EP2412001B1 - Deuterium lamp - Google Patents
Deuterium lamp Download PDFInfo
- Publication number
- EP2412001B1 EP2412001B1 EP10709392.4A EP10709392A EP2412001B1 EP 2412001 B1 EP2412001 B1 EP 2412001B1 EP 10709392 A EP10709392 A EP 10709392A EP 2412001 B1 EP2412001 B1 EP 2412001B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lamp
- barrier layer
- gas
- piston
- deuterium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 title claims description 31
- 229910052805 deuterium Inorganic materials 0.000 title claims description 31
- 238000009792 diffusion process Methods 0.000 claims description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 230000004888 barrier function Effects 0.000 claims description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 3
- 239000005388 borosilicate glass Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 34
- 239000010410 layer Substances 0.000 description 22
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052810 boron oxide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 mercury ions Chemical class 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/68—Lamps in which the main discharge is between parts of a current-carrying guide, e.g. halo lamp
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/35—Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/125—Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
Definitions
- the invention relates to a deuterium lamp with a lamp base, which has electrode passages, with a piston made of glass and with a housing structure comprising anode, cathode and aperture, wherein at least a part of the piston forms a jet exit surface and wherein lamp base and piston enclose a gas space.
- the inside of the quartz glass bulb is either unprotected or a coating of boron oxide is applied.
- the boron oxide diffuses into the quartz glass surface and combines in a chemical reaction with the near-surface layer of the quartz glass.
- the boron oxide coating has the consequence that the quartz glass surface becomes more chemically resistant.
- the quartz glass surface is thus better protected from reactions with paste material from the cathode, which occurs during operation of the lamp the piston inside precipitates.
- the paste material of the cathode contains Ba, Sr and / or Ca.
- Mercury low pressure or amalgam lamps are known to have an aluminum phosphorous oxide coating which protects the quartz glass surface of the radiator from chemical attack by mercury ions.
- the mercury ions react with the quartz glass to form mercury oxide, which has a strong absorbing action and reduces the intensity of the radiator ( DE102004038556A1 ).
- Thin layers are also off EP0290669 B1 .
- EP1282153 A1 known.
- the invention has for its object to reduce gas consumption and to improve the life of deuterium lamps.
- the piston has a gas diffusion barrier layer on its surface facing the gas chamber at least at the jet exit surface, the gas diffusion and thus the gas consumption are reduced significantly in comparison with known techniques.
- the gas diffusion barrier layer is formed of alumina, preferably of amorphous alumina, since amorphous alumina is much more compact than silica.
- the gas diffusion barrier layer has a thickness of 10 nm to 10 .mu.m, preferably from 20 nm to 200 nm.
- the layer thickness can be generated either by a 1-fold layer or by several coating operations.
- the gas diffusion barrier layer is preferably optically transparent at a wavelength between 160 nm and 1100 nm.
- the gas diffusion barrier layer can be arranged on the entire surface of the piston facing the gas chamber.
- the bulb of the deuterium lamp is preferably formed of quartz glass or borosilicate glass, wherein the advantage of the diffusion barrier layer is particularly evident.
- the alumina can be applied by PVD, CVD or sol-gel methods.
- the sol-gel can be sprayed, dipped or applied by pulling a core that acts like a round putty.
- the layer is applied in the sol-gel dipping method in order to achieve a uniform layer quality.
- the layer is dried for 1 to 24 hours at temperatures between 30 ° C and 200 ° C.
- the gas diffusion barrier layer is baked at temperatures between 400 ° C and 1400 ° C, preferably between 600 ° C and 1200 ° C, between 1 and 24 hours to achieve a good barrier effect.
- the illustrated deuterium lamp is based on a base 1 made of quartz glass with electrical cathode feedthrough 2, electrical ground feedthrough 3 and electrical anode feedthrough 4.
- the electrical feedthroughs 2, 3, 4 are fitted with molybdenum foils 5, which provide a gas-tight seal.
- the housing structure 11 of the deuterium lamp is additionally supported by the front retaining pin 6 and the rear retaining pin 7 in order to increase the mechanical stability.
- the housing assembly 11 includes the cathode 14, the anode 12 and the aperture 15, which are spaced apart in the housing structure 11.
- the cathode 14 is isolated from the housing assembly 11 by the cathode insulation 8.
- the housing structure 11 is surrounded by a gas volume 9.
- the gas is preferably Hydrogen or deuterium. Housing structure 11 and gas volume 9 are enclosed by the piston 10 made of quartz glass and the foot 1 gas-tight.
- deuterium Due to its small atomic radius, deuterium is able to diffuse into the quartz glass structure.
- the deuterium diffuses predominantly on interstitial sites and is thus interstitially bound in the structure.
- the chemical bond to form SiD is also possible, but quantitatively negligible.
- the diffusion rate is significantly lower.
- This diffusion process is accelerated by surface activation of the quartz glass by hard UV radiation generated by the deuterium plasma.
- the diffusion at the quartz glass surface in the region of the beam exit is therefore particularly high.
- the diffusion process described here results in that the filling pressure of the lamp continuously decreases during operation.
- the arc discharge necessary for the operation of the lamp can only be maintained up to a certain minimum pressure. If this pressure is exceeded by gas consumption, no arc discharge is possible and the lamp is unusable. The gas consumption thus determines the life of the lamp.
- a Gasdiffusionsbarrie für 13 is applied from amorphous alumina.
- crystalline alumina is also conceivable.
- the gas diffusion barrier layer 13 is in Fig. 2 and is applied to the entire inner surface of the piston 10.
- the gas diffusion barrier layer 13 was applied by 2-fold coating in the sol-gel dipping method. After each individual coating, it was dried at 100 ° C. for 12 hours and baked at 900 ° C. for 12 hours. The resulting gas diffusion barrier layer 13 has a thickness of 100 nm in total. It is optically transparent in the range between 160 nm and 1100 nm.
- Amorphous alumina is much more compact than the structure of quartz glass and therefore significantly reduces deuterium diffusion.
- the reduction of gas consumption is in Fig. 3 shown.
- Curve A shows the course of a lamp without gas diffusion barrier layer
- curve B the course with the gas diffusion barrier layer according to the invention.
- the reduced gas loss allows a much longer service life of the deuterium lamp until reaching the critical filling pressure.
- the reduced gas loss also improves the intensity profile of the deuterium lamp, since the UV intensity of a deuterium lamp depends on the particle density of the filling gas and thus depends on the filling pressure.
- the particle density is related to the number of ionized deuterium molecules, which in turn directly determines the number of photons generated and thus the UV intensity.
- the optimum filling pressure of a deuterium lamp is about 5 mbar, depending on the geometry. A critical pressure of about 1 mbar should not be undercut.
- Fig. 4 shows the intensity profile of a deuterium lamp without gas diffusion barrier layer (curve A) and with the gas diffusion barrier layer according to the invention (curve B).
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
Die Erfindung betrifft eine Deuteriumlampe mit einem Lampenfuß, der Elektrodendurchführungen aufweist, mit einem Kolben aus Glas und mit einem Gehäuseaufbau, der Anode, Kathode und Blende umfasst, wobei mindestens ein Teil des Kolbens eine Strahlaustrittsfläche bildet und wobei Lampenfuß und Kolben einen Gasraum umschließen.The invention relates to a deuterium lamp with a lamp base, which has electrode passages, with a piston made of glass and with a housing structure comprising anode, cathode and aperture, wherein at least a part of the piston forms a jet exit surface and wherein lamp base and piston enclose a gas space.
Alle derzeitigen Deuteriumlampen leiden unter einer sogenannten Gasaufzehrung. Dabei diffundiert im Betrieb der Lampe die Gasfüllung unter anderem in den Quarzglaskolben hinein, vorwiegend auf Zwischengitterplätze und ist so interstitiell in der Struktur gebunden. Aufgrund des kleinen Atomradius von Deuterium ist die Diffusionsrate für Deuterium deutlich höher, als für die wesentlich größeren Edelgase, wie z.B. Neon oder Xenon. Dieser Diffusionsprozess wird durch Oberflächenaktivierung des Quarzglases durch harte UV-Strahlung, die durch das Deuteriumplasma erzeugt wird, noch beschleunigt. Die Diffusion an der Quarzglasoberfläche im Bereich des Strahlaustritts ist deshalb besonders hoch. Der hier beschriebene Diffusionsprozess führt dazu, dass der Fülldruck der Lampe im Betrieb kontinuierlich abnimmt. Die für den Betrieb der Lampe notwendige Bogenentladung lässt sich nur bis zum einem gewissen Minimaldruck aufrecht erhalten. Wird dieser Druck durch Gasaufzehrung unterschritten, verliert die Lampe drastisch an Intensität und ist unbrauchbar. Die Gasaufzehrung bestimmt also die Lebensdauer der Lampe.All current Deuterium lamps suffer from a so-called gas consumption. During operation of the lamp, the gas filling diffuses among other things into the quartz glass bulb, predominantly to interstitial spaces, and is thus interstitially bound in the structure. Due to the small atomic radius of deuterium, the diffusion rate for deuterium is significantly higher than for the much larger noble gases, e.g. Neon or xenon. This diffusion process is accelerated by surface activation of the quartz glass by hard UV radiation generated by the deuterium plasma. The diffusion at the quartz glass surface in the region of the beam exit is therefore particularly high. The diffusion process described here results in that the filling pressure of the lamp continuously decreases during operation. The arc discharge necessary for the operation of the lamp can only be maintained up to a certain minimum pressure. If this pressure is undershot by gas consumption, the lamp drastically loses intensity and is useless. The gas consumption thus determines the life of the lamp.
Bei den derzeitig verwendeten Deuteriumlampen ist die Innenseite des Quarzglaskolbens entweder ungeschützt oder es wird eine Beschichtung aus Boroxid aufgebracht. Das Boroxid diffundiert in die Quarzglasoberfläche hinein und verbindet sich in einer chemischen Reaktion mit der oberflächennahen Schicht des Quarzglases. Die Boroxidbeschichtung hat zur Folge, dass die Quarzglasoberfläche chemisch resistenter wird. Die Quarzglasoberfläche wird so besser vor Reaktionen mit Pastenmaterial von der Kathode geschützt, das sich im Betrieb der Lampe auf der Kolbeninnenseite niederschlägt. Das Pastenmaterial der Kathode enthält Ba, Sr und/oder Ca. Diese Elemente reagieren unter den Betriebsbedingungen der Deuteriumlampe mit der Quarzglasoberfläche und führen so zu kontinuierlichem Intensitätsverlust durch optische Absorption der Reaktionsprodukte. Der Intensitätsverlust ist also auf chemische Reaktionen zurückzuführen. Der Gasverlust der Lampe wird durch die Boroxidbeschichtung kaum beeinflusst. (
Von Quecksilberniederdruck- oder Amalgamlampen ist eine Aluminiumphosphoroxid-Beschichtung bekannt, die die Quarzglasoberfläche des Strahlers vor chemischem Angriff durch Quecksilberionen schützt. Die Quecksilberionen reagieren mit dem Quarzglas zu Quecksilberoxid, das stark absorbierend wirkt und die Intensität des Strahlers verringert (
Von Xe-Halogenid Excimerlampen ist eine Aluminiumoxidschicht bekannt, die die Quarzglasoberfläche des Strahlers vor chemischem Angriff der Halogenide schützt. Die Halogenide, die für die UV-Emission verantwortlich sind, reagieren stark mit der Quarzglasoberfläche, so dass bereits nach wenigen Minuten die Halogenide chemisch im Quarzglas gebunden sind. Auch hier wird die chemische Resistenz von Aluminiumoxid ausgenutzt (
Der Erfindung liegt die Aufgabe zugrunde, die Gasaufzehrung zu verringern und die Lebensdauer der Deuteriumlampen zu verbessern.The invention has for its object to reduce gas consumption and to improve the life of deuterium lamps.
Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben. Dadurch, dass der Kolben an seiner dem Gasraum zugewandten Oberfläche mindestens an der Strahlaustrittsfläche eine Gasdiffusionsbarriereschicht aufweist, verringert sich die Gasdiffusion und damit die Gasaufzehrung gegenüber bekannten Techniken signifikant. Vorzugsweise ist die Gasdiffusionsbarriereschicht aus Alumiuniumoxid, vorzugsweise aus amorphem Aluminiumoxid, gebildet, da amorphes Aluminiumoxid wesentlich kompakter ist als Quarzglas.The object is solved by the features of
Zweckmäßig ist es, dass die Gasdiffusionsbarriereschicht eine Dicke von 10 nm bis 10 µm, vorzugsweise von 20 nm bis 200 nm, aufweist. Die Schichtdicke kann entweder durch eine 1-fach Schicht oder durch mehrere Beschichtungsvorgänge erzeugt werden. Die Gasdiffusionsbarriereschicht ist vorzugsweise optisch transparent bei einer Wellenlänge zwischen 160 nm und 1100 nm.It is expedient that the gas diffusion barrier layer has a thickness of 10 nm to 10 .mu.m, preferably from 20 nm to 200 nm. The layer thickness can be generated either by a 1-fold layer or by several coating operations. The gas diffusion barrier layer is preferably optically transparent at a wavelength between 160 nm and 1100 nm.
Die Gasdiffusionsbarriereschicht kann auf der gesamten dem Gasraum zugewandten Oberfläche des Kolbens angeordnet sein. Der Kolben der Deuteriumlampe ist vorzugsweise aus Quarzglas oder Borosilikatglas gebildet, wobei sich der Vorteil der Diffusionsbarriereschicht besonders deutlich zeigt.The gas diffusion barrier layer can be arranged on the entire surface of the piston facing the gas chamber. The bulb of the deuterium lamp is preferably formed of quartz glass or borosilicate glass, wherein the advantage of the diffusion barrier layer is particularly evident.
Das Aluminiumoxid kann über PVD, CVD oder Sol-Gel-Verfahren aufgebracht werden. Beim Sol-Gel-Verfahren kann das Sol-Gel gesprüht, getaucht oder durch das Ziehen eines Kerns, der wie ein Rundspachtel wirkt, aufgebracht werden. Bevorzugt wird die Schicht im Sol-Gel-Tauchverfahren aufgebracht, um eine gleichmäßige Schichtqualität zu erreichen. Im Anschluss wird die Schicht für 1 bis 24 Stunden bei Temperaturen zwischen 30°C und 200°C getrocknet. Abschließend wird die Gasdiffusionsbarriereschicht bei Temperaturen zwischen 400°C und 1400°C, vorzugsweise zwischen 600°C und 1200°C, zwischen 1 und 24 Stunden eingebrannt, um eine gute Barrierewirkung zu erzielen.The alumina can be applied by PVD, CVD or sol-gel methods. In the sol-gel process, the sol-gel can be sprayed, dipped or applied by pulling a core that acts like a round putty. Preferably, the layer is applied in the sol-gel dipping method in order to achieve a uniform layer quality. Subsequently, the layer is dried for 1 to 24 hours at temperatures between 30 ° C and 200 ° C. Finally, the gas diffusion barrier layer is baked at temperatures between 400 ° C and 1400 ° C, preferably between 600 ° C and 1200 ° C, between 1 and 24 hours to achieve a good barrier effect.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung beschrieben.Hereinafter, an embodiment of the invention will be described with reference to a drawing.
In der Zeichnung zeigt
- Fig. 1
- eine Deuteriumlampe mit erfindungsgemäßer Schicht
- Fig. 2
- einen Ausschnitt aus dem beschichteten Lampenkolben
- Fig. 3
- den zeitlichen Verlauf des Gasdrucks und
- Fig. 4
- den zeitlichen Intensitätsverlauf.
- Fig. 1
- a deuterium lamp with a layer according to the invention
- Fig. 2
- a section of the coated lamp bulb
- Fig. 3
- the time course of the gas pressure and
- Fig. 4
- the temporal intensity course.
Die in
Aufgrund seines kleinen Atomradius ist Deuterium in der Lage, in die Quarzglasstruktur hinein zu diffundieren. Dabei diffundiert das Deuterium vorwiegend auf Zwischengitterplätze und ist so interstitiell in der Struktur gebunden. Die chemische Bindung unter Bildung von SiD ist auch möglich, quantitativ aber vernachlässigbar. Bei den wesentlich größeren Edelgasen (z.B. Neon, Xenon) ist die Diffusionsrate deutlich niedriger. Dieser Diffusionsprozess wird durch Oberflächenaktivierung des Quarzglases durch harte UV-Strahlung, die durch das Deuteriumplasma erzeugt wird, noch beschleunigt. Die Diffusion an der Quarzglasoberfläche im Bereich des Strahlaustritts ist deshalb besonders hoch. Der hier beschriebene Diffusionsprozess führt dazu, dass der Fülldruck der Lampe im Betrieb kontinuierlich abnimmt. Die für den Betrieb der Lampe notwendige Bogenentladung lässt sich nur bis zum einem gewissen Minimaldruck aufrecht erhalten. Wird dieser Druck durch Gasaufzehrung unterschritten, ist keine Bogenentladung mehr möglich und die Lampe ist unbrauchbar. Die Gasaufzehrung bestimmt also die Lebensdauer der Lampe.Due to its small atomic radius, deuterium is able to diffuse into the quartz glass structure. The deuterium diffuses predominantly on interstitial sites and is thus interstitially bound in the structure. The chemical bond to form SiD is also possible, but quantitatively negligible. For the much larger noble gases (e.g., neon, xenon), the diffusion rate is significantly lower. This diffusion process is accelerated by surface activation of the quartz glass by hard UV radiation generated by the deuterium plasma. The diffusion at the quartz glass surface in the region of the beam exit is therefore particularly high. The diffusion process described here results in that the filling pressure of the lamp continuously decreases during operation. The arc discharge necessary for the operation of the lamp can only be maintained up to a certain minimum pressure. If this pressure is exceeded by gas consumption, no arc discharge is possible and the lamp is unusable. The gas consumption thus determines the life of the lamp.
Auf der Innenseite des Kolbens 10 ist deshalb eine Gasdiffusionsbarrieschicht 13 aus amorphem Aluminiumoxid aufgebracht. Kristallines Aluminiumoxid ist aber ebenfalls denkbar. Die Gasdiffusionsbarriereschicht 13 ist in
Die Gasdiffusionsbarriereschicht 13 wurde durch 2fache Beschichtung im Sol-Gel-Tauchverfahren aufgebracht. Nach jeder einzelnen Beschichtung wurde 12 Stunden lang bei 100 °C getrocknet und 12 Stunden lang bei 900°C eingebrannt. Die entstandene Gasdiffusionbarriereschicht 13 weist eine Dicke von insgesamt 100 nm auf. Sie ist optisch transparent im Bereich zwischen 160 nm und 1100 nm.The gas
Amorphes Aluminiumoxid ist wesentlich kompakter als die Struktur des Quarzglases und verringert deshalb die Deuteriumdiffusion deutlich. Die Reduzierung der Gasaufzehrung ist in
Durch den verringerten Gasverlust verbessert sich auch der Intensitätsverlauf der Deuteriumlampe, da die UV-Intensität einer Deuteriumlampe von der Teilchendichte des Füllgases und somit vom Fülldruck abhängig ist. Die Teilchendichte steht in Beziehung mit der Anzahl an ionisierten Deuteriummolekülen, die wiederum direkt die Anzahl der erzeugten Photonen und somit die UV-Intensität bestimmt. Es gibt hierbei einen optimalen Fülldruck, bei dem ein Maximum an UV-Intensität emittiert wird. Wird dieser optimale Fülldruck unterschritten, sinkt die UV-Intensität kontinuierlich bis zum Erlöschen der Bogenentladung. Der optimale Fülldruck einer Deuteriumlampe liegt abhängig von der Geometrie bei etwa 5 mbar. Ein kritischer Druck von etwa 1 mbar sollte nicht unterschritten werden.The reduced gas loss also improves the intensity profile of the deuterium lamp, since the UV intensity of a deuterium lamp depends on the particle density of the filling gas and thus depends on the filling pressure. The particle density is related to the number of ionized deuterium molecules, which in turn directly determines the number of photons generated and thus the UV intensity. There is an optimal filling pressure at which a maximum of UV intensity is emitted. If this optimum filling pressure is undercut, the UV intensity decreases continuously until the arc discharge ceases. The optimum filling pressure of a deuterium lamp is about 5 mbar, depending on the geometry. A critical pressure of about 1 mbar should not be undercut.
Claims (6)
- A deuterium arc lamp having a lamp base (1) that comprises electrode bushings (2, 3, 4), having a piston (10) made of glass and having a housing body (11) that comprises the anode (12), the cathode (14) and the aperture (15), wherein at least one part of the piston forms a beam exit face and wherein the lamp base (1) and the piston (10) enclose a gas chamber (9), characterised in that the piston (10) comprises on its surface facing the gas chamber (9) a gas diffusion barrier layer (13) at least on the beam exit face.
- The deuterium arc lamp according to Claim 1, characterised in that the gas diffusion barrier layer is formed from aluminium oxide, preferably from amorphous aluminium oxide.
- The deuterium arc lamp according to Claim 1 or 2, characterised in that the gas diffusion barrier layer has a thickness of 10 nm to 10 µm, preferably from 20 nm to 200 nm.
- The deuterium arc lamp at least according to any one of Claims 1 to 3, characterised in that the gas diffusion barrier layer is arranged on the entire piston surface that is facing the gas chamber.
- The deuterium arc lamp at least according to any one of Claims 1 to 4, characterised in that the gas diffusion barrier layer is transparent to radiation of a wavelength within the range from 160 nm to 1100 nm.
- The deuterium arc lamp at least according to any one of Claims 1 to 5, characterised in that the piston is formed from quartz glass or borosilicate glass.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009014425A DE102009014425B4 (en) | 2009-03-26 | 2009-03-26 | deuterium lamp |
PCT/EP2010/001157 WO2010108581A1 (en) | 2009-03-26 | 2010-02-25 | Deuterium lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2412001A1 EP2412001A1 (en) | 2012-02-01 |
EP2412001B1 true EP2412001B1 (en) | 2014-12-17 |
Family
ID=42224847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10709392.4A Active EP2412001B1 (en) | 2009-03-26 | 2010-02-25 | Deuterium lamp |
Country Status (9)
Country | Link |
---|---|
US (1) | US20110285282A1 (en) |
EP (1) | EP2412001B1 (en) |
JP (1) | JP5362098B2 (en) |
KR (1) | KR101553734B1 (en) |
CN (1) | CN102365706B (en) |
AU (1) | AU2010227909B2 (en) |
DE (1) | DE102009014425B4 (en) |
SG (1) | SG174121A1 (en) |
WO (1) | WO2010108581A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013014675A1 (en) | 2013-09-04 | 2015-03-05 | Jochen Wieser | Ultraviolet light source |
CN103646847A (en) * | 2013-12-07 | 2014-03-19 | 四川天微电子有限责任公司 | Ultraviolet ray emitter |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH672380A5 (en) | 1987-01-27 | 1989-11-15 | Bbc Brown Boveri & Cie | Reduce darkening of mercury vapour UV tube - using hafnium, lanthanum, thorium or aluminium oxide coating |
DE3715375C1 (en) | 1987-05-08 | 1988-10-13 | Heraeus Gmbh W C | Hydrogen discharge lamp |
DE3713704A1 (en) | 1987-04-24 | 1988-11-03 | Heraeus Gmbh W C | HYDROGEN DISCHARGE LAMP AND METHOD FOR THE PRODUCTION THEREOF |
DE3902144A1 (en) | 1989-01-25 | 1990-08-02 | Heraeus Gmbh W C | DEUTERIUM LAMP FOR SPECTRAL ANALYSIS DEVICES |
JPH0660852A (en) * | 1992-08-12 | 1994-03-04 | Hitachi Ltd | Heavy-hydrogen discharge tube |
DE4342941C1 (en) * | 1993-12-16 | 1995-07-06 | Forschungszentrum Juelich Gmbh | Hydrogen gas discharge lamp |
JP2740738B2 (en) * | 1994-05-31 | 1998-04-15 | 浜松ホトニクス株式会社 | Gas discharge tube |
DE19619358C2 (en) * | 1996-05-14 | 2001-09-27 | Heraeus Noblelight Gmbh | Using an optical filter with interference filter multilayer |
JP3648905B2 (en) * | 1997-01-24 | 2005-05-18 | 岩崎電気株式会社 | Mercury vapor discharge lamp |
DE69812423T2 (en) | 1997-12-24 | 2003-08-14 | Hamamatsu Photonics K.K., Hamamatsu | GAS DISCHARGE TUBE |
EP1043755B1 (en) | 1997-12-24 | 2004-08-04 | Hamamatsu Photonics K.K. | Deuterium gas discharge tube |
DE10137015A1 (en) | 2001-07-30 | 2003-02-20 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge vessel with excimer filling and associated discharge lamp |
DE102004038556A1 (en) | 2004-08-06 | 2006-02-23 | Heraeus Noblelight Gmbh | Gas discharge bulb has a quarz glass bulb that is internally coated that improves light transmissibility ands extends life |
US7786673B2 (en) * | 2005-09-14 | 2010-08-31 | General Electric Company | Gas-filled shroud to provide cooler arctube |
CN101371330A (en) * | 2005-09-14 | 2009-02-18 | 通用电气公司 | Gas-filled shroud of electric arc tube |
JP4986509B2 (en) * | 2006-06-13 | 2012-07-25 | 株式会社オーク製作所 | Ultraviolet continuous spectrum lamp and lighting device |
JP2008181681A (en) * | 2007-01-23 | 2008-08-07 | Harison Toshiba Lighting Corp | Metal halide lamp, lighting device, and vehicular headlight device |
-
2009
- 2009-03-26 DE DE102009014425A patent/DE102009014425B4/en not_active Expired - Fee Related
-
2010
- 2010-02-25 CN CN201080013911.8A patent/CN102365706B/en active Active
- 2010-02-25 JP JP2012501155A patent/JP5362098B2/en active Active
- 2010-02-25 US US13/146,767 patent/US20110285282A1/en not_active Abandoned
- 2010-02-25 WO PCT/EP2010/001157 patent/WO2010108581A1/en active Application Filing
- 2010-02-25 KR KR1020117020947A patent/KR101553734B1/en active IP Right Grant
- 2010-02-25 SG SG2011053071A patent/SG174121A1/en unknown
- 2010-02-25 AU AU2010227909A patent/AU2010227909B2/en active Active
- 2010-02-25 EP EP10709392.4A patent/EP2412001B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP5362098B2 (en) | 2013-12-11 |
DE102009014425A1 (en) | 2010-10-21 |
EP2412001A1 (en) | 2012-02-01 |
SG174121A1 (en) | 2011-10-28 |
WO2010108581A1 (en) | 2010-09-30 |
CN102365706B (en) | 2016-03-16 |
CN102365706A (en) | 2012-02-29 |
JP2012521621A (en) | 2012-09-13 |
AU2010227909B2 (en) | 2014-05-01 |
DE102009014425B4 (en) | 2011-02-03 |
AU2010227909A1 (en) | 2011-09-01 |
KR101553734B1 (en) | 2015-09-16 |
KR20120001725A (en) | 2012-01-04 |
US20110285282A1 (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3789608T2 (en) | Aluminum oxide reflector layer for fluorescent lamps. | |
DE112013000810B4 (en) | Multiple glass pane | |
DE102004051846B4 (en) | Component with a reflector layer and method for its production | |
DE69608403T2 (en) | ELECTRON-EMITTING ELECTRODES AND METHOD FOR THE PRODUCTION THEREOF | |
EP2300389B1 (en) | Glass product | |
DE69922485T2 (en) | LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP | |
DE2624897A1 (en) | ALUMINUM OXYDE COVERS FOR MERCURY VAPOR LAMPS | |
EP3150562A1 (en) | Optical filter material consisting of doped quartz glass, and uv lamp containing the filter material | |
EP2412001B1 (en) | Deuterium lamp | |
EP0334208B1 (en) | Compact reflector lamp | |
DE3038993C2 (en) | Metal vapor discharge lamp | |
DE60127201T2 (en) | High pressure discharge lamp | |
WO1990009032A1 (en) | Deuterium lamp for spectral analysis devices | |
DE69706535T2 (en) | OXYGEN DISCHARGE DEVICE FOR HIGH PRESSURE DISCHARGE LAMPS | |
DE602005005998T2 (en) | PROCESS FOR PRODUCING PLASMA DISPLAYS WITH DISTRIBUTED SUPPLEMENT AND DISPLAYS THUS OBTAINED | |
DE69926706T2 (en) | NIEDERDRUCKQUECKSILBERDAMPFEENTLADUNGSLAMPE | |
EP0907960B1 (en) | Cold electrode for gas discharges | |
EP1472195B1 (en) | Method for coating the quartz burner of an hid lamp | |
DE69317798T2 (en) | Electric lamp | |
EP0287706B1 (en) | Hydrogen discharge lamp and method of manufacturing it | |
DE10254969A1 (en) | High pressure discharge lamp with mercury chloride with limited chlorine content | |
EP0290669B1 (en) | Hydrogen lamp and method for production thereof | |
DE19734650B4 (en) | Device for emission of electromagnetic radiation by gas discharge, method for its production and use of the device | |
CH541199A (en) | Device for displaying data | |
DE60011231T2 (en) | LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110914 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JENEK, THORSTEN |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502010008511 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01J0061680000 Ipc: H01J0061350000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01J 61/35 20060101AFI20140731BHEP Ipc: H01J 61/68 20060101ALI20140731BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140916 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 702427 Country of ref document: AT Kind code of ref document: T Effective date: 20150115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010008511 Country of ref document: DE Effective date: 20150129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150317 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150318 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150417 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010008511 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20150918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 702427 Country of ref document: AT Kind code of ref document: T Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100225 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150417 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010008511 Country of ref document: DE Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE Ref country code: DE Ref legal event code: R082 Ref document number: 502010008511 Country of ref document: DE Representative=s name: EULER, MATTHIAS, DR., DE Ref country code: DE Ref legal event code: R082 Ref document number: 502010008511 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20190218 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20190227 Year of fee payment: 11 Ref country code: MC Payment date: 20190214 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010008511 Country of ref document: DE Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE Ref country code: DE Ref legal event code: R082 Ref document number: 502010008511 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200225 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010008511 Country of ref document: DE Representative=s name: MEWBURN ELLIS LLP, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 15 Ref country code: GB Payment date: 20240227 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240226 Year of fee payment: 15 |