EP2398682A1 - Régulation de la vitesse de lacet pour un ralentissement maximal simultané - Google Patents

Régulation de la vitesse de lacet pour un ralentissement maximal simultané

Info

Publication number
EP2398682A1
EP2398682A1 EP09802136A EP09802136A EP2398682A1 EP 2398682 A1 EP2398682 A1 EP 2398682A1 EP 09802136 A EP09802136 A EP 09802136A EP 09802136 A EP09802136 A EP 09802136A EP 2398682 A1 EP2398682 A1 EP 2398682A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
determined
yaw moment
maximum
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09802136A
Other languages
German (de)
English (en)
Inventor
Stephan Stabrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2398682A1 publication Critical patent/EP2398682A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/024Collision mitigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/304ESP control system during driver brake actuation

Definitions

  • wheel-specific braking interventions are usually used to stabilize the yawing motion of the vehicle in the dynamic range of the vehicle and thus to keep the vehicle manageable for the driver.
  • the braking interventions are set in such a way that they are as barely noticeable as possible and result in only a slight reduction in speed.
  • Spinning movements are automatically correctable without steering movements are required. This is achieved by selectively braking and / or accelerating and / or correcting the steering angle of individual wheels.
  • the invention relates to a method for stabilizing a vehicle in the transverse direction or the stabilization of a vehicle with respect to the rotational movement about its vertical axis, in which for a first brake force distribution, in which each vehicle is braked with the maximum braking power transferable to the road in the current driving situation maximum braking force in that the yawing moment acting on the vehicle is determined, for at least one second brake force distribution, which differs from the first brake force distribution in that at least one wheel is not braked with the maximum braking force, the yaw moment acting on the vehicle is determined, a desired yaw moment is determined and from at least the first and second brake force distributions that brake force distribution is set on the vehicle whose associated yaw moment comes closest to the desired yaw moment.
  • Known vehicle dynamics regulations delay the vehicle only weakly by their wheel-specific braking interventions. Can be despite this
  • a stabilization intervention associated with a strong deceleration has the following advantages: If a collision occurs despite the stabilization interventions, the lower vehicle speed results in a lower risk of injury. a slower vehicle has a greater damping of the yawing motion, thus facilitating stabilization for both the control system and the driver.
  • the deceleration extends the driver's options for action, since a longer time elapses before a possible collision. This leaves the driver more time for accident-preventing or reducing the severity of injuries.
  • An advantageous embodiment of the invention is characterized in that the yaw moment acting on the vehicle is determined from the yaw moment components generated by the individual wheels.
  • the yaw moment can be determined in a simple manner from the sum of the yaw moment components.
  • An advantageous embodiment of the invention is characterized in that the yaw moment components are determined at least from the vehicle geometry descriptive variables, the steering angle, acting on the wheel longitudinal force and acting on the wheel lateral force.
  • An advantageous embodiment of the invention is characterized in that the maximum of the tire transferable to the road force is determined at least fromakigeometriechal, the vehicle mass and the current transverse and longitudinal acceleration.
  • An advantageous embodiment of the invention is characterized in that the maximum transferable to the road maximum braking force from the maximum transferable to the road power and the slip angle of the tire is determined.
  • the slip angle and numerous other sizes are already available in conventional vehicle dynamics control systems.
  • An advantageous embodiment of the invention is characterized in that the desired yaw moment is determined at least from the steering angle, and the vehicle longitudinal speed.
  • the invention comprises a device containing means which are designed for carrying out the method according to the invention.
  • the drawing comprises the figures 1 to 3.
  • Fig. 1 shows a flow chart for stabilization with maximum delay.
  • FIG. 2 shows the yaw moment components of the individual wheels as a function of the braking force reduction, starting from the maximum braking force, for a simulated lateral rear impact, by means of which the vehicle has been set in rotation about its vertical axis.
  • no actual yawing moment corresponding to the desired yawing moment can be achieved in any brake force reduction constellation.
  • FIG. 3 shows an unstable driving situation in which the desired yawing moment can be achieved by reducing the braking force on the right front wheel to stabilize the vehicle.
  • Brake interventions are generally chosen so that only a slight deceleration of the vehicle occurs.
  • brake assist systems and emergency braking systems generate very high deceleration values down to the physical maximum, but do without generating a stabilizing yaw torque.
  • the invention relates to a method and a device for setting a stabilizing yawing moment in a motor vehicle, wherein at the same time a maximum possible deceleration of the vehicle should be effected by the braking interventions performed. Can be reduced by intervention of a vehicle dynamics control
  • a slow vehicle has a higher damping of the yawing, so that the stabilization for both the vehicle dynamics control system and for the driver is facilitated.
  • Stabilization interventions with simultaneous maximum deceleration are appropriate when it is assumed that the driver is losing control and there is thus the risk of a collision whose severity can be alleviated by slowing down the vehicle.
  • a loss of control can be assumed, if by an initial Collision an airbag was triggered and the driver is temporarily unable to act.
  • the sequence of an embodiment of the stabilization method according to the invention is shown in FIG.
  • the set yaw moment to be set is determined by a higher-level controller instance which, for example, carries out a yaw rate control.
  • the aim of the method is to implement the requested yaw moment so that the vehicle is delayed as much as possible. This can be realized in that all four wheels are fully braked in the initial state and thus sets the maximum delay.
  • the requested yaw moment is generated by selectively braking individual wheels out of this state.
  • the process steps 1 to 6 are numbered on the left side.
  • step 1 the maximum transferable to the roadway forces F_max, i are determined in block 102 of the four wheels of the motor vehicle, wherein the index i denotes the respective wheel.
  • the forces depend essentially on the coefficient of friction between the tire and the road surface and the normal force acting on the tire.
  • the maximum transferable forces are calculated from the sizes provided by block 101, which are e.g. Vehicle geometry data, which may include vehicle mass and measured lateral and longitudinal accelerations.
  • the normal forces are e.g. calculated from the static wheel loads taking into account the pitch and roll moments resulting from lateral and longitudinal acceleration.
  • the coefficient of friction can be based on in the
  • Vehicle dynamics control available measured variables can be estimated.
  • step 2 in block 202, the maximum longitudinal force component Fx_max, i is determined on all four wheels. In this case, the total force acting on a blocked wheel is directed counter to the speed vector at the wheel contact point.
  • the maximum longitudinal force component Fx_max, i can be calculated from the maximum force F_max, i and the slip angle at the wheel.
  • the slip angles are calculated on the basis of the measurement and estimation variables available in the system.
  • the longitudinal forces are varied between zero and the maximum value previously calculated for each wheel. For each variation, using the Kamm circle, calculate the lateral force components remaining at full utilization of the tire force potential.
  • step 4 the yaw moments generated by the wheels are calculated in block 402 for these variations from the transverse and longitudinal forces. These are plotted in FIGS. 2 and 3 in the ordinate direction as a function of the deceleration ⁇ Fx applied in the abscissa direction.
  • the deceleration is determined in succession for each wheel, which determines the difference between the desired yaw moment and the sum of all
  • FIG. 3 shows a situation in which the requested yawing moment can be realized.
  • the three wheels RR, FL and RL remain fully braked and only the wheel FR has to be decelerated by approx. 2300 N. This is a stabilization with a strong delay.
  • steps 1 to 6 of the process are numbered.
  • the third column comprising blocks 102, 202, 302, 402, 502 and 602, the steps of the method are illustrated.
  • the second column from the left with the blocks 101, 201, 301 and 401 shows the essential, for the individual
  • the yawing torques generated by the individual wheels are calculated in block 402 for the debindering variations considered in block 302.
  • the steering angle and vehicle geometry data are provided in block 401.
  • the Entbremsungsvariation is selected, which minimizes the deviation between the sum of all yaw moment shares and the target yaw moment.
  • the set yaw moment Mz_set is provided by block 103, which is determined by a superimposed driving dynamics controller.
  • the brake force distribution associated with the choke variation selected in block 502 is applied via a subordinate brake force control or
  • the braking force control may be configured in an advantageous embodiment so that locking of the wheels is prevented, i.
  • the braking of the individual wheels is anti-lock braking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne un procédé de stabilisation d'un véhicule en direction transversale, procédé caractérisé en ce que - pour une première répartition de force de freinage, pour laquelle chaque roue du véhicule est freinée avec la force de freinage maximale transmissible, dans la situation de conduite momentanée, au maximum sur la chaussée, le couple d'embardée agissant sur le véhicule est déterminé; - pour au moins une seconde répartition de la force de freinage qui se différencie de la première répartition de force de freinage par le fait qu'au moins une roue n'est pas freinée avec la force de freinage maximale, le couple d'embardée agissant sur le véhicule est déterminé; - un couple d'embardée de consigne est déterminé; et - en se basant sur au moins la première et la seconde répartition de force de freinage, on règle, sur le véhicule, celle dont le couple d'embardée correspondant est le plus voisin du couple d'embardée de consigne.
EP09802136A 2009-02-18 2009-12-21 Régulation de la vitesse de lacet pour un ralentissement maximal simultané Withdrawn EP2398682A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009000947A DE102009000947A1 (de) 2009-02-18 2009-02-18 Gierratenregelung bei gleichzeitiger Maximalverzögerung
PCT/EP2009/067692 WO2010094365A1 (fr) 2009-02-18 2009-12-21 Régulation de la vitesse de lacet pour un ralentissement maximal simultané

Publications (1)

Publication Number Publication Date
EP2398682A1 true EP2398682A1 (fr) 2011-12-28

Family

ID=42026138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09802136A Withdrawn EP2398682A1 (fr) 2009-02-18 2009-12-21 Régulation de la vitesse de lacet pour un ralentissement maximal simultané

Country Status (5)

Country Link
US (1) US8600639B2 (fr)
EP (1) EP2398682A1 (fr)
CN (1) CN102317130B (fr)
DE (1) DE102009000947A1 (fr)
WO (1) WO2010094365A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20130307A1 (it) 2013-04-17 2014-10-18 Itt Italia Srl Metodo per realizzare un elemento frenante, in particolare una pastiglia freno, sensorizzato, pastiglia freno sensorizzata, impianto frenante di veicolo e metodo associato
US9939035B2 (en) 2015-05-28 2018-04-10 Itt Italia S.R.L. Smart braking devices, systems, and methods
ITUB20153706A1 (it) 2015-09-17 2017-03-17 Itt Italia Srl Dispositivo frenante per veicolo pesante e metodo di prevenzione del surriscaldamento dei freni in un veicolo pesante
ITUB20153709A1 (it) 2015-09-17 2017-03-17 Itt Italia Srl Dispositivo di analisi e gestione dei dati generati da un sistema frenante sensorizzato per veicoli
ITUA20161336A1 (it) 2016-03-03 2017-09-03 Itt Italia Srl Dispositivo e metodo per il miglioramento delle prestazioni di un sistema antibloccaggio e antiscivolamento di un veicolo
IT201600077944A1 (it) 2016-07-25 2018-01-25 Itt Italia Srl Dispositivo per il rilevamento della coppia residua di frenatura in un veicolo equipaggiato con freni a disco
EP4326586A1 (fr) 2021-05-25 2024-02-28 ITT Italia S.r.l. Procédé et dispositif d'estimation de couple résiduel entre des éléments freinés et de freinage d'un véhicule

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3625392A1 (de) 1986-02-13 1987-08-20 Licentia Gmbh Regelsystem zur verhinderung von schleuderbewegungen eines kraftfahrzeuges
DE4226746C1 (de) * 1992-08-13 1993-10-07 Daimler Benz Ag Verfahren zur Bestimmung eines fahrsituationsabhängigen Lenkwinkels
JP3784436B2 (ja) * 1995-11-20 2006-06-14 本田技研工業株式会社 車両の制動力制御装置
US6035251A (en) 1997-11-10 2000-03-07 General Motors Corporation Brake system control method employing yaw rate and ship angle control
FR2775237B1 (fr) * 1998-02-26 2000-04-07 Renault Procede de commande de la consigne de freinage sur les roues d'un vehicule
US6438482B1 (en) * 1998-05-12 2002-08-20 Continental Teves Ag & Co., Ohg Vehicle stabilizing device and method for modifying brake pressures
DE10160045B4 (de) * 2000-12-30 2005-09-15 Robert Bosch Gmbh System und Verfahren zur Überwachung des Fahrverhaltens eines Kraftfahrzeugs
US7245995B2 (en) * 2003-02-19 2007-07-17 Robert Bosch Gmbh Fault-tolerant vehicle stability control
DE10320828A1 (de) * 2003-05-08 2004-12-09 Robert Bosch Gmbh Optimierung einer Fahrdynamikregelung unter Verwendung von Reifeninformationen
FR2862265B1 (fr) * 2003-11-13 2006-01-06 Renault Sas Procede de controle de la deceleration d'un vehicule a roues, utilisant des couples de freinage repartis a dissymetrie bornee
DE102004062482A1 (de) * 2004-12-24 2006-07-13 Daimlerchrysler Ag Verfahren und Vorrichtung zur präventiven Ansteuerung eines Insassenschutzsystems
JP4131269B2 (ja) * 2005-03-01 2008-08-13 トヨタ自動車株式会社 車輌の制駆動力制御装置
DE102005016009A1 (de) * 2005-04-07 2006-10-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Stabilisierung eines Fahrzeugs nach einer Kollision
US7197422B2 (en) * 2005-08-11 2007-03-27 Gm Global Technology Operations, Inc. System and method for determining proper tire inflation pressure based on current vehicle mass conditions
JP4247646B2 (ja) * 2007-08-31 2009-04-02 三菱自動車工業株式会社 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010094365A1 *

Also Published As

Publication number Publication date
CN102317130B (zh) 2014-02-12
WO2010094365A1 (fr) 2010-08-26
DE102009000947A1 (de) 2010-08-19
US8600639B2 (en) 2013-12-03
US20120022758A1 (en) 2012-01-26
CN102317130A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
DE10393615B4 (de) Verfahren und Vorrichtung zur Stabilisierung eines Fahrzeuggespannes
DE102007056359B4 (de) Verfahren zur Steuerung eines Bremssystems eines Kraftfahrzeugs
EP2327596B1 (fr) Limitation appuyée par la valeur de friction du couple d'un circuit de réglage d'un véhicule automobile
EP2146880B1 (fr) Procédé et dispositif pour la stabilisation d'un véhicule à moteur à deux roues
WO2010094365A1 (fr) Régulation de la vitesse de lacet pour un ralentissement maximal simultané
DE102005018519B4 (de) Verfahren zur Fahrdynamik-Regelung von Kraftfahrzeugen
WO2008148651A1 (fr) Procédé de réglage du système de freinage d'un véhicule en cas de collision
EP3328693B1 (fr) Procédé d'aide à la conduite en cas d'aquaplanage sur une chaussée
DE102006031511A1 (de) Verfahren zum Kompensieren der Bremsverzögerung bei einer Fahrzeugregelung
WO2005110827A1 (fr) Procede de commande d'un systeme de freinage d'un vehicule
EP1131235B1 (fr) Procede et dispositif de stabilisation d'un vehicule equipe d'un systeme de freinage a controle de glissement
DE10357254B4 (de) Verfahren zum Kompensieren des durch eine Änderung des Abrollverhaltens eines Laufrades eines Fahrzeugs hervorgerufenen Giermoments
DE102019218795A1 (de) Verfahren zur Radschlupfsteuerung eines Fahrzeuges
WO2010054716A1 (fr) Procédé de fonctionnement d'un système de freinage
EP1156952B1 (fr) Dispositif et procede de regulation du glissement de roues apres detection d'un derapage
DE102008027093B4 (de) Technik zum Betreiben einer Bremsanlage in einer μ-Split-Situation
EP1783022B1 (fr) Contrôle dynamique de conduite par transfert de charge
DE102005029716B4 (de) Verfahren zur Erhöhung der Fahrstabilität eines Fahrzeugs
DE102004047860A1 (de) Verfahren und Vorrichtung zur Beeinflussung der Querdynamik eines Fahrzeugs
EP1404554B1 (fr) Systeme de reglage de la dynamique de translation de vehicules
DE102008003079A1 (de) Verfahren und Steuergerät zur Ansteuerung von Personenschutzmitteln für ein Fahrzeug
DE102009047190B4 (de) Verfahren zur Erhöhung der Fahrstabilität und der Bremsleistung eines Kraftfahrzeugs
DE102004061107A1 (de) Verfahren für die Steuerung eines Bremssystems eines Kraftfahrzeuges
DE102006038512A1 (de) Vorrichtung zum Verkürzen des Bremsweges eines Fahrzeugs
DE102021207263A1 (de) Verfahren und Steuervorrichtung zum Vermeiden eines Kippens eines Kraftfahrzeugs mit Steer-by-Wire Lenkung und Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160119