012-09-20 |
CN102365688A (zh) | 2012-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9054239B2 (en) | Process of forming a grid electrode on the front-side of a silicon wafer | |
US20100243048A1 (en) | Metal pastes and use thereof in the production of silicon solar cells | |
US8227292B2 (en) | Process for the production of a MWT silicon solar cell | |
US9343194B2 (en) | Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell | |
US8372679B2 (en) | Process of forming a grid electrode on the front-side of a silicon wafer | |
US9054242B2 (en) | Process for the production of a MWT silicon solar cell | |
US20110240124A1 (en) | Metal pastes and use thereof in the production of silicon solar cells | |
US20110120535A1 (en) | Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells | |
WO2010117773A1 (en) | Metal pastes and use thereof in the production of silicon solar cells | |
US20130056060A1 (en) | Process for the production of lfc-perc silicon solar cells | |
US20100294360A1 (en) | Process of forming a grid electrode on the front-side of a silicon wafer | |
US20130061918A1 (en) | Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell | |
US20120160314A1 (en) | Process for the formation of a silver back anode of a silicon solar cell | |
US20160240706A1 (en) | Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110922 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140318 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151001 |