EP2412001B1 - Deuterium lamp - Google Patents

Deuterium lamp Download PDF

Info

Publication number
EP2412001B1
EP2412001B1 EP10709392.4A EP10709392A EP2412001B1 EP 2412001 B1 EP2412001 B1 EP 2412001B1 EP 10709392 A EP10709392 A EP 10709392A EP 2412001 B1 EP2412001 B1 EP 2412001B1
Authority
EP
European Patent Office
Prior art keywords
lamp
barrier layer
gas
piston
deuterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10709392.4A
Other languages
German (de)
French (fr)
Other versions
EP2412001A1 (en
Inventor
Thorsten Jenek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP2412001A1 publication Critical patent/EP2412001A1/en
Application granted granted Critical
Publication of EP2412001B1 publication Critical patent/EP2412001B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/68Lamps in which the main discharge is between parts of a current-carrying guide, e.g. halo lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component

Definitions

  • the invention relates to a deuterium lamp with a lamp base, which has electrode passages, with a piston made of glass and with a housing structure comprising anode, cathode and aperture, wherein at least a part of the piston forms a jet exit surface and wherein lamp base and piston enclose a gas space.
  • the inside of the quartz glass bulb is either unprotected or a coating of boron oxide is applied.
  • the boron oxide diffuses into the quartz glass surface and combines in a chemical reaction with the near-surface layer of the quartz glass.
  • the boron oxide coating has the consequence that the quartz glass surface becomes more chemically resistant.
  • the quartz glass surface is thus better protected from reactions with paste material from the cathode, which occurs during operation of the lamp the piston inside precipitates.
  • the paste material of the cathode contains Ba, Sr and / or Ca.
  • Mercury low pressure or amalgam lamps are known to have an aluminum phosphorous oxide coating which protects the quartz glass surface of the radiator from chemical attack by mercury ions.
  • the mercury ions react with the quartz glass to form mercury oxide, which has a strong absorbing action and reduces the intensity of the radiator ( DE102004038556A1 ).
  • Thin layers are also off EP0290669 B1 .
  • EP1282153 A1 known.
  • the invention has for its object to reduce gas consumption and to improve the life of deuterium lamps.
  • the piston has a gas diffusion barrier layer on its surface facing the gas chamber at least at the jet exit surface, the gas diffusion and thus the gas consumption are reduced significantly in comparison with known techniques.
  • the gas diffusion barrier layer is formed of alumina, preferably of amorphous alumina, since amorphous alumina is much more compact than silica.
  • the gas diffusion barrier layer has a thickness of 10 nm to 10 .mu.m, preferably from 20 nm to 200 nm.
  • the layer thickness can be generated either by a 1-fold layer or by several coating operations.
  • the gas diffusion barrier layer is preferably optically transparent at a wavelength between 160 nm and 1100 nm.
  • the gas diffusion barrier layer can be arranged on the entire surface of the piston facing the gas chamber.
  • the bulb of the deuterium lamp is preferably formed of quartz glass or borosilicate glass, wherein the advantage of the diffusion barrier layer is particularly evident.
  • the alumina can be applied by PVD, CVD or sol-gel methods.
  • the sol-gel can be sprayed, dipped or applied by pulling a core that acts like a round putty.
  • the layer is applied in the sol-gel dipping method in order to achieve a uniform layer quality.
  • the layer is dried for 1 to 24 hours at temperatures between 30 ° C and 200 ° C.
  • the gas diffusion barrier layer is baked at temperatures between 400 ° C and 1400 ° C, preferably between 600 ° C and 1200 ° C, between 1 and 24 hours to achieve a good barrier effect.
  • the illustrated deuterium lamp is based on a base 1 made of quartz glass with electrical cathode feedthrough 2, electrical ground feedthrough 3 and electrical anode feedthrough 4.
  • the electrical feedthroughs 2, 3, 4 are fitted with molybdenum foils 5, which provide a gas-tight seal.
  • the housing structure 11 of the deuterium lamp is additionally supported by the front retaining pin 6 and the rear retaining pin 7 in order to increase the mechanical stability.
  • the housing assembly 11 includes the cathode 14, the anode 12 and the aperture 15, which are spaced apart in the housing structure 11.
  • the cathode 14 is isolated from the housing assembly 11 by the cathode insulation 8.
  • the housing structure 11 is surrounded by a gas volume 9.
  • the gas is preferably Hydrogen or deuterium. Housing structure 11 and gas volume 9 are enclosed by the piston 10 made of quartz glass and the foot 1 gas-tight.
  • deuterium Due to its small atomic radius, deuterium is able to diffuse into the quartz glass structure.
  • the deuterium diffuses predominantly on interstitial sites and is thus interstitially bound in the structure.
  • the chemical bond to form SiD is also possible, but quantitatively negligible.
  • the diffusion rate is significantly lower.
  • This diffusion process is accelerated by surface activation of the quartz glass by hard UV radiation generated by the deuterium plasma.
  • the diffusion at the quartz glass surface in the region of the beam exit is therefore particularly high.
  • the diffusion process described here results in that the filling pressure of the lamp continuously decreases during operation.
  • the arc discharge necessary for the operation of the lamp can only be maintained up to a certain minimum pressure. If this pressure is exceeded by gas consumption, no arc discharge is possible and the lamp is unusable. The gas consumption thus determines the life of the lamp.
  • a Gasdiffusionsbarrie für 13 is applied from amorphous alumina.
  • crystalline alumina is also conceivable.
  • the gas diffusion barrier layer 13 is in Fig. 2 and is applied to the entire inner surface of the piston 10.
  • the gas diffusion barrier layer 13 was applied by 2-fold coating in the sol-gel dipping method. After each individual coating, it was dried at 100 ° C. for 12 hours and baked at 900 ° C. for 12 hours. The resulting gas diffusion barrier layer 13 has a thickness of 100 nm in total. It is optically transparent in the range between 160 nm and 1100 nm.
  • Amorphous alumina is much more compact than the structure of quartz glass and therefore significantly reduces deuterium diffusion.
  • the reduction of gas consumption is in Fig. 3 shown.
  • Curve A shows the course of a lamp without gas diffusion barrier layer
  • curve B the course with the gas diffusion barrier layer according to the invention.
  • the reduced gas loss allows a much longer service life of the deuterium lamp until reaching the critical filling pressure.
  • the reduced gas loss also improves the intensity profile of the deuterium lamp, since the UV intensity of a deuterium lamp depends on the particle density of the filling gas and thus depends on the filling pressure.
  • the particle density is related to the number of ionized deuterium molecules, which in turn directly determines the number of photons generated and thus the UV intensity.
  • the optimum filling pressure of a deuterium lamp is about 5 mbar, depending on the geometry. A critical pressure of about 1 mbar should not be undercut.
  • Fig. 4 shows the intensity profile of a deuterium lamp without gas diffusion barrier layer (curve A) and with the gas diffusion barrier layer according to the invention (curve B).

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

Die Erfindung betrifft eine Deuteriumlampe mit einem Lampenfuß, der Elektrodendurchführungen aufweist, mit einem Kolben aus Glas und mit einem Gehäuseaufbau, der Anode, Kathode und Blende umfasst, wobei mindestens ein Teil des Kolbens eine Strahlaustrittsfläche bildet und wobei Lampenfuß und Kolben einen Gasraum umschließen.The invention relates to a deuterium lamp with a lamp base, which has electrode passages, with a piston made of glass and with a housing structure comprising anode, cathode and aperture, wherein at least a part of the piston forms a jet exit surface and wherein lamp base and piston enclose a gas space.

Alle derzeitigen Deuteriumlampen leiden unter einer sogenannten Gasaufzehrung. Dabei diffundiert im Betrieb der Lampe die Gasfüllung unter anderem in den Quarzglaskolben hinein, vorwiegend auf Zwischengitterplätze und ist so interstitiell in der Struktur gebunden. Aufgrund des kleinen Atomradius von Deuterium ist die Diffusionsrate für Deuterium deutlich höher, als für die wesentlich größeren Edelgase, wie z.B. Neon oder Xenon. Dieser Diffusionsprozess wird durch Oberflächenaktivierung des Quarzglases durch harte UV-Strahlung, die durch das Deuteriumplasma erzeugt wird, noch beschleunigt. Die Diffusion an der Quarzglasoberfläche im Bereich des Strahlaustritts ist deshalb besonders hoch. Der hier beschriebene Diffusionsprozess führt dazu, dass der Fülldruck der Lampe im Betrieb kontinuierlich abnimmt. Die für den Betrieb der Lampe notwendige Bogenentladung lässt sich nur bis zum einem gewissen Minimaldruck aufrecht erhalten. Wird dieser Druck durch Gasaufzehrung unterschritten, verliert die Lampe drastisch an Intensität und ist unbrauchbar. Die Gasaufzehrung bestimmt also die Lebensdauer der Lampe.All current Deuterium lamps suffer from a so-called gas consumption. During operation of the lamp, the gas filling diffuses among other things into the quartz glass bulb, predominantly to interstitial spaces, and is thus interstitially bound in the structure. Due to the small atomic radius of deuterium, the diffusion rate for deuterium is significantly higher than for the much larger noble gases, e.g. Neon or xenon. This diffusion process is accelerated by surface activation of the quartz glass by hard UV radiation generated by the deuterium plasma. The diffusion at the quartz glass surface in the region of the beam exit is therefore particularly high. The diffusion process described here results in that the filling pressure of the lamp continuously decreases during operation. The arc discharge necessary for the operation of the lamp can only be maintained up to a certain minimum pressure. If this pressure is undershot by gas consumption, the lamp drastically loses intensity and is useless. The gas consumption thus determines the life of the lamp.

Bei den derzeitig verwendeten Deuteriumlampen ist die Innenseite des Quarzglaskolbens entweder ungeschützt oder es wird eine Beschichtung aus Boroxid aufgebracht. Das Boroxid diffundiert in die Quarzglasoberfläche hinein und verbindet sich in einer chemischen Reaktion mit der oberflächennahen Schicht des Quarzglases. Die Boroxidbeschichtung hat zur Folge, dass die Quarzglasoberfläche chemisch resistenter wird. Die Quarzglasoberfläche wird so besser vor Reaktionen mit Pastenmaterial von der Kathode geschützt, das sich im Betrieb der Lampe auf der Kolbeninnenseite niederschlägt. Das Pastenmaterial der Kathode enthält Ba, Sr und/oder Ca. Diese Elemente reagieren unter den Betriebsbedingungen der Deuteriumlampe mit der Quarzglasoberfläche und führen so zu kontinuierlichem Intensitätsverlust durch optische Absorption der Reaktionsprodukte. Der Intensitätsverlust ist also auf chemische Reaktionen zurückzuführen. Der Gasverlust der Lampe wird durch die Boroxidbeschichtung kaum beeinflusst. ( DE3713704 A1 , EP0287706 B1 ). Eine weitere Deuteriumlampe ist bekannt aus EP 0 685 874 A1 .In the deuterium lamps currently in use, the inside of the quartz glass bulb is either unprotected or a coating of boron oxide is applied. The boron oxide diffuses into the quartz glass surface and combines in a chemical reaction with the near-surface layer of the quartz glass. The boron oxide coating has the consequence that the quartz glass surface becomes more chemically resistant. The quartz glass surface is thus better protected from reactions with paste material from the cathode, which occurs during operation of the lamp the piston inside precipitates. The paste material of the cathode contains Ba, Sr and / or Ca. These elements react under the operating conditions of the deuterium lamp with the quartz glass surface and thus lead to a continuous loss of intensity by optical absorption of the reaction products. The loss of intensity is therefore due to chemical reactions. The gas loss of the lamp is hardly affected by the Boroxidbeschichtung. ( DE3713704 A1 . EP0287706 B1 ). Another deuterium lamp is known EP 0 685 874 A1 ,

Von Quecksilberniederdruck- oder Amalgamlampen ist eine Aluminiumphosphoroxid-Beschichtung bekannt, die die Quarzglasoberfläche des Strahlers vor chemischem Angriff durch Quecksilberionen schützt. Die Quecksilberionen reagieren mit dem Quarzglas zu Quecksilberoxid, das stark absorbierend wirkt und die Intensität des Strahlers verringert ( DE102004038556A1 ). Dünne Schichten sind auch aus EP0290669 B1 , EP0407548 B1 , EP1043755 B1 , EP1282153 A1 bekannt.Mercury low pressure or amalgam lamps are known to have an aluminum phosphorous oxide coating which protects the quartz glass surface of the radiator from chemical attack by mercury ions. The mercury ions react with the quartz glass to form mercury oxide, which has a strong absorbing action and reduces the intensity of the radiator ( DE102004038556A1 ). Thin layers are also off EP0290669 B1 . EP0407548 B1 . EP1043755 B1 . EP1282153 A1 known.

Von Xe-Halogenid Excimerlampen ist eine Aluminiumoxidschicht bekannt, die die Quarzglasoberfläche des Strahlers vor chemischem Angriff der Halogenide schützt. Die Halogenide, die für die UV-Emission verantwortlich sind, reagieren stark mit der Quarzglasoberfläche, so dass bereits nach wenigen Minuten die Halogenide chemisch im Quarzglas gebunden sind. Auch hier wird die chemische Resistenz von Aluminiumoxid ausgenutzt ( DE10137015 A1 , ähnlich CH672380 A5 ).Of Xe-halide excimer lamps, an aluminum oxide layer is known, which protects the quartz glass surface of the radiator against chemical attack of the halides. The halides, which are responsible for the UV emission, react strongly with the quartz glass surface, so that after a few minutes, the halides are chemically bound in the quartz glass. Again, the chemical resistance of alumina is exploited ( DE10137015 A1 , similar CH672380 A5 ).

Der Erfindung liegt die Aufgabe zugrunde, die Gasaufzehrung zu verringern und die Lebensdauer der Deuteriumlampen zu verbessern.The invention has for its object to reduce gas consumption and to improve the life of deuterium lamps.

Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben. Dadurch, dass der Kolben an seiner dem Gasraum zugewandten Oberfläche mindestens an der Strahlaustrittsfläche eine Gasdiffusionsbarriereschicht aufweist, verringert sich die Gasdiffusion und damit die Gasaufzehrung gegenüber bekannten Techniken signifikant. Vorzugsweise ist die Gasdiffusionsbarriereschicht aus Alumiuniumoxid, vorzugsweise aus amorphem Aluminiumoxid, gebildet, da amorphes Aluminiumoxid wesentlich kompakter ist als Quarzglas.The object is solved by the features of claim 1. Advantageous embodiments are specified in the dependent claims. Because the piston has a gas diffusion barrier layer on its surface facing the gas chamber at least at the jet exit surface, the gas diffusion and thus the gas consumption are reduced significantly in comparison with known techniques. Preferably, the gas diffusion barrier layer is formed of alumina, preferably of amorphous alumina, since amorphous alumina is much more compact than silica.

Zweckmäßig ist es, dass die Gasdiffusionsbarriereschicht eine Dicke von 10 nm bis 10 µm, vorzugsweise von 20 nm bis 200 nm, aufweist. Die Schichtdicke kann entweder durch eine 1-fach Schicht oder durch mehrere Beschichtungsvorgänge erzeugt werden. Die Gasdiffusionsbarriereschicht ist vorzugsweise optisch transparent bei einer Wellenlänge zwischen 160 nm und 1100 nm.It is expedient that the gas diffusion barrier layer has a thickness of 10 nm to 10 .mu.m, preferably from 20 nm to 200 nm. The layer thickness can be generated either by a 1-fold layer or by several coating operations. The gas diffusion barrier layer is preferably optically transparent at a wavelength between 160 nm and 1100 nm.

Die Gasdiffusionsbarriereschicht kann auf der gesamten dem Gasraum zugewandten Oberfläche des Kolbens angeordnet sein. Der Kolben der Deuteriumlampe ist vorzugsweise aus Quarzglas oder Borosilikatglas gebildet, wobei sich der Vorteil der Diffusionsbarriereschicht besonders deutlich zeigt.The gas diffusion barrier layer can be arranged on the entire surface of the piston facing the gas chamber. The bulb of the deuterium lamp is preferably formed of quartz glass or borosilicate glass, wherein the advantage of the diffusion barrier layer is particularly evident.

Das Aluminiumoxid kann über PVD, CVD oder Sol-Gel-Verfahren aufgebracht werden. Beim Sol-Gel-Verfahren kann das Sol-Gel gesprüht, getaucht oder durch das Ziehen eines Kerns, der wie ein Rundspachtel wirkt, aufgebracht werden. Bevorzugt wird die Schicht im Sol-Gel-Tauchverfahren aufgebracht, um eine gleichmäßige Schichtqualität zu erreichen. Im Anschluss wird die Schicht für 1 bis 24 Stunden bei Temperaturen zwischen 30°C und 200°C getrocknet. Abschließend wird die Gasdiffusionsbarriereschicht bei Temperaturen zwischen 400°C und 1400°C, vorzugsweise zwischen 600°C und 1200°C, zwischen 1 und 24 Stunden eingebrannt, um eine gute Barrierewirkung zu erzielen.The alumina can be applied by PVD, CVD or sol-gel methods. In the sol-gel process, the sol-gel can be sprayed, dipped or applied by pulling a core that acts like a round putty. Preferably, the layer is applied in the sol-gel dipping method in order to achieve a uniform layer quality. Subsequently, the layer is dried for 1 to 24 hours at temperatures between 30 ° C and 200 ° C. Finally, the gas diffusion barrier layer is baked at temperatures between 400 ° C and 1400 ° C, preferably between 600 ° C and 1200 ° C, between 1 and 24 hours to achieve a good barrier effect.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung beschrieben.Hereinafter, an embodiment of the invention will be described with reference to a drawing.

In der Zeichnung zeigt

Fig. 1
eine Deuteriumlampe mit erfindungsgemäßer Schicht
Fig. 2
einen Ausschnitt aus dem beschichteten Lampenkolben
Fig. 3
den zeitlichen Verlauf des Gasdrucks und
Fig. 4
den zeitlichen Intensitätsverlauf.
In the drawing shows
Fig. 1
a deuterium lamp with a layer according to the invention
Fig. 2
a section of the coated lamp bulb
Fig. 3
the time course of the gas pressure and
Fig. 4
the temporal intensity course.

Die in Fig. 1 dargestellte Deuteriumlampe basiert auf einem Fuß 1 aus Quarzglas mit elektrischer Kathodendurchführung 2, elektrischer Massendurchführung 3 und elektrischer Anodendurchführung 4. In die elektrischen Durchführungen 2;3;4 sind Molybdänfolien 5 einsetzt, die für einen gasdichten Abschluss sorgen. Der Gehäuseaufbau 11 der Deuteriumlampe wird zusätzlich durch den vorderen Haltestift 6 und den hinteren Haltestift 7 gestützt, um die mechanische Stabilität zu erhöhen. Der Gehäuseaufbau 11 beinhaltet die Kathode 14, die Anode 12 und die Blende 15, die im Gehäuseaufbau 11 beabstandet zueinander angeordnet sind. Die Kathode 14 wird durch die Kathodenisolierung 8 von dem Gehäuseaufbau 11 isoliert. Der Gehäuseaufbau 11 ist von einem Gasvolumen 9 umgeben. Bei dem Gas handelt es sich vorzugsweise um Wasserstoff oder Deuterium. Gehäuseaufbau 11 und Gasvolumen 9 werden durch den Kolben 10 aus Quarzglas und den Fuss 1 gasdicht eingeschlossen.In the Fig. 1 The illustrated deuterium lamp is based on a base 1 made of quartz glass with electrical cathode feedthrough 2, electrical ground feedthrough 3 and electrical anode feedthrough 4. The electrical feedthroughs 2, 3, 4 are fitted with molybdenum foils 5, which provide a gas-tight seal. The housing structure 11 of the deuterium lamp is additionally supported by the front retaining pin 6 and the rear retaining pin 7 in order to increase the mechanical stability. The housing assembly 11 includes the cathode 14, the anode 12 and the aperture 15, which are spaced apart in the housing structure 11. The cathode 14 is isolated from the housing assembly 11 by the cathode insulation 8. The housing structure 11 is surrounded by a gas volume 9. The gas is preferably Hydrogen or deuterium. Housing structure 11 and gas volume 9 are enclosed by the piston 10 made of quartz glass and the foot 1 gas-tight.

Aufgrund seines kleinen Atomradius ist Deuterium in der Lage, in die Quarzglasstruktur hinein zu diffundieren. Dabei diffundiert das Deuterium vorwiegend auf Zwischengitterplätze und ist so interstitiell in der Struktur gebunden. Die chemische Bindung unter Bildung von SiD ist auch möglich, quantitativ aber vernachlässigbar. Bei den wesentlich größeren Edelgasen (z.B. Neon, Xenon) ist die Diffusionsrate deutlich niedriger. Dieser Diffusionsprozess wird durch Oberflächenaktivierung des Quarzglases durch harte UV-Strahlung, die durch das Deuteriumplasma erzeugt wird, noch beschleunigt. Die Diffusion an der Quarzglasoberfläche im Bereich des Strahlaustritts ist deshalb besonders hoch. Der hier beschriebene Diffusionsprozess führt dazu, dass der Fülldruck der Lampe im Betrieb kontinuierlich abnimmt. Die für den Betrieb der Lampe notwendige Bogenentladung lässt sich nur bis zum einem gewissen Minimaldruck aufrecht erhalten. Wird dieser Druck durch Gasaufzehrung unterschritten, ist keine Bogenentladung mehr möglich und die Lampe ist unbrauchbar. Die Gasaufzehrung bestimmt also die Lebensdauer der Lampe.Due to its small atomic radius, deuterium is able to diffuse into the quartz glass structure. The deuterium diffuses predominantly on interstitial sites and is thus interstitially bound in the structure. The chemical bond to form SiD is also possible, but quantitatively negligible. For the much larger noble gases (e.g., neon, xenon), the diffusion rate is significantly lower. This diffusion process is accelerated by surface activation of the quartz glass by hard UV radiation generated by the deuterium plasma. The diffusion at the quartz glass surface in the region of the beam exit is therefore particularly high. The diffusion process described here results in that the filling pressure of the lamp continuously decreases during operation. The arc discharge necessary for the operation of the lamp can only be maintained up to a certain minimum pressure. If this pressure is exceeded by gas consumption, no arc discharge is possible and the lamp is unusable. The gas consumption thus determines the life of the lamp.

Auf der Innenseite des Kolbens 10 ist deshalb eine Gasdiffusionsbarrieschicht 13 aus amorphem Aluminiumoxid aufgebracht. Kristallines Aluminiumoxid ist aber ebenfalls denkbar. Die Gasdiffusionsbarriereschicht 13 ist in Fig. 2 dargestellt und ist auf der gesamten Innenfläche des Kolbens 10 aufgebracht.On the inside of the piston 10, therefore, a Gasdiffusionsbarrieschicht 13 is applied from amorphous alumina. However, crystalline alumina is also conceivable. The gas diffusion barrier layer 13 is in Fig. 2 and is applied to the entire inner surface of the piston 10.

Die Gasdiffusionsbarriereschicht 13 wurde durch 2fache Beschichtung im Sol-Gel-Tauchverfahren aufgebracht. Nach jeder einzelnen Beschichtung wurde 12 Stunden lang bei 100 °C getrocknet und 12 Stunden lang bei 900°C eingebrannt. Die entstandene Gasdiffusionbarriereschicht 13 weist eine Dicke von insgesamt 100 nm auf. Sie ist optisch transparent im Bereich zwischen 160 nm und 1100 nm.The gas diffusion barrier layer 13 was applied by 2-fold coating in the sol-gel dipping method. After each individual coating, it was dried at 100 ° C. for 12 hours and baked at 900 ° C. for 12 hours. The resulting gas diffusion barrier layer 13 has a thickness of 100 nm in total. It is optically transparent in the range between 160 nm and 1100 nm.

Amorphes Aluminiumoxid ist wesentlich kompakter als die Struktur des Quarzglases und verringert deshalb die Deuteriumdiffusion deutlich. Die Reduzierung der Gasaufzehrung ist in Fig. 3 dargestellt. Kurve A zeigt den Verlauf einer Lampe ohne Gasdiffusionsbarriereschicht, Kurve B den Verlauf mit der erfindungsgemäßen Gasdiffusionsbarriereschicht. Der verringerte Gasverlust ermöglicht eine wesentlich längere Betriebsdauer der Deuteriumlampe bis zum Erreichen des kritischen Fülldrucks.Amorphous alumina is much more compact than the structure of quartz glass and therefore significantly reduces deuterium diffusion. The reduction of gas consumption is in Fig. 3 shown. Curve A shows the course of a lamp without gas diffusion barrier layer, curve B the course with the gas diffusion barrier layer according to the invention. The reduced gas loss allows a much longer service life of the deuterium lamp until reaching the critical filling pressure.

Durch den verringerten Gasverlust verbessert sich auch der Intensitätsverlauf der Deuteriumlampe, da die UV-Intensität einer Deuteriumlampe von der Teilchendichte des Füllgases und somit vom Fülldruck abhängig ist. Die Teilchendichte steht in Beziehung mit der Anzahl an ionisierten Deuteriummolekülen, die wiederum direkt die Anzahl der erzeugten Photonen und somit die UV-Intensität bestimmt. Es gibt hierbei einen optimalen Fülldruck, bei dem ein Maximum an UV-Intensität emittiert wird. Wird dieser optimale Fülldruck unterschritten, sinkt die UV-Intensität kontinuierlich bis zum Erlöschen der Bogenentladung. Der optimale Fülldruck einer Deuteriumlampe liegt abhängig von der Geometrie bei etwa 5 mbar. Ein kritischer Druck von etwa 1 mbar sollte nicht unterschritten werden.The reduced gas loss also improves the intensity profile of the deuterium lamp, since the UV intensity of a deuterium lamp depends on the particle density of the filling gas and thus depends on the filling pressure. The particle density is related to the number of ionized deuterium molecules, which in turn directly determines the number of photons generated and thus the UV intensity. There is an optimal filling pressure at which a maximum of UV intensity is emitted. If this optimum filling pressure is undercut, the UV intensity decreases continuously until the arc discharge ceases. The optimum filling pressure of a deuterium lamp is about 5 mbar, depending on the geometry. A critical pressure of about 1 mbar should not be undercut.

Fig. 4 zeigt den Intensitätsverlauf einer Deuteriumlampe ohne Gasdiffusionsbarriereschicht (Kurve A) und mit der erfindungsgemäßen Gasdiffusionsbarriereschicht (Kurve B). Fig. 4 shows the intensity profile of a deuterium lamp without gas diffusion barrier layer (curve A) and with the gas diffusion barrier layer according to the invention (curve B).

Claims (6)

  1. A deuterium arc lamp having a lamp base (1) that comprises electrode bushings (2, 3, 4), having a piston (10) made of glass and having a housing body (11) that comprises the anode (12), the cathode (14) and the aperture (15), wherein at least one part of the piston forms a beam exit face and wherein the lamp base (1) and the piston (10) enclose a gas chamber (9), characterised in that the piston (10) comprises on its surface facing the gas chamber (9) a gas diffusion barrier layer (13) at least on the beam exit face.
  2. The deuterium arc lamp according to Claim 1, characterised in that the gas diffusion barrier layer is formed from aluminium oxide, preferably from amorphous aluminium oxide.
  3. The deuterium arc lamp according to Claim 1 or 2, characterised in that the gas diffusion barrier layer has a thickness of 10 nm to 10 µm, preferably from 20 nm to 200 nm.
  4. The deuterium arc lamp at least according to any one of Claims 1 to 3, characterised in that the gas diffusion barrier layer is arranged on the entire piston surface that is facing the gas chamber.
  5. The deuterium arc lamp at least according to any one of Claims 1 to 4, characterised in that the gas diffusion barrier layer is transparent to radiation of a wavelength within the range from 160 nm to 1100 nm.
  6. The deuterium arc lamp at least according to any one of Claims 1 to 5, characterised in that the piston is formed from quartz glass or borosilicate glass.
EP10709392.4A 2009-03-26 2010-02-25 Deuterium lamp Active EP2412001B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009014425A DE102009014425B4 (en) 2009-03-26 2009-03-26 deuterium lamp
PCT/EP2010/001157 WO2010108581A1 (en) 2009-03-26 2010-02-25 Deuterium lamp

Publications (2)

Publication Number Publication Date
EP2412001A1 EP2412001A1 (en) 2012-02-01
EP2412001B1 true EP2412001B1 (en) 2014-12-17

Family

ID=42224847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10709392.4A Active EP2412001B1 (en) 2009-03-26 2010-02-25 Deuterium lamp

Country Status (9)

Country Link
US (1) US20110285282A1 (en)
EP (1) EP2412001B1 (en)
JP (1) JP5362098B2 (en)
KR (1) KR101553734B1 (en)
CN (1) CN102365706B (en)
AU (1) AU2010227909B2 (en)
DE (1) DE102009014425B4 (en)
SG (1) SG174121A1 (en)
WO (1) WO2010108581A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014675A1 (en) 2013-09-04 2015-03-05 Jochen Wieser Ultraviolet light source
CN103646847A (en) * 2013-12-07 2014-03-19 四川天微电子有限责任公司 Ultraviolet ray emitter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH672380A5 (en) * 1987-01-27 1989-11-15 Bbc Brown Boveri & Cie Reduce darkening of mercury vapour UV tube - using hafnium, lanthanum, thorium or aluminium oxide coating
DE3713704A1 (en) * 1987-04-24 1988-11-03 Heraeus Gmbh W C HYDROGEN DISCHARGE LAMP AND METHOD FOR THE PRODUCTION THEREOF
DE3715375C1 (en) 1987-05-08 1988-10-13 Heraeus Gmbh W C Hydrogen discharge lamp
DE3902144A1 (en) 1989-01-25 1990-08-02 Heraeus Gmbh W C DEUTERIUM LAMP FOR SPECTRAL ANALYSIS DEVICES
JPH0660852A (en) * 1992-08-12 1994-03-04 Hitachi Ltd Heavy-hydrogen discharge tube
DE4342941C1 (en) * 1993-12-16 1995-07-06 Forschungszentrum Juelich Gmbh Hydrogen gas discharge lamp
JP2740738B2 (en) * 1994-05-31 1998-04-15 浜松ホトニクス株式会社 Gas discharge tube
DE19619358C2 (en) * 1996-05-14 2001-09-27 Heraeus Noblelight Gmbh Using an optical filter with interference filter multilayer
JP3648905B2 (en) * 1997-01-24 2005-05-18 岩崎電気株式会社 Mercury vapor discharge lamp
WO1999034407A1 (en) 1997-12-24 1999-07-08 Hamamatsu Photonics K.K. Gas discharge tube
WO1999034406A1 (en) * 1997-12-24 1999-07-08 Hamamatsu Photonics K.K. Gas discharge tube
DE10137015A1 (en) * 2001-07-30 2003-02-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge vessel with excimer filling and associated discharge lamp
DE102004038556A1 (en) * 2004-08-06 2006-02-23 Heraeus Noblelight Gmbh Gas discharge bulb has a quarz glass bulb that is internally coated that improves light transmissibility ands extends life
CN101371330A (en) * 2005-09-14 2009-02-18 通用电气公司 Gas-filled shroud of electric arc tube
US7786673B2 (en) * 2005-09-14 2010-08-31 General Electric Company Gas-filled shroud to provide cooler arctube
JP4986509B2 (en) * 2006-06-13 2012-07-25 株式会社オーク製作所 Ultraviolet continuous spectrum lamp and lighting device
JP2008181681A (en) * 2007-01-23 2008-08-07 Harison Toshiba Lighting Corp Metal halide lamp, lighting device, and vehicular headlight device

Also Published As

Publication number Publication date
KR20120001725A (en) 2012-01-04
CN102365706B (en) 2016-03-16
DE102009014425A1 (en) 2010-10-21
EP2412001A1 (en) 2012-02-01
AU2010227909B2 (en) 2014-05-01
CN102365706A (en) 2012-02-29
SG174121A1 (en) 2011-10-28
WO2010108581A1 (en) 2010-09-30
US20110285282A1 (en) 2011-11-24
DE102009014425B4 (en) 2011-02-03
JP5362098B2 (en) 2013-12-11
JP2012521621A (en) 2012-09-13
KR101553734B1 (en) 2015-09-16
AU2010227909A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
DE112013000810B4 (en) Multiple glass pane
EP1048620B1 (en) Device for the disinfection of water using a UV-C-gas discharge lamp
EP2300389B1 (en) Glass product
DE69922485T2 (en) LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP
DE202012013088U1 (en) Plant for coating and heat treatment
DD270614A5 (en) GAS DISCHARGE LAMP
DE3336421A1 (en) PISTON LAMP FOR THE FAR UV AREA
EP3150562A1 (en) Optical filter material consisting of doped quartz glass, and uv lamp containing the filter material
EP2412001B1 (en) Deuterium lamp
DE3038993C2 (en) Metal vapor discharge lamp
DE60127201T2 (en) High pressure discharge lamp
DE2346132A1 (en) CERAMIC DISCHARGE LAMP
WO1990009032A1 (en) Deuterium lamp for spectral analysis devices
DE602005005998T2 (en) PROCESS FOR PRODUCING PLASMA DISPLAYS WITH DISTRIBUTED SUPPLEMENT AND DISPLAYS THUS OBTAINED
EP0907960B1 (en) Cold electrode for gas discharges
EP1472195B1 (en) Method for coating the quartz burner of an hid lamp
EP0287706B1 (en) Hydrogen discharge lamp and method of manufacturing it
WO2017008987A1 (en) Method for operating a xenon excimer lamp and lamp system comprising an excimer lamp
DE10254969A1 (en) High pressure discharge lamp with mercury chloride with limited chlorine content
EP0290669B1 (en) Hydrogen lamp and method for production thereof
DE102004024211B4 (en) High-pressure discharge lamp and method for producing high-pressure discharge lamps
DE19734650B4 (en) Device for emission of electromagnetic radiation by gas discharge, method for its production and use of the device
CH541199A (en) Device for displaying data
DE60011231T2 (en) LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP
EP0834482B1 (en) Process for the production of heat reflecting coating systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JENEK, THORSTEN

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010008511

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01J0061680000

Ipc: H01J0061350000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 61/35 20060101AFI20140731BHEP

Ipc: H01J 61/68 20060101ALI20140731BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140916

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 702427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008511

Country of ref document: DE

Effective date: 20150129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008511

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20150918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 702427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100225

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010008511

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010008511

Country of ref document: DE

Representative=s name: EULER, MATTHIAS, DR., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010008511

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20190218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20190227

Year of fee payment: 11

Ref country code: MC

Payment date: 20190214

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010008511

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010008511

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200225

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010008511

Country of ref document: DE

Representative=s name: MEWBURN ELLIS LLP, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 15

Ref country code: GB

Payment date: 20240227

Year of fee payment: 15