EP2407953B1 - Verbessertes Pilotenassistenzverfahren für Luftfahrzeug - Google Patents

Verbessertes Pilotenassistenzverfahren für Luftfahrzeug Download PDF

Info

Publication number
EP2407953B1
EP2407953B1 EP11005138.0A EP11005138A EP2407953B1 EP 2407953 B1 EP2407953 B1 EP 2407953B1 EP 11005138 A EP11005138 A EP 11005138A EP 2407953 B1 EP2407953 B1 EP 2407953B1
Authority
EP
European Patent Office
Prior art keywords
terrain
cordon
sensor
safety
safety cordon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11005138.0A
Other languages
English (en)
French (fr)
Other versions
EP2407953A1 (de
Inventor
François-Xavier Filias
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters SAS
Original Assignee
Airbus Helicopters SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Helicopters SAS filed Critical Airbus Helicopters SAS
Publication of EP2407953A1 publication Critical patent/EP2407953A1/de
Application granted granted Critical
Publication of EP2407953B1 publication Critical patent/EP2407953B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain

Definitions

  • the invention relates to the general technical field of flight aid for aircraft at low altitude.
  • this type of flight configuration often close to the obstacles and the ground, it is necessary to have reliable safety margins when the pilot follows a trajectory manually or with the aid of the autopilot system.
  • These margins representative of the distance separating the aircraft from the ground, are displayed on a screen for example in the form of a safety cordon and are vital, especially during low visibility flights.
  • the present invention relates more particularly to low-altitude navigation and more precisely to monitoring terrain at variable altitudes continuously, with an aircraft of the genus rotorcraft, helicopter for example, so as to avoid collisions with the terrain or with obstacles.
  • the helicopters try to fly as close to the terrain while avoiding a collision with the said terrain.
  • helicopter pilots fly on sight.
  • the known means only allow this kind of mission to be carried out in conditions of good visibility or poor visibility, but at altitudes that are not adapted to all missions. These altitudes are generally related to the information of a terrain database with possible obstacle referencing.
  • Another family relates to methods using active telemetry sensors. These methods have the disadvantage of not allowing anticipation of the turns to be made and not providing a long-term trajectory predictive aspect.
  • a method using telemetric active sensors is for example described in the document FR2886439 . The method described, however, requires flying at a high altitude in the event of reduced visibility. This method is also confronted with problems of reflection of the waves inherent to the telemetric sensors.
  • these methods are very dependent on the quality of the telemetry sensor used. For example, these sensors have variable ranges (from 500 meters to 2000 meters), detect cables in LIDAR mode but not all in RADAR mode and detect all other obstacles in RADAR mode whatever the weather but not in LIDAR mode. These methods lead to increase the stress and the workload of the pilot.
  • an autopilot system for determining a safety curve remote from the aircraft, plus precisely with the aid of its speed vector, a distance corresponding to the minimum distance that must be maintained between the aircraft and a detected terrain.
  • the described system also determines upper and lower curves located on either side of the safety curve. Depending on the appearance of obstacles referenced positively or negatively with respect to the safety curve, between the lower and upper curves, the system calculates angles to stitch or pitch up compatible with the maneuverability of the aircraft.
  • the document is also known FR2712251 , which describes a method of assisting an aircraft pilot for low-level flights by detecting dangerous obstacles in terrain.
  • the method is based in particular on the maneuverability of the aircraft from which is calculated a fictitious curve related to the aircraft and associated with an optimal theoretical trajectory of crossing an obstacle in a vertical plane. This optimal theoretical path of crossing is recalculated in each angular sector of the field of view taking into consideration the highest obstacle detected for example by a telemetric sensor.
  • the document FR1374954 describes the combination of a radar and a computer to determine at any time the situation of an aircraft in relation to the ground and to order orders to stitch or pitch.
  • the document US5892462 describes an adaptive-type terrain collision avoidance system. Parameters are taken into account from different sources to consolidate a terrain avoidance algorithm, including telemetry measurements or data from a mapping database, without aiming to construct security cordon on angular sectors.
  • GNSS GNSS means HFoM (Horizontal Figure of Merit) or VFoM (Vertical Figure of Merit) giving indications of horizontal and vertical measurement errors are often not taken into account in trajectory calculations for low-level flights.
  • HFoM Horizontal Figure of Merit
  • VFoM Very Figure of Merit
  • An object of the invention is to provide a piloting aid does not have the disadvantages mentioned above.
  • Another object of the invention is to provide a steering aid particularly suitable for rotorcraft in general and helicopters in particular.
  • Yet another object of the invention is to provide a particularly useful flight control aid to fly closer to the field and obstacles, while not altering the margins of safety in flight.
  • the method according to the invention provides for displaying the field safety cordon in at least a first mode of operation.
  • the method according to the invention provides for displaying the hybrid safety cordon in a second mode of operation.
  • the method according to the invention provides to display a hybrid field monitoring cord in at least a third mode of operation, said hybridized field monitoring cord being constructed with the sensor safety cordon and with the field safety cordon in the event of absence or loss of measurements of the active telemetric sensor or in the case of a field of vision not covered by said active telemetric sensor.
  • the method according to the invention provides for displaying the sensor security cordon in at least one additional operating mode.
  • the method according to the invention provides, when the sensor safety cordon and the field safety cordon are devoid of construction errors, to select an operating mode from among the first and second modes of operation. operation.
  • the method according to the invention provides, when the sensor security cordon and the field safety cordon are devoid of construction errors, to select a mode of operation among the first, second and third operating modes.
  • the method according to the invention provides for checking the operating status of the means of location and integrity of the field database establishing the safety cordon field, to check the operating status of the active sensor telemetry and GNSS / AHRS system establishing the sensor safety cordon, to display the sensor safety cordon in the event of failure of the locating means or of the corruption of the field database and displaying a field alarm in the event of failure of the means of localization or of corruption (absence) of the field database accumulated with a sensor failure telemetry active.
  • the method according to the invention provides for verifying the operating state of the locating means and the integrity of the field database establishing the field safety cordon, to check the operation of the sensor telemetry and AHRS / GNSS system establishing the sensor safety cordon, and displaying the field safety cordon in the event of a failure of the active telemetric sensor or the GNSS / AHRS system.
  • the method according to the invention provides for using a state vector representing the information from on-board navigation sensors, to construct the field safety cordon and the sensor safety cordon.
  • the method according to the invention provides for displaying a speed vector symbolizing the aircraft and its relative positioning with respect to the displayed bead.
  • the method according to the invention provides for constructing a three-dimensional trajectory, predictive of the terrain monitoring using a simulated state vector, the terrain database and a two-dimensional road drawn by the pilot.
  • the method according to the invention provides for recording the three-dimensional trajectory as well as the terrain data from the simulation so as to follow said trajectory by an autopilot system.
  • the method according to the invention provides for displaying the field safety cordon or the hybrid safety cordon, built in real time from the field database and measurements of the active telemetric sensor. to control the proper operation of the autopilot system.
  • the method according to the invention provides for using a field database comprising a database of obstacles.
  • the invention has the advantage of being able to provide a predictive aspect of the terrain encountered.
  • Another advantage of the invention is related to the possibility in case of failure of the active telemetric sensor, to construct a security cordon from a field database replacing the loss of measurements of said sensor.
  • Yet another advantage of the invention is related to the possibility of anticipating the maneuvers in turn phases. Because of its range, and field of view (FOR: Field Of Regard), a telemetry sensor does not have the ability to turn at a high roll to anticipate the elevation above terrain on areas that the aircraft will "discover".
  • An additional advantage of the invention is related to the securing of obstacle detection thanks to the active telemetric sensor, in the event of failure or lack of precision of the terrain database (with or without an obstacle database) . Even cables or other objects that are not referenced or incorrectly referenced by the terrain database are detected and thus allow you to fly more safely.
  • the pilot can usefully check the proper operation of the system with an autopilot. This verification is done by checking the position of the helicopter's speed vector in relation to the safety cordon displayed.
  • the invention allows the pilot to choose between different modes of operation.
  • the pilot can thus choose, depending on the nature of his mission or weather conditions, the most appropriate piloting assistance mode to perform the flight at low or very low altitude.
  • the figure 1 is a block diagram of an exemplary implementation of the piloting aid method according to the invention.
  • This piloting aid method for an aircraft provides for the use of measured data from at least one active telemetric sensor A to construct a sensor safety cordon B for the avoidance of terrain and obstacles.
  • telemetric active sensor must be understood in a broad and non-limiting manner, encompassing any means of remote image capture, in particular 3D or stereoscopic imagers.
  • the flight aid method for an aircraft constructs a terrain security cordon D using at least one terrain database C.
  • the latter comprises for example an obstacle database C '.
  • the construction of the terrain security cordon D and the security cordon B is carried out using specific and known algorithms and a state vector VE or a simulated state vector VE '.
  • the state vectors VE and VE ' are based on the set of navigation parameters such as acceleration a, velocity v, information from the AHRS (attitudes: roll, pitch and yaw) and GNSS ( position: Latitude, Longitude, MSL altitude and horizontal and vertical errors: HFoM and VFoM).
  • This technical process also defines and calculates angular sectors w on a field of view FOR facing the pilot.
  • This method then builds, for at least a portion of the angular sectors w, a hybrid safety cord E, which takes for each angular sector w concerned, the highest of the safety sensor B and security cordon D.
  • This technical process then displays, using a screen F, one of the cords comprising the hybrid safety cord E, the safety cordon D and the safety cordon B.
  • the displayed cord is preferably superimposed to the angular sectors w of the FOR field of view.
  • the method of the invention displays the field safety cordon D in at least a first operating mode M1.
  • the method of the invention displays the hybrid safety cord E in a second mode of operation M2.
  • the method of the invention displays a hybridized field-monitoring cord ST in at least a third mode of operation M3.
  • the ST Hybrid Field Tracking Cord is constructed using the technical process with Sensor Safety Cord B and Field Safety Cord D in the event of absence or loss of measurements of Telemetric Active Sensor A or in case of field of vision FOR not covered by said active sensor telemetric A.
  • the technical method displays the sensor safety cordon B in at least one additional operating mode.
  • the figure 2 is a logic diagram illustrating the steps of an exemplary implementation of the invention.
  • the pilot it is possible for the pilot to select various modes of operation. The choice of one or the other of these modes depends in particular on the nature of the mission to be carried out, the relief and the climatic conditions.
  • the technical method selects an operating mode from among the first M1 and second M2 operating modes.
  • the technical method selects a mode of operation among the first M1, second M2 and third M3 operating modes.
  • the technical method verifies the operating state of the GNSS locating means and the integrity of the terrain database C establishing the field safety cordon D, and checking the operating state of the active sensor telemetry A and GNSSIAHRS assisting in the construction of the B sensor safety cordon.
  • the method according to the invention displays the sensor security cordon B in the event of failure of the means of locating or of the corruption of the terrain database C and displays a "field" alarm in the event of failure of the locating means or C cumulative database database corruption with a failure of the active sensor telemetric A.
  • the method according to the invention verifies the operating state of the GNSS locating means and the integrity of the terrain database C establishing the field safety cordon D, verifies the operation of the sensor Telemetry active A and GNSS / AHRS establishing the sensor safety cordon B, and displays the safety cordon D, in case of failure of the active telemetric sensor A or the GNSS / AHRS system.
  • the method according to the invention uses a state vector VE representing information from on-board navigation sensors, to construct the terrain safety cordon D and the sensor safety cordon B.
  • the method of the invention displays a velocity vector V symbolizing the aircraft and its relative positioning with respect to the displayed cord and with respect to the terrain T. This is apparent from the Figures 3 to 6 .
  • the method according to the invention constructs a three-dimensional trajectory, predictive of the terrain tracking using a two-dimensional route drawn by the pilot, the terrain database C and a simulated state vector ( VE ') for the entire road.
  • the technical process records the trajectory in three dimensions as well as the data relating to the terrain resulting from the simulation, so as to follow said trajectory by a control system with automatic or manual controls.
  • the technical method displays the field safety cordon D or the safety hybrid cable E, built in real time from the terrain database C and the measurements of the active telemetric sensor A, for a useful and effective control of the proper operation of the autopilot system.
  • the method uses a terrain database C including a database of obstacles C '.
  • the figure 3 represents an example of ground security cordon D constructed according to the method according to the invention and displayed on a screen.
  • the terrain security cordon D is constructed from at least one terrain database C and obstacles C '.
  • the terrain and the terrain T are displayed simultaneously with the terrain safety cordon D.
  • the velocity vector v is also displayed.
  • the terrain database C if necessary supplemented with the obstacle database C ', also has a given level of security.
  • a smoothing (smoothing algorithm) and an addition proportional to the error margins provided by said terrain database C make it possible to increase the height of the terrain safety cordon D.
  • Information from a GNSS such as the HFoM or the VFoM can also be used for this purpose.
  • the figure 4 represents an example of security cordon B, built according to the method of the invention and displayed on a screen.
  • the sensor safety cordon B is constructed by this technical process from measurements made by an active telemetric sensor A.
  • the latter is for example a LIDAR or RADAR rangefinder.
  • Other three-dimensional obstacle sensors are employed in embodiments of the invention.
  • the sensor safety cordon B makes it possible to get closer to the terrain T and obstacles.
  • the figure 5 represents an example of hybrid safety cord E, built according to the method of the invention and displayed on a screen.
  • the hybridized safety cord E is constructed from at least one terrain database C and obstacles C ', completed and / or modified if necessary with information from the active sensor rangefinder A.
  • This active sensor telemetric A detects for example a mast 1 in an angular sector w1 and the method of the invention enhances the safety cordon D field in this angular sector w1. It is the same for the method of the invention to replace in the relevant angular sector w1, the safety cordon D field by the security cordon sensor B. This corresponds for example to a case where obstacles are not listed in the bases of data C and C '.
  • the angular sectors w, w1 defined and calculated by the method of the invention are not illustrated on the figure 5 only for didactic purposes to understand the construction of a cord and are not displayed on a screen in the embodiments of the invention.
  • the operations of modifying or complementing the databases C and C ', or alternatively replacing a portion of the security cordon D in certain angular sectors w1 by a security cordon B, are performed by a mission calculator managing the database (certified or not). This mission calculator is integrated into the embedded avionics system.
  • the field safety cordon D is completed according to the method of the invention with the information of the active sensor telemetric A if they are available. If a FOR field of view for one of the security cords B, D is greater than the other, this is the most extensive security cordon that will be displayed in the angular sectors w concerned. The driver thus has a default cord in certain angular sectors w.
  • an advantage is that the invention does not use the active telemetric sensor A, which can provide false echoes in some cases and be detectable.
  • the figure 6 shows an example of a hybrid field monitoring cord ST constructed according to the method according to the invention and displayed on a screen.
  • the ST Hybrid Field Tracking Cord is constructed from the Sensor B Safety Cord of the figure 4 and the field security cordon D of the figure 3 .
  • the FOR field of view for the active telemetric sensor A does not cover all of the angular sectors w covered by the safety cordon D. Thus, the latter will be displayed outside the field of view FOR of the active telemetric sensor.
  • the sensor safety cordon B which is closest to the field, is displayed first, and if there is no or no information from the active range sensor A, the field safety line D is displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Claims (15)

  1. Pilotenassistenzverfahren für ein Luftfahrzeug, wobei dieses technische Verfahren Daten verwendet, die mindestens von einem aktiven telemetrischen Sensor geliefert werden, um ein Sensorsicherheitsband (B) zu konstruieren, um Kollisionen im Gelände und mit Hindernissen zu vermeiden,
    dadurch gekennzeichnet, dass gemäß dem Verfahren:
    - Winkelabschnitte (w) im Sichtfeld (FOR) gegenüber dem Piloten definiert und berechnet werden,
    - ein Geländesicherheitsband mit Hilfe mindestens einer Geländedatenbasis konstruiert wird,
    - für mindestens einen Teil der Winkelabschnitte (w) ein Hybridsicherheitsband (E) konstruiert wird, welches für jeden betroffenen Winkelabschnitt (w) das höchste Band von dem Sensorband (B) und dem Geländeband (D) übernimmt, und
    - eines der Bänder aus der Gruppe Hybridsicherheitsband (E), Geländesicherheitsband (D) und Sensorsicherheitsband (B) angezeigt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass es vorsieht, in mindestens einem ersten Funktionsmodus das Geländesicherheitsband (D) anzuzeigen.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass es vorsieht, in einem zweiten Funktionsmodus das Hybridsicherheitsband (E) anzuzeigen.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass es vorsieht, ein Hybridgeländefolgeband (ST) in mindestens einem dritten Funktionsmodus anzuzeigen, wobei das Hybridgeländefolgeband (ST) aus dem Sensorsicherheitsband (B) und dem Geländesicherheitsband (D) konstruiert wird im Falle der Abwesenheit oder des Verlustes von Messwerten des aktiven telemetrischen Sensors (A) oder im Falle eines Sichtfeldes (FOR), das nicht von dem aktiven telemetrischen Sensor abgedeckt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass dieses Verfahren vorsieht, das Sensorsicherheitsband (B) in mindestens einem zusätzlichen Funktionsmodus anzuzeigen.
  6. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass, wenn das Sensorsicherheitsband (B) und das Geländesicherheitsband (D) frei von Konstruktionsfehlern sind, das Verfahren den Funktionsmodus aus dem ersten Funktionsmodus und dem zweiten Funktionsmodus auswählt.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass, wenn das Sensorsicherheitsband (B) und das Geländesicherheitsband (D) frei von Konstruktionsfehlern sind, das Verfahren den Funktionsmodus aus dem ersten, zweiten und dritten Funktionsmodus auswählt.
  8. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass es vorsieht, den Funktionszustand der Lokalisierungsmittel und die Vollständigkeit der Geländedatenbasis (C), mit denen das Geländesicherheitsband (D) erstellt wird, zu überprüfen, den Funktionszustand des aktiven telemetrischen Sensors (A) und des Systems GNSS/AHRS, welches das Sensorsicherheitsband (B) erstellt, zu überprüfen, und das Sensorsicherheitsband (B) anzuzeigen, wenn die Lokalisierungsmittel defekt sind oder im Falle einer Beschädigung der Geländedatenbasis (C), und einen Geländealarm anzuzeigen im Falle eines Defektes der Lokalisierungsmittel oder der Beschädigung der Geländedatenbasis (C) zusammen mit einem Defekt des aktiven telemetrischen Sensors (A).
  9. Verfahren nach Anspruch 1 oder 8,
    dadurch gekennzeichnet, dass es vorsieht, den Funktionszustand der Lokalisierungsmittel und die Vollständigkeit der Geländedatenbasis (C), mit denen das Geländesicherheitsband (D) erstellt wird, zu überprüfen, die Funktionsfähigkeit des aktiven telemetrischen Sensors (A) und des Systems GNNS/AHRS zu überprüfen, mit denen das Sensorsicherheitsband (B) erstellt wird, und das Geländesicherheitsband (D) anzuzeigen im Falle eines Defekts des aktiven telemetrischen Sensors (A) oder des Systems GNNS/AHRS.
  10. Verfahren nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass das Verfahren vorsieht, einen Zustandsvektor (VE) zu verwenden, der die Informationen wiedergibt, die von den Bordnavigationssensoren stammen, um das Geländesicherheitsband (D) und das Sensorsicherheitsband (B) zu konstruieren.
  11. Verfahren nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass das Verfahren vorsieht, einen Geschwindigkeitsvektor (V) anzuzeigen, der das Luftfahrzeug und seine Relativposition zu dem angezeigten Band symbolisiert.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, dass es vorsieht, eine Trajektorie in drei Dimensionen zu konstruieren, die den Geländeverlauf vorhersieht unter Verwendung eines simulierten Zustandsvektors (VE'), der Geländedatenbasis (C) und einer Flugroute in zwei Dimensionen, die von dem Piloten gezeichnet wird.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, dass es vorsieht, die Trajektorie in drei Dimensionen sowie die Daten bezüglich des Geländes, die von der Simulation stammen, aufzuzeichnen, derart, dass die Trajektorie von einem Autopilotsystem verfolgt werden kann.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet, dass es vorsieht, das Geländesicherheitsband (D) oder das Hybridsicherheitsband (E), die in Echtzeit konstruiert werden, ausgehend von der Geländedatenbasis (C) und den Messungen des aktiven telemetrischen Sensors (A) anzuzeigen, um das Funktionieren des Autopilotsystems zu kontrollieren.
  15. Verfahren nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, dass es vorsieht, eine Geländedatenbasis (C) zu verwenden, die eine Hindernisdatenbasis (C') umfasst.
EP11005138.0A 2010-07-16 2011-06-24 Verbessertes Pilotenassistenzverfahren für Luftfahrzeug Active EP2407953B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1002991A FR2962838B1 (fr) 2010-07-16 2010-07-16 Procede d'aide au pilotage ameliore pour aeronef

Publications (2)

Publication Number Publication Date
EP2407953A1 EP2407953A1 (de) 2012-01-18
EP2407953B1 true EP2407953B1 (de) 2014-11-12

Family

ID=43618754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11005138.0A Active EP2407953B1 (de) 2010-07-16 2011-06-24 Verbessertes Pilotenassistenzverfahren für Luftfahrzeug

Country Status (4)

Country Link
US (1) US8566018B2 (de)
EP (1) EP2407953B1 (de)
FR (1) FR2962838B1 (de)
IL (1) IL213821A (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358066B2 (en) * 2011-04-08 2016-06-07 Covidien Lp Flexible microwave catheters for natural or artificial lumens
FR3014233B1 (fr) * 2013-12-03 2020-12-25 Eurocopter France Systeme d'aeronef pour signaler la presence d'un obstacle, aeronef et procede de detection d'obstacle
US9583011B2 (en) 2015-01-28 2017-02-28 Airbus Helicopters Aircraft system for signaling the presence of an obstacle, an aircraft equipped with this system, and method for the detection of an obstacle
WO2016195816A2 (en) * 2015-04-22 2016-12-08 Astronautics Corporation Of America Electronic display of compass/map information for rotorcraft providing improved depiction of surrounding obstacles

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1002991A (fr) 1946-11-15 1952-03-12 I G Farbenindustrie Ag En Diss Perfectionnements relatifs aux rouges à lèvres
FR1374954A (fr) 1960-09-14 1964-10-16 Gen Aeronautique Marcel Dassau Perfectionnements aux moyens de pilotage d'aérodynes pour les vols à très basse altitude, et notamment en rase-mottes
FR87853A (de) 1962-05-18
US3936796A (en) * 1974-06-19 1976-02-03 Sundstrand Data Control, Inc. Aircraft ground proximity warning instrument
US4030065A (en) * 1976-07-19 1977-06-14 Sundstrand Corporation Terrain clearance warning system for aircraft
US4737788A (en) * 1985-04-04 1988-04-12 Motorola, Inc. Helicopter obstacle detector
FR2658636B1 (fr) 1990-02-22 1994-08-26 Sextant Avionique Procede de pilotage d'un aeronef en vol a tres basse altitude.
FR2712251B1 (fr) * 1993-11-10 1996-01-26 Eurocopter France Procédé et dispositif d'aide au pilotage d'un aéronef.
DE69606804T2 (de) * 1995-06-20 2000-06-15 Honeywell Inc Integriertes System zur Grundkollisionsvermeidung
US6092009A (en) * 1995-07-31 2000-07-18 Alliedsignal Aircraft terrain information system
US5946926A (en) * 1998-04-07 1999-09-07 Hartman; Thomas B. Variable flow chilled fluid cooling system
US6317690B1 (en) 1999-06-28 2001-11-13 Min-Chung Gia Path planning, terrain avoidance and situation awareness system for general aviation
US6216065B1 (en) * 1999-08-06 2001-04-10 Bell Helicopter Textron Inc. Method and system for creating an approach to a position on the ground from a location above the ground
GB9927281D0 (en) * 1999-11-19 2000-04-26 British Aerospace Terrain following apparatus for a vehicle
JP4025649B2 (ja) * 2001-01-23 2007-12-26 ハネウェル・インターナショナル・インコーポレーテッド ヘリコプター用egpwsカットオフ高度
GB0111256D0 (en) * 2001-05-09 2001-06-27 Bae Systems Plc A GPS based terrain referenced navigation system
US6678588B2 (en) * 2002-04-12 2004-01-13 Honeywell International Inc. Terrain augmented 3D flight path display for flight management systems
FR2853978B1 (fr) 2003-04-16 2006-02-03 Eurocopter France Procede et dispositif de securisation du vol d'un aeronef en conditions de vol aux instruments hors infrastructures de vol aux instruments
FR2870606B1 (fr) * 2004-05-18 2010-10-08 Airbus France Procede et dispositif de securisation d'un vol a basse altitude d'un aeronef
FR2886439B1 (fr) 2005-05-24 2010-11-05 Eurocopter France Procede et dispositif d'aide au pilotage d'un aeronef a basse altitude
FR2893174B1 (fr) * 2005-11-10 2008-01-25 Thales Sa Procede d'optimisation de l'affichage de donnees relatives aux risques lies aux obstacles
FR2902537B1 (fr) * 2006-06-20 2016-04-29 Eurocopter France Systeme de detection d'obstacles au voisinage d'un point de poser
US8509965B2 (en) * 2006-12-12 2013-08-13 American Gnc Corporation Integrated collision avoidance system for air vehicle
US7633430B1 (en) * 2007-09-14 2009-12-15 Rockwell Collins, Inc. Terrain awareness system with false alert suppression
FR2953316B1 (fr) * 2009-11-30 2012-08-24 Eurocopter France Procede d'obtention d'une base locale d'elevation de terrain a partir d'un moyen de detection embarque a bord d'un vehicule et dispositif pour la mise en oeuvre de ce procede

Also Published As

Publication number Publication date
IL213821A (en) 2014-06-30
US20120016580A1 (en) 2012-01-19
US8566018B2 (en) 2013-10-22
IL213821A0 (en) 2011-12-01
FR2962838B1 (fr) 2012-07-13
FR2962838A1 (fr) 2012-01-20
EP2407953A1 (de) 2012-01-18

Similar Documents

Publication Publication Date Title
EP1870789B1 (de) System zur Erfassung von Hindernissen in der Umgebung eines Landungspunktes
CA2093546C (fr) Procede et dispositif d'anti-collisions terrain pour aeronef
EP3267156B1 (de) Vorrichtung und methode zur berechnung der vorhersage einer geschätzten navigationsleistung
FR2773609A1 (fr) Procede et dispositif d'anti-collision terrain pour aeronef, a visualisation perfectionnee
EP0688004A1 (de) Gerät zur Vermeidung von Flugzeugkollisionen insbesondere mit dem Boden, mit reduzierter Energiebilanz
EP3355150B1 (de) Hilfsverfahren und -system zur annäherung und zum relativ stationären flug eines drehflügelflugzeugs in bezug auf ein bewegliches ziel
FR2852097A1 (fr) Procede et dispositif pour construire une image de synthese de l'environnement d'un aeronef et la presenter sur un ecran dudit aeronef
FR2897975A1 (fr) Procede et dispositif d'assistance au pilotage d'un aeronef.
FR2897839A1 (fr) Procede et dispositif d'ajustememnt automatique d'une image d'un ecran de navigation d'aeronef.
FR3087915A1 (fr) Dispositif anticollision, systeme avionique de protection, procede d'anticollision et programme d'ordinateur associes
EP2407953B1 (de) Verbessertes Pilotenassistenzverfahren für Luftfahrzeug
WO2014146884A1 (fr) Procede d'observation d'une zone au moyen d'un drone
EP3866136B1 (de) Verfahren und system zur navigationshilfe für ein luftfahrzeug durch erkennung von maritimen objekten beim anflug, im stationären flugzustand oder bei der landung
WO2008145593A1 (fr) Dispositif de visualisation pour aéronef comprenant des moyens d'affichage d'une symbologie de navigation dédiée a l'évitement d'obstacles
FR2958031A1 (fr) Dispositif d'aide au vol pour un aeronef
EP3018450B1 (de) Darstellungsverfahren eines kartografischen bildes in einem geolokalisierten anzeigesystem, das die präzision der geolokalisierung berücksichtigt
FR2998065A1 (fr) Systeme permettant d'anticiper les precisions de navigation requises
EP3964796B1 (de) Verfahren und system zur unterstüzung bei der navigation eines flugzeugs und entsprechendes flugzeug
EP3578926B1 (de) Sicherungsverfahren zur verarbeitung eines synthetischen flugzeug-visionssystems, zugehöriges system und computerprogrammprodukt
EP4390439A1 (de) Verfahren und system zur hinderniserkennung mit einem hindernissensor für ein drehflügelflugzeug
EP4170627A1 (de) Hilfsverfahren und vorrichtung zur steuerung eines luftfahrzeugs im flug
EP4009070A1 (de) Verfahren und system zur hinderniserkennung mithilfe eines hindernissensors für luftfahrzeug
WO2022219007A1 (fr) Adaptation automatique du profil vertical d'un aeronef en fonction d'une incertitude de position
EP4198947A1 (de) Verfahren zur identifizierung eines posebereichs, computerprogramm und elektronische vorrichtung dafür
FR3108413A1 (fr) Procédé et système électronique de génération d'au moins une consigne de guidage pour une aéronef, programme d'ordinateur et aéronef associés

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS HELICOPTERS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 696163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011011222

Country of ref document: DE

Effective date: 20141224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 696163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011011222

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150624

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150624

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150624

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20160412

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 13

Ref country code: DE

Payment date: 20230620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 13