EP2407248B1 - Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung - Google Patents

Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung Download PDF

Info

Publication number
EP2407248B1
EP2407248B1 EP10169356A EP10169356A EP2407248B1 EP 2407248 B1 EP2407248 B1 EP 2407248B1 EP 10169356 A EP10169356 A EP 10169356A EP 10169356 A EP10169356 A EP 10169356A EP 2407248 B1 EP2407248 B1 EP 2407248B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion chamber
accordance
injection
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10169356A
Other languages
English (en)
French (fr)
Other versions
EP2407248A1 (de
Inventor
Urs Rüedi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Priority to EP10169356A priority Critical patent/EP2407248B1/de
Publication of EP2407248A1 publication Critical patent/EP2407248A1/de
Application granted granted Critical
Publication of EP2407248B1 publication Critical patent/EP2407248B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to a spray device with a spray gun for thermal spraying of a spray material, and a method for operating a spray device according to the preamble of the independent claim of the respective category.
  • Spray devices with a spray gun for the thermal flame spraying of a spray material are well known in the prior art in many variants.
  • spray devices with a spray gun for the thermal flame spraying of a spray material are well known in the prior art in many variants.
  • US 2006/0165898 A1 discloses a thermal spray device with which nanoparticles can be produced.
  • wire flame spraying for example, a wire-shaped spray material with a fuel gas oxygen flame or with a liquid fuel with oxygen is melted and thrown by the combustion gas alone or with the simultaneous assistance of a Zerstäubergas, such as compressed air or an inert gas to the material surface.
  • the spray wire is preferably guided centrally through the flame, wherein the feed rate of the wire is often determined at a constant flame temperature of the melting point of the wire and the wire diameter.
  • the molten droplets produced by melting the wire are sprayed onto the surface to be coated by the flame speed and by a transport gas Workpiece hurled.
  • Flame spraying often uses fuel gases such as acetylene, propane or hydrogen.
  • the spray powder When flame spraying with spray powder as a spray material, the spray powder is melted with a fuel gas oxygen flame or with a liquid fuel with oxygen and thrown by the combustion gas alone or with simultaneous support by a Zerstäubergas, such as compressed air or an inert gas to the material surface.
  • a Zerstäubergas such as compressed air or an inert gas
  • Special forms of flame spraying are realized inter alia by spray guns, in which burned in a combustion chamber, the liquid or gaseous fluid fuel by means of oxygen to a hot combustion gas, so that in the combustion chamber, a certain process pressure of the hot combustion gases is generated.
  • the hot combustion gases are then supplied from the combustion chamber via an outlet opening, which is often in the form of a nozzle, a melting zone, in which melting zone the spray material, a spray wire or a spray powder, in special cases, even a liquid or gaseous spray material or spray additive may be, is melted by the hot combustion gas and is spun by the pressurized hot combustion gas for coating a substrate on the surface of the substrate.
  • Embodiments are also known in which the spray material is not first supplied in a melting zone outside the combustion chamber. But it is quite well known systems in which the spray material, for example, a spray powder or a liquid or gaseous spray material is introduced directly into the combustion chamber.
  • the spray material for example, a spray powder or a liquid or gaseous spray material is introduced directly into the combustion chamber.
  • combustion chamber flame spraying systems are, inter alia, that no additional atomizing gas, such as, for example, compressed air or an inert gas, is necessary in order to spin the molten material onto the surface of the material.
  • no additional atomizing gas such as, for example, compressed air or an inert gas
  • the spray material for example, a spray powder heated to just above or to the melting temperature of the combustion gases, so that, for example, the powder grains are more or less plastic and are melted only by the impact energy on impact on the workpiece to be coated and so form the coating.
  • High Velocity Oxygen Fuel HVOF
  • the hot combustion gas coming from the combustion chamber is passed through a nozzle, in particular through a Venturi nozzle, such that the coating jet generally comprises, at very high speed, the completely or partially melted spray material At supersonic speed is spun on the substrate to be coated.
  • the fuel at relatively low pressure in practice often at 10 - 15 bar introduced through an opening in the combustion chamber against the process pressure in the combustion chamber, which is of a similar magnitude.
  • the atomization for example, when a liquid fuel is used, is still accomplished with a less effective design of the inlet openings, which allows only a very limited control of the spatial distribution of the fuel in the combustion chamber or the particle size of the fuel droplets.
  • the introduced into the combustion chamber amount of fuel is controlled either via an analog controlled pump or with an analog proportional valve.
  • the fuel oxygen mixture is only conditionally adaptable to certain requirements or process parameters and often not optimal. Specifically, there are large variations in process quality. Thus, e.g. the Lamba ratio and overall process behavior due to inconsistent combustion behavior. This results in a much too high fuel consumption and incomplete combustion of introduced into the combustion chamber fuel. Due to the incomplete combustion or, for example, due to an excessively high oxygen content, contamination may occur with fuel which is not burned or only partially burned or else oxidation phenomena on the workpiece surface or coating material to be coated.
  • the object of the invention is therefore to provide a new injection device and a new method for operating a spray device, which avoids the disadvantages known from the prior art and in particular enables better combustion or improved control of combustion in the combustion chamber.
  • the invention thus relates to a spray device with a spray gun for thermal spraying of a spray material, wherein the spray gun comprises a combustion chamber for combustion of a fluid fuel to a hot combustion gas.
  • the fuel can be injected into the combustion chamber at a predefinable injection pressure by means of an injection device fed by a fuel supply in accordance with a predefinable injection scheme.
  • the fuel can be injected into the combustion chamber at a prescribable injection pressure by means of an injection device fed by a fuel supply according to a predefinable injection scheme.
  • the fuel is introduced into the combustion chamber at much higher pressure, which is made possible inter alia by using the injection device.
  • the injection device and the higher injection pressure the fuel is much better and finely atomized.
  • the fuel can be injected under much higher pressure and on the other hand because the injection can be optimally adapted to the combustion process by a digital control of the injection device.
  • the injection of the fuel by means of the injection device can be controlled or regulated digitally according to a predetermined pattern
  • the injection of the fuel can be optimally adapted to the respective process parameters such as, for example, the type of fuel used, the combustion temperature, the pressure in the combustion chamber, the used one Spray material, etc. are adjusted.
  • the oxygen / fuel ratio can also be optimally adjusted or controlled or regulated in the combustion chamber to the specific conditions or requirements.
  • the digital control of the inventive spray device also makes the entire system much more robust against interference or long-term fluctuations in the hardware components of the system, as is the case with the known analog regulation of the fuel injection. This results in significantly longer maintenance intervals and the periodic calibrations of the spraying device or certain components required in the prior art can be significantly reduced and in some cases can even be completely eliminated. Therefore, the spray device according to the invention is also significantly more economical in terms of maintenance work.
  • the fuel is pulsed during an injection stroke injected into the combustion chamber and not injected during a lock cycle.
  • the amount of fuel injected into the combustion chamber per unit of time can be set very reliably and simply by adjusting the length of the injection stroke in relation to the length of the blocking clock.
  • the average per unit time in the Combustion chamber injected amount of fuel is set by adjusting the injection pressure of the fuel.
  • the oxygen required for combustion of the fuel is preferably also introduced into the combustion chamber at a predeterminable supply pressure by means of an oxygen nozzle fed by an oxygen supply according to a predeterminable scheme, wherein in particular the amount of oxygen injected into the combustion chamber per unit time Example by setting the feed pressure of the oxygen or by regulating the nozzle can be specified.
  • a drive device For driving the fuel supply and / or the oxygen supply, a drive device is advantageously provided, so that the control of the fuel injection or the oxygen supply can be set individually, or a control or regulation of the fuel and oxygen supply is possible.
  • an operating parameter can be detected and fed to the drive unit for controlling or regulating the combustion process.
  • a sensor may be provided for detecting the operating parameter, wherein and operating parameters, for example, a temperature in the combustion chamber and / or a combustion pressure in the combustion chamber and / or a chemical composition of the combustion gas and / or an oxygen content in the combustion chamber.
  • the operating parameter may also be the injection pressure of the fuel and / or an amount of fuel supplied into the combustion chamber, and / or the operating parameters may be the feed pressure of the oxygen and / or an amount of oxygen supplied to the combustion chamber or any other operating parameters associated with Control or regulation of combustion is essential.
  • an injection nozzle is particularly advantageously used, in particular a commercially available injection nozzle, as used for example in conventional internal combustion engines in vehicles.
  • a sprayed wire, a spray powder or even a liquid or gaseous spray material can be used as the spray material, the spray material being introduced, for example in a manner known per se, via spray material feed into a melting zone which is downstream of the combustion chamber, so that the spray material is melted by the flowing out of the combustion chamber into the melting zone hot combustion gas for coating a substrate wholly or partially in the molten zone.
  • the spray material is introduced directly into the combustion chamber, for example when a spray powder or a liquid or gaseous spray material is used as the spray material.
  • the spray gun is a known HVOF spray gun.
  • the invention further relates to a method for operating a spray device of the present invention, wherein in a combustion chamber of a spray gun of the spray device, a fluid fuel is burned to a hot combustion gas.
  • the fuel is supplied to an injection device from a fuel supply at a prescribable injection pressure and injected into the combustion chamber from the injection device according to a predetermined injection scheme.
  • a liquid fuel is used as fuel and the fuel is passed through the injection device, in particular Commercially available injection nozzle for aircraft or vehicle engines, sprayed during injection into the combustion chamber to fuel droplets of predetermined size.
  • Fig. 1 shows a schematic representation of a spray device according to the invention, which is hereinafter referred to in its entirety by the reference numeral 1.
  • the spray device 1 comprises a spray gun 2 for the thermal spraying of a spray material 3, wherein in the present case the spray gun 2 is a spray gun for high-speed flame spraying (HVOF) by means of a spray powder 3.
  • HVOF high-speed flame spraying
  • the representation of the spray gun according to Fig. 1 is to be understood only schematically and the invention comprises any type of spray guns, which have a combustion chamber 4.
  • the invention is not limited to the spraying of wettable powders alone, but the invention also relates in particular to spray devices 1, which can be sprayed as sprayed material 3 and sprayed wires 3 or fluid spray materials 3 such as liquids or gases.
  • the spray material 3 is introduced directly into the combustion chamber 4, and not as in the example of Fig. 1 into the molten zone 8 downstream with respect to the combustion chamber 4.
  • the combustion chamber 4 for combustion of a fluid fuel 5, 51 to a hot in a conventional manner Combustion gas 6 is formed.
  • the hot combustion gas 6 is supplied from the combustion chamber 4, as indicated by the arrow 6, via an outlet opening 7 of a melt zone 8 and the spray material 3 is introduced according to the arrow 3 via a spray material feed into the molten zone 8, in which the spray material 3 through the hot combustion gas 6 is completely or partially melted for coating a substrate 9.
  • the at least partially melted spray material 3 is then applied via a nozzle opening 81 at high speed to a surface of the substrate 9 to be coated to form a surface coating 91.
  • the fuel 5 is injected into the combustion chamber 4 at a predefinable injection pressure PE by means of an injection device 11 fed by a fuel supply 10 according to a predefinable digital injection scheme 12.
  • Digital injection scheme 12 means that the control or regulation of the fuel injection into the combustion chamber 4 is not analogous, as is known from the prior art, but digital.
  • the fuel supply 10 may in practice include, inter alia, a fuel reservoir not explicitly shown here, as well as electronic components known to the person skilled in the art for controlling and / or regulating or for data communication with the drive unit 16 or other components of the spray device 1.
  • the fuel 5 is clocked, that is digitally injected during an injection stroke 121 into the combustion chamber 4 and not injected during a blocking clock 122. That is, during the locking clock 122, the injection into the combustion chamber 4 is interrupted.
  • Combustion chamber 4 is injected on average, be influenced by the setting of various parameters.
  • the amount of fuel 5 injected on average per unit of time into the combustion chamber 4 can be predetermined by adjusting the length of the injection stroke 121 in relation to the length of the blocking clock 122.
  • the amount of fuel 5 injected per unit of time into the combustion chamber 4 can also be preset digitally or analogously by adjusting the injection pressure PE of the fuel 5.
  • corresponding data are exchanged via the fuel data line 161, as the arrows on the fuel data line 161 are intended to indicate. That is, on the one hand, control commands are transmitted to the fuel supply 10 for pulsed fuel supply in the combustion chamber 4 via the fuel data line 161.
  • control commands for adjusting the injection pressure PE from the control device 16 to the fuel supply 10 can be transmitted or it can also data, in particular operating data concerning the current fuel supply to the combustion chamber 4 from the fuel supply 10 in the reverse direction to the control device 16 are transmitted, so that a control and / or regulation of the fuel injection is made possible in the combustion chamber 4 to allow optimal combustion of the fuel 5, 51 in the combustion chamber 4.
  • the oxygen 13 necessary for the combustion can also be introduced into the combustion chamber 4 at a predeterminable feed pressure PS by means of an oxygen nozzle 15 fed by an oxygen supply 14 in accordance with a predeterminable scheme, wherein the Supplying the oxygen 13 into the combustion chamber 4 of course does not necessarily have to take place according to the same scheme according to which the fuel 5, 51 is introduced into the combustion chamber 4.
  • the fuel 5, 51 may be introduced into the combustion chamber 4 in a clocked manner, while the oxygen 13 may not be in a clocked scheme but in a continuous, for example time varying scheme, ie by means of an analog control in the combustion chamber 4 can be introduced.
  • the amount of oxygen 13 injected on average per unit of time into the combustion chamber 4 can also or alternatively be predetermined by adjusting the feed pressure PS of the oxygen 13.
  • the drive unit 16 can also control the supply of oxygen 13 in the combustion chamber and / or regulate.
  • control commands for setting the feed pressure PS from the control device 16 to the oxygen supply 14 can also be transmitted via the oxygen data line 162 or else data, in particular operating data relating to the current oxygen supply into the combustion chamber 4 from the oxygen supply 14 in the reverse direction to the control device 16, so that control and / or regulation of the supply of the oxygen 13 into the combustion chamber 4 is made possible in order to ensure optimum combustion of the fuel 5, 51 in the combustion chamber 4.
  • Fig. 1 also shown schematically, another operating parameter, in addition to the feed pressure PS, the injection pressure PE, the amount of fuel 5 or oxygen 13, which is introduced into the combustion chamber, are detected and the drive unit 16 are supplied.
  • a sensor 17 is provided, which in particular as in Fig. 1 is shown schematically, is installed on the combustion chamber 4.
  • the operating parameter measured by the sensor 17 is preferably forwarded via the sensor line 171 to the drive unit 16 for controlling and / or regulating the fuel supply and / or the oxygen feed into the combustion chamber 4.
  • the operating parameter may be, for example, a temperature in the combustion chamber 4 and / or a combustion pressure in the combustion chamber 4 and / or a chemical composition of the combustion gas 6 and / or an oxygen content in the combustion chamber 4 and / or any other operating parameters of the inventive spray device.
  • the data lines 161, 162, 171 and any other existing communication lines can also be implemented, for example, via a radio link.
  • the operating parameter can of course also be the injection pressure PE of the fuel 5 and / or an amount of fuel 5 fed into the combustion chamber 4 and / or the feed pressure PS of the oxygen 13 and / or an amount of oxygen 13 fed into the combustion chamber 4 be.
  • the injection device 11 is an injection nozzle, particularly preferably a commercial injection nozzle, as used for example for injecting fuel into the cylinder of an internal combustion engine, a car or another vehicle.
  • an ignition device not shown here for reasons of clarity, which is known per se, will be provided on the combustion chamber, with which ignition device the combustion process in the combustion chamber can be started.
  • a liquid fuel 5 such as kerosene, gasoline, alcohol or other liquid fuel 5 can be used by using a commercial injection nozzle as an injection device 11 during injection into the combustion chamber 4 targeted to the formation of fuel droplets 51 of predetermined size can be sprayed, whereby the combustion process in the combustion chamber 4 can be further optimized.
  • known gaseous fuels 5 can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)

Description

  • Die Erfindung betrifft eine Spritzvorrichtung mit einer Spritzpistole zum thermischen Spritzen eines Spritzmaterials, sowie ein Verfahren zum Betreiben einer Spritzvorrichtung gemäss dem Oberbegriff des unabhängigen Anspruchs der jeweiligen Kategorie.
  • Spritzvorrichtungen mit einer Spritzpistole zum thermischen Flammspritzen eines Spritzmaterials sind im Stand der Technik in vielen Varianten wohlbekannt. So ist beispielweise in der US 2006/0165898 A1 eine thermische Spritzvorrichtung offenbart, mit welcher Nanopartikel herstellbar sind.
  • Beim Drahtflammspritzen wird zum Beispiel ein drahtförmiges Spritzmaterial mit einer Brenngas Sauerstoff-Flamme oder mit einem flüssigen Brennstoff mit Sauerstoff aufgeschmolzen und durch das Verbrennungsgas allein oder mit gleichzeitiger Unterstützung durch ein Zerstäubergas, wie beispielsweise Druckluft oder ein Inertgas, auf die Werkstoffoberfläche geschleudert. Der Spritzdraht wird dabei bevorzugt zentrisch durch die Flamme geführt, wobei die Vorschubgeschwindigkeit des Drahtes häufig bei einer konstanten Flammtemperatur vom Schmelzpunkt des Drahtes und vom Drahtdurchmesser bestimmt ist. Die beim Schmelzen des Drahtes entstehenden schmelzflüssigen Tropfen werden durch die Flammgeschwindigkeit und durch ein Transportgas auf das zu beschichtende Werkstück geschleudert. Zum Flammspritzen werden dabei häufig Brenngase wie Acetylen, Propan oder Wasserstoff eingesetzt.
  • Beim Flammspritzen mit Spritzpulver als Spritzmaterial wird das Spritzpulver mit einer Brenngas Sauerstoff-Flamme oder mit einem flüssigen Brennstoff mit Sauerstoff aufgeschmolzen und durch das Verbrennungsgas allein oder mit gleichzeitiger Unterstützung durch ein Zerstäubergas, wie beispielsweise Druckluft oder ein Inertgas, auf die Werkstoffoberfläche geschleudert.
  • Sonderformen des Flammspritzen werden unter anderem durch Spritzpistolen realisiert, bei welchen in einer Brennkammer der flüssige oder gasförmige fluide Brennstoff mittels Sauerstoff zu einem heissen Verbrennungsgas verbrannt wird, so dass in der Brennkammer ein bestimmter Prozessdruck der heissen Verbrennungsgase generiert wird. Die heissen Verbrennungsgase werden dann aus der Brennkammer über eine Austrittsöffnung, die häufig in Form einer Düse ausgebildet ist, einer Schmelzzone zugeführt, in welcher Schmelzzone das Spritzmaterial, das ein Spritzdraht oder auch ein Spritzpulver, in speziellen Fällen sogar ein flüssiges oder gasförmiges Spritzmaterial oder Spritzzusatz sein kann, durch das heisse Verbrennungsgas aufgeschmolzen wird und durch das unter Druck stehende heisse Verbrennungsgas zum Beschichten eines Substrats auf die Oberfläche des Substrats geschleudert wird.
  • Dabei sind auch Ausführungsformen bekannt, bei welchen das Spritzmaterial nicht erst in einer Schmelzzone ausserhalb der Verbrennungskammer zugeführt wird. Sondern es sind durchaus auch Systeme bekannt, bei welchen das Spritzmaterial, zum Beispiel ein Spritzpulver oder ein flüssiges oder gasförmiges Spritzmaterial direkt in die Brennkammer eingebracht wird.
  • Einer der vielen Vorteile dieser Flammspritzsysteme mit Brennkammer liegt unter anderem darin, dass kein zusätzliches Zerstäubergas, wie beispielsweise Druckluft oder ein Inertgas notwendig ist, um das geschmolzene Material auf die Werkstoffoberfläche zu schleudern.
  • Hier ist zum Beispiel das sogenannte Kaltgasspritzen zu nennen, bei welchem mit relativ niedrigen Temperaturen das Spritzmaterial nicht vollständig aufgeschmolzen wird. Häufig wird bei diesem Verfahren das Spritzmaterial, zum Beispiel ein Spritzpulver nur bis knapp auf oder an die Schmelztemperatur durch die Verbrennungsgase erhitzt, so dass zum Beispiel die Pulverkörner mehr oder weniger plastisch werden und erst durch die Aufprallenergie beim Aufprall auf das zu beschichtende Werkstück aufgeschmolzen werden und so die Beschichtung bilden.
  • Beim sogenannten Hochgeschwindigkeitsflammspritzen (High Velocity Oxygen Fuel, HVOF) wird das aus der Verbrennungskammer kommende heisse Verbrennungsgas derart durch eine Düse, im Speziellen durch eine Venturidüse geführt, dass der Beschichtungsstrahl umfassend das ganz oder teilweise aufgeschmolzene Spritzmaterial, mit sehr hoher Geschwindigkeit, in der Regel mit Überschallgeschwindigkeit auf das zu beschichtende Substrat geschleudert wird.
  • Dabei sind dem Fachmann eine Vielzahl von weiteren Varianten bekannt, bei welchen insbesondere auch verschiedene Merkmale bekannter Spritzvorrichtung für unterschiedliche Anwendungen kombiniert sein können.
  • Bei den bekannten Spritzpistolen mit Brennkammer wird beispielweise der Brennstoff unter relativ niedrigem Druck, in der Praxis häufig bei 10 - 15 bar durch eine Öffnung in die Brennkammer gegen den Prozessdruck in der Brennkammer eingebracht, der in einer ähnlichen Grössenordnung liegt.
  • Die Zerstäubung, wenn beispielweise ein flüssiger Brennstoff verwendet wird, wird bis heute mit einem wenig effektiven Design der Einlassöffnungen bewerkstelligt, das nur eine sehr eingeschränkte Kontrolle der räumlichen Verteilung des Brennstoffs in der Brennkammer bzw. der Partikelgrösse der Brennstofftropfen erlaubt. Die in den Brennraum eingebrachte Menge an Treibstoff wird dabei entweder über eine analog geregelte Pumpe oder mit einem analogen Proportionalventil gesteuert.
  • Somit ist bei den aus dem Stand der Technik bekannten Systemen das Brennstoff Sauerstoffgemisch nur bedingt an bestimmte Anforderungen bzw. Prozessparameter anpassbar und oft nicht optimal. Im Einzelnen gibt es grosse Variationen in der Prozessqualität. So fluktuiert z.B. das Lamba-Verhältnis und das Prozessverhalten insgesamt aufgrund eines nicht stimmigen Verbrennungsverhaltens. Damit zusammenhängend resultiert ein viel zu hoher Brennstoffverbrauch und eine unvollständige Verbrennung des in die Brennkammer eingebrachten Treibstoffs. Aufgrund der unvollständigen Verbrennung oder zum Beispiel aufgrund eines zu hohen Sauerstoffgehalts kann es zu Verschmutzungen mit nicht oder nur teilweise verbranntem Brennstoff oder auch zu Oxidationsphänomen auf der zu beschichtenden Werkstückoberfläche oder beim Beschichtungsmaterial kommen. Auch treten Probleme mit dem Start der Verbrennung in der Brennkammer auf, was unter anderem zu sehr nachteiligen Materialbelastungen der Spritzpistole als solches führen, wie mechanische Spannungen in oder zwischen den Komponenten der Spritzpistole bis hin zu Rissen, zum Beispiel in der Brennkammerwand, Korrosionsphänomene und vielen anderen dem Fachmann an sich bekannten schädigenden Belastungen.
  • Aber auch die bekannten Komponenten, wie die analog arbeitende Pumpe zur Zuführung des Brennstoffs in die Brennkammer oder die Durchflusssensoren zur Messung des in die Brennkammer eingebrachten Treibstoffs sind bei den bekannten Spritzvorrichtungen konstruktions- und verfahrensbedingt nur von begrenzter Genauigkeit und Zuverlässigkeit.
  • Die Aufgabe der Erfindung ist es daher, eine neue Spritzvorrichtung sowie ein neues Verfahren zum Betreiben einer Spritzvorrichtung bereitzustellen, das die aus dem Stand der Technik bekannten Nachteile vermeidet und insbesondere eine bessere Verbrennung bzw. eine verbesserte Kontrolle der Verbrennung in der Brennkammer ermöglicht.
  • Die diese Aufgaben in apparativer und verfahrenstechnischer Hinsicht lösenden Gegenstände der Erfindung sind durch die Merkmale der unabhängigen Ansprüche 1 und 14 gekennzeichnet.
  • Die jeweiligen abhängigen Ansprüche beziehen sich auf besonders vorteilhafte Ausführungsformen der Erfindung.
  • Die Erfindung betrifft somit eine Spritzvorrichtung mit einer Spritzpistole zum thermischen Spritzen eines Spritzmaterials, wobei die Spritzpistole eine Brennkammer zur Verbrennung eines fluiden Brennstoffs zu einem heissen Verbrennungsgas umfasst. Erfindungsgemäss ist der Brennstoff unter einem vorgebbaren Einspritzdruck mittels einer von einer Brennstoffversorgung gespeisten Injektionseinrichtung nach einem vorgebbaren Einspritzschema in die Brennkammer einspritzbar.
  • Wesentlich für die Erfindung ist somit, dass der Brennstoff unter einem vorgebbaren Einspritzdruck mittels einer von einer Brennstoffversorgung gespeisten Injektionseinrichtung nach einem vorgebbaren Einspritzschema in die Brennkammer einspritzbar ist. Durch die Apparatur bzw. durch das Verfahren der vorliegenden Erfindung wird der Brennstoff unter viel höherem Druck in die Brennkammer eingebracht, was unter anderem durch Verwendung der Injektionseinrichtung ermöglicht wird. Durch Verwendung der Injektionseinrichtung und des höheren Einspritzdrucks wird der Treibstoff weitaus besser und feiner zerstäubt. Und zwar einerseits, weil der Treibstoff unter viel höherem Druck eingespritzt werden kann und andererseits weil durch eine digitale Ansteuerung der Injektionseinrichtung die Einspritzung optimal an den Verbrennungsprozess angepasst werden kann. Dadurch, dass die Injektion des Brennstoffs mittels der Injektionseinrichtung digital nach einem vorgegeben Schema gesteuert bzw. geregelt werden kann, kann die Einspritzung des Treibstoffs optimal an die jeweiligen Prozessparameter wie zum Beispiel der Art des verwendeten Treibstoffs, der Verbrennungstemperatur, dem Druck in der Brennkammer, dem verwendeten Spritzmaterial usw. angepasst werden. Auch das Sauerstoff/Brennstoff Verhältnis lässt sich im Brennraum optimal an die konkreten Bedingungen bzw. Anforderungen einstellen bzw. steuern oder regeln.
  • Eine feinere Zerstäubung des Brennstoffs führt dazu, dass die für die Verbrennung des Treibstoffs zur Verfügung stehende Oberfläche der Brennstofftropfen vergrössert wird, wodurch die Verbrennung der Brennstofftropfen optimiert wird. Der Verbrennungsprozess kann somit durch die vorliegende Erfindung letztlich viel präziser eingestellt bzw. kontrolliert werden. Ausserdem wird das Aufstarten der Spritzpistole, also der Beginn des Verbrennungsprozesses deutlich verbessert, da die Wahl der zu verwendenden Startparameter erstmals in weiten Parameterbereichen frei wählbar ist.
  • Die digitale Steuerung bzw. Regelung der erfindungsgemässen Spritzvorrichtung macht die gesamte Anlage darüber hinaus viel robuster gegenüber Störungen oder Langzeitschwankungen in den Hardware Komponenten der Anlage, als dies bei der bekannten analogen Regelung der Brennstoffeinspritzung der Fall ist. Daraus resultieren deutlich verlängerte Wartungsintervalle und die im Stand der Technik notwendigen periodischen Kalibrierungen der Spritzvorrichtung bzw. bestimmter Komponenten können deutlich reduziert werden und können in bestimmten Fällen sogar vollständig entfallen. Daher ist die Erfindungsgemässe Spritzvorrichtung insbesondere auch deutlich wirtschaftlicher in Bezug auf Wartungsarbeiten.
  • Besonders bevorzugt wird der Brennstoff getaktet während eines Injektionstakts in die Brennkammer eingespritzt und während eines Sperrtakts nicht eingespritzt. Dadurch kann zum Beispiel die im Mittel pro Zeiteinheit in die Brennkammer eingespritzte Menge an Brennstoff durch Einstellung der Länge des Injektionstakts im Verhältnis zur Länge des Sperrtakts sehr zuverlässig und einfach vorgegeben werden. Alternativ oder gleichzeitig ist es dabei aber auch möglich, dass die im Mittel pro Zeiteinheit in die Brennkammer eingespritzte Menge an Brennstoff durch Einstellung des Einspritzdrucks des Brennstoffs vorgegeben wird.
  • In der Praxis ist dabei bevorzugt auch der zur Verbrennung des Treibstoffs notwendige Sauerstoff unter einem vorgebbaren Speisedruck mittels einer von einer Sauerstoffversorgung gespeisten Sauerstoffdüse nach einem vorgebbaren Schema in die Brennkammer einbringbar, wobei im Speziellen die im Mittel pro Zeiteinheit in die Brennkammer eingespritzte Menge an Sauerstoff zum Beispiel durch Einstellung des Speisedrucks des Sauerstoffs oder durch Regelung der Düse vorgebbar ist.
  • Zur Ansteuerung der Brennstoffversorgung und / oder der Sauerstoffversorgung ist vorteilhaft eine Ansteuereinrichtung vorgesehen, so dass die Ansteuerung der Brennstoffeinspritzung bzw. der Sauerstoffzufuhr individuell eingestellt werden kann, bzw. eine Steuerung oder Regelung der Brennstoff- und Sauerstoffzufuhr ermöglicht wird. Dazu kann zum Beispiel ein Betriebsparameter erfasst und der Ansteuereinheit zur Steuerung oder Regelung des Verbrennungsprozesses zugeführt werden.
  • Insbesondere dann, wenn höchste Anforderungen an den Verbrennungsprozess im Betriebszustand gestellt werden, kann zur Erfassung des Betriebsparameters ein Sensor vorgesehen sein, wobei und Betriebsparameter beispielweise eine Temperatur in der Brennkammer und / oder ein Verbrennungsdruck in der Brennkammer und / oder eine chemische Zusammensetzung des Verbrennungsgases und / oder ein Sauerstoffgehalt in der Brennkammer ist. Der Betriebsparameter kann aber auch der Einspritzdruck des Brennstoffs und / oder eine in die Brennkammer zugeführte Menge an Brennstoff, und / oder der Betriebsparameter kann der Speisedruck des Sauerstoffs und / oder eine in die Brennkammer zugeführte Menge an Sauerstoff oder jeder andere Betriebsparameter sein, der zur Steuerung oder Reglung der Verbrennung wesentlich ist.
  • Als Injektionseinrichtung zur Einspritzung des Brennstoffs in die Brennkammer wird besonders vorteilhaft eine Einspritzdüse verwendet, im Speziellen eine handelsübliche Einspritzdüse, wie sie zum Beispiel bei üblichen Verbrennungsmotoren in Fahrzeugen verwendet wird.
  • Als Spritzmaterial kann je nach Ausführung der Spritzpistole ein Spritzdraht, ein Spritzpulver oder sogar ein flüssiges oder gasförmiges Spritzmaterial verwendet werden, wobei das Spritzmaterial zum Beispiel in an sich bekannter Weise über Spritzmaterialzuführung in eine Schmelzzone eingebracht werden, die sich stromabwärts zur Brennkammer befindet, so dass das Spritzmaterial durch das aus der Brennkammer in die Schmelzzone strömende heisse Verbrennungsgas zum Beschichten eines Substrats ganz oder teilweise in der Schmelzzone aufgeschmolzen wird.
  • In einem anderen Fall ist es natürlich auch möglich, das Spritzmaterial direkt in die Brennkammer eingebracht wird, zum Beispiel wenn als Spritzmaterial ein Spritzpulver oder ein flüssiges oder gasförmiges Spritzmaterial verwendet wird.
  • In einem für die Praxis besonders wichtigen Ausführungsbeispiel ist die Spritzpistole eine an sich bekannte HVOF Spritzpistole.
  • Die Erfindung betrifft weiter ein Verfahren zum Betreiben einer Spritzvorrichtung der vorliegenden Erfindung, wobei in einer Brennkammer einer Spritzpistole der Spritzvorrichtung ein fluider Brennstoff zu einem heissen Verbrennungsgas verbrannt wird. Erfindungsgemäss wird der Brennstoff unter einem vorgebbaren Einspritzdruck von einer Brennstoffversorgung einer Injektionseinrichtung zugeführt und nach einem vorgegeben Einspritzschema von der Injektionseinrichtung in die Brennkammer eingespritzt.
  • Besonders bevorzugt wird als Brennstoff ein flüssiger Brennstoff verwendet und der Brennstoff wird durch die Injektionseinrichtung, im Speziellen handelsübliche Einspritzdüse für Flugzeug- oder Fahrzeugmotoren, beim Einspritzen in die Brennkammer zu Brennstofftropfen von vorgegebener Grösse versprüht.
  • Die Erfindung wird im Folgenden an Hand der schematischen Zeichnung näher erläutert. Es zeigen:
  • Fig. 1
    ein Ausführungsbeispiel einer erfindungsgemässen Spritzvorrichtung.
  • Fig. 1 zeigt in einer schematischen Darstellung eine erfindungsgemässe Spritzvorrichtung, die im Folgenden gesamthaft mit dem Bezugszeichen 1 bezeichnet wird.
  • Die erfindungsgemässe Spritzvorrichtung 1 umfasst eine Spritzpistole 2 zum thermischen Spritzen eines Spritzmaterials 3, wobei im vorliegenden Fall die Spritzpistole 2 eine Spritzpistole zum Hochgeschwindigkeitsflammspritzen (HVOF) mittels eines Spritzpulvers 3 ist.
  • Es versteht sich, dass die Darstellung der Spritzpistole gemäss Fig. 1 nur schematisch zu verstehen ist und die Erfindung jegliche Arten von Spritzpistolen umfasst, die über eine Brennkammer 4 verfügen. Insbesondere ist die Erfindung auch nicht auf das Spritzen von Spritzpulvern allein beschränkt, sondern die Erfindung betrifft insbesondere auch Spritzvorrichtungen 1, mit welchen als Spritzmaterial 3 auch Spritzdrähte 3 oder auch fluide Spritzmaterialien 3 wie Flüssigkeiten oder Gase verspritzt werden können. Insbesondere ist es auch möglich, dass das Spritzmaterial 3 direkt in die Brennkammer 4 eingebracht wird, und nicht wie im Beispiel der Fig. 1 in die Schmelzzone 8 stromabwärts in Bezug auf die Brennkammer 4.
  • In der Spritzpistole 2 ist in an sich bekannter Weise die Brennkammer 4 zur Verbrennung eines fluiden Brennstoffs 5, 51 zu einem heissen Verbrennungsgas 6 ausgebildet. Das heisse Verbrennungsgas 6 ist dabei aus der Brennkammer 4, wie durch den Pfeil 6 angedeutet, über eine Austrittsöffnung 7 einer Schmelzzone 8 zuführbar und das Spritzmaterial 3 wird gemäss dem Pfeil 3 über eine Spritzmaterialzuführung in die Schmelzzone 8 eingebracht, in der das Spritzmaterial 3 durch das heisse Verbrennungsgas 6 zum Beschichten eines Substrats 9 ganz oder teilweise aufgeschmolzen wird. Das zumindest teilweise aufgeschmolzene Spritzmaterial 3 wird dann über eine Düsenöffnung 81 mit hoher Geschwindigkeit auf eine Oberfläche des zu beschichtenden Substrats 9 zur Bildung einer Oberflächenbeschichtung 91 aufgebracht.
  • Gemäss der vorliegenden Erfindung wird der Brennstoff 5 unter einem vorgebbaren Einspritzdruck PE mittels einer von einer Brennstoffversorgung 10 gespeisten Injektionseinrichtung 11 nach einem vorgebbaren digitalen Einspritzschema 12 in die Brennkammer 4 eingespritzt. Digitales Einspritzschema 12 bedeutet, dass die Steuerung bzw. Regelung der Brennstoffeinspritzung in den Brennraum 4 nicht wie aus dem Stand der Technik bekannt analog erfolgt, sondern digital.
  • Die Brennstoffversorgung 10 kann dabei in der Praxis unter anderem ein hier nicht explizit dargestelltes Brennstoffreservoir, sowie dem Fachmann an sich bekannte elektronische Komponenten zur Steuerung und oder Regelung bzw. zur Datenkommunikation mit der Ansteuereinheit 16 oder anderer Komponenten der Spritzvorrichtung 1 umfassen.
  • In dem für die Praxis besonders wichtigen speziellen Ausführungsbeispiel gemäss Fig. 1 wird der Brennstoff 5 getaktet, also digital während eines Injektionstakts 121 in die Brennkammer 4 eingespritzt und während eines Sperrtakts 122 nicht eingespritzt. D.h., während des Sperrtaktes 122 ist die Einspritzung in die Brennkammer 4 unterbrochen.
  • Bei dem speziellen erfindungsgemässen Ausführungsbeispiel der Fig. 1 kann dabei die Menge an Treibstoff, die über ein vorgegebenes Zeitintervall in die Brennkammer 4 im Mittel eingespritzt wird, durch die Einstellung verschiedener Parameter beeinflusst werden.
  • Einerseits kann die im Mittel pro Zeiteinheit in die Brennkammer 4 eingespritzte Menge an Brennstoff 5 durch Einstellung der Länge des Injektionstakts 121 im Verhältnis zur Länge des Sperrtakts 122 vorgegeben werden.
  • Parallel dazu oder alternativ kann die im Mittel pro Zeiteinheit in die Brennkammer 4 eingespritzte Menge an Brennstoff 5 aber auch durch Einstellung des Einspritzdrucks PE des Brennstoffs 5 digital oder analog vorgegeben werden. Dazu werden bevorzugt zwischen der Brennstoffversorgung 10 und der Ansteuereinheit 16 entsprechende Daten über die Brennstoffdatenleitung 161 ausgetauscht, wie die Pfeile an der Brennstoffdatenleitung 161 andeuten sollen. Das heisst, über die Brennstoffdatenleitung 161 werden einerseits Steuerbefehle an die Brennstoffversorgung 10 zur getakteten Brennstoffzuführung in die Brennkammer 4 übermittelt. Anderseits können über die Brennstoffdatenleitung 161 auch Steuerbefehle zur Einstellung des Einspritzdrucks PE von der Ansteuereinrichtung 16 an die Brennstoffversorgung 10 übermittelt werden oder aber es können auch Daten, insbesondere Betriebsdaten betreffend die aktuelle Brennstoffzuführung in die Brennkammer 4 von der Brennstoffversorgung 10 in umgekehrter Richtung an die Ansteuereinrichtung 16 übermittelt werden, so dass eine Steuerung und / oder Regelung der Brennstoffeinspritzung in die Brennkammer 4 ermöglicht wird um eine optimale Verbrennung des Brennstoffs 5, 51 in der Brennkammer 4 zu ermöglichen.
  • Im Ausführungsbeispiel der Fig. 1 ist dabei auch der für die Verbrennung notwendige Sauerstoff 13 unter einem vorgebbaren Speisedruck PS mittels einer von einer Sauerstoffversorgung 14 gespeisten Sauerstoffdüse 15 nach einem vorgebbaren Schema in die Brennkammer 4 einbringbar, wobei die Zufuhr des Sauerstoffs 13 in die Brennkammer 4 selbstverständlich nicht unbedingt nach dem gleichen Schema erfolgen muss, gemäss dem der Brennstoff 5, 51 in die Brennkammer 4 eingebracht wird. So kann der Brennstoff 5, 51 zum Beispiel getaktet in die Brennkammer 4 eingebracht werden, während der Sauerstoff 13 im Spezielle auch nicht nach einem getakteten Schema sondern nach einem kontinuierlichen, zum Beispiel auch zeitlich kontinuierlich variierendem Schema, also mittels einer analogen Ansteuerung in die Brennkammer 4 eingebracht werden kann.
  • Selbstverständlich kann die im Mittel pro Zeiteinheit in die Brennkammer 4 eingespritzte Menge an Sauerstoff 13 auch oder alternativ durch Einstellung des Speisedrucks PS des Sauerstoffs 13 vorgegeben werden.
  • Wie in Fig. 1 schematisch dargestellt, kann die Ansteuereinheit 16 auch die Zufuhr des Sauerstoffs 13 in die Brennkammer steuern und / oder regeln. Dazu werden bevorzugt zwischen der Sauerstoffversorgung 14 und der Ansteuereinheit 16 entsprechende Daten über die Sauerstoffdatenleitung 162 ausgetauscht, wie die Pfeile an der Sauerstoffdatenleitung 162 andeuten sollen. Das heisst, über die Sauerstoffdatenleitung 162 werden einerseits Steuerbefehle an Sauerstoffversorgung 14 zur Brennstoffzuführung in die Brennkammer 4 nach einem vorgegeben Schema übermittelt. Dabei ist klar, dass auch der Sauerstoff je nach Anwendungsfall nach einem getakteten Schema in die Brennkammer 4 einbringbar ist. Anderseits können über die Sauerstoffdatenleitung 162 auch Steuerbefehle zur Einstellung des Speisedrucks PS von der Ansteuereinrichtung 16 an die Sauerstoffversorgung 14 übermittelt werden oder aber es können auch Daten, insbesondere Betriebsdaten betreffend die aktuelle Sauerstoffzuführung in die Brennkammer 4 von der Sauerstoffversorgung 14 in umgekehrter Richtung an die Ansteuereinrichtung 16 übermittelt werden, so dass eine Steuerung und / oder Regelung der Zufuhr des Sauerstoffs 13 in die Brennkammer 4 ermöglicht wird, um eine optimale Verbrennung des Brennstoffs 5, 51 in der Brennkammer 4 zu sicherzustellen.
  • Zusätzlich kann, wie in Fig. 1 ebenfalls schematisch dargestellt, ein weiterer Betriebsparameter, neben dem Speisdruck PS, dem Einspritzdruck PE, der Menge an Brennstoff 5 oder Sauerstoff 13, der in die Brennkammer eingebracht wird, erfasst werden und der Ansteuereinheit 16 zugeführt werden.
  • Besonders bevorzugt ist dabei zur Erfassung des Betriebsparameters ein Sensor 17 vorgesehen, der im Speziellen wie in Fig. 1 schematisch dargestellt ist, an der Brennkammer 4 installiert ist. Der vom Sensor 17 gemessene Betriebsparameter wird bevorzugt über die Sensorleitung 171 an die Ansteuereinheit 16 zur Steuerung und / oder Regelung der Brennstoffzufuhr und / oder der Sauerstoffzufuhr in die Brennkammer 4 weitergeleitet. Der Betriebsparameter kann dabei zum Beispiel eine Temperatur in der Brennkammer 4 und / oder ein Verbrennungsdruck in der Brennkammer 4 und / oder eine chemische Zusammensetzung des Verbrennungsgases 6 und / oder ein Sauerstoffgehalt in der Brennkammer 4 und / oder jeder andere Betriebsparameter der erfindungsgemässen Spritzvorrichtung sein.
  • Insbesondere versteht es sich von selbst, dass die Datenleitungen 161, 162, 171 sowie weitere eventuell vorhandene Kommunikationsleitungen auch beispielweise über eine Funkverbindung realisiert sein können.
  • Wie bereits erwähnt, kann der Betriebsparameter natürlich auch der Einspritzdruck PE des Brennstoffs 5 und / oder eine in die Brennkammer 4 zugeführte Menge an Brennstoff 5 und / oder der Speisedruck PS des Sauerstoffs 13 und / oder eine in die Brennkammer 4 zugeführte Menge an Sauerstoff 13 sein.
  • In der Praxis ist dabei die Injektionseinrichtung 11 eine Einspritzdüse, besonders bevorzugt eine handelsübliche Einspritzdüse, wie sie zum Beispiel zum Einspritzen von Kraftstoff in den Zylinder eines Verbrennungsmotors eine Autos oder eines anderen Fahrzeugs verwendet wird.
  • Ebenso wird in der Praxis eine hier aus Gründen der Übersichtlichkeit nicht dargestellte, an sich bekannte Zündvorrichtung an der Brennkammer vorgesehen sein, mit welcher Zündvorrichtung der Verbrennungsvorgang in der Brennkammer gestartet werden kann.
  • Als Brennstoff 5 kann zum Beispiel ein flüssiger Brennstoff 5, wie Kerosin, Benzin, Alkohol oder ein andere flüssiger Brennstoff 5 verwendet werden, der durch Verwendung einer handelsüblichen Einspritzdüse als Injektionseinrichtung 11 beim Einspritzen in die Brennkammer 4 gezielt zur Bildung von Brennstofftropfen 51 von vorgegebener Grösse versprüht werden kann, wodurch sich der Verbrennungsvorgang in der Brennkammer 4 noch weiter optimiert werden kann.
  • In ganz speziellen Fällen können auch an sich bekannte gasförmige Brennstoffe 5 verwendet werden.
  • Es versteht sich, dass die vorliegende Erfindung nicht auf die im Rahmen dieser Anmeldung explizit beschriebenen Ausführungsbeispiele beschränkt ist, sondern insgesamt auch alle Kombinationen umfasst, die der Fachmann in naheliegender Weise zur Ausbildung weiterer Ausführungsbeispiele ohne weiteres versteht.

Claims (15)

  1. Spritzvorrichtung mit einer Spritzpistole (2) zum thermischen Spritzen eines Spritzmaterials (3), wobei die Spritzpistole (2) eine Brennkammer (4) zur Verbrennung eines fluiden Brennstoffs (5, 51) zu einem heissen Verbrennungsgas (6) umfasst, dadurch gekennzeichnet, dass eine Injektionseinrichtung (11) vorgesehen ist, mittels derer von einer Brennstoffuersorgung (10) gespeist Brennstoff (5) unter einem vorgebbaren Einspritzdruck (PE) nach einem vorgebbaren Einspritzschema (12) in die Brennkammer (4) einspritzbar ist.
  2. Spritzvorrichtung nach Anspruch 1, wobei der Brennstoff (5) getaktet während eines Injektionstakts (121) in die Brennkammer (4) eingespritzt wird und während eines Sperrtakts (122) nicht eingespritzt wird.
  3. Spritzvorrichtung nach Anspruch 2, wobei die im Mittel pro Zeiteinheit in die Brennkammer (4) eingespritzte Menge an Brennstoff (5) durch Einstellung der Länge des Injektionstakts (121) im Verhältnis zur Länge des Sperrtakts (122) vorgebbar ist.
  4. Spritzvorrichtung nach einem der vorangehenden Ansprüche, wobei die im Mittel pro Zeiteinheit in die Brennkammer (4) eingespritzte Menge an Brennstoff (5) durch Einstellung des Einspritzdrucks (PE) des Brennstoffs (5) vorgebbar ist.
  5. Spritzvorrichtung nach einem der vorangehenden Ansprüche, wobei Sauerstoff (13) unter einem vorgebbaren Speisedruck (PS) mittels einer von einer Sauerstoffversorgung (14) gespeisten Sauerstoffdüse (15) nach einem vorgebbaren Schema in die Brennkammer (4) einbringbar ist.
  6. Spritzvorrichtung nach einem der vorangehenden Ansprüche, wobei die im Mittel pro Zeiteinheit in die Brennkammer (4) eingespritzte Menge an Sauerstoff (13) durch Einstellung des Speisedrucks (PS) des Sauerstoffs (13) vorgebbar ist.
  7. Spritzvorrichtung nach einem der vorangehenden Ansprüche, wobei eine Ansteuereinrichtung (16) zur Ansteuerung der Brennstoffversorgung (10) und / oder der Sauerstoffversorgung (14) vorgesehen ist.
  8. Spritzvorrichtung nach Anspruch 7, wobei ein Betriebsparameter erfassbar und der Ansteuereinheit (16) zuführbar ist.
  9. Spritzvorrichtung nach Anspruch 8, wobei zur Erfassung des Betriebsparameters ein Sensor (17) vorgesehen ist und der Betriebsparameter eine Temperatur in der Brennkammer (4) und / oder ein Verbrennungsdruck in der Brennkammer (4) und / oder eine chemische Zusammensetzung des Verbrennungsgases (6) und / oder ein Sauerstoffgehalt in der Brennkammer (4) ist.
  10. Spritzvorrichtung nach einem der Ansprüche 8 oder 9, wobei der Betriebsparameter der Einspritzdruck (PE) des Brennstoffs (5) und / oder eine in die Brennkammer (4) zugeführte Menge an Brennstoff (5) ist.
  11. Spritzvorrichtung nach einem der Ansprüche 8 bis 10, wobei der Betriebsparameter der Speisedruck (PS) des Sauerstoffs (13) und / oder eine in die Brennkammer (4) zugeführte Menge an Sauerstoff (13) ist.
  12. Spritzvorrichtung nach einem der Ansprüche 8 bis 11, wobei die Zufuhr des Brennstoffs (5) und / oder die Zufuhr des Sauerstoffs (13) in die Brennkammer (4) gesteuert oder geregelt wird.
  13. Spritzvorrichtung nach einem der vorangehenden Ansprüche, wobei die Injektionseinrichtung (11) eine Einspritzdüse ist.
  14. Verfahren zum Betreiben einer Spritzvorrichtung (1) nach einem der Ansprüche 1 bis 13, wobei in einer Brennkammer (4) einer Spritzpistole (2) der Spritzvorrichtung (1) ein fluider Brennstoff (5) zu einem heissen Verbrennungsgas (6) verbrannt wird, dadurch gekennzeichnet, dass der Brennstoff (5) unter einem vorgebbaren Einspritzdruck (PE) von einer Brennstoffversorgung (10) einer Injektionseinrichtung (11) zugeführt und nach einem vorgegeben Einspritzschema (12) von der Injektionseinrichtung (11) in die Brennkammer (4) eingespritzt wird.
  15. Verfahren nach Anspruch 14, wobei als Brennstoff (5) ein flüssiger Brennstoff (5) verwendet wird und der Brennstoff (5) durch die Injektionseinrichtung (11) beim Einspritzen in die Brennkammer (4) zu Brennstofftropfen (51) von vorgegebener Grösse versprüht wird.
EP10169356A 2010-07-13 2010-07-13 Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung Not-in-force EP2407248B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10169356A EP2407248B1 (de) 2010-07-13 2010-07-13 Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10169356A EP2407248B1 (de) 2010-07-13 2010-07-13 Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung

Publications (2)

Publication Number Publication Date
EP2407248A1 EP2407248A1 (de) 2012-01-18
EP2407248B1 true EP2407248B1 (de) 2013-03-20

Family

ID=43622615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10169356A Not-in-force EP2407248B1 (de) 2010-07-13 2010-07-13 Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung

Country Status (1)

Country Link
EP (1) EP2407248B1 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162497A1 (en) * 2005-01-21 2006-07-27 Cabot Corporation Processes for forming nanoparticles in a flame spray system
JP4911648B2 (ja) * 2009-02-13 2012-04-04 タマティーエルオー株式会社 爆発溶射装置

Also Published As

Publication number Publication date
EP2407248A1 (de) 2012-01-18

Similar Documents

Publication Publication Date Title
EP2855002B1 (de) Verfahren und vorrichtung zum mischen wenigstens zweier flüssiger komponenten
DE102005018062B4 (de) Verfahren zur Produktion von Heizeinrichtungen für Komponenten für Spritzgussgeräte
DE19719998C2 (de) Verfahren und Vorrichtung zur Stickoxidreduktion im Abgas einer Verbrennungseinrichtung
DE10392691T5 (de) Verfahren zur Thermo-Sprühbeschichtung mit Materialien in Nano-Grösse
EP0586913A2 (de) Zerstäubereinrichtung
DE3910179C1 (de)
EP2376752A1 (de) Verfahren und vorrichtung zur tropfenförmigen zugabe eines flüssigen reduktionsmittels in eine abgasleitung
DE112009003608T5 (de) Verfahren und Vorrichtung zur Einspritzung von zerstäubten Fluiden
DE69219737T2 (de) Flüssigkeitssystem zur Steuerung der Richtung eines gesprühten Strahls
DE3625659C2 (de)
US20080210771A1 (en) Two-Substance Atomizing Device
DE3640906A1 (de) Verfahren zum auftragen von loesungsmittelfreien kunststoffen auf beliebige unterlagen durch flammspritzbeschichtung
EP2407248B1 (de) Spritzvorrichtung mit einer Spritzpistole, sowie Verfahren zum Betreiben einer Spritzvorrichtung
EP1560645B1 (de) Dosiereinrichtung
EP2228138B1 (de) Vorrichtung zum Beschichten eines Substrats
DE10253794B4 (de) Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem
CN108421982A (zh) 微粉混料过程用添加剂的添加装置、磨粉系统及添加方法
EP1884293B1 (de) Maskierungssystem zur Maskierung einer Zylinderbohrung
DE102010009605A1 (de) Harnstoffeinspritzdüse mit integriertem Temperatursensor
EP0556693A1 (de) Brennersystem für flüssigen Brennstoff
DE102004001346A1 (de) Vorrichtung und Verfahren zur Zerstäubung von Fluiden, insbesondere metallischen und keramischen Schmelzen
EP1319440B1 (de) Vorrichtung und Verfahren zum Zerstäuben einer Flüssigkeit in ein Volumen
RU2407700C2 (ru) Установка для газопламенного напыления наноструктурированного покрытия
WO2004045777A1 (de) Niedertemperatur hochgeschwindigkeits-flammspritzsystem
DE102010038865A1 (de) Brenner mit stabiler Zerstäubung bei geringem Gegendruck

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 601712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002595

Country of ref document: DE

Effective date: 20130516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130701

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130621

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SULZER METCO A.G.

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

26N No opposition filed

Effective date: 20140102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002595

Country of ref document: DE

Effective date: 20140102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100713

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 601712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190930

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002595

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202