EP2411326A2 - Procédé de séparation de nanotubes métalliques et semi-conducteurs - Google Patents

Procédé de séparation de nanotubes métalliques et semi-conducteurs

Info

Publication number
EP2411326A2
EP2411326A2 EP10710227A EP10710227A EP2411326A2 EP 2411326 A2 EP2411326 A2 EP 2411326A2 EP 10710227 A EP10710227 A EP 10710227A EP 10710227 A EP10710227 A EP 10710227A EP 2411326 A2 EP2411326 A2 EP 2411326A2
Authority
EP
European Patent Office
Prior art keywords
nanotubes
metallic
carbon nanotubes
suspension
semiconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10710227A
Other languages
German (de)
English (en)
Inventor
Frank Hennrich
Manfred M. Kappes
Kai Moshammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2411326A2 publication Critical patent/EP2411326A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/34Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Definitions

  • the invention relates to a method for the separation of metallic and semiconducting single-walled carbon nanotubes.
  • Carbon nanotubes are macromolecules in which carbon atoms form the outer wall of a tube.
  • a single-wall carbon nanotube is described by a planar strip of hexagonally arranged carbon atoms, which is rolled up seamlessly into a tube.
  • Several concentrically arranged tubes are called multi-walled carbon nanotubes.
  • Typical single-walled carbon nanotubes have a diameter of 0.5 nm to 10 nm; Multi-walled carbon nanotubes accordingly have a larger diameter.
  • the length of typical carbon nanotubes ranges from 100 nm to several tens of micrometers, and there are methods by which carbon nanotubes can be cut into pieces as well as extended by nesting.
  • carbon nanotubes Due to their electronic properties, carbon nanotubes are divided into two classes: metallic and semiconducting carbon nanotubes.
  • Metallic carbon nanotubes are suitable as molecular wires because they have very high current carrying capacities and are robust against electromigration.
  • Semiconducting carbon nanotubes are suitable as molecular transistors. Both species are promising building blocks for nanoelectronic circuits due to their nanoscale dimensions.
  • DE 103 15 897 B4 discloses a method for the separation of metallic and semiconductive carbon nanotubes, wherein first a suspension of singulated carbon nanotubes is provided which contains a plurality of individual metallic and semiconducting carbon nanotubes in a liquid whose dielectric constant ⁇ L satisfies the condition ⁇ M > ⁇ L > ⁇ H , where ⁇ M and ⁇ H are the dielectric constants of the metallic or semiconducting species.
  • 50 mg of carbon nanotubes are placed in a solution of 100 ml of D 2 O with 1% sodium dodecyl sulfate (SDS) and ultrasonicated for 10 minutes with an ultrasonic finger.
  • SDS sodium dodecyl sulfate
  • US 2006/0040381 A1 discloses a method for surface modification of single-wall carbon nanotubes.
  • a multiplicity of nanotubes are dispersed in a solution containing a surfactant, preferably SDS, and exposed to ultrasound twice, after which the nanotubes are at least partially surrounded by the surfactant molecules.
  • US 2009/0061194 A1 describes a method for sorting carbon nanotubes in which the nanotubes are dispersed in a first solution containing a surfactant and subsequently dispersed in a second solution containing another surfactant or solvent , whereby a selection occurs over time.
  • a method is to be provided which, in comparison to the previously known methods, is associated with lower expenditure and can therefore be implemented cost-effectively on an industrial scale.
  • metallic semiconducting single-walled carbon nanotubes which are present together in one material can be separated from one another in a simple and cost-effective manner so that they can be used individually one after the other.
  • a method according to the invention comprises the following steps a) and b).
  • the nanotube material obtained from the synthesis is first suspended according to step a) with the aid of ultrasound in water and a salt of dodecyl sulfate, in particular SDS, which is the sodium salt of dodecyl sulfate.
  • Dodecyl sulfate accumulates preferentially the metallic tubes and suspend them more effectively than the semiconducting nanotubes, which remain in larger agglomerates in suspension.
  • the two species are thus in solution in slightly different form and then, according to step b), can preferably be separated from one another by size exclusion chromatography or gel filtration due to their different sizes.
  • the skillful choice of ultrasonic treatment conditions controls the degree of separation of metallic and semiconducting single-walled nanotubes such that single-walled metallic nanotubes are separated while the semiconducting nanotubes remain in larger agglomerates.
  • the invention requires an application of ultrasound over a period of 1 hour to 4 hours.
  • the suspension between step a) and step b) is centrifuged for 0.5 hours to 2 hours depending on the set speed, whereby by-products from the synthesis of the material and larger agglomerates are removed.
  • the separation process according to the invention for single-walled metallic and semiconducting nanotubes is characterized by a low outlay and can therefore be implemented inexpensively in a large-scale process.
  • Both size exclusion chromatography and gel filtration are a common purification method and are already being used on an industrial scale.
  • FIG. 1 a) atomic force micrograph (AFM recording) of the nanotube starting suspension applied to a silicon surface; b) Plotting height and length information of each measured nanotube.
  • FIG. 2 a) height distribution of the AFM-measured nanotubes from the SDS suspension used according to the invention; b) Height distribution of AFM measured nanotubes from suspension with another surfactant (here: sodium salt of cholate acid) for comparison.
  • AFM recording atomic force micrograph
  • FIG. 3 a) absorption spectrum of the starting material; b) Absorption spectrum of nanotubes driven off with different eluents.
  • 10 mg of nanotube raw material was, as it is obtained from the synthesis, in 25 ml of H 2 O with 1 wt.% Of the sodium salt of dodecyl sulfate (SDS) with an ultrasonic finger (200 W maximum power, 20 kHz) in pulsed mode with 100 ms pulses treated for 2 hours with 20% of the maximum conduction (40 W) under water cooling of the sonicated vessel. Thereafter, the suspension was centrifuged for 1 hour at 70,000 g to remove by-products from the synthesis, especially metal particles or amorphous carbon, and larger agglomerates.
  • SDS dodecyl sulfate
  • the starting suspension obtained after centrifugation was applied to a surface for atomic force microscopy (AFM) analysis and then measured. This gives images as shown in Figure 1. From the AFM images, length and height information of each individual object can be extracted and statistically evaluated. This makes it possible to make a statement as to how the nanotube material is in suspension. For recording in FIG. 1, the following parameters have been selected:
  • the height information is plotted separately. From this a bimodal distribution can be recognized.
  • the nanotubes used have a diameter of 0.9 nm ⁇ 0.1 nm, which corresponds to the value of the first peak of the height distribution.
  • the values of the first peak were measured on nanotubes, which are present as individual objects on the surface.
  • the second peak of the distribution has an average value that is slightly less than twice the first peak.
  • the height distribution corresponds to what one measures when bundles, ie an agglomeration of several tubes, are present on the surface.
  • Figure 2b shows for comparison the height profile of nanotubes, which was suspended in the same way and analyzed with AFM with the difference that here the surfactant SCholate, the sodium salt of cholate acid, was used, which dissolves the nanotubes almost completely to individual objects.
  • the height distribution shows only one peak.
  • SDS separates only a part of the tube material, while a significant proportion is present in the form of bundles in the suspension.
  • Size-exclusion chromatography was performed by means of a gel filtration medium.
  • the gel was introduced into a glass column (2 cm inner diameter) and rinsed with twice the volume of the filled gel volume with water / 1 wt.% SDS and thereby slightly compressed to a total height of about 14 cm.
  • 10 ml of the nanotube suspension were applied and pressed with water / l wt.% SDS by applying a slight overpressure through the gel. The overpressure was adjusted to give a constant flow rate of about one milliliter per minute. The material expelled from the column was collected into individual 4 ml fractions.
  • the part of the nanotube material which has been singulated ie the first part from the AFM analysis, which has a height of 1.0 nm ⁇ 0.15 nm, passes freely through the gel
  • the second part ie the part from the AFM Analysis that has a height of 1.45 nm ⁇ 0.55 nm, remains in the gel after a few millimeters and not through let the eluent water / l wt.% SDS drive out of the gel.
  • the surfactant SCholate suspends nanotubes much more effectively.
  • the eluent was changed from water / 1 wt% SDS to water / 1 wt% SCholate.
  • the two nanotubes driven out with different eluents were then analyzed by absorption spectroscopy.
  • Metallic and semiconducting nanotubes show for them specific absorption bands in the absorption spectrum (see FIG. 3a)).
  • the integration of the peak areas results in a relative concentration of metallic tubes of about 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention porte sur un procédé de séparation de nanotubes de carbone à simple paroi, métalliques et semi-conducteurs, comportant les étapes suivantes : a) mise en suspension d'un matériau qui comprend des nanotubes tant métalliques que semi-conducteurs, par application d'ultrasons sur un laps de temps d'1 heure à 4 heures, dans une solution d'eau et d'un sel de dodécylsulfate, qui de préférence se fixe aux tubes métalliques, deux espèces de tailles différentes étant présentes dans la suspension, et b) séparation des deux espèces sur la base de leur différence de taille.
EP10710227A 2009-03-27 2010-03-19 Procédé de séparation de nanotubes métalliques et semi-conducteurs Withdrawn EP2411326A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015400A DE102009015400B4 (de) 2009-03-27 2009-03-27 Verfahren zur Auftrennung von metallischen und halbleitenden einwandigen Kohlenstoff-Nanoröhren
PCT/EP2010/001738 WO2010108631A2 (fr) 2009-03-27 2010-03-19 Procédé de séparation de nanotubes métalliques et semi-conducteurs

Publications (1)

Publication Number Publication Date
EP2411326A2 true EP2411326A2 (fr) 2012-02-01

Family

ID=42635563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10710227A Withdrawn EP2411326A2 (fr) 2009-03-27 2010-03-19 Procédé de séparation de nanotubes métalliques et semi-conducteurs

Country Status (3)

Country Link
EP (1) EP2411326A2 (fr)
DE (1) DE102009015400B4 (fr)
WO (1) WO2010108631A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101898B (zh) * 2011-11-10 2015-05-20 中国科学院微电子研究所 金属性纳米管去除方法
US8664091B2 (en) 2011-11-10 2014-03-04 Institute of Microelectronics, Chinese Academy of Sciences Method for removing metallic nanotube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10315897B4 (de) 2003-04-08 2005-03-10 Karlsruhe Forschzent Verfahren und Verwendung einer Vorrichtung zur Trennung von metallischen und halbleitenden Kohlenstoff-Nanoröhren
WO2006022800A2 (fr) * 2004-08-20 2006-03-02 Board Of Trustees Of The University Of Arkansas Nanotubes de carbone monofeuillet a surface modifiee et procedes de detection d'un compose chimique utilisant de tels nanotubes
JP5177624B2 (ja) * 2007-05-21 2013-04-03 独立行政法人産業技術総合研究所 カーボンナノチューブの高効率分離法
JP5177623B2 (ja) * 2007-05-21 2013-04-03 独立行政法人産業技術総合研究所 カーボンナノチューブの分離法
CA2698093A1 (fr) * 2007-08-29 2009-03-12 Northwestern University Conducteurs electriques transparents obtenus a partir de nanotubes de carbone tries, et procedes de fabrication
WO2009075293A1 (fr) * 2007-12-10 2009-06-18 National Institute Of Advanced Industrial Science And Technology Procédé de séparation simple de nanotubes de carbone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010108631A2 *

Also Published As

Publication number Publication date
WO2010108631A2 (fr) 2010-09-30
DE102009015400A1 (de) 2010-09-30
WO2010108631A3 (fr) 2011-01-20
DE102009015400B4 (de) 2011-01-20

Similar Documents

Publication Publication Date Title
EP2060313B1 (fr) Procédé destiné au fractionnement de nanoparticules oxydées par filtration sur membrane à écoulement transversal
DE60223374T2 (de) Fasern aus ausgerichteten kohlenstoffnanoröhren und herstellungsverfahren
KR101425690B1 (ko) 단분산 단일벽 탄소 나노튜브 군집 및 그를 제공하는 관련된 방법
Park et al. Electrical properties of multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposite
EP2014622B1 (fr) Procédé pour produire un Granulé en verre de quartz
EP2212027B1 (fr) Separation magnetique de substances sur la base de leurs charges superficielles differentes
EP1468961A2 (fr) Procédé, appareil et utilisation d'un appareil pour séparer les nanotubes de carbone metalliques de ces semiconducteurs
EP1612187A1 (fr) Microfibres de nanotubes de carbone
EP3157864A1 (fr) Procédé continu pour préparer des nanoplaquettes de graphène vierge
DE102006020987A1 (de) Dispersion von pyrogen hergestelltem Siliciumdioxid
DE69022691T2 (de) Verfahren zum Abtrennen und Rückgewinnen von Blei, Gummi und Kupferdrähten aus Kabelabfällen.
DE102009015400B4 (de) Verfahren zur Auftrennung von metallischen und halbleitenden einwandigen Kohlenstoff-Nanoröhren
DE69608958T2 (de) Wanderfeldscheider zur trennung von partikeln
DE69024268T2 (de) Ein Kohlenstoffpulver für eine elektrorheologische Flüssigkeit und Verfahren zu dessen Herstellung
DE102019200191A1 (de) Trockenaufbereitung von Kaolin bei der Herstellung von HPA
WO2012084448A1 (fr) Procédé et dispositif pour séparer de l'huile et de l'eau à l'aide de particules solides fonctionnelles hydrophobes et hydrophiles
WO2012175303A1 (fr) Procédé de production de minerais non magnétiques à partir d'un flux massique de type suspension contenant des particules de minerai non magnétiques
EP1749065B1 (fr) Phyllosilicate mineral sous forme de nanopoudre
DE102011000662A1 (de) Verfahren zur Herstellung von Graphen-Nanolagen
Hamdan et al. Synthesis of carbon–metal multi-strand nanocomposites by discharges in heptane between two metallic electrodes
DE102009006943A1 (de) Verfahren zur Herstellung photovernetzbarer Nanopartikel im kontinuierlichen Reaktor
DE102012010386B4 (de) Verfahren zur Trennung von Partikeln
EP4169619A1 (fr) Procédé et dispositif de production de modules photovoltaïques
DE102006048537A1 (de) Vorrichtung mit einer Vielzahl von auf der isolierenden Oberfläche eines Substrats aufgebrachten Elektrodenpaaren, Verfahren zu ihrer Herstellung und ihre Verwendung
EP3972795B1 (fr) Procédé de récupération pure de composants plastiques spécifiques à partir d'un flux de matières non triées

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110803

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130316