EP2414675B1 - High-pressure pump - Google Patents
High-pressure pump Download PDFInfo
- Publication number
- EP2414675B1 EP2414675B1 EP10702693.2A EP10702693A EP2414675B1 EP 2414675 B1 EP2414675 B1 EP 2414675B1 EP 10702693 A EP10702693 A EP 10702693A EP 2414675 B1 EP2414675 B1 EP 2414675B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cam
- pump
- piston
- pressure pump
- suction phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 claims description 23
- 230000001133 acceleration Effects 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 101100042630 Caenorhabditis elegans sin-3 gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0413—Cams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/06—Control
Definitions
- the present invention relates to a high-pressure pump for a fuel injection device of an internal combustion engine according to the preamble of claim 1.
- High-pressure pumps are used, for example, in common-rail systems of motor vehicles to provide or supply pressurized fuel to a high-pressure accumulator under all operating conditions.
- Such high-pressure diesel pumps usually have either eccentric drives or cam drives.
- cam-driven high-pressure pumps is that in this case it is possible to design for a desired application a cam profile adapted thereto, which represents the piston stroke via a rotation angle of the drive shaft or the camshaft.
- a slow delivery phase and a fast suction phase of the high pressure pump can be realized via an asymmetric cam profile, whereby an advantage is achieved by the resulting low maximum drive torque, which must apply the motor to drive the high pressure pump.
- cam contours designed in this way can therefore also be used both for the right-handed and for the anti-clockwise rotation.
- the EP 1 101 939 A2 shows a piston pump for fluid delivery with a plurality of preferably similar piston-cylinder units, in whose cylinder chamber in each case an associated displacer piston is arranged.
- Each piston performs an oscillation with a suction and delivery interval.
- the delivery interval occupies a larger part of the oscillation period than the suction interval.
- variable supply fuel supply device comprises a piston and a cylinder, wherein the pressure in a pressure chamber at a position which is set to a certain value before the top dead center is reached in the course of the exhaust stroke, in which the piston of the fuel pump is from the bottom dead center is moved to the top dead center, is drained.
- a high-pressure pump for a fuel injection device of an internal combustion engine, in particular for a common rail injection system, which has a cam engine in which the rotational movement of a camshaft is converted via at least one cam into a stroke movement of a pump piston of the high-pressure pump, wherein the at least one Cam has an asymmetric cam contour, wherein a cam contour of the cam is designed so that in a suction phase of the high-pressure pump in a range from a top dead center to a bottom dead center, in which fuel is sucked into a pump chamber, the piston stroke of the pump piston as a function of Cam rotation angle follows a sinusoidal course.
- the cam contour is designed such that in a delivery phase of the high-pressure pump, in which the fuel is compressed in the pump working space and supplied to a delivery valve, an acceleration of the pump piston as a function of the cam rotation angle follows a course composed of sinusoidal and linear sections.
- the sinusoidal curve in the suction phase corresponds to a falling edge of a sinusoidal function, which starts at a top dead center of the cam and ends at a bottom dead center of the cam.
- the falling edge is formed from a sum of harmonic functions.
- the performance of the high pressure pump is further optimized.
- the lift-off properties of the plunger body of the high-pressure pump are improved, and depending on the acceleration curve of the rising flank in the delivery phase, larger acceleration stages in the transition region to the suction phase are avoided.
- this refinement improves the speed and acceleration profile of the pump piston as well as the Hertzian pressure.
- the sinusoidal curve in the suction phase at the top dead center of the cam corresponds to a maximum delivery stroke of the pump piston.
- the suction phase is further optimized, the course or the cam contour of which takes place before the suction phase promotion phase is irrelevant and can follow an already optimized cam contour.
- the sinusoidal characteristic is characterized by a slow and harmonic decrease or increase in the piston stroke, the piston speed and the piston acceleration after and before the dead centers.
- the high piston speed in the mid-range of the delivery phase was previously the reason for high drive torques of the high-pressure pump and was not enforceable in the requirements previously placed on the high-pressure pumps in the prior art.
- the slow, harmonic decay after top dead center results in an improved suction phase and lower negative torques during pressure build-up. Due to the slow approach to the bottom dead center, the suction valve of the high-pressure pump can begin earlier with its closing operation and delivery losses due to a late closing of the suction valve are significantly reduced.
- the sinusoidal curve in the suction phase at the bottom dead center of the cam corresponds to a minimum delivery stroke of the pump piston.
- the cam contour is designed so that in the suction phase of the high-pressure pump, the piston speed of the pump piston performing a downward movement follows a sinusoidal course as a function of the cam rotation angle.
- Fig. 1 is a section through a high-pressure pump 1 for a fuel injection device of an internal combustion engine shown, as is known in the prior art.
- the high-pressure pump 1 has a multipart pump housing 2 in which a drive shaft or camshaft 3 driven in rotation by the internal combustion engine is arranged.
- the camshaft 3 is rotatably supported, for example, via two bearing points spaced apart from one another in the direction of the axis of rotation 4 of the camshaft 3.
- the bearings can be arranged in different parts of the pump housing 2, for example, a first bearing point in a base body 5 of the pump housing 2 and a second bearing point can be arranged in a connected to the base body 5 flange 6.
- the camshaft 3 has a cam 7, which may also be designed as a multiple cam.
- the high pressure pump 1 has at least one or more arranged in the housing 2 pump elements 8, each with a pump piston 9 which is driven by the cam 7 of the camshaft 3 in a lifting movement in at least approximately radial direction to the axis of rotation 4 of the camshaft 3.
- the pump piston 9 is set in a reciprocating or upward and downward movement. This results in a cyclical change in the volume of a pump working chamber 14 bounded by the pump piston 9.
- a pump housing part 10 which is connected to the main body 5 and which is designed as a cylinder head.
- the pump housing part 10 has a voltage applied to an outer side of the main body 5 flange 11 and a through an opening in the base body 5 to the camshaft 3 out, at least approximately cylindrical projection 12 with respect to the flange 11 of smaller diameter.
- the pump piston 9 is guided tightly displaceably in a neck 12 formed in the cylinder bore 13 in the pump housing part 10 and limited with its side facing away from the camshaft 3 end face in the cylinder bore 13 the pump chamber 14.
- the cylinder bore 13 may extend into the flange 11, in the then the pump working space 14 is arranged.
- the pump working chamber 14 has a connection with a fuel feed, for example a feed pump (not shown), via a fuel feed channel 15 running in the pump housing 2.
- the pump working chamber 14 also has, via a fuel outlet channel 17 running in the pump housing 2, a connection to an outlet, which is connected to a high-pressure accumulator 18, for example.
- One or more injectors 19 arranged on cylinders of the internal combustion engine are connected to the high-pressure accumulator 18, through which fuel is injected into the cylinders of the internal combustion engine.
- an outlet valve or delivery valve 20 opening out of the pump working chamber 14 is arranged.
- the pump working chamber 14 is filled with fuel through the fuel inlet channel 15 with open inlet valve 16, which acts as a suction valve, wherein the delivery valve 20 is closed .
- fuel is conveyed under high pressure through the pump piston 9 through the fuel outlet channel 17 with open delivery valve 20 to the high-pressure accumulator 18, wherein the inlet valve 16 is closed.
- a plunger 21 is arranged, via which the pump piston 9 is at least indirectly supported on the cam 7 of the camshaft 3.
- the plunger 21 is hollow cylindrical with a round outer cross-section and is guided in a bore 22 of the main body 5 of the pump housing 2 in the direction of the longitudinal axis 23 of the pump piston 20 slidably.
- the longitudinal axis of the plunger 21 is thus at least substantially identical to the longitudinal axis 23 of the pump piston 9.
- a support member 24 is inserted, in which a roller 25 is rotatably mounted on the cam 7 of Camshaft 3 rolls off.
- the axis of rotation 26 of the roller 25 is at least approximately parallel to the axis of rotation 4 of the camshaft 3.
- the support member 24 has on its side facing the camshaft 3 a recess 27 in which the roller 25 is rotatably mounted.
- the support member 24 and the plunger 21 may also be integrally formed.
- the pump piston 9 may be coupled to the plunger 21, at least in the direction of its longitudinal axis 23. Alternatively, the pump piston 9 may not be connected to the plunger 21, then by the return spring 28, the system of the pump piston 9 is secured to the plunger 21.
- the return spring 28 engages, for example via a spring plate 29 on an enlarged diameter piston base of the pump piston 9, which is thereby held in contact with a on the plunger 21 by the jacket inwardly projecting flange, in turn, in contact with the support element 24 is held, so that the entire composite of pump piston 9, plunger 21 and support member 24 is acted upon with roller 25 to the cam 7 of the camshaft 3 out.
- a support 30 is arranged laterally next to the roller 25 for this purpose, which prevents the roller 25 from moving out of the support element 24 in the direction of its axis of rotation 26.
- the roller 25 may be convexly curved at its side facing the support 30 side surfaces, for example, curved at least approximately spherical.
- the side surfaces of the roller 25 facing surface of the support 30 may be formed at least approximately flat or curved.
- the support 30 may be formed as a ring surrounding the roller 25 or may be arranged only laterally adjacent to the side surfaces of the roller 25.
- Fig. 2 shows a diagram representing the delivery rate of a high pressure pump 1 as a function of the rotational speed of a cam 7 on the one hand according to the prior art and another cam 7 on the other hand, according to an embodiment, which is determined according to a simulation.
- the simulation of the delivery rates or the comparison of the delivery rates was carried out on the basis of the conditions of a pressure of 1800 bar and a temperature of 40 ° C.
- a radial piston pump according to the prior art with a conventional cam 7 with 2 x 6 mm stroke with a radial piston pump compared with a cam 7 according to an embodiment of the invention which has a cam contour with respect to the suction phase, which follows a sinusoidal course.
- the cam 7 according to the embodiment is hereinafter referred to as a half-sine cam.
- the delivery rate of 160 l / h achieved by the conventional cam 7 increases to 178 l / h for the half-sine cam at a speed of about 5000 rpm.
- Fig. 3 shows a diagram of the course of the piston stroke in dependence on the cam rotation angle.
- the delivery phase over a cam rotation angle range of 0 ° to 90 ° is shown, in which the curve is composed of linear, sinusoidal, tangential or arcuate acceleration regions. It is important, however, that in the suction phase, the cam contour follows a sinusoidal course in a cam rotation angle range of 90 ° to 180 °.
- the falling edge 33 of the cam contour can also be formed from a non-pure sine function, the falling edge 33 of the cam contour is then obtained from a sum of harmonic functions, whereby a further optimization latitude in the cam design can be obtained.
- contributions from the 4th order may only be less than 1% of the 1st order A1.
- Fig. 4 shows a further diagram, in which the curve of the piston speed in dependence on the cam rotation angle in a delivery phase and in the suction phase is shown. Again, the piston velocity in the suction phase again follows a sinusoidal course.
- FIG. 5 a diagram of the course of the piston acceleration in dependence on the cam rotation angle. Again, in the suction phase of the following a sinusoidal curve can be seen, while the course of the delivery phase of sinusoidal and linear regions is composed.
- the piston speed and the piston stroke result from appropriate integration of the piston acceleration.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Reciprocating Pumps (AREA)
Description
Die vorliegende Erfindung betrifft eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a high-pressure pump for a fuel injection device of an internal combustion engine according to the preamble of claim 1.
Hochdruckpumpen werden beispielsweise in Common-Rail-Systemen von Kraftfahrzeugen dazu eingesetzt, einem Hochdruckspeicher bei allen Betriebsbedingungen unter Hochdruck stehenden Kraftstoff bereitzustellen bzw. zuzuführen. Dabei verfügen derartige Diesel-Hochdruckpumpen in der Regel entweder Exzenterantriebe oder aber Nockenantriebe. Der Vorteil von nockengetriebenen Hochdruckpumpen liegt darin, dass hierbei die Möglichkeit besteht, für eine gewünschte Applikation ein daran angepasstes Nockenprofil, welches den Kolbenhub über einen Drehwinkel der Antriebswelle bzw. der Nockenwelle darstellt, zu entwerfen. Beispielsweise kann über ein asymmetrisches Nockenprofil eine langsame Förderphase und eine schnelle Saugphase der Hochdruckpumpe realisiert werden, wodurch ein Vorteil durch das hierdurch bewirkte niedrige maximale Antriebsmoment erzielt wird, welches der Motor zum Antrieb der Hochdruckpumpe aufbringen muss.High-pressure pumps are used, for example, in common-rail systems of motor vehicles to provide or supply pressurized fuel to a high-pressure accumulator under all operating conditions. Such high-pressure diesel pumps usually have either eccentric drives or cam drives. The advantage of cam-driven high-pressure pumps is that in this case it is possible to design for a desired application a cam profile adapted thereto, which represents the piston stroke via a rotation angle of the drive shaft or the camshaft. For example, a slow delivery phase and a fast suction phase of the high pressure pump can be realized via an asymmetric cam profile, whereby an advantage is achieved by the resulting low maximum drive torque, which must apply the motor to drive the high pressure pump.
Um jedoch die Teilevielfalt bei der Herstellung zu reduzieren, wurden im Stand der Technik im Wesentlichen symmetrische Nockenkonturen entwickelt, die in der Saug- und Förderphase den gleichen Hubverlauf aufweisen. Eine derartig ausgelegte Nockenkontur ist damit auch sowohl für den Rechts- als auch für den Linkslauf einsetzbar.However, in order to reduce the variety of parts in the production, substantially symmetrical cam contours have been developed in the prior art, which have the same stroke course in the suction and delivery phase. A cam contour designed in this way can therefore also be used both for the right-handed and for the anti-clockwise rotation.
Obwohl die symmetrisch ausgelegten Nockenkonturen den oben beschriebenen Vorteil aufweisen, dass die Teilevielfalt gering gehalten wird, haben sie jedoch den Nachteil, dass die prinzipiellen Unterschiede, die sich für die Saugphase und die Förderphase der Hochdruckpumpe ergeben, nicht berücksichtigt bzw. einbezogen werden.Although the symmetrically designed cam contours have the advantage described above that the variety of parts is kept small, they have the disadvantage that the principal differences that arise for the suction phase and the delivery phase of the high-pressure pump, are not taken into account or included.
Bei aus dem Stand der Technik bekannten Hochdruckpumpen wurden darüber hinaus die für ihre Antriebswellen eingesetzten Nocken bezüglich ihrer Nockenkontur auch lediglich hinsichtlich der Förderphase optimiert. Die hieraus resultierenden Nockenkonturen ergaben jedoch ungünstige Eigenschaften für das Füllverhalten des Elementraums bzw. des Pumpenarbeitsraums der Hochdruckpumpe in der Saugphase.In the case of high-pressure pumps known from the prior art, moreover, the cams used for their drive shafts were also optimized with regard to their cam contour only with regard to the delivery phase. The resulting cam contours, however, gave unfavorable properties for the filling behavior of the element space or the pump working space of the high-pressure pump in the suction phase.
Daher ist es notwendig, eine Hochdruckpumpe für Kraftstoffeinspritzeinrichtungen und insbesondere für Common-Rail-Systeme bereitzustellen, welche eine Nockenkontur aufweist, welche auch hinsichtlich der Saugphase optimiert ist.Therefore, it is necessary to provide a high-pressure pump for fuel injectors and in particular for common-rail systems, which has a cam contour, which is also optimized in terms of the suction phase.
Die
Aus der
Erfindungsgemäß wird eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, insbesondere für ein Common-Rail-Einspritzsystem, vorgesehen, welche ein Nockentriebwerk aufweist, bei welchem die Drehbewegung einer Nockenwelle über zumindest einen Nocken in eine Hubbewegung eines Pumpenkolbens der Hochdruckpumpe umgesetzt wird, wobei der zumindest eine Nocken eine asymmetrische Nockenkontur aufweist, wobei eine Nockenkontur des Nockens ausgelegt ist, so dass in einer Saugphase der Hochdruckpumpe in einem Bereich von einem oberen Totpunkt bis zu einem unteren Totpunkt, in welcher Kraftstoff in einen Pumpenarbeitsraum angesaugt wird, der Kolbenhub des Pumpenkolbens als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt. Durch die sinusförmige Auslegung der Nockenkontur wird das Füllverhalten des Elementraums bzw. des Pumpenarbeitsraums der Hochdruckpumpe in der Saugphase verbessert und starke Variationen der Kraftstofffördermenge als Funktion der Drehzahl werden reduziert. Weiterhin wird der Bereich im Druckabbau nach dem oberen Totpunkt des Nockens verbessert.
Erfindungsgemäß ist die Nockenkontur ausgelegt, so dass in einer Förderphase der Hochdruckpumpe, in welcher der Kraftstoff in dem Pumpenarbeitsraum komprimiert und einem Förderventil zugeführt wird, eine Beschleunigung des Pumpenkolbens als Funktion des Nockendrehwinkels einem Verlauf folgt, der sich aus sinusförmigen und linearen Abschnitten zusammensetzt.
Diese asymmetrische Nockenkontur ermöglicht eine Anpassung an spezielle Anforderungen, beispielsweise bezüglich der Saugphase und der Förderphase.According to the invention, a high-pressure pump is provided for a fuel injection device of an internal combustion engine, in particular for a common rail injection system, which has a cam engine in which the rotational movement of a camshaft is converted via at least one cam into a stroke movement of a pump piston of the high-pressure pump, wherein the at least one Cam has an asymmetric cam contour, wherein a cam contour of the cam is designed so that in a suction phase of the high-pressure pump in a range from a top dead center to a bottom dead center, in which fuel is sucked into a pump chamber, the piston stroke of the pump piston as a function of Cam rotation angle follows a sinusoidal course. Due to the sinusoidal design of the cam contour, the filling behavior of the element space or the pump working space of the high-pressure pump is improved in the suction phase, and strong variations in the fuel delivery rate as a function of the rotational speed are reduced. Furthermore, the range in pressure reduction after the top dead center of the cam is improved.
According to the invention, the cam contour is designed such that in a delivery phase of the high-pressure pump, in which the fuel is compressed in the pump working space and supplied to a delivery valve, an acceleration of the pump piston as a function of the cam rotation angle follows a course composed of sinusoidal and linear sections.
This asymmetric cam contour allows adaptation to special requirements, for example with regard to the suction phase and the delivery phase.
Gemäß einer weiteren bevorzugten Ausführungsform entspricht der sinusförmige Verlauf in der Saugphase einer fallenden Flanke einer Sinusfunktion, welche an einem oberen Totpunkt des Nockens beginnt und an einem unteren Totpunkt des Nockens endet. Durch den "Halbsinusnocken" mit z. B. 2 x 6 mm Hub gemäß der Ausführungsform können deutliche Förderzuwächse im Vergleich zu herkömmlichen Nocken mit z. B. 2 x 6 mm Hub erzielt werden. Die Förderrate steigt beispielsweise von 160 l/h beim Einsatz eines herkömmlichen Nockens auf 178 l/h an, wenn der "Halbsinusnocken" gemäß der Ausführungsform eingesetzt wird. Darüber hinaus lassen sich hierdurch Fördermengenschwankungen über der Drehzahl beispielsweise einer Zweistempelpumpe reduzieren und das Abspringverhalten der Stößelbaugruppe der Hochdruckpumpe wird in der Saugphase verbessert. Eine Korrektur bzw. Kompensation von Fördermengenschwankungen über der Drehzahl und reduzierten Förderraten durch eine Erhöhung des Kolbenhubs ist nicht mehr notwendig, was die Dauerhaltbarkeit der Hochdruckpumpe verbessert. Insbesondere werden durch die oben beschriebene Konfiguration eine hohe Belastung der Stößelfeder, ein hohes Antriebsmoment der Hochdruckpumpe und hohe Umpumpverluste, was zu einem Mehrverbrauch der Hochdruckpumpe führt, vermieden.According to a further preferred embodiment, the sinusoidal curve in the suction phase corresponds to a falling edge of a sinusoidal function, which starts at a top dead center of the cam and ends at a bottom dead center of the cam. By the "half sinus cam" with z. B. 2 x 6 mm stroke according to the embodiment, significant increases in production compared to conventional cams with z. B. 2 x 6 mm stroke can be achieved. The delivery rate, for example, increases from 160 l / h when using a conventional cam to 178 l / h when the "half-sine cam" according to the embodiment is used. In addition, this can reduce flow rate fluctuations over the speed, for example, a two-piston pump and the Abspringverhalten the plunger assembly of the high-pressure pump is improved in the suction phase. A correction or compensation of flow rate fluctuations over the speed and reduced flow rates by increasing the piston stroke is no longer necessary, which improves the durability of the high-pressure pump. In particular, by the configuration described above, a high load on the plunger spring, a high drive torque of the high-pressure pump and high Umpumpverluste what leads to an increased consumption of the high-pressure pump avoided.
Besonders bevorzugt ist es, wenn die fallende Flanke aus einer Summe von harmonischen Funktionen gebildet ist. Bei Bilden der fallenden Flanke des Nockenprofils aus einer Summe von harmonischen Funktionen wird die Leistung der Hochdruckpumpe weiter optimiert. Insbesondere werden die Abhebeeigenschaften des Stößelkörpers der Hochdruckpumpe verbessert und je nach Beschleunigungsverlauf der steigenden Flanke in der Förderphase werden größere Beschleunigungsstufen im Übergangsbereich zur Saugphase vermieden. Insbesondere werden durch diese Ausgestaltung der Geschwindigkeits- und Beschleunigungsverlauf des Pumpenkolbens sowie die Hertz'sche Pressung verbessert.It is particularly preferred if the falling edge is formed from a sum of harmonic functions. In forming the falling edge of the cam profile from a sum of harmonic functions, the performance of the high pressure pump is further optimized. In particular, the lift-off properties of the plunger body of the high-pressure pump are improved, and depending on the acceleration curve of the rising flank in the delivery phase, larger acceleration stages in the transition region to the suction phase are avoided. In particular, this refinement improves the speed and acceleration profile of the pump piston as well as the Hertzian pressure.
Gemäß noch einer weiteren bevorzugten Ausführungsform entspricht der sinusförmige Verlauf in der Saugphase an dem oberen Totpunkt des Nockens einem maximalen Förderhub des Pumpenkolbens. Durch diese Konfiguration wird die Saugphase weiter optimiert, wobei der Verlauf bzw. die Nockenkontur der vor der Saugphase stattfindenden Förderphase unerheblich ist und einer bereits optimierten Nockenkontur folgen kann. Der Sinusverlauf zeichnet sich durch einen langsamen und harmonischen Abfall bzw. Anstieg bezüglich des Kolbenhubs, der Kolbengeschwindigkeit und der Kolbenbeschleunigung nach bzw. vor den Totpunkten aus. Die hohe Kolbengeschwindigkeit im Mittelbereich der Förderphase war bisher der Grund für hohe Antriebsmomente der Hochdruckpumpe und war bei den bisher an die Hochdruckpumpen im Stand der Technik gestellten Anforderungen nicht durchsetzbar. Durch den langsamen, harmonischen Abfall nach dem oberen Totpunkt werden jedoch eine verbesserte Saugphase und geringere negative Drehmomente beim Druckaufbau erreicht. Durch die langsame Annäherung an den unteren Totpunkt kann das Saugventil der Hochdruckpumpe früher mit seinem Schließvorgang beginnen und Förderverluste durch ein spätes Schließen des Saugventils werden deutlich reduziert.According to yet another preferred embodiment, the sinusoidal curve in the suction phase at the top dead center of the cam corresponds to a maximum delivery stroke of the pump piston. By this configuration, the suction phase is further optimized, the course or the cam contour of which takes place before the suction phase promotion phase is irrelevant and can follow an already optimized cam contour. The sinusoidal characteristic is characterized by a slow and harmonic decrease or increase in the piston stroke, the piston speed and the piston acceleration after and before the dead centers. The high piston speed in the mid-range of the delivery phase was previously the reason for high drive torques of the high-pressure pump and was not enforceable in the requirements previously placed on the high-pressure pumps in the prior art. However, the slow, harmonic decay after top dead center results in an improved suction phase and lower negative torques during pressure build-up. Due to the slow approach to the bottom dead center, the suction valve of the high-pressure pump can begin earlier with its closing operation and delivery losses due to a late closing of the suction valve are significantly reduced.
Gemäß noch einer weiteren bevorzugten Ausführungsform entspricht der sinusförmige Verlauf in der Saugphase an dem unteren Totpunkt des Nockens einem minimalen Förderhub des Pumpenkolbens.According to yet another preferred embodiment, the sinusoidal curve in the suction phase at the bottom dead center of the cam corresponds to a minimum delivery stroke of the pump piston.
Vorzugsweise ist die Nockenkontur ausgelegt, so dass in der Saugphase der Hochdruckpumpe die Kolbengeschwindigkeit des eine Abwärtsbewegung ausführenden Pumpenkolbens als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt.Preferably, the cam contour is designed so that in the suction phase of the high-pressure pump, the piston speed of the pump piston performing a downward movement follows a sinusoidal course as a function of the cam rotation angle.
Im Nachfolgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:
- Fig. 1
- einen Schnitt durch eine Hochdruckpumpe gemäß dem Stand der Technik;
- Fig. 2
- ein Diagramm, welches die Förderrate in Abhängigkeit von der Drehzahl eines Nockens gemäß dem Stand der Technik und eines Nockens gemäß einer Ausführungsform darstellt;
- Fig. 3
- ein Diagramm des Verlaufs des Kolbenhubs in Abhängigkeit von dem Nockendrehwinkel;
- Fig. 4
- ein Diagramm des Verlaufs der Kolbengeschwindigkeit in Abhängigkeit von dem Nockendrehwinkel; und
- Fig. 5
- ein Diagramm des Verlaufs der Kolbenbeschleunigung in Abhängigkeit von dem Nockendrehwinkel.
- Fig. 1
- a section through a high pressure pump according to the prior art;
- Fig. 2
- a diagram illustrating the delivery rate in dependence on the rotational speed of a cam according to the prior art and a cam according to an embodiment;
- Fig. 3
- a diagram of the course of the piston stroke in dependence on the cam rotation angle;
- Fig. 4
- a diagram of the curve of the piston speed in dependence on the cam rotation angle; and
- Fig. 5
- a diagram of the course of the piston acceleration in dependence on the cam rotation angle.
In
In einem zwischen den Lagerstellen liegenden Bereich weist die Nockenwelle 3 einen Nocken 7 auf, welcher auch als Mehrfachnocken ausgebildet sein kann. Die Hochdruckpumpe 1 weist wenigstens ein oder mehrere im Gehäuse 2 angeordnete Pumpenelemente 8 mit jeweils einem Pumpenkolben 9 auf, der durch den Nocken 7 der Nockenwelle 3 in einer Hubbewegung in zumindest annähernd radialer Richtung zur Drehachse 4 der Nockenwelle 3 angetrieben wird. Bei Drehung des Nockens 7 wird der Pumpenkolben 9 in eine Hin- und Her- bzw. Aufwärts- und Abwärts-Bewegung versetzt. Hierdurch ergibt sich eine zyklische Veränderung des Volumens eines von dem Pumpenkolben 9 begrenzten Pumpenarbeitsraums 14. Im Bereich eines jeden Pumpenelements 8 ist ein mit dem Grundkörper 5 verbundenes Pumpengehäuseteil 10 vorgesehen, das als Zylinderkopf ausgebildet ist. Das Pumpengehäuseteil 10 weist einen an einer Außenseite des Grundkörpers 5 anliegenden Flansch 11 und einen durch eine Öffnung im Grundkörper 5 zur Nockenwelle 3 hin durchragenden, zumindest annähernd zylinderförmigen Ansatz 12 mit gegenüber dem Flansch 11 kleinerem Durchmesser auf. Der Pumpenkolben 9 ist in einer im Ansatz 12 ausgebildeten Zylinderbohrung 13 im Pumpengehäuseteil 10 dicht verschiebbar geführt und begrenzt mit seiner der Nockenwelle 3 abgewandten Stirnseite in der Zylinderbohrung 13 den Pumpenarbeitsraum 14. Die Zylinderbohrung 13 kann sich bis in den Flansch 11 hinein erstrecken, in dem dann der Pumpenarbeitsraum 14 angeordnet ist. Der Pumpenarbeitsraum 14 weist über einen im Pumpengehäuse 2 verlaufenden Kraftstoffzulaufkanal 15 eine Verbindung mit einem Kraftstoffzulauf, beispielsweise einer Förderpumpe (nicht dargestellt), auf. An der Mündung des Kraftstoffzulaufkanals 15 in den Pumpenarbeitsraum 14 ist ein in den Pumpenarbeitsraum 14 öffnendes Einlassventil 16 angeordnet. Der Pumpenarbeitsraum 14 weist außerdem über einen im Pumpengehäuse 2 verlaufenden Kraftstoffauslasskanal 17 eine Verbindung mit einem Auslass auf, der beispielsweise mit einem Hochdruckspeicher 18 verbunden ist. Mit dem Hochdruckspeicher 18 sind ein oder mehrere an Zylindern der Brennkraftmaschine angeordnete Injektoren 19 verbunden, durch die Kraftstoff in die Zylinder der Brennkraftmaschine eingespritzt wird. An der Mündung des Kraftstoffauslasskanals 17 in den Pumpenarbeitsraum 14 ist ein aus dem Pumpenarbeitsraum 14 öffnendes Auslassventil bzw. Förderventil 20 angeordnet.In a region lying between the bearing points, the camshaft 3 has a
Beim Saughub des Pumpenkolbens 9 bzw. in der Saugphase, bei dem sich der Pumpenkolben 9 radial nach innen bewegt, wird der Pumpenarbeitsraum 14 durch den Kraftstoffzulaufkanal 15 bei geöffnetem Einlassventil 16, welches als Saugventil wirkt, mit Kraftstoff befüllt, wobei das Förderventil 20 geschlossen ist. Beim Förderhub des Pumpenkolbens 9 bzw. in der Förderphase, bei dem sich der Pumpenkolben 9 radial nach außen bewegt, wird durch den Pumpenkolben 9 Kraftstoff unter Hochdruck durch den Kraftstoffauslasskanal 17 bei geöffnetem Förderventil 20 zum Hochdruckspeicher 18 gefördert, wobei das Einlassventil 16 geschlossen ist.During the suction stroke of the
Zwischen dem Pumpenkolben 9 und dem Nocken 7 der Nockenwelle 3 ist ein Stößel 21 angeordnet, über den sich der Pumpenkolben 9 zumindest mittelbar am Nocken 7 der Nockenwelle 3 abstützt. Der Stößel 21 ist hohlzylinderförmig mit rundem Außenquerschnitt ausgebildet und ist in einer Bohrung 22 des Grundkörpers 5 des Pumpengehäuses 2 in Richtung der Längsachse 23 des Pumpenkolbens 20 verschiebbar geführt. Die Längsachse des Stößels 21 ist somit zumindest im Wesentlichen identisch mit der Längsachse 23 des Pumpenkolbens 9. Im Stößel 21 ist in dessen der Nockenwelle 3 zugewandtem Endbereich ein Stützelement 24 eingesetzt, in dem eine Rolle 25 drehbar gelagert ist, die auf dem Nocken 7 der Nockenwelle 3 abrollt. Die Drehachse 26 der Rolle 25 ist zumindest annähernd parallel zur Drehachse 4 der Nockenwelle 3. Das Stützelement 24 weist auf seiner der Nockenwelle 3 zugewandten Seite eine Vertiefung 27 auf, in der die Rolle 25 drehbar gelagert ist. Das Stützelement 24 und der Stößel 21 können auch einstückig ausgebildet sein.Between the
Am Stößel 21 oder am Pumpenkolben 9 greift eine vorgespannte Feder 28, welche als Rückstellfeder ausgebildet ist, an, die sich am Pumpengehäuseteil 10 abstützt. Durch die Feder 28 werden der Pumpenkolben 9 und der Stößel 21 zum Nocken 7 der Nockenwelle 3 hin beaufschlagt, so dass die Anlage der Rolle 25 am Nocken 7 auch beim zur Nockenwelle 3 hin gerichteten Saughub des Pumpenkolbens 9 und auch bei hoher Drehzahl der Nockenwelle 3 sichergestellt ist. Der Pumpenkolben 9 kann mit dem Stößel 21 gekoppelt sein, zumindest in Richtung von dessen Längsachse 23. Alternativ kann der Pumpenkolben 9 auch nicht mit dem Stößel 21 verbunden sein, wobei dann durch die Rückstellfeder 28 die Anlage des Pumpenkolbens 9 am Stößel 21 sichergestellt wird. Es kann vorgesehen sein, dass die Rückstellfeder 28 beispielsweise über einen Federteller 29 an einem im Durchmesser vergrößerten Kolbenfuß des Pumpenkolbens 9 angreift, der dadurch in Anlage an einem am Stößel 21 von dessen Mantel nach innen ragenden Flansch gehalten wird, der wiederum in Anlage am Stützelement 24 gehalten wird, so dass der gesamte Verbund aus Pumpenkolben 9, Stößel 21 und Stützelement 24 mit Rolle 25 zum Nocken 7 der Nockenwelle 3 hin beaufschlagt ist.On the
In Richtung der Drehachse 26 ist seitlich neben der Rolle 25 für diese eine Abstützung 30 angeordnet, durch die verhindert wird, dass sich die Rolle 25 in Richtung ihrer Drehachse 26 aus dem Stützelement 24 herausbewegt. Die Rolle 25 kann an ihren der Abstützung 30 zugewandten Seitenflächen konvex gewölbt ausgebildet sein, beispielsweise zumindest annähernd kugelförmig gewölbt. Die den Seitenflächen der Rolle 25 zugewandte Fläche der Abstützung 30 kann zumindest annähernd eben oder gewölbt ausgebildet sein. Die Abstützung 30 kann als ein die Rolle 25 umgebender Ring ausgebildet sein oder nur seitlich neben den Seitenflächen der Rolle 25 angeordnet sein.In the direction of the axis of
Die fallende Flanke 33 der Nockenkontur kann auch aus einer nicht reinen Sinusfunktion gebildet werden, wobei die fallende Flanke 33 der Nockenkontur dann aus einer Summe von harmonischen Funktionen erhalten wird, wodurch ein noch weiterer Optimierungsspielraum in der Nockenauslegung erhalten werden kann.The falling
Wenn die fallende Flanke 33 als Summe von harmonischen Funktionen verschiedener Ordnungen zusammengesetzt ist, dann ergibt sich der Kolbenhub aus der folgenden Gleichung:
Beiträge ab der 4. Ordnung dürfen aus Gründen der Federanregung nur kleiner als 1 % der 1. Ordnung A1 sein.For reasons of spring excitation, contributions from the 4th order may only be less than 1% of the 1st order A1.
Schließlich zeigt
Die sinusförmige Kolbenbeschleunigung ergibt sich dabei aus der Formel:
Die Kolbengeschwindigkeit und der Kolbenhub ergeben sich durch entsprechende Integration der Kolbenbeschleunigung.The piston speed and the piston stroke result from appropriate integration of the piston acceleration.
Insgesamt betrachtet wird mit der erfindungsgemäßen Hochdruckpumpe 1 mit einer optimierten Saugphase geschaffen, wodurch die Förderrate gesteigert und Fördermengeneinbrüche vermieden werden können.Overall, it is created with the high-pressure pump 1 according to the invention with an optimized suction phase, whereby the delivery rate can be increased and flow rate drops can be avoided.
Claims (6)
- High-pressure pump (1) for a fuel injection device of an internal combustion engine, in particular for a common-rail system, which high-pressure pump has a cam drive mechanism in which the rotational movement of the camshaft (3) is converted by means of at least one cam (7) into a reciprocating movement of a pump piston (9) of the high-pressure pump (1), wherein the at least one cam (7) has an asymmetrical cam contour, wherein a cam contour of the cam (7) is designed such that, in a suction phase of the high-pressure pump (1) in a region from a top dead centre (31) to a bottom dead centre (32), in which fuel is drawn into a pump working chamber (14), the piston stroke of the pump piston (9) follows a sinusoidal profile as a function of the cam rotational angle,
characterized in that
the cam contour is configured such that, in a delivery phase of the high-pressure pump (1), in which the fuel in the pump working chamber (14) is compressed and fed to the delivery valve (20), the acceleration of the pump piston (9), as a function of the cam rotational angle, follows a profile made up of sinusoidal and linear sections. - High-pressure pump (1) according to Claim 1,
characterized in that
the sinusoidal profile corresponds, in the suction phase, to a falling flank (33) of a sine function, which flank begins at a top dead centre (31) of the cam (7) and ends at a bottom dead centre (32) of the cam (7). - High-pressure pump (1) according to Claim 2,
characterized in that
the falling flank (33) is formed from a sum of harmonic functions. - High-pressure pump (1) according to Claim 2 or 3,
characterized in that
the sinusoidal profile in the suction phase corresponds, at the top dead centre (31) of the cam (7), to a maximum delivery stroke of the pump piston (9) . - High-pressure pump (1) according to one or more of Claims 2 to 4,
characterized in that
the sinusoidal profile in the suction phase corresponds, at the bottom dead centre (32) of the cam (7), to a minimum delivery stroke of the pump piston (9). - High-pressure pump (1) according to one or more of Claims 1 to 5,
characterized in that
the cam contour is configured such that, in the suction phase of the high-pressure pump (1), the piston speed of the pump piston (9), which performs a reciprocating movement, follows a sinusoidal profile as a function of the cam rotational angle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910002132 DE102009002132A1 (en) | 2009-04-02 | 2009-04-02 | high pressure pump |
PCT/EP2010/051475 WO2010112253A1 (en) | 2009-04-02 | 2010-02-08 | High-pressure pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2414675A1 EP2414675A1 (en) | 2012-02-08 |
EP2414675B1 true EP2414675B1 (en) | 2019-01-02 |
Family
ID=42101984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10702693.2A Active EP2414675B1 (en) | 2009-04-02 | 2010-02-08 | High-pressure pump |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2414675B1 (en) |
CN (1) | CN102378861B (en) |
DE (1) | DE102009002132A1 (en) |
WO (1) | WO2010112253A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11401883B2 (en) | 2020-04-03 | 2022-08-02 | Ford Global Technologies, Llc | System and method for direct injection fuel pump control |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014225528A1 (en) * | 2014-12-11 | 2016-06-16 | Robert Bosch Gmbh | Method for controlling a high-pressure pump for fuel injection in an internal combustion engine |
DE102015201452A1 (en) * | 2015-01-28 | 2016-07-28 | Robert Bosch Gmbh | Apparatus for driving a piston pump, cam for a device, piston pump and method for laying out the device |
DE102015218258B4 (en) * | 2015-09-23 | 2017-08-24 | Continental Automotive Gmbh | Method for regulating the rail pressure of an injection system |
DE102016216978A1 (en) * | 2016-09-07 | 2018-03-08 | Robert Bosch Gmbh | Method for controlling a high-pressure pump for fuel injection in an internal combustion engine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6334344A (en) * | 1986-07-28 | 1988-02-15 | Yoshida Kogyo Kk <Ykk> | Intermittent drive device |
DE3921998A1 (en) * | 1989-07-04 | 1991-01-17 | Bihler Maschf Otto | CRANE DRIVE FOR A MATERIAL INLET DEVICE ON A MACHINING MACHINE, IN PARTICULAR A PUNCHING AND BENDING MACHINE KEYWORD: FIXED CORRECTION CURVE |
DE19955778A1 (en) * | 1999-11-19 | 2001-06-13 | Siemens Ag | Multi-cylinder piston pump |
JP2002115623A (en) * | 2000-10-05 | 2002-04-19 | Mitsubishi Electric Corp | Variable discharge-amount fuel supply device |
-
2009
- 2009-04-02 DE DE200910002132 patent/DE102009002132A1/en not_active Withdrawn
-
2010
- 2010-02-08 CN CN201080015086.5A patent/CN102378861B/en active Active
- 2010-02-08 WO PCT/EP2010/051475 patent/WO2010112253A1/en active Application Filing
- 2010-02-08 EP EP10702693.2A patent/EP2414675B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11401883B2 (en) | 2020-04-03 | 2022-08-02 | Ford Global Technologies, Llc | System and method for direct injection fuel pump control |
Also Published As
Publication number | Publication date |
---|---|
EP2414675A1 (en) | 2012-02-08 |
DE102009002132A1 (en) | 2010-10-07 |
WO2010112253A1 (en) | 2010-10-07 |
CN102378861A (en) | 2012-03-14 |
CN102378861B (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1201913B1 (en) | Variable displacement high pressure fuel pump | |
EP2414675B1 (en) | High-pressure pump | |
DE102007055748A1 (en) | Cam device for use with high pressure fuel pump, has tappet element exhibiting guiding section expanding gap between roller and tappet element, where outer circumference of roller reaches side during rotation of roller | |
DE102009026596A1 (en) | High-pressure pump for high pressure injection system for internal combustion engine, particularly for motor vehicle, has drive shaft with cam, piston and cylinder | |
EP1379784B1 (en) | Single-plunger injection pump for a common rail fuel injection system | |
DE102015105735B4 (en) | Method for operating a fuel pump for an internal combustion engine, fuel pump and internal combustion engine | |
EP3077657B1 (en) | Drive device for driving a high pressure fuel pump, and high pressure fuel pump | |
DE3542938A1 (en) | Fuel injection pump | |
EP1058001B1 (en) | High pressure feed pump | |
DE102011082642A1 (en) | Pump, in particular high-pressure fuel pump for a fuel injection device of an internal combustion engine | |
EP1101939B1 (en) | Multicylinder piston pump | |
EP1269021B1 (en) | Radial piston pump | |
WO2016120082A1 (en) | Device for operating a piston pump, cam for a device, piston pump and method for implementing the device | |
DE102006000832B4 (en) | Radial piston pump with flow control | |
EP1655480B1 (en) | Method of using a fuel system of an internal combustion engine and fuel system | |
EP2850318B1 (en) | High pressure pump | |
DE10138362A1 (en) | Single-punch injection pump for a common rail fuel injection system | |
WO2009098095A1 (en) | Cam free of transverse force for common-rail high-pressure pumps | |
DE102005018049B4 (en) | Variable delivery rate control for a stationary positive displacement pump | |
DE112020007639T5 (en) | Fuel pump assembly | |
DE102009026610A1 (en) | High-pressure pump for high pressure injection system for internal combustion engine, particularly for motor vehicle, has parallel axle that is aligned parallel to central longitudinal axis | |
DE102012202717A1 (en) | High pressure pump for use in common-rail injection system to convey e.g. diesel to diesel engine of motor car, has working chamber comprising dead volume that is narrowed by additional insert in addition to housing | |
WO2014096175A1 (en) | High pressure pump | |
DE102017214222A1 (en) | piston pump | |
DE102017207399A1 (en) | Method for operating an internal combustion engine and internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20151210 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180716 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1084713 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010015683 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190502 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190402 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190502 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190402 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010015683 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190208 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
26N | No opposition filed |
Effective date: 20191003 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190208 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190302 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1084713 Country of ref document: AT Kind code of ref document: T Effective date: 20190208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240423 Year of fee payment: 15 |