EP2401772A2 - Cellule solaire à semi-conducteurs mwt comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs - Google Patents

Cellule solaire à semi-conducteurs mwt comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs

Info

Publication number
EP2401772A2
EP2401772A2 EP10701388A EP10701388A EP2401772A2 EP 2401772 A2 EP2401772 A2 EP 2401772A2 EP 10701388 A EP10701388 A EP 10701388A EP 10701388 A EP10701388 A EP 10701388A EP 2401772 A2 EP2401772 A2 EP 2401772A2
Authority
EP
European Patent Office
Prior art keywords
cell
fingers
metallization
cell according
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10701388A
Other languages
German (de)
English (en)
Inventor
Hans-Joachim Krokoszinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2401772A2 publication Critical patent/EP2401772A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to a MWT semiconductor solar cell having a plurality of semiconductive material contacting, parallel to each other narrow conductive fingers of predetermined length, which are located on the light-facing front of the cell, and via holes for electrically connecting the conductive fingers with provided on the back of the cell, with respect to their environment isolated busbars, wherein the conductive fingers are arranged in stripes distributed on the cell, according to the preamble of patent claim 1.
  • the subject matter of the invention focuses on structures of a crystalline silicon solar cell with a front-side emitter and rear-side emitter solder contacts, that is, with a so-called MWT structure (metal wrap-through).
  • Silicon solar cells on a crystalline silicon wafer with a so-called silver fingergrid on a front emitter and back emitter busbars which are connected via metallized via holes to the front metal contact pads form the prior art discussed above.
  • FIG. 1 illustrates by way of example a silicon wafer 1 with the silver finger grid 2, wherein the rear side emitter bus bars 4 run parallel to one another.
  • the electrical connection is realized via the mentioned metallized through-holes (vias) 3.
  • the insulation between the silver emitter busbars 4 and the flat aluminum-BSF metal surfaces 6 in the form of a laser trench 7 is produced with a laser.
  • the number, the shape and the positions of the base soldering points 5 in the aluminum surface 6 can be varied as desired.
  • An effective increase in the efficiency of a front side fingergrid solar cell is to increase the current generation per cm 2 of area by reducing the shading of the front surface due to the metallization there.
  • this reduction in the finger width leads to an increase in the finger resistance per cm length and thus the series resistance, which adversely enters into the so-called fill factor.
  • a major disadvantage of the proposed MWT structure are the elongated, continuous emitter paths on the back, which connect the metallized rows of holes together.
  • the need to provide effective isolation between these tracks and the surrounding aluminum surfaces 6 by forming a circumferential laser trench 7 around the emitter bus bars 4 results in severe mechanical weakening and damage to the wafers.
  • the trenches, which run practically from one wafer edge to the opposite edge, in this sense represent predetermined breaking points for the manufactured solar cells.
  • each electrically interconnected finger groups consisting of five to ten parallel fingers, each formed by a transverse conductive track piece.
  • Each track piece is at least one via hole in
  • Ausgestaltend the respective conductive track piece can run at an angle deviating from 90 ° to the longitudinal direction of the parallel fingers.
  • the conductive track pieces can contact neighboring finger groups in the strip direction.
  • the number of fingers per finger group is at least as large as the number of stripes per cell.
  • the areas around the via holes on the cell back side are surrounded with a solderable metallization, wherein the maximum extent of the solderable metallization from the center of the respective through hole is not greater than the average distance of the conductive fingers on the cell front side.
  • the conductive metallizations on the back of the cell are spaced from each other without contact.
  • the via holes and the areas with conductive metallization are arranged like a matrix in rows and columns.
  • the matrix here preferably forms a dot matrix with at least five and a maximum of ten columns.
  • the regions of solderable metallization on the back of the cell are surrounded by another conductive metallic surface applied with a different polarity, with a conductive layer between the conductive metallization and the solderable metallic surface, ultimately only local, d. H. is formed in self-contained isolation trench.
  • the large-scale metallization of the back has, analogously to the prior art, solder pads.
  • solder pads are arranged in rows that are parallel to and between the gaps of the via holes.
  • the presented semiconductor solar cell is hereinafter specified to the case of the MWT structure on a p-wafer with front emitter and backside aluminum BSF.
  • An embodiment of the n-type material with rear aluminum emitter and front phosphorus-doped front surface field (FSF) is analogous.
  • the explanations were also based on virtually full-square wafers.
  • the structures according to the invention can be transferred to any other wafer shape, such as pseudo-square, hexagonal, octagonal or round wafers.
  • 1A and 1B illustrate the design of a standard MWT solar cell for three passing busbars in a pseudo-square wafer shape (A cross-sectional view, B top view);
  • FIG. A typical strip widths starting from the prior art (FIG. A) and three strip widths reduced according to the invention (FIGS. B to D);
  • Figure 3A shows typical prior art MWT contact structures with three strips of width 2s, with the via holes in the center of the strips indicated (no true-to-scale mapping in the x and y directions);
  • FIG. 3B shows an exemplary structure according to the invention with seven strips of width 2y corresponding to FIG. 2C, wherein for simplicity the vias are omitted in the cross-sectional view and provided with dark hatching, a current collection region for a via hole in comparison to the dark-shaded representation of FIG. 3A;
  • FIG. 3C is an exemplary structure of nine strips of the nibs 2z with nine via-hole rows as shown in FIG. 2D, with dark hatching also indicating the typical area of a via hole for a via hole;
  • FIG. 3C is an exemplary structure of nine strips of the nibs 2z with nine via-hole rows as shown in FIG. 2D, with dark hatching also indicating the typical area of a via hole for a via hole;
  • Track pieces as connecting tracks of a finger group for a contact structure with seven für Arthur michecher- rows and seven tracks per track piece and in the circled detail a connection between adjacent groups of fingers for redundancy improvement in the sense of an extension of the piece of track according to figurative representation down to the next finger to make the connection to the adjacent finger group;
  • FIG. 6 shows a possible embodiment of the connecting element structure using the example of a contact arrangement with seven emitter pad rows and six base pad rows and an exemplary dimension starting from a standard MWT cell.
  • FIG. 2A the division of a MWT cell according to the prior art is shown, with all details of the cell structure omitted for simplicity, and only the geometry is shown schematically.
  • Fig. 2B to 2D correspond to variants of this starting structure according to the invention, which lead to the solution of the problem set.
  • the numbers of the vias and the total number of fingers can in principle be chosen independently of each other. An advantageous embodiment, however, if these are approximately equal, z. For example:
  • the current drainage area is likewise the same size as in the prior art:
  • the current collection area is likewise the same size as in the prior art:
  • the web width of the fingers can be reduced by up to 40% (eg from 100 ⁇ m to 60 ⁇ m) before the series resistance of the standard three-strip structure is again achieved.
  • FIG. 4 A possible advantageous embodiment of the connecting tracks is shown in FIG. 4 shown. It provides to extend the tie lines beyond the own finger group to the first trace of the adjacent (either above or below) finger group to improve an improvement of the redundancy of the connection to the nearest via hole (via).
  • a silver-based (e.g., circular) solder pad is printed on the cell back around the metallized vias.
  • the distance between two emitter vias becomes or solder spots 18mm (Center Center).
  • the clear distance between the emitter solder pads is 14 mm.
  • the base solder pads (solder pads) are printed for and overlapping the aluminum pads.
  • the metallization structures according to the invention of MWT cells are based on the known linear-parallel finger structure of today's standard cells and the MWT cell structure derived therefrom. They take over the large number of vias from the known design, so typically between 60 and 80 vias with 60 to 80 parallel fingers. But they leave the paradigm that the vias must be arranged in just two or three rows, as dictated by the usual solid two or three emitter busbars of standard cells. Distributing the same number of vias over a larger number of stripes increases the distance between each vias across the fingers and reduces their spacing along the fingers. This results in decisive advantages with regard to increasing the efficiency of MWT cells:
  • the reduced distance of the vias along the fingers reduces the maximum distance of a point on the fingers to the next via.
  • a transition from 3 to 7 stripes with a finger distance of 2 mm reduces them to 16.555 / 27.666, ie 60%, equivalent to a reduction of - 40%. This significantly reduces the series resistance contribution of the finger system of the front.
  • emitter solder pads changed the length of the path to be engraved by the laser for the isolation of emitter pads to base surfaces
  • these laser trenches in the form of 81 circular or other self-contained structures, eg. As square or rectangular contours, and not, as in the prior art as a border of two or three busbars, which represent the highly sensitive as desired breaking points of the wafer as continuous linear trenches from wafer edge to laser edge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne une cellule solaire à semi-conducteurs MWT comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs, se trouvant sur la face avant de la cellule orientée vers la lumière, et des trous d'interconnexion pour la connexion électrique des doigts conducteurs et de barres bus situées sur la face arrière de la cellule, isolées par rapport à leur environnement. Les doigts conducteurs sont répartis en forme de lignes sur la cellule. Selon l'invention, la longueur des doigts par lignes de doigts est réduite par augmentation du nombre de lignes par cellule, des groupes de doigts connectés électriquement, composés de cinq à dix doigts parallèles, étant respectivement formés par une bande conductrice transversale et chaque bande étant en connexion avec au moins un trou d'interconnexion.
EP10701388A 2009-02-24 2010-01-29 Cellule solaire à semi-conducteurs mwt comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs Withdrawn EP2401772A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009010246 2009-02-24
DE102009041722 2009-09-16
DE102009047778A DE102009047778A1 (de) 2009-02-24 2009-09-30 MWT-Halbleiter-Solarzelle mit einer Vielzahl von das halbleitende Material kontaktierenden, parallel zueinander verlaufenden schmalen leitfähigen Fingern vorgegebener Länge
PCT/EP2010/051106 WO2010097268A2 (fr) 2009-02-24 2010-01-29 Cellule solaire à semi-conducteurs mwt comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs

Publications (1)

Publication Number Publication Date
EP2401772A2 true EP2401772A2 (fr) 2012-01-04

Family

ID=42371846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10701388A Withdrawn EP2401772A2 (fr) 2009-02-24 2010-01-29 Cellule solaire à semi-conducteurs mwt comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs

Country Status (3)

Country Link
EP (1) EP2401772A2 (fr)
DE (1) DE102009047778A1 (fr)
WO (1) WO2010097268A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010060303A1 (de) 2010-11-02 2012-05-03 Solarworld Innovations Gmbh Verfahren zum Herstellen einer Solarzelle
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
CN102800723B (zh) * 2011-05-27 2015-10-21 苏州阿特斯阳光电力科技有限公司 太阳电池组件及其制造方法
US9281435B2 (en) 2011-05-27 2016-03-08 Csi Cells Co., Ltd Light to current converter devices and methods of manufacturing the same
EP2634814A2 (fr) 2012-02-29 2013-09-04 SCHOTT Solar AG Cellule solaire à contact sur les faces arrière
GB2508792A (en) 2012-09-11 2014-06-18 Rec Modules Pte Ltd Back contact solar cell cell interconnection arrangements
CN104465806A (zh) * 2014-12-18 2015-03-25 浙江鸿禧能源股份有限公司 一种太阳能电池片正电极栅线结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031803A1 (fr) * 1998-11-23 2000-06-02 Stichting Energieonderzoek Centrum Nederland Procede d'optimisation d'un schema de metallisation sur une cellule photovoltaique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070137692A1 (en) * 2005-12-16 2007-06-21 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
EP2105970A4 (fr) * 2006-12-26 2015-08-05 Kyocera Corp Module à cellules solaires
JP2008282926A (ja) * 2007-05-09 2008-11-20 Sanyo Electric Co Ltd 太陽電池モジュール
TWI449183B (zh) * 2007-06-13 2014-08-11 Schott Solar Ag 半導體元件及製造金屬半導體接點之方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031803A1 (fr) * 1998-11-23 2000-06-02 Stichting Energieonderzoek Centrum Nederland Procede d'optimisation d'un schema de metallisation sur une cellule photovoltaique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010097268A2 *

Also Published As

Publication number Publication date
DE102009047778A1 (de) 2010-09-02
WO2010097268A3 (fr) 2011-09-15
WO2010097268A2 (fr) 2010-09-02

Similar Documents

Publication Publication Date Title
DE112016003768B4 (de) Sonnenkollektor
DE102008033632B4 (de) Solarzelle und Solarzellenmodul
EP2401772A2 (fr) Cellule solaire à semi-conducteurs mwt comportant une pluralité de doigts conducteurs fins, parallèles, de longueur prédéfinie, mettant en contact les semi-conducteurs
EP2130232A2 (fr) Système à cellule solaire, module de cellule solaire et dispositif de jonction
DE3044780C2 (fr)
DE102007059486A1 (de) Rückkontaktsolarzelle mit länglichen, ineinander verschachtelten Emitter- und Basisbereichen an der Rückseite und Herstellungsverfahren hierfür
WO2010133224A2 (fr) Agencement et interconnexion de cellules solaires planes ainsi que procédé d'interconnexion desdites cellules
DE102008044910A1 (de) Solarzelle und Solarzellenmodul mit einseitiger Verschaltung
DE102009020482A1 (de) Verfahren zur Herstellung und Serienverschaltung von photovoltaischen Elementen zu einem Solarmodul und Solarmodul
EP2289107B1 (fr) Cellule solaire et procédé de fabrication
DE102011000753A1 (de) Solarzelle, Solarmodul und Verfahren zum Herstellen einer Solarzelle
DE102013217356A1 (de) Verfahren zum Herstellen einer Solarzelle und Solarzelle
DE102010002521B4 (de) Solarzelle mit spezieller Busbarform, diese Solarzelle enthaltende Solarzellenanordnung sowie Verfahren zur Herstellung der Solarzelle
WO2011000361A2 (fr) Procédé de réalisation et de montage en série d'éléments en forme de bande sur un substrat
EP2345084B1 (fr) Cellule solaire et procédé de fabrication
WO2009112544A2 (fr) Procédé de fabrication de cellules solaires monocristallines à structure de contact arrière
EP2956966A1 (fr) Cellule solaire à contact arrière, sans barre omnibus, procédé de fabrication et module solaire présentant ces cellules solaires
DE102011051511A1 (de) Rückkontaktsolarzelle und Verfahren zum Herstellen einer solchen
EP2559075B1 (fr) Procédé de fabrication d'une cellule solaire et cellule solaire fabriquée selon ce procédé
DE102010017590B4 (de) Beidseitig kontaktierte Solarzelle und Solarmodul
DE102010018548A1 (de) Dünnschicht-Solarzellenmodul mit in Reihe geschalteten Solarzellen
WO2021140155A1 (fr) Procédé de fabrication d'une cellule solaire à contact par la face arrière et cellule solaire à contact par la face arrière
WO2021185995A1 (fr) Module solaire à films minces et procédé de fabrication
DE102020209167A1 (de) Dünnschichtsolarmodul mit serieller Zellverschaltung und Herstellungsverfahren
DE102018008439A1 (de) Reihenverschaltung und Verfahren zur Reihenverschaltung zwischen einem ersten und einem benachbarten zweiten elektrischen Bauelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20120315

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20120709

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150120