EP2397533A1 - Radiation curable adhesive composition for optical components and adhesive optical component - Google Patents

Radiation curable adhesive composition for optical components and adhesive optical component Download PDF

Info

Publication number
EP2397533A1
EP2397533A1 EP10741272A EP10741272A EP2397533A1 EP 2397533 A1 EP2397533 A1 EP 2397533A1 EP 10741272 A EP10741272 A EP 10741272A EP 10741272 A EP10741272 A EP 10741272A EP 2397533 A1 EP2397533 A1 EP 2397533A1
Authority
EP
European Patent Office
Prior art keywords
weight
group
parts
radiation
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10741272A
Other languages
German (de)
French (fr)
Other versions
EP2397533B1 (en
EP2397533A4 (en
Inventor
Yuji Koyama
Mingxing An
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Original Assignee
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kagaku KK, Soken Chemical and Engineering Co Ltd filed Critical Soken Kagaku KK
Publication of EP2397533A1 publication Critical patent/EP2397533A1/en
Publication of EP2397533A4 publication Critical patent/EP2397533A4/en
Application granted granted Critical
Publication of EP2397533B1 publication Critical patent/EP2397533B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2848Three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • Y10T428/2891Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof

Definitions

  • the present invention relates to a radiation-curable adhesive composition for an optical component, and an adhesive optical component using the same. Specifically, the present invention relates to a radiation-curable adhesive composition for an optical component, the adhesive composition being used for bonding an optical component in a flat panel display (FPD), more specifically used for bonding an optical component such as a polarizing film to an adherend such as a liquid crystal cell, and an adhesive optical component using the same.
  • FPD flat panel display
  • Laminates constituting an image display device such as a liquid crystal display device, an organic electroluminescence (EL) display devices, a plasma display panel (PDP), or the like include optical components (such as a polarizing film, a retardation film, an optical compensation film, a luminance-improving film, a light diffusion film, an antireflection film, an near-infrared-absorbing film, and an electromagnetic-wave-shielding film) bonded to each other with an adhesive therebetween.
  • optical components such as a polarizing film, a retardation film, an optical compensation film, a luminance-improving film, a light diffusion film, an antireflection film, an near-infrared-absorbing film, and an electromagnetic-wave-shielding film
  • PTL 1 and PTL 2 disclose adhesive compositions having improved durability under high-temperature conditions or high-temperature and high-humidity conditions.
  • PTL 1 discloses "an adhesive composition containing 5 to 95 parts by mass of (A) a polymer having a (meth)acryloyloxy group, a weight-average molecular weight of 1,000 to 30,000, and a glass transition temperature of 0°C or lower (polymer (A)); and 5 to 95 parts by mass of (B) a polymer having a weight-average molecular weight of 200,000 to 2,000,000, and a glass transition temperature of 0°C or lower (polymer (B)) (where the total of the polymer (A) and the polymer (B) is 100 parts by mass)".
  • PTL 2 discloses "an adhesive for an optical component, the adhesive containing a polymer containing a (meth)acrylic acid ester as a main component, and a crosslinking agent, wherein the gel fraction of the adhesive is 30% or more and 60% or less, a sol component in the adhesive has a weight-average molecular weight of 100,000 or more and 500,000 or less measured by gel permeation chromatography (GPC), the molecular-weight distribution is 40 or more, and a polymer component having a molecular weight of 50,000 or less is 30% by weight or more and 80% by weight or less in the sol component".
  • GPC gel permeation chromatography
  • an object of the present invention is to provide a radiation-curable adhesive composition for an optical component, the adhesive composition being capable of exhibiting excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions and capable of suppressing occurrence of light leakage when the adhesive composition is used for bonding a liquid crystal cell to an optical component, and an adhesive optical component using the same.
  • a radiation-curable adhesive composition for an optical component of the present invention contains 100 parts by weight of a (meth)acrylic copolymer (A) composed of 80% to 99.8% by mass of an alkyl (meth)acrylate (a1), 0.1% to 10% by mass of a carboxyl-group-containing (meth)acrylic monomer (a2), and 0.1% to 10% by mass of a hydroxyl-group-containing (meth)acrylic monomer (a3) (where the total amount of (a1) to (a3) is 100% by mass), the (meth)acrylic copolymer (A) having a glass transition temperature of -20°C or lower and a weight-average molecular weight of 500,000 to 2,000,000; 2 to 20 parts by weight of a radiation-curable acrylic compound (B) having two (meth)acryloyl groups in its molecule; 3 to 50 parts by weight of a radiation-curable acrylic compound (C) represented by general formula (1) or (2) below:
  • the radiation-curable acrylic compound (B) is preferably a compound represented by general formula (3) below:
  • n represents an integer of 1 to 20, and m represents an integer of 1 to 10.
  • the radiation-curable acrylic compound (B) is preferably at least one compound selected from the group consisting of neopentyl glycol diacrylate, 1,9-nonanediol diacrylate, dimethylol tricyclodecane diacrylate, polypropylene glycol diacrylate, polyethylene glycol diacrylate, bisphenol A polyethylene glycol diacrylate, and ⁇ -phenyl- ⁇ -acryloyloxypolyoxyethylene-formaldehyde polycondensate.
  • the radiation-curable acrylic compound (C) is preferably at least one compound selected from the group consisting of acrylic acid ester of dipentaerythritol caprolactone, acrylic acid ester of pentaerythritol ethylene oxide, and acrylic acid ester of trimethylolpropane ethylene oxide.
  • the optical component is preferably an optical film selected from the group consisting of a polarizing film, a retardation film, an elliptically polarizing film, an antireflection film, a luminance-improving film, a light diffusion film, and an optical compensation film.
  • a radiation-curable adhesive composition for an optical component of the present invention can exhibit a high tensile strength and flexibility suitable for enabling stable adhesion between the optical component and an adherend when light-cured, and can exhibit excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions. Furthermore, when the radiation-curable adhesive composition for an optical component of the present invention is used for bonding a liquid crystal cell to an optical component, occurrence of a problem such as light leakage can be suppressed.
  • the adhesive composition may optionally contain other components.
  • the (meth)acrylic copolymer A (component (A)) used in the radiation-curable adhesive composition for an optical component of the present invention includes components (a1) to (a3) below serving as monomer components, has a glass transition temperature of -20°C or lower, and a weight-average molecular weight of 500,000 to 2,000,000.
  • alkyl (linear or branched alkyl) (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, neopentyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl(meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isode
  • the hydroxyl-group-containing (meth)acrylic monomer (a3) is not particularly limited as long as the monomer is a (meth)acrylic monomer having a hydroxyl group.
  • examples thereof include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and mono(meth)acrylates of an alkylene diol, e.g., polypropylene glycol mono(meth)acrylate and 1,6-hexanediol mono(meth)acrylate; and (meth)acrylamides such as N-hydroxyethyl (meth)acrylamide and N-hydroxypropyl (meth)acrylamide. These may be used alone or in combination. Among these, 4-hydroxybutyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate are preferable.
  • the glass transition temperature (Tg) of the (meth)acrylic copolymer (A) is -20°C or lower, preferably -80°C to -30°C, and more preferably -70°C to -50°C.
  • Tg glass transition temperature
  • a method for polymerizing the (meth)acrylic copolymer (A) used in the present invention is not particularly limited.
  • the (meth)acrylic copolymer (A) can be polymerized by a known method such as solution polymerization, emulsion polymerization, or suspension polymerization.
  • the (meth)acrylic copolymer (A) is preferably polymerized by solution polymerization because when the radiation-curable adhesive composition for an optical component of the present invention is produced by using a mixture containing a copolymer obtained by polymerization, the treatment process can be relatively easily performed in a short time.
  • organic peroxides examples include tert-butyl hydroperoxide, cumene hydroxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-isopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, tert-butyl peroxypivalate, 2,2-bis(4,4-di-tert-butylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-tert-amylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-tert-octylperoxy cyclohexyl)propane, 2,2-bis(4,4-di- ⁇ -cumylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-tert-butylperoxy cyclohexyl)butane,
  • polymerization initiators that do not cause a graft reaction during the polymerization reaction are preferable, and azo compounds are particularly preferable.
  • the amount of polymerization initiator used is usually 0.01 to 2 parts by weight, and preferably 0.1 to 1.0 part by weight based on 100 parts by weight of the total of the monomers.
  • the radiation-curable adhesive composition for an optical component of the present invention contains 2 to 20 parts by weight of a radiation-curable acrylic compound (B) and 3 to 50 parts by weight of a radiation-curable acrylic compound (C) based on 100 parts by weight of the component (A).
  • the component (B), the component (C), and a hydrogen abstraction-type photopolymerization initiator (D) described below generate crosslinking between the component (A) and the component (B) or the component (C), or between the component (B) and the component (C) by a radical chain reaction when the radiation-curable adhesive composition for an optical component of the present invention is irradiated with radiation such as ultraviolet (UV) rays.
  • UV ultraviolet
  • the radiation-curable acrylic compound (B) is not particularly limited as long as the compound is a radiation-curable (meth)acrylic compound having two (meth)acryloyl groups in its molecule, but is preferably a radiation-curable acrylic compound represented by general formula (3) below.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group.
  • X represents a linear or branched divalent alkyl group having 1 to 20 carbon atoms, a linear or branched divalent cycloalkyl group having 3 to 20 carbon atoms, an alkoxyl group represented by general formula (4) below, or a diphenylalkyl group represented by general formula (5) below.
  • X in general formula (3) above is a linear or branched divalent cycloalkyl group having 3 to 20 carbon atoms
  • the number of carbon atoms of the alkyl group is preferably 3 to 18, and more preferably 3 to 14.
  • the cycloalkyl group may be either a linear group or a branched group.
  • the amount of component (B) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 2 to 20 parts by weight, preferably 2 to 18 parts by weight, and more preferably 2 to 16 parts by weight based on 100 parts by weight of the component (A).
  • the radiation-curable acrylic compound (C) is represented by general formula (1) or (2) below.
  • n is an integer of 2 to 6.
  • R 1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms.
  • R 2 represents hydrogen or a methyl group.
  • R 3 represents a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent.
  • the oxygen-containing functional group is not particularly limited as long as the functional group contains an oxygen atom.
  • the functional group contains an oxygen atom.
  • Specific examples thereof include a carboxyl group, a hydroxyl group, an alcohol group, a carbonyl group, a quinone group, a lactone group, an epoxy group, a ketone group, acrylic acid, a nitro group, a sulfone group, and phosphoric acid.
  • examples thereof further include anhydrides obtained by condensation of compounds having any of these groups, and esterified products and alkali salts of such compounds.
  • the nitrogen-containing functional group is not particularly limited as long as the functional group contains a nitrogen atom.
  • examples thereof include an amino group, an amide group, an imino group, an imidazole group, a nitrile group, and a pyridyl group.
  • the radiation-curable acrylic compound (C) is not particularly limited as long as the compound (C) is a compound represented by general formula (1) or (2) above.
  • Examples of the radiation-curable acrylic compound (C) include acrylic acid ester of dipentaerythritol caprolactone represented by structural formula (13) below, acrylic acid ester of pentaerythritol ethylene oxide represented by structural formula (14) below, and acrylic acid ester of trimethylolpropane ethylene oxide represented by structural formula (15) below.
  • the amount of component (C) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 3 to 50 parts by weight, preferably 3 to 40 parts by weight, and more preferably 3 to 30 parts by weight based on 100 parts by weight of the component (A).
  • the total amount of component (B) and component (C) in the radiation-curable adhesive composition for an optical component of the present invention is 5 to 60 parts by weight, preferably 5 to 50 parts by weight, and more preferably 5 to 40 parts by weight based on 100 parts by weight of the component (A). By controlling the total amount in this range, it is possible to impart a high tensile strength necessary for improving durability, and moderate flexibility necessary for maintaining stable adhesion between an optical component and an adherend.
  • the amount of component (C) mixed in the radiation-curable adhesive composition for an optical component of the present invention is preferably larger than the amount of component (B) mixed therein.
  • a quantitative ratio of the amount of component (C) mixed to the amount of component (B) mixed is preferably 1.5 to 30, and more preferably 1.5 to 20.
  • the radiation-curable adhesive composition for an optical component of the present invention contains 0.1 to 10 parts by weight of the hydrogen abstraction-type photopolymerization initiator (D) based on 100 parts by weight of the component (A) for the purpose of curing the adhesive composition by radiation such as ultraviolet rays.
  • Examples of the component (D) include acetophenones such as acetophenone, methoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-hydroxy-2-cyclohexylacetophenone, and 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1; benzoin; benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl butyl ether; ketones such as benzophenone, 2-chlorobenzophenone, p,p'-dichlorobenzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone, and 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone
  • the amount of component (D) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 0.1 to 10 parts by weight, preferably 0.1 to 8 parts by weight, and more preferably 0.1 to 6 parts by weight based on 100 parts by weight of the component (A).
  • the isocyanate crosslinking agent (E) is not particularly limited as long as the crosslinking agent (E) is an isocyanate crosslinking agent having, in its molecule, two or more isocyanate groups, which can be crosslinked with hydroxyl groups of the (meth)acrylic copolymer (A) at room temperature or under heating.
  • the amount of component (E) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 0.1 to 10 parts by weight, preferably 0.1 to 8 parts by weight, and more preferably 0.1 to 6 parts by weight based on 100 parts by weight of the component (A).
  • the gel fraction after the crosslinking of the adhesive composition can be easily controlled.
  • the radiation-curable adhesive composition for an optical component of the present invention contains 0.01 to 3 parts by weight of a silane compound (F) having an organic functional group having reactivity with a carboxyl group based on 100 parts by weight of the component (A).
  • the organic functional group that can react (couple) with a carboxyl group in the molecule of the (meth)acrylic copolymer (A) include an epoxy group, an amino group, a vinyl group, and an oxazoline group.
  • component (F) examples include vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxypropylmethyldiethoxysilane.
  • the amount of component (F) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 0.01 to 3 parts by weight, preferably 0.01 to 2 parts by weight, and more preferably 0.01 to 1.5 parts by weight based on 100 parts by weight of the component (A).
  • the gel fraction after the crosslinking of the adhesive composition can be easily controlled.
  • An adhesive optical component according to the present invention includes an optical component and an adhesive layer provided on one surface or both surfaces of the optical component, the adhesive layer being composed of the above-described radiation-curable adhesive composition for an optical component.
  • the optical component is used in various image display devices such as a liquid crystal display, a plasma display, and an organic EL display.
  • the optical component include optical films such as a polarizing film, a retardation film, a luminance-improving film, a hard coat film, an elliptically polarizing film, an antireflection film, a light diffusion film, an anti-glare film, an antistatic film, and an optical compensation film; and optical plates such as a polarizing plate, a retardation plate, a luminance-improving plate, an elliptically polarizing plate, an antireflection plate, a light diffusion plate, an anti-glare plate, an antistatic plate, and an optical compensation plate.
  • the adhesive optical component may be produced by applying the radiation-curable adhesive composition for an optical component onto one surface or both surfaces of an optical component by a gravure coater, a Mayer bar coater, an air knife coater, a roll coater, or the like, exposing the adhesive composition applied onto the optical component to radiation, drying and crosslinking the adhesive composition at room temperature or by heating.
  • the adhesive optical component may be produced by forming an adhesive layer on a release film, transferring this adhesive layer to the optical component, and then performing radiation irradiation, drying, and crosslinking.
  • examples of the radiation include ultraviolet rays, laser beams, alpha rays, beta rays, gamma rays, X rays, and electron beams. From the standpoint of good controllability and handleability, and the cost, ultraviolet rays are preferably used.
  • Examples of a light source of the ultraviolet rays include a high-pressure mercury vapor lamp, a microwave-excited lamp, and a chemical lamp.
  • a release film may be stacked on the upper surface of the adhesive layer in order to protect the adhesive layer.
  • compositions contained in radiation-curable adhesive compositions for an optical component are as follows, and component ratios thereof are shown in Table 1. Note that numerical values in the table represent parts by weight on a solid content (non-volatile content) basis.
  • the prepared adhesive composition 1 was applied onto a polyester film (PET3811 manufactured by Lintec Corporation), which has been subjected to a release treatment, to form an adhesive layer.
  • the polyester film was further dried at 80°C for two minutes in a drying oven to obtain an adhesive sheet 1 including the adhesive layer having a thickness of 25 ⁇ m after drying.
  • the prepared adhesive sheet 1 was bonded to one surface of a polarizing film (composed of polyvinyl alcohol).
  • Ultraviolet irradiation was conducted from the adhesive layer side of the adhesive sheet 1 using a UV irradiation device (light source: high-pressure mercury vapor lamp) with a conveyor at a lamp output of 160 W and at an irradiation distance of 10 cm while adjusting the conveyor speed so that the integrated amount of light was 200 mJ/cm 2
  • the polarizing film onto which the adhesive sheet 1 was bonded was aged in a dark place at 23°C and at a humidity of 50% RH (relative humidity) for seven days.
  • an adhesive polarizing film 1 was prepared.
  • An adhesive composition 2 and an adhesive polarizing film 2 were prepared as in Example 1 except that KAYARAD R-712 was changed to KAYARAD NPGDA.
  • the physical properties of the prepared adhesive polarizing film 2 were evaluated as in Example 1. The results are shown in Table 2.
  • An adhesive composition 3 and an adhesive polarizing film 3 were prepared as in Example 1 except that KAYARAD R-712 was changed to APG-700.
  • the physical properties of the prepared adhesive polarizing film 3 were evaluated as in Example 1. The results are shown in Table 2.
  • An adhesive composition 5 and an adhesive polarizing film 5 were prepared as in Example 2 except that KAYARAD DPCA-60 was changed to KAYARAD RP-1040.
  • the physical properties of the prepared adhesive polarizing film 5 were evaluated as in Example 2. The results are shown in Table 2.
  • An adhesive composition 6 and an adhesive polarizing film 6 were prepared as in Example 3 except that KAYARAD DPCA-60 was changed to KAYARAD RP-1040.
  • the physical properties of the prepared adhesive polarizing film 6 were evaluated as in Example 3. The results are shown in Table 2.
  • An adhesive composition 8 and an adhesive polarizing film 8 were prepared as in Example 2 except that KAYARAD DPCA-60 was changed to KAYARAD THE-330.
  • the physical properties of the prepared adhesive polarizing film 8 were evaluated as in Example 2. The results are shown in Table 2.
  • An adhesive composition 10 and an adhesive polarizing film 10 were prepared as in Example 1 except that the amount of KAYARAD R-712 mixed was changed from 1.0 part by weight to 16 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 10 were evaluated as in Example 1. The results are shown in Table 2.
  • An adhesive composition 11 and an adhesive polarizing film 11 were prepared as in Example 1 except that the amount of KAYARAD DPCA-60 mixed was changed from 20 parts by weight to 30 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 11 were evaluated as in Example 1. The results are shown in Table 2.
  • An adhesive composition 12 and an adhesive polarizing film 12 were prepared as in Example 8 except that the amount of IRGACURE 500 mixed was changed from 4.0 parts by weight to 6.0 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 12 were evaluated as in Example 8. The results are shown in Table 2.
  • An adhesive composition 13 and an adhesive polarizing film 13 were prepared as in Example 8 except that the amount of CORONATE L mixed was changed from 0.5 parts by weight to 6.0 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 13 were evaluated as in Example 8. The results are shown in Table 2.
  • An adhesive composition 14 and an adhesive polarizing film 14 were prepared as in Example 8 except that the amount of KBM-403 mixed was changed from 0.4 parts by weight to 1.0 part by weight.
  • the physical properties of the prepared adhesive polarizing film 14 were evaluated as in Example 8. The results are shown in Table 2.
  • An adhesive composition 15 and an adhesive polarizing film 15 were prepared as in Example 1 except that neither KAYARAD R-712 nor KAYARAD DPCA-60 was incorporated.
  • the physical properties of the prepared adhesive polarizing film 15 were evaluated as in Example 1. The results are shown in Table 2.
  • An adhesive composition 17 and an adhesive polarizing film 17 were prepared as in Example 2 except that 10 parts by weight of KAYARAD NPGDA and 20 parts by weight of KAYARAD DPCA-60 were changed to 30 parts by weight of KAYARAD NPGDA and 10 parts by weight of KAYARAD DPCA-60, respectively.
  • the physical properties of the prepared adhesive polarizing film 17 were evaluated as in Example 2. The results are shown in Table 2.
  • An adhesive composition 18 and an adhesive polarizing film 18 were prepared as in Example 3 except that KAYARAD DPCA-60 was changed to KAYARAD DPHA.
  • the physical properties of the prepared adhesive polarizing film 18 were evaluated as in Example 3. The results are shown in Table 2.
  • An adhesive composition 19 and an adhesive polarizing film 19 were prepared as in Example 2 except that IRGACURE 500 was changed to IRGACURE 819.
  • the physical properties of the prepared adhesive polarizing film 19 were evaluated as in Example 2. The results are shown in Table 2.
  • An adhesive composition 21 and an adhesive polarizing film 21 were prepared as in Example 6 except that the amount of IRGACURE 500 mixed was changed from 4.0 parts by weight to 11 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 21 were evaluated as in Example 6. The results are shown in Table 2.
  • An adhesive composition 22 and an adhesive polarizing film 22 were prepared as in Example 6 except that IRGACURE 500 was not incorporated.
  • the physical properties of the prepared adhesive polarizing film 22 were evaluated as in Example 6. The results are shown in Table 2.
  • An adhesive composition 23 and an adhesive polarizing film 23 were prepared as in Example 7 except that the amount of CORONATE L mixed was changed from 0.5 parts by weight to 11 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 23 were evaluated as in Example 7. The results are shown in Table 2.
  • An adhesive composition 25 and an adhesive polarizing film 25 were prepared as in Example 1 except that the amount of KBM-403 mixed was changed from 0.4 parts by weight to 4.0 parts by weight.
  • the physical properties of the prepared adhesive polarizing film 25 were evaluated as in Example 1. The results are shown in Table 2.
  • An adhesive composition 26 and an adhesive polarizing film 26 were prepared as in Example 1 except that KBM-403 was not incorporated.
  • the physical properties of the prepared adhesive polarizing film 26 were evaluated as in Example 1. The results are shown in Table 2.
  • Example 1 15 100 4.0 0.5 0.4 C.
  • Example 2 16 100 4.0 4.0 0.4 C.
  • Example 3 17 100 30 10 4.0 0.5 0.4 C.
  • Example 4 18 100 10 20 4.0 0.5 0.4 C.
  • Example 5 19 100 10 20 4.0 0.5 0.4 C.
  • Example 6 20 100 10 55 4.0 0.5 0.4 C.
  • Example 7 21 100 10 20 11 0.5 0.4 C.
  • Example 8 22 100 10 20 0.5 0.4 C.
  • Example 9 23 100 10 20 4.0 11 0.4 C.
  • Example 10 24 100 10 20 4.0 0.4 C.
  • Example 11 25 100 10 20 4.0 0.5 4.0 C.
  • Example 12 26 100 10 20 4.0 0.5 C.
  • Adhesive polarizing films (310 ⁇ 385 mm) were bonded to a liquid crystal panel having a size of 19 inches in a cross Nicol state and left to stand in an atmosphere of 60°C and 95% RH (relative humidity) for 240 hours and further in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. Subsequently, the test specimen taken from the atmosphere to a room was arranged in a cross Nicol state. The test specimen was placed in a light box at a color temperature of 5,000 K, and whether light leakage occurred or not was examined by visual observation and by using a digital camera. The result was evaluated on the basis of four-level evaluation criteria described below.
  • An adhesive polarizing film (310 ⁇ 385 mm) was bonded to non-alkali-treated glass having a size of 19 inches and left to stand in an atmosphere of 85°C for 240 hours and further in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. Subsequently, the non-alkali-treated glass onto which the adhesive polarizing film was bonded was taken from the atmosphere to a room. A change in appearance such as foaming of the adhesive polarizing film was visually observed. The result was evaluated on the basis of four-level evaluation criteria described below.
  • An adhesive polarizing film (310 ⁇ 385 mm) was bonded to non-alkali-treated glass having a size of 19 inches and left to stand in an atmosphere of 60°C and 95% RH (relative humidity) for 240 hours and further in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. Subsequently, the non-alkali-treated glass onto which the adhesive polarizing film was bonded was taken from the atmosphere to a room. A change in appearance such as detachment or foaming of the adhesive polarizing film was visually observed. The result was evaluated on the basis of four-level evaluation criteria described below.
  • An adhesive polarizing film (length: 75 mm ⁇ width: 25 mm) was bonded to a non-alkali-treated glass plate (325 ⁇ 400 mm), and pressure-bonded by rolling a 2-kg roller therealong in a reciprocating manner three times. The glass plate was then left to stand in an atmosphere of 23°C and 50% RH (relative humidity) for two hours.
  • An adhesive force (units: N/25 mm) to glass was measured by a 90-degree peel test (peeling speed: 300 mm/min). This measurement was conducted using two adhesive polarizing films for each type of film. The average of the two measured values was defined as an adhesive force to glass of the adhesive polarizing film.
  • an adhesive polarizing film (length: 75 mm ⁇ width: 25 mm) was brought into contact with a columnar probe of a probe-tack device for probe tack for one second while applying a constant load in an atmosphere of 23°C and 50% RH (relative humidity). Subsequently, a force (N/cm 2 ) necessary for peeling the probe from the adhesive surface of the test specimen in the vertical direction was measured.
  • probe-tack values 300 to 500 (N/cm 2 )
  • the adhesive subjected to the measurement has moderate flexibility necessary for maintaining stable adhesion between the polarizing film and the adherend.
  • the sample for measuring a shear load was treated in an autoclave for two hours under the conditions of 50°C and 5 kgf/cm 2 , and then left to stand for 24 hours in an atmosphere of 23°C and 50% RH (relative humidity).
  • the adhesive polarizing films 1 to 14 could achieve a combination of excellent light leakage resistance and durability (under the high-temperature condition and the high-temperature and high-humidity condition), whereas the adhesive polarizing films 15, 16, and 18 could not exhibit excellent light leakage resistance or durability (under the high-temperature condition and the high-temperature and high-humidity condition), or a satisfactory combination of light leakage resistance and durability could not be achieved even when one of these characteristics was excellent.
  • the adhesive polarizing films in the case where the amount of isocyanate crosslinking agent mixed was larger than 10 parts by weight (Comparative Example 9) and the case where no isocyanate crosslinking agent was incorporated (Comparative Example 10) could not achieve a combination of a high tensile strength and moderate flexibility, though the adhesive polarizing films exhibited good light leakage resistance. Furthermore, durability (under the high-temperature condition and the high-temperature and high-humidity condition) of these adhesive polarizing films was inferior to that of the adhesive polarizing films 1 to 14.
  • the adhesive polarizing films in the case where the amount of silane compound mixed was larger than 3 parts by weight (Comparative Example 11) and the case where no silane compound was incorporated (Comparative Example 12) could not achieve a combination of a high tensile strength and moderate flexibility, though the adhesive polarizing films exhibited good light leakage resistance or excellent durability (under the high-temperature condition). Furthermore, durability under the high-temperature and high-humidity condition of these adhesive polarizing films was inferior to that of the adhesive polarizing films 1 to 14.
  • a radiation-curable adhesive composition for an optical component that can exhibit a high tensile strength and flexibility suitable for enabling stable adhesion between the optical component and an adherend when light-cured, and that can exhibit excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesive Tapes (AREA)

Abstract

[Object] Provided is a radiation-curable adhesive composition for an optical component, the radiation-curable adhesive composition exhibiting a high tensile strength and flexibility suitable for enabling stable adhesion between the optical component and an adherend when light-cured and exhibiting excellent durability.
[Solution] A radiation-curable adhesive composition for an optical component contains 100 parts by weight of a specific (meth)acrylic copolymer (A), 2 to 20 parts by weight of a specific radiation-curable acrylic compound (B), 3 to 50 parts by weight of a specific radiation-curable acrylic compound (C), 0.1 to 10 parts by weight of a hydrogen abstraction-type photopolymerization initiator (D), 0.01 to 10 parts by weight of an isocyanate crosslinking agent (E), and 0.01 to 3 parts by weight of a silane compound (F), wherein the total amount of the amount of (B) mixed and the amount of (C) mixed is 5 to 60 parts by weight.

Description

    Technical Field
  • The present invention relates to a radiation-curable adhesive composition for an optical component, and an adhesive optical component using the same. Specifically, the present invention relates to a radiation-curable adhesive composition for an optical component, the adhesive composition being used for bonding an optical component in a flat panel display (FPD), more specifically used for bonding an optical component such as a polarizing film to an adherend such as a liquid crystal cell, and an adhesive optical component using the same.
  • Background Art
  • Laminates constituting an image display device such as a liquid crystal display device, an organic electroluminescence (EL) display devices, a plasma display panel (PDP), or the like include optical components (such as a polarizing film, a retardation film, an optical compensation film, a luminance-improving film, a light diffusion film, an antireflection film, an near-infrared-absorbing film, and an electromagnetic-wave-shielding film) bonded to each other with an adhesive therebetween.
  • Such an adhesive (adhesive composition for an optical component) for bonding such optical components requires not only adherence for bonding an optical component to an adherend but also a characteristic (durability) that stable adhesion is maintained between the optical component and the adherend after the bonding. Various adhesive compositions having these characteristics have been proposed. Acrylic adhesives are typically used from the standpoint that they have both transparency suitable for the application for bonding optical components and relatively good durability.
  • Meanwhile, recently, liquid crystal display devices and the like have been used for various applications and under various conditions. For example, they have been often used not only under the condition of room temperature but also under severe conditions of a high temperature and furthermore, a high temperature and a high humidity. Examples of applications under such severe conditions include applications to image display devices installed inside vehicles and measuring instruments for use outdoors.
  • In the case where a liquid crystal display device or the like is left to stand for a long time under such conditions, in particular, an optical component produced by using polyvinyl alcohol or the like as a raw material expands due to moisture absorption, resulting in dimensional deformation. In addition, once such dimensional deformation occurs, even if the temperature condition and the humidity condition are changed, the optical component does not completely return to its original dimensions. Unless a stress generated by this dimensional deformation is sufficiently absorbed or relieved by an adhesive composition bonding the optical component to a liquid crystal cell, detachment or floating occurs. As a result, problems such as light leakage and display unevenness (white spots) occur in the image display device. In particular, under high-temperature and high-humidity conditions, expansion deformation (dimensional deformation) of an optical component further increases. Thus, the above problems more likely occur in a liquid crystal cell.
  • For example, PTL 1 and PTL 2 disclose adhesive compositions having improved durability under high-temperature conditions or high-temperature and high-humidity conditions.
  • PTL 1 discloses "an adhesive composition containing 5 to 95 parts by mass of (A) a polymer having a (meth)acryloyloxy group, a weight-average molecular weight of 1,000 to 30,000, and a glass transition temperature of 0°C or lower (polymer (A)); and 5 to 95 parts by mass of (B) a polymer having a weight-average molecular weight of 200,000 to 2,000,000, and a glass transition temperature of 0°C or lower (polymer (B)) (where the total of the polymer (A) and the polymer (B) is 100 parts by mass)".
  • PTL 2 discloses "an adhesive for an optical component, the adhesive containing a polymer containing a (meth)acrylic acid ester as a main component, and a crosslinking agent, wherein the gel fraction of the adhesive is 30% or more and 60% or less, a sol component in the adhesive has a weight-average molecular weight of 100,000 or more and 500,000 or less measured by gel permeation chromatography (GPC), the molecular-weight distribution is 40 or more, and a polymer component having a molecular weight of 50,000 or less is 30% by weight or more and 80% by weight or less in the sol component".
  • Citation List Patent Literature
    • PTL 1: Japanese Unexamined Patent Application Publication No. 2006-316203
    • PTL 2: Japanese Unexamined Patent Application Publication No. 2003-34781
    Summary of Invention Technical Problem
  • However, in adhesive optical components including an adhesive layer composed of any of the above adhesives for an optical component, there is still a room for improving durability and light leakage resistance under high-temperature conditions and high-temperature and high-humidity conditions.
  • In view of the above problem in the related art, an object of the present invention is to provide a radiation-curable adhesive composition for an optical component, the adhesive composition being capable of exhibiting excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions and capable of suppressing occurrence of light leakage when the adhesive composition is used for bonding a liquid crystal cell to an optical component, and an adhesive optical component using the same.
  • Solution to Problem
  • As a result of intensive studies in order to solve the above problem, the inventors of the present invention found that an adhesive composition containing specific components exhibits a high tensile strength and flexibility suitable for enabling stable adhesion between an optical component and an adherend when light-cured, and exhibits excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions, and that when the adhesive composition is used for bonding a liquid crystal cell to an optical component, occurrence of a problem such as light leakage can be significantly suppressed. This finding led to the completion of the present invention. The gist of the present invention is as follows.
  • A radiation-curable adhesive composition for an optical component of the present invention contains 100 parts by weight of a (meth)acrylic copolymer (A) composed of 80% to 99.8% by mass of an alkyl (meth)acrylate (a1), 0.1% to 10% by mass of a carboxyl-group-containing (meth)acrylic monomer (a2), and 0.1% to 10% by mass of a hydroxyl-group-containing (meth)acrylic monomer (a3) (where the total amount of (a1) to (a3) is 100% by mass), the (meth)acrylic copolymer (A) having a glass transition temperature of -20°C or lower and a weight-average molecular weight of 500,000 to 2,000,000; 2 to 20 parts by weight of a radiation-curable acrylic compound (B) having two (meth)acryloyl groups in its molecule;
    3 to 50 parts by weight of a radiation-curable acrylic compound (C) represented by general formula (1) or (2) below:
  • Figure imgb0001
  • (where m is an integer of 1 to 5,
    a is an integer of 1 or more, b is an integer of 0 or more, c is an integer of 0 or more, the sum of a and b is 3 to 10, and the condition a + b + c = 2m + 2 is satisfied,
    n is an integer of 2 to 6,
    R1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms,
    R2 represents hydrogen or a methyl group, and
    R3 represents a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent)
  • Figure imgb0002
  • (where m is an integer of 1 to 5,
    a is an integer of 1 or more, b is an integer of 0 or more, c is an integer of 0 or more, the sum of a and b is 3 to 10, and the condition a + b + c = 2m + 1 is satisfied,
    n is an integer of 2 to 6,
    R1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms,
    R2 represents hydrogen or a methyl group, and
    R3 and R4 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent);
    0.1 to 10 parts by weight of a hydrogen abstraction-type photopolymerization initiator (D);
    0.01 to 10 parts by weight of an isocyanate crosslinking agent (E) having two or more isocyanate groups in its molecule; and
    0.01 to 3 parts by weight of a silane compound (F) having an organic functional group having reactivity with a carboxyl group,
    in which the total amount of the amount of radiation-curable acrylic compound (B) mixed and the amount of radiation-curable acrylic compound (C) mixed is 5 to 60 parts by weight.
  • The radiation-curable acrylic compound (B) is preferably a compound represented by general formula (3) below:
  • Figure imgb0003
    Figure imgb0004
  • (where n1 and n2 each independently represent an integer of 0 to 10, R1 and R2 each independently represent a hydrogen atom or a methyl group,
    X represents a linear or branched divalent alkyl group having 1 to 20 carbon atoms, a linear or branched divalent cycloalkyl group having 3 to 20 carbon atoms, an alkoxyl group represented by general formula (4) below, or a diphenylalkyl group represented by general formula (5) below)
  • Figure imgb0005
  • (where n represents an integer of 1 to 20, and m represents an integer of 1 to 10)


  •         [Chem. 5]   -Ar-CnH2n-Ar-     (5)

  • (where n represents an integer of 1 to 20, and Ar represents an aryl group which may have a substituent.)
    The radiation-curable acrylic compound (B) is preferably at least one compound selected from the group consisting of neopentyl glycol diacrylate, 1,9-nonanediol diacrylate, dimethylol tricyclodecane diacrylate, polypropylene glycol diacrylate, polyethylene glycol diacrylate, bisphenol A polyethylene glycol diacrylate, and α-phenyl-ω-acryloyloxypolyoxyethylene-formaldehyde polycondensate.
  • The radiation-curable acrylic compound (C) is preferably at least one compound selected from the group consisting of acrylic acid ester of dipentaerythritol caprolactone, acrylic acid ester of pentaerythritol ethylene oxide, and acrylic acid ester of trimethylolpropane ethylene oxide.
  • An adhesive optical component of the present invention includes an optical component and an adhesive layer provided on one surface or both surfaces of the optical component, the adhesive layer being composed of the above radiation-curable adhesive composition for an optical component.
  • The optical component is preferably an optical film selected from the group consisting of a polarizing film, a retardation film, an elliptically polarizing film, an antireflection film, a luminance-improving film, a light diffusion film, and an optical compensation film.
  • Advantageous Effects of Invention
  • A radiation-curable adhesive composition for an optical component of the present invention can exhibit a high tensile strength and flexibility suitable for enabling stable adhesion between the optical component and an adherend when light-cured, and can exhibit excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions. Furthermore, when the radiation-curable adhesive composition for an optical component of the present invention is used for bonding a liquid crystal cell to an optical component, occurrence of a problem such as light leakage can be suppressed.
  • Description of Embodiments
  • A radiation-curable adhesive composition for an optical component according to the present invention contains
    100 parts by weight of a specific (meth)acrylic copolymer (A),
    2 to 20 parts by weight of a specific radiation-curable acrylic compound (B),
    3 to 50 parts by weight of a specific radiation-curable acrylic compound (C),
    0.1 to 10 parts by weight of a hydrogen abstraction-type photopolymerization initiator (D),
    0.01 to 10 parts by weight of an isocyanate crosslinking agent (E) having two or more isocyanate groups in its molecule, and 0.01 to 3 parts by weight of a silane compound (F) having an organic functional group having reactivity with a carboxyl group,
    in which the total amount of the amount of radiation-curable acrylic compound (B) mixed and the amount of radiation-curable acrylic compound (C) mixed is 5 to 60 parts by weight.
  • In order to improve various physical properties of the adhesive composition of the present invention, the adhesive composition may optionally contain other components.
  • The present invention will now be described specifically. For the sake of convenience, the (meth)acrylic copolymer (A), the radiation-curable acrylic compound (B), the radiation-curable acrylic compound (C), the hydrogen abstraction-type photopolymerization initiator (D), the isocyanate crosslinking agent (E), and the silane compound (F) mentioned above may be referred to as "component (A)", "component (B)", "component (C)", "component (D)", "component (E)", and "component (F)", respectively.
  • The (meth)acrylic copolymer A (component (A)) used in the radiation-curable adhesive composition for an optical component of the present invention includes components (a1) to (a3) below serving as monomer components, has a glass transition temperature of -20°C or lower, and a weight-average molecular weight of 500,000 to 2,000,000.
    Alkyl (meth)acrylate monomer (a1) 80% to 99.8% by mass Carboxyl-group-containing (meth)acrylic monomer (a2) 0.1% to 10% by mass
    Hydroxyl-group-containing (meth)acrylic monomer (a3) 0.1% to 10% by mass
    (In the component (A), the total amount of (a1) to (a3) is 100% by mass.)
    The alkyl (meth)acrylate monomer (a1) is not particularly limited as long as the monomer is an alkyl methacrylate and/or an alkyl acrylate. Examples thereof include alkyl (linear or branched alkyl) (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, neopentyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl(meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, and octadecyl (meth)acrylate. These may be used alone or in combination.
  • The carboxyl-group-containing (meth)acrylic monomer (a2) is not particularly limited as long as the monomer is a (meth)acrylic monomer having a carboxyl group. Examples thereof include addition polymerizable unsaturated aliphatic monocarboxylic acids such as (meth)acrylic acid, α-ethylacrylic acid, crotonic acid, α-methylcrotonic acid, α-ethylcrotonic acid, isocrotonic acid, tiglic acid, and angelic acid; and addition polymerizable unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, and dihydromuconic acid. These may be used alone or in combination.
  • The hydroxyl-group-containing (meth)acrylic monomer (a3) is not particularly limited as long as the monomer is a (meth)acrylic monomer having a hydroxyl group. Examples thereof include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and mono(meth)acrylates of an alkylene diol, e.g., polypropylene glycol mono(meth)acrylate and 1,6-hexanediol mono(meth)acrylate; and (meth)acrylamides such as N-hydroxyethyl (meth)acrylamide and N-hydroxypropyl (meth)acrylamide. These may be used alone or in combination. Among these, 4-hydroxybutyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate are preferable.
  • With regard to the amounts of components (a1) to (a3) in the component (A), when the total amount of (a1) to (a3) is assumed to be 100% by mass, the amount of (a1) is 80% to 99.8% by mass, the amount of (a2) is 0.1% to 10% by mass, and the amount of (a3) is 0.1% to 10% by mass; preferably, the amount of (a1) is 84% to 99.8% by mass, the amount of (a2) is 0.1% to 8% by mass, and the amount of (a3) is 0.1% to 8% by mass; and more preferably, the amount of (a1) is 90% to 99.8% by mass, the amount of (a2) is 0.1% to 5% by mass, and the amount of (a3) is 0.1% to 5% by mass. By controlling the amounts of components (a1) to (a3) to be the above ratio, excellent durability can be imparted without impairing other physical properties such as removability.
  • Note that (A) may optionally contain another monomer (a4) in addition to the components (a1) to (a3). Examples of the other monomer (a4) include alkoxyalkyl (meth)acrylates such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate; epoxy-group-containing (meth)acrylates such as glycidyl (meth)acrylate; acetoacetyl-group-containing (meth)acrylates such as acetoacetoxyethyl (meth)acrylate; aromatic monomers such as styrene, methylstyrene, and vinyltoluene; methacryloxypropylmethoxysilane; vinyl acetate; vinyl chloride; and (meth)acrylonitrile. The mixing ratio of the other monomer is preferably 0.1 to 10 parts by weight, and more preferably 0.1 to 5 parts by weight based on 100 parts by weight of the alkyl acrylate monomer of the component (a1).
  • Furthermore, the weight-average molecular weight (Mw) of the (meth)acrylic copolymer (A) measured by gel permeation chromatography (GPC) is 500,000 to 2,000,000, and preferably 500,000 to 1,800,000.
  • When the weight-average molecular weight (Mw) of the (meth)acrylic copolymer (A) measured by gel permeation chromatography (GPC) is within the above range, it is possible to exhibit a sufficient cohesive force even under high-temperature conditions and to suppress the generation of foam. In addition, a moderate stress-relieving property (flexibility) of the adhesive does not decrease, and for example, when the adhesive is used for bonding a glass substrate to a polarizing plate, occurrence of a light leakage phenomenon in a peripheral end portion of the bonded surface can be suppressed.
  • The glass transition temperature (Tg) of the (meth)acrylic copolymer (A) is -20°C or lower, preferably -80°C to -30°C, and more preferably -70°C to -50°C. By specifying the Tg of the component (A) within this range, when an adhesive optical component including an adhesive layer composed of the adhesive composition of the present invention is bonded to an adherend, adhesiveness to the adherend can be made to be uniform. Note that the glass transition temperature (Tg) is calculated by the Fox equation.
  • A method for polymerizing the (meth)acrylic copolymer (A) used in the present invention is not particularly limited. The (meth)acrylic copolymer (A) can be polymerized by a known method such as solution polymerization, emulsion polymerization, or suspension polymerization. However, the (meth)acrylic copolymer (A) is preferably polymerized by solution polymerization because when the radiation-curable adhesive composition for an optical component of the present invention is produced by using a mixture containing a copolymer obtained by polymerization, the treatment process can be relatively easily performed in a short time.
  • In general, solution polymerization is conducted by charging a specific organic solvent, a monomer, a polymerization initiator, and, as required, a chain transfer agent in a polymerization tank, and causing a reaction by heating for several hours while stirring in a nitrogen stream or at a reflux temperature of the organic solvent.
  • In this case, at least a portion of the organic solvent, the monomer, and/or the polymerization initiator may be sequentially added.
  • Examples of the organic solvent for polymerization include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, n-propylbenzene, tert-butylbenzene, o-xylene, m-xylene, p-xylene, tetralin, decalin, and aromatic naphtha; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, n-octane, isooctane, n-decane, dipentene, petroleum spirit, petroleum naphtha, and turpentine oil; esters such as ethyl acetate, n-butyl acetate, n-amyl acetate, 2-hydroxyethyl acetate, 2-butoxyethyl acetate, 3-methoxybutyl acetate, and methyl benzoate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, isophorone, cyclohexanone, and methylcyclohexanone; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether; and alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, and tert-butyl alcohol. These organic solvents may be used alone or as a mixture of two or more types of the solvents.
  • Among these organic solvents for polymerization, in polymerization of the (meth)acrylic copolymer (A), organic solvents that do not easily cause chain transfer during the polymerization reaction, for example, esters and ketones are preferably used. In particular, from the standpoint of solubility of the (meth)acrylic copolymer (A), the ease of the polymerization reaction, etc., the use of ethyl acetate, methyl ethyl ketone, acetone, or the like is preferable.
  • As the polymerization initiator, organic peroxides, azo compounds, and the like that can be used in normal solution polymerization can be used.
  • Examples of the organic peroxides include tert-butyl hydroperoxide, cumene hydroxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-isopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, tert-butyl peroxypivalate, 2,2-bis(4,4-di-tert-butylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-tert-amylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-tert-octylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-α-cumylperoxy cyclohexyl)propane, 2,2-bis(4,4-di-tert-butylperoxy cyclohexyl)butane, and 2,2-bis(4,4-di-tert-octylperoxy cyclohexyl)butane. Examples of the azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, and 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile.
  • Among these organic peroxides, in polymerization of the (meth)acrylic copolymer (A), polymerization initiators that do not cause a graft reaction during the polymerization reaction are preferable, and azo compounds are particularly preferable. The amount of polymerization initiator used is usually 0.01 to 2 parts by weight, and preferably 0.1 to 1.0 part by weight based on 100 parts by weight of the total of the monomers.
  • In producing the (meth)acrylic copolymer (A) used in the present invention, a chain transfer agent is not usually used, but may be used as required so long as the object and advantages of the present invention are not impaired.
  • Examples of the chain transfer agent include cyanoacetic acid; alkyl esters of cyanoacetic acid, the alkyl esters having 1 to 8 carbon atoms; bromoacetic acid; alkyl esters of bromoacetic acid, the alkyl esters having 1 to 8 carbon atoms; aromatic compounds such as anthracene, phenanthrene, fluorene, and 9-phenylfluorene; aromatic nitro compounds such as p-nitroaniline, nitrobenzene, dinitrobenzene, p-nitrobenzoic acid, p-nitrophenol, and p-nitrotoluene; benzoquinone derivatives such as benzoquinone and 2,3,5,6-tetramethyl-p-benzoquinone; borane derivatives such as tributylborane; halogenated hydrocarbons such as carbon tetrabromide, carbon tetrachloride, 1,1,2,2-tetrabromoethane, tribromoethylene, trichloroethylene, bromotrichloromethane, tribromomethane, and 3-chloro-1-propene; aldehydes such as chloral and furaldehyde; alkylmercaptans having 1 to 18 carbon atoms; aromatic mercaptans such as thiophenol and toluene mercaptan; mercaptoacetic acid and alkyl esters of mercaptoacetic acid, the alkyl esters having 1 to 10 carbon atoms; hydroxyalkyl mercaptans having 1 to 12 carbon atoms; terpenes such as pinene and terpinolene.
  • The polymerization temperature is usually in the range of about 30°C to 180°C, preferably 40°C to 150°C, and more preferably 50°C to 90°C.
  • Note that, in the case where unreacted monomers are contained in a polymer obtained by a solution polymerization method or the like, the polymer can be purified by a reprecipitation method with methanol or the like to remove the monomers.
  • The radiation-curable adhesive composition for an optical component of the present invention contains 2 to 20 parts by weight of a radiation-curable acrylic compound (B) and 3 to 50 parts by weight of a radiation-curable acrylic compound (C) based on 100 parts by weight of the component (A). The component (B), the component (C), and a hydrogen abstraction-type photopolymerization initiator (D) described below generate crosslinking between the component (A) and the component (B) or the component (C), or between the component (B) and the component (C) by a radical chain reaction when the radiation-curable adhesive composition for an optical component of the present invention is irradiated with radiation such as ultraviolet (UV) rays. As a result, a three-dimensional polymer structure having a very high crosslinking density is formed from the radiation-curable adhesive composition for an optical component. Such a three-dimensional polymer structure has a satisfactory tensile strength even under high-temperature conditions or high-temperature and high-humidity conditions, and thus can contribute to exhibit excellent durability.
  • The radiation-curable acrylic compound (B) is not particularly limited as long as the compound is a radiation-curable (meth)acrylic compound having two (meth)acryloyl groups in its molecule, but is preferably a radiation-curable acrylic compound represented by general formula (3) below.
  • Figure imgb0006
  • (n1 and n2 each independently represent an integer of 0 to 10. R1 and R2 each independently represent a hydrogen atom or a methyl group.
    X represents a linear or branched divalent alkyl group having 1 to 20 carbon atoms, a linear or branched divalent cycloalkyl group having 3 to 20 carbon atoms, an alkoxyl group represented by general formula (4) below, or a diphenylalkyl group represented by general formula (5) below.)
  • Figure imgb0007
  • (n represents an integer of 1 to 20, and m represents an integer of 1 to 10.)


  •         [Chem. 8]   -Ar-CnH2n-Ar-     (5)

  • (n represents an integer of 1 to 20, and Ar represents an aryl group which may have a substituent.)
    When X in the above general formula is a linear or branched divalent alkyl group having 1 to 20 carbon atoms, the number of carbon atoms of the alkyl group is preferably 1 to 16, and more preferably 1 to 12. The alkyl group may be either a linear group or a branched group.
  • Specific examples of the radiation-curable acrylic compound (B) include neopentyl glycol diacrylate represented by structural formula (6) below and 1,9-nonanediol diacrylate represented by structural formula (7) below.
  • Figure imgb0008
  • Figure imgb0009
  • When X in general formula (3) above is a linear or branched divalent cycloalkyl group having 3 to 20 carbon atoms, the number of carbon atoms of the alkyl group is preferably 3 to 18, and more preferably 3 to 14. The cycloalkyl group may be either a linear group or a branched group.
  • A specific example of the radiation-curable acrylic compound (B) is dimethylol tricyclodecane diacrylate represented by structural formula (8) below.
  • Figure imgb0010
  • When X in general formula (3) above is an alkoxyl group represented by general formula (4) above, n in the alkoxyl group preferably represents an integer of 1 to 14, more preferably an integer of 1 to 10, and m preferably represents an integer of 1 to 8, more preferably an integer of 1 to 6.
  • Specifically, examples of the radiation-curable acrylic compound (B) include polypropylene glycol diacrylate represented by structural formula (9) below and polyethylene glycol diacrylate represented by structural formula (10) below.
  • Figure imgb0011
    Figure imgb0012
  • Figure imgb0013
  • When X in general formula (3) above is a diphenylalkyl group represented by general formula (5) above, n in the diphenylalkyl group is preferably 1 to 12, and more preferably 1 to 6.
  • Specifically, examples of the radiation-curable acrylic compound (B) include bisphenol A polyethylene glycol diacrylate represented by structural formula (11) below and α-phenyl-ω-acryloyloxypolyoxyethylene-formaldehyde polycondensate represented by structural formula (12) below. These compounds may be used alone or in combination.
  • Figure imgb0014
  • (m + n = 4)
  • Figure imgb0015
  • (m + n = 4)
    The amount of component (B) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 2 to 20 parts by weight, preferably 2 to 18 parts by weight, and more preferably 2 to 16 parts by weight based on 100 parts by weight of the component (A).
  • The radiation-curable acrylic compound (C) is represented by general formula (1) or (2) below.
  • Figure imgb0016
  • m is an integer of 1 to 5.
    a is an integer of 1 or more, b is an integer of 0 or more, c is an integer of 0 or more, the sum of a and b is 3 to 10, and the condition a + b + c = 2m + 2 is satisfied.
    n is an integer of 2 to 6.
    R1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms.
    R2 represents hydrogen or a methyl group.
    R3 represents a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent.)
  • Figure imgb0017
  • (m is an integer of 1 to 5.
    a is an integer of 1 or more, b is an integer of 0 or more, c is an integer of 0 or more, the sum of a and b is 3 to 10, and the condition a + b + c = 2m + 1 is satisfied.
    n is an integer of 2 to 6.
    R1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms.
    R2 represents hydrogen or a methyl group.
    R3 and R4 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent.)
    In R3 in general formula (1) above and R3 and R4 in general formula (2) above, the hydrocarbon group is not particularly limited as long as the hydrocarbon group is a functional group consisting of carbon atoms and hydrogen atoms. Examples thereof include aliphatic hydrocarbon groups such as alkyl groups, alkenyl groups, and alkynyl groups; alicyclic hydrocarbon groups such as cycloalkyl groups, cycloalkenyl groups, and cycloalkynyl groups; and aromatic hydrocarbon groups such as a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • In R3 in general formula (1) above and R3 and R4 in general formula (2) above, the oxygen-containing functional group is not particularly limited as long as the functional group contains an oxygen atom. Specific examples thereof include a carboxyl group, a hydroxyl group, an alcohol group, a carbonyl group, a quinone group, a lactone group, an epoxy group, a ketone group, acrylic acid, a nitro group, a sulfone group, and phosphoric acid. Examples thereof further include anhydrides obtained by condensation of compounds having any of these groups, and esterified products and alkali salts of such compounds.
  • In R3 in general formula (1) above and R3 and R4 in general formula (2) above, the nitrogen-containing functional group is not particularly limited as long as the functional group contains a nitrogen atom. Examples thereof include an amino group, an amide group, an imino group, an imidazole group, a nitrile group, and a pyridyl group.
  • The radiation-curable acrylic compound (C) is not particularly limited as long as the compound (C) is a compound represented by general formula (1) or (2) above. Examples of the radiation-curable acrylic compound (C) include acrylic acid ester of dipentaerythritol caprolactone represented by structural formula (13) below, acrylic acid ester of pentaerythritol ethylene oxide represented by structural formula (14) below, and acrylic acid ester of trimethylolpropane ethylene oxide represented by structural formula (15) below.
  • Figure imgb0018
  • Figure imgb0019
  • (a is an integer of 1 to 4, and the condition a + b = 4 is satisfied.)
  • Figure imgb0020
  • (m = 1, a = 3, b = 0, or m = 3, a = 1, b = 2)
    The amount of component (C) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 3 to 50 parts by weight, preferably 3 to 40 parts by weight, and more preferably 3 to 30 parts by weight based on 100 parts by weight of the component (A).
  • The total amount of component (B) and component (C) in the radiation-curable adhesive composition for an optical component of the present invention is 5 to 60 parts by weight, preferably 5 to 50 parts by weight, and more preferably 5 to 40 parts by weight based on 100 parts by weight of the component (A). By controlling the total amount in this range, it is possible to impart a high tensile strength necessary for improving durability, and moderate flexibility necessary for maintaining stable adhesion between an optical component and an adherend.
  • In addition, the amount of component (C) mixed in the radiation-curable adhesive composition for an optical component of the present invention is preferably larger than the amount of component (B) mixed therein. Furthermore, a quantitative ratio of the amount of component (C) mixed to the amount of component (B) mixed (the amount of component (C) mixed/the amount of component (B) mixed) is preferably 1.5 to 30, and more preferably 1.5 to 20. By controlling the quantitative ratio of the amount of component (C) mixed to the amount of component (B) mixed (the amount of component (C) mixed/the amount of component (B) mixed) in this range, it is possible to impart a high tensile strength necessary for improving durability, and moderate flexibility necessary for maintaining stable adhesion between an optical component and an adherend.
  • The radiation-curable adhesive composition for an optical component of the present invention contains 0.1 to 10 parts by weight of the hydrogen abstraction-type photopolymerization initiator (D) based on 100 parts by weight of the component (A) for the purpose of curing the adhesive composition by radiation such as ultraviolet rays.
  • Examples of the component (D) include acetophenones such as acetophenone, methoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, α-hydroxy-α,α'-dimethylacetophenone, 2-hydroxy-2-cyclohexylacetophenone, and 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1; benzoin; benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl butyl ether; ketones such as benzophenone, 2-chlorobenzophenone, p,p'-dichlorobenzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone, and 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone; thioxanthones such as thioxanthone, 2-chlorothioxanthone, and 2-methylthioxanthone; phosphine oxides such as bisacylphosphine oxide and benzoylphosphine oxide; ketals such as benzyl dimethyl ketal; and quinones such as camphane-2,3-dione and phenanthrenequinone. These may be used alone or in combination.
  • The amount of component (D) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 0.1 to 10 parts by weight, preferably 0.1 to 8 parts by weight, and more preferably 0.1 to 6 parts by weight based on 100 parts by weight of the component (A).
  • The radiation-curable adhesive composition for an optical component of the present invention contains 0.01 to 10 parts by weight of an isocyanate crosslinking agent (E) having two or more isocyanate groups in its molecule.
  • The isocyanate crosslinking agent (E) is not particularly limited as long as the crosslinking agent (E) is an isocyanate crosslinking agent having, in its molecule, two or more isocyanate groups, which can be crosslinked with hydroxyl groups of the (meth)acrylic copolymer (A) at room temperature or under heating. Examples thereof include isocyanate monomers such as tolylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, and hydrogenated diphenylmethane diisocyanate; and isocyanate compounds and isocyanurate compounds obtained by adding any of these compounds to a divalent or higher-valent alcohol compound such as trimethylolpropane.
  • Examples thereof further include urethane prepolymer isocyanates obtained by an addition reaction between an isocyanate compound and a known polyether polyol, polyester polyol, acrylic polyol, polybutadiene polyol, polyisoprene polyol, or the like.
  • The amount of component (E) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 0.1 to 10 parts by weight, preferably 0.1 to 8 parts by weight, and more preferably 0.1 to 6 parts by weight based on 100 parts by weight of the component (A). When the component (E) is contained within this range, the gel fraction after the crosslinking of the adhesive composition can be easily controlled.
  • The radiation-curable adhesive composition for an optical component of the present invention contains 0.01 to 3 parts by weight of a silane compound (F) having an organic functional group having reactivity with a carboxyl group based on 100 parts by weight of the component (A). Examples of the organic functional group that can react (couple) with a carboxyl group in the molecule of the (meth)acrylic copolymer (A) include an epoxy group, an amino group, a vinyl group, and an oxazoline group.
  • Specific examples of the component (F) include vinyltrimethoxysilane, vinyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycidoxypropylmethyldiethoxysilane.
  • The amount of component (F) mixed in the radiation-curable adhesive composition for an optical component of the present invention is 0.01 to 3 parts by weight, preferably 0.01 to 2 parts by weight, and more preferably 0.01 to 1.5 parts by weight based on 100 parts by weight of the component (A). When the component (F) is contained within this range, the gel fraction after the crosslinking of the adhesive composition can be easily controlled.
  • The gel fraction of the radiation-curable adhesive composition for an optical component of the present invention is preferably 80% to 99%. A gel fraction in the above range can impart a high tensile strength necessary for improving durability.
  • The above-mentioned gel fraction can be determined as follows. First, 0.1 g of an adhesive composition is placed in a sample bottle, 30 cc of ethyl acetate is added thereto, and the sample bottle is shaken for 24 hours. The content in the sample bottle is then filtered with a 200-mesh stainless steel screen, and the residue on the screen is dried at 100°C for two hours, and a dry weight thereof is measured. The gel fraction is determined by formula [I] below. Gel fraction % = dry weight / weight of placed adhesive × 100
    Figure imgb0021

    An adhesive optical component according to the present invention includes an optical component and an adhesive layer provided on one surface or both surfaces of the optical component, the adhesive layer being composed of the above-described radiation-curable adhesive composition for an optical component.
  • Herein, the optical component is used in various image display devices such as a liquid crystal display, a plasma display, and an organic EL display. Examples of the optical component include optical films such as a polarizing film, a retardation film, a luminance-improving film, a hard coat film, an elliptically polarizing film, an antireflection film, a light diffusion film, an anti-glare film, an antistatic film, and an optical compensation film; and optical plates such as a polarizing plate, a retardation plate, a luminance-improving plate, an elliptically polarizing plate, an antireflection plate, a light diffusion plate, an anti-glare plate, an antistatic plate, and an optical compensation plate.
  • The adhesive optical component may be produced by applying the radiation-curable adhesive composition for an optical component onto one surface or both surfaces of an optical component by a gravure coater, a Mayer bar coater, an air knife coater, a roll coater, or the like, exposing the adhesive composition applied onto the optical component to radiation, drying and crosslinking the adhesive composition at room temperature or by heating. Alternatively, the adhesive optical component may be produced by forming an adhesive layer on a release film, transferring this adhesive layer to the optical component, and then performing radiation irradiation, drying, and crosslinking.
  • Herein, examples of the radiation include ultraviolet rays, laser beams, alpha rays, beta rays, gamma rays, X rays, and electron beams. From the standpoint of good controllability and handleability, and the cost, ultraviolet rays are preferably used. Examples of a light source of the ultraviolet rays include a high-pressure mercury vapor lamp, a microwave-excited lamp, and a chemical lamp.
  • The irradiation time of the ultraviolet rays varies depending on the thickness of the adhesive composition applied, but is usually 10 seconds to 5 minutes, and preferably 30 seconds to 3 minutes.
  • Before the use of the adhesive optical component, a release film may be stacked on the upper surface of the adhesive layer in order to protect the adhesive layer.
  • The thickness of the adhesive layer is not particularly limited, but is usually 1 to 500 µm, and preferably about 5 to 300 µm.
  • [EXAMPLES]
  • The present invention will be described more specifically by way of Examples, but the present invention is not limited to the Examples.
  • (1) Raw materials of radiation-curable adhesive composition for optical component
  • Components contained in radiation-curable adhesive compositions for an optical component (hereinafter, simply referred to as "adhesive composition") used in adhesive polarizing films of Examples and Comparative Examples are as follows, and component ratios thereof are shown in Table 1. Note that numerical values in the table represent parts by weight on a solid content (non-volatile content) basis.
  • (A) Monomer components constituting acrylic polymer A (A-1) n-Butyl acrylate (BA) (A-2) Acrylic acid (AA) (A-3) 2-Hydroxyethyl acrylate (HEA)
  • (B-1) α-Phenyl-ω-acryloyloxypolyoxyethylene-formaldehyde polycondensate (KAYARAD R-712; manufactured by Nippon Kayaku Co., Ltd.)
  • Figure imgb0022
  • (m + n = 4) (B-2) Neopentyl glycol diacrylate (KAYARAD NPGDA; manufactured by Nippon Kayaku Co., Ltd.)
  • Figure imgb0023
  • (B-3) Polypropylene glycol diacrylate (APG-700; manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Figure imgb0024
  • (C-1) Acrylic acid ester of dipentaerythritol caprolactone (KAYARAD DPCA-60; manufactured by Nippon Kayaku Co., Ltd.)
  • Figure imgb0025
  • (C-2) Acrylic acid ester of pentaerythritol ethylene oxide (KAYARAD RP-1040; manufactured by Nippon Kayaku Co., Ltd.)
  • Figure imgb0026
  • (a is an integer of 1 to 4, and the condition a + b = 4 is satisfied.)
    (C-3) Acrylic acid ester of trimethylolpropane ethylene oxide (KAYARAD THE-330; manufactured by Nippon Kayaku Co., Ltd.)
  • Figure imgb0027
  • (m = 1, a = 3, b = 0, or m = 3, a = 1, b = 2)
    (C-4) Dipentaerythritol hexaacrylate (KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.)
  • Figure imgb0028
  • (D-1) IRGACURE 500 (1-hydroxy-cyclohexyl-phenyl ketone:benzophenone = 1:1 (hydrogen abstraction-type photopolymerization initiator); manufactured by Ciba Japan K.K.)
    (D-2) IRGACURE 819 (bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (non-hydrogen abstraction-type photopolymerization initiator); manufactured by Ciba Japan K.K.)
    (E) CORONATE L (polyisocyanate compound; manufactured by Nippon Polyurethane Industry Co., Ltd.)
    (F) KBM-403 (γ-glycidoxypropyltrimethoxysilane; manufactured by Shin-Etsu Chemical Co., Ltd.)
  • (2) Production of acrylic polymer solution A
  • First, 281.4 parts by weight of butyl acrylate (BA), 18 parts by weight of acrylic acid (AA), 0.6 parts by weight of 2-hydroxyethyl acrylate (2-HEA), and 300 parts by weight of ethyl acetate were charged in a reaction vessel equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen-introducing tube. Furthermore, 0.1 parts by weight of azobisisobutyronitrile (AIBN) was added to the reaction vessel, and air in this reaction vessel was replaced with nitrogen gas.
  • Next, the temperature of this reaction vessel was increased to 60°C while stirring in a nitrogen atmosphere, and the reaction mixture was allowed to react for four hours. After the completion of the reaction, the reaction mixture was diluted with ethyl acetate to obtain an acrylic polymer solution A (acrylic polymer concentration: 40% by mass). An acrylic polymer contained in the acrylic polymer solution A had a weight-average molecular weight of 1,500,000, and a glass transition temperature of -33°C.
  • (3) Examples and Comparative Examples [EXAMPLE 1]
  • As shown in Table 1, 10 parts by weight of KAYARAD R-712, 20 parts by weight of KAYARAD DPCA-60, 4 parts by weight of IRGACURE 500, 0.5 parts by weight of CORONATE L, and 0.4 parts by weight of KBM-403 were added to 100 parts by weight of the acrylic polymer contained in the acrylic polymer solution A, and these components were mixed to obtain an adhesive composition 1.
  • The prepared adhesive composition 1 was applied onto a polyester film (PET3811 manufactured by Lintec Corporation), which has been subjected to a release treatment, to form an adhesive layer. The polyester film was further dried at 80°C for two minutes in a drying oven to obtain an adhesive sheet 1 including the adhesive layer having a thickness of 25 µm after drying.
  • The prepared adhesive sheet 1 was bonded to one surface of a polarizing film (composed of polyvinyl alcohol). Ultraviolet irradiation was conducted from the adhesive layer side of the adhesive sheet 1 using a UV irradiation device (light source: high-pressure mercury vapor lamp) with a conveyor at a lamp output of 160 W and at an irradiation distance of 10 cm while adjusting the conveyor speed so that the integrated amount of light was 200 mJ/cm 2 After the UV irradiation, the polarizing film onto which the adhesive sheet 1 was bonded was aged in a dark place at 23°C and at a humidity of 50% RH (relative humidity) for seven days. Thus, an adhesive polarizing film 1 was prepared.
  • Next, physical properties of the adhesive polarizing film 1 were evaluated in accordance with "(4) Evaluation conditions and criteria for physical property evaluation" described below. The results are shown in Table 2.
  • [EXAMPLE 2]
  • An adhesive composition 2 and an adhesive polarizing film 2 were prepared as in Example 1 except that KAYARAD R-712 was changed to KAYARAD NPGDA. The physical properties of the prepared adhesive polarizing film 2 were evaluated as in Example 1. The results are shown in Table 2.
  • [EXAMPLE 3]
  • An adhesive composition 3 and an adhesive polarizing film 3 were prepared as in Example 1 except that KAYARAD R-712 was changed to APG-700. The physical properties of the prepared adhesive polarizing film 3 were evaluated as in Example 1. The results are shown in Table 2.
  • [EXAMPLE 4]
  • An adhesive composition 4 and an adhesive polarizing film 4 were prepared as in Example 1 except that KAYARAD DPCA-60 was changed to KAYARAD RP-1040. The physical properties of the prepared adhesive polarizing film 4 were evaluated as in Example 1. The results are shown in Table 2.
  • [EXAMPLE 5]
  • An adhesive composition 5 and an adhesive polarizing film 5 were prepared as in Example 2 except that KAYARAD DPCA-60 was changed to KAYARAD RP-1040. The physical properties of the prepared adhesive polarizing film 5 were evaluated as in Example 2. The results are shown in Table 2.
  • [EXAMPLE 6]
  • An adhesive composition 6 and an adhesive polarizing film 6 were prepared as in Example 3 except that KAYARAD DPCA-60 was changed to KAYARAD RP-1040. The physical properties of the prepared adhesive polarizing film 6 were evaluated as in Example 3. The results are shown in Table 2.
  • [EXAMPLE 7]
  • An adhesive composition 7 and an adhesive polarizing film 7 were prepared as in Example 1 except that KAYARAD DPCA-60 was changed to KAYARAD THE-330. The physical properties of the prepared adhesive polarizing film 7 were evaluated as in Example 1. The results are shown in Table 2.
  • [EXAMPLE 8]
  • An adhesive composition 8 and an adhesive polarizing film 8 were prepared as in Example 2 except that KAYARAD DPCA-60 was changed to KAYARAD THE-330. The physical properties of the prepared adhesive polarizing film 8 were evaluated as in Example 2. The results are shown in Table 2.
  • [EXAMPLE 9]
  • An adhesive composition 9 and an adhesive polarizing film 9 were prepared as in Example 3 except that KAYARAD DPCA-60 was changed to KAYARAD THE-330. The physical properties of the prepared adhesive polarizing film 9 were evaluated as in Example 3. The results are shown in Table 2.
  • [EXAMPLE 10]
  • An adhesive composition 10 and an adhesive polarizing film 10 were prepared as in Example 1 except that the amount of KAYARAD R-712 mixed was changed from 1.0 part by weight to 16 parts by weight. The physical properties of the prepared adhesive polarizing film 10 were evaluated as in Example 1. The results are shown in Table 2.
  • [EXAMPLE 11]
  • An adhesive composition 11 and an adhesive polarizing film 11 were prepared as in Example 1 except that the amount of KAYARAD DPCA-60 mixed was changed from 20 parts by weight to 30 parts by weight. The physical properties of the prepared adhesive polarizing film 11 were evaluated as in Example 1. The results are shown in Table 2.
  • [EXAMPLE 12]
  • An adhesive composition 12 and an adhesive polarizing film 12 were prepared as in Example 8 except that the amount of IRGACURE 500 mixed was changed from 4.0 parts by weight to 6.0 parts by weight. The physical properties of the prepared adhesive polarizing film 12 were evaluated as in Example 8. The results are shown in Table 2.
  • [EXAMPLE 13]
  • An adhesive composition 13 and an adhesive polarizing film 13 were prepared as in Example 8 except that the amount of CORONATE L mixed was changed from 0.5 parts by weight to 6.0 parts by weight. The physical properties of the prepared adhesive polarizing film 13 were evaluated as in Example 8. The results are shown in Table 2.
  • [EXAMPLE 14]
  • An adhesive composition 14 and an adhesive polarizing film 14 were prepared as in Example 8 except that the amount of KBM-403 mixed was changed from 0.4 parts by weight to 1.0 part by weight. The physical properties of the prepared adhesive polarizing film 14 were evaluated as in Example 8. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 1]
  • An adhesive composition 15 and an adhesive polarizing film 15 were prepared as in Example 1 except that neither KAYARAD R-712 nor KAYARAD DPCA-60 was incorporated. The physical properties of the prepared adhesive polarizing film 15 were evaluated as in Example 1. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 2]
  • An adhesive composition 16 and an adhesive polarizing film 16 were prepared as in Example 1 except that neither KAYARAD R-712 nor KAYARAD DPCA-60 was incorporated, and that the amount of CORONATE L mixed was changed from 0.5 parts by weight to 4.0 parts by weight. The physical properties of the prepared adhesive polarizing film 16 were evaluated as in Example 1. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 3]
  • An adhesive composition 17 and an adhesive polarizing film 17 were prepared as in Example 2 except that 10 parts by weight of KAYARAD NPGDA and 20 parts by weight of KAYARAD DPCA-60 were changed to 30 parts by weight of KAYARAD NPGDA and 10 parts by weight of KAYARAD DPCA-60, respectively. The physical properties of the prepared adhesive polarizing film 17 were evaluated as in Example 2. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 4]
  • An adhesive composition 18 and an adhesive polarizing film 18 were prepared as in Example 3 except that KAYARAD DPCA-60 was changed to KAYARAD DPHA. The physical properties of the prepared adhesive polarizing film 18 were evaluated as in Example 3. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 5]
  • An adhesive composition 19 and an adhesive polarizing film 19 were prepared as in Example 2 except that IRGACURE 500 was changed to IRGACURE 819. The physical properties of the prepared adhesive polarizing film 19 were evaluated as in Example 2. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 6]
  • An adhesive composition 20 and an adhesive polarizing film 20 were prepared as in Example 2 except that the amount of KAYARAD DPCA-60 mixed was changed from 20 parts by weight to 55 parts by weight. The physical properties of the prepared adhesive polarizing film 20 were evaluated as in Example 2. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 7]
  • An adhesive composition 21 and an adhesive polarizing film 21 were prepared as in Example 6 except that the amount of IRGACURE 500 mixed was changed from 4.0 parts by weight to 11 parts by weight. The physical properties of the prepared adhesive polarizing film 21 were evaluated as in Example 6. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 8]
  • An adhesive composition 22 and an adhesive polarizing film 22 were prepared as in Example 6 except that IRGACURE 500 was not incorporated. The physical properties of the prepared adhesive polarizing film 22 were evaluated as in Example 6. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 9]
  • An adhesive composition 23 and an adhesive polarizing film 23 were prepared as in Example 7 except that the amount of CORONATE L mixed was changed from 0.5 parts by weight to 11 parts by weight. The physical properties of the prepared adhesive polarizing film 23 were evaluated as in Example 7. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 10]
  • An adhesive composition 24 and an adhesive polarizing film 24 were prepared as in Example 7 except that CORONATE L was not incorporated. The physical properties of the prepared adhesive polarizing film 24 were evaluated as in Example 7. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 11]
  • An adhesive composition 25 and an adhesive polarizing film 25 were prepared as in Example 1 except that the amount of KBM-403 mixed was changed from 0.4 parts by weight to 4.0 parts by weight. The physical properties of the prepared adhesive polarizing film 25 were evaluated as in Example 1. The results are shown in Table 2.
  • [COMPARATIVE EXAMPLE 12]
  • An adhesive composition 26 and an adhesive polarizing film 26 were prepared as in Example 1 except that KBM-403 was not incorporated. The physical properties of the prepared adhesive polarizing film 26 were evaluated as in Example 1. The results are shown in Table 2.
  • [Table 1] Table 1
    (parts by weight)
    Adhesive composition Acrylic polymer A KAYARAD R-712 NPGDA APG-700 KAYARAD DPCA-60 KAYARAD RP-1040 KAYARAD THE-330 KAYARAD DPHA IRGACURE 500 IRGACURE 819 CORONATE L KBM-403
    Example 1 1 100 10 20 4.0 0.5 0.4
    Example 2 2 100 10 20 4.0 0.5 0.4
    Example 3 3 100 10 20 4.0 0.5 0.4
    Example 4 4 100 10 20 4.0 0.5 0.4
    Example 5 5 100 10 20 4.0 0.5 0.4
    Example 6 6 100 10 20 4.0 0.5 0.4
    Example 7 7 100 10 20 4.0 0.5 0.4
    Example 8 8 100 10 20 4.0 0.5 0.4
    Example 9 9 100 10 20 4.0 0.5 0.4
    Example 10 10 100 16 20 4.0 0.5 0.4
    Example 11 11 100 10 30 4.0 0.5 0.4
    Example 12 12 100 10 20 6.0 0.5 0.4
    Example 13 13 100 10 20 4.0 6.0 0.4
    Example 14 14 100 10 20 4.0 0.5 1.0
    C. Example 1 15 100 4.0 0.5 0.4
    C. Example 2 16 100 4.0 4.0 0.4
    C. Example 3 17 100 30 10 4.0 0.5 0.4
    C. Example 4 18 100 10 20 4.0 0.5 0.4
    C. Example 5 19 100 10 20 4.0 0.5 0.4
    C. Example 6 20 100 10 55 4.0 0.5 0.4
    C. Example 7 21 100 10 20 11 0.5 0.4
    C. Example 8 22 100 10 20 0.5 0.4
    C. Example 9 23 100 10 20 4.0 11 0.4
    C. Example 10 24 100 10 20 4.0 0.4
    C. Example 11 25 100 10 20 4.0 0.5 4.0
    C. Example 12 26 100 10 20 4.0 0.5
    C. Example: Comparative Example
  • (4) Evaluation conditions and criteria for physical property evaluation <Light leakage resistance test> (Evaluation method)
  • Adhesive polarizing films (310 × 385 mm) were bonded to a liquid crystal panel having a size of 19 inches in a cross Nicol state and left to stand in an atmosphere of 60°C and 95% RH (relative humidity) for 240 hours and further in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. Subsequently, the test specimen taken from the atmosphere to a room was arranged in a cross Nicol state. The test specimen was placed in a light box at a color temperature of 5,000 K, and whether light leakage occurred or not was examined by visual observation and by using a digital camera. The result was evaluated on the basis of four-level evaluation criteria described below.
  • (Evaluation criteria)
    1. A: No light leakage was observed.
    2. B: Light leakage was hardly observed.
    3. C: Light leakage was observed in some degree.
    4. D: Light leakage was noticeably observed.
    <Durability test (85°C)> (Evaluation method)
  • An adhesive polarizing film (310 × 385 mm) was bonded to non-alkali-treated glass having a size of 19 inches and left to stand in an atmosphere of 85°C for 240 hours and further in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. Subsequently, the non-alkali-treated glass onto which the adhesive polarizing film was bonded was taken from the atmosphere to a room. A change in appearance such as foaming of the adhesive polarizing film was visually observed. The result was evaluated on the basis of four-level evaluation criteria described below.
  • (Evaluation criteria)
    1. A: No change in appearance such as foaming was observed.
    2. B: A change in appearance such as foaming was hardly observed.
    3. C: A change in appearance such as foaming was observed in some degree.
    4. D: A change in appearance such as foaming was noticeably observed.
    <Durability test (60°C/95% RH (relative humidity))> (Evaluation method)
  • An adhesive polarizing film (310 × 385 mm) was bonded to non-alkali-treated glass having a size of 19 inches and left to stand in an atmosphere of 60°C and 95% RH (relative humidity) for 240 hours and further in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. Subsequently, the non-alkali-treated glass onto which the adhesive polarizing film was bonded was taken from the atmosphere to a room. A change in appearance such as detachment or foaming of the adhesive polarizing film was visually observed. The result was evaluated on the basis of four-level evaluation criteria described below.
  • (Evaluation criteria)
    1. A: No change in appearance such as detachment or foaming was observed.
    2. B: A change in appearance such as detachment or foaming was hardly observed.
    3. C: A change in appearance such as detachment or foaming was observed in some degree.
    4. D: A change in appearance such as detachment or foaming was noticeably observed.
    <Test of adhesive force to glass>
  • An adhesive polarizing film (length: 75 mm × width: 25 mm) was bonded to a non-alkali-treated glass plate (325 × 400 mm), and pressure-bonded by rolling a 2-kg roller therealong in a reciprocating manner three times. The glass plate was then left to stand in an atmosphere of 23°C and 50% RH (relative humidity) for two hours. An adhesive force (units: N/25 mm) to glass was measured by a 90-degree peel test (peeling speed: 300 mm/min). This measurement was conducted using two adhesive polarizing films for each type of film. The average of the two measured values was defined as an adhesive force to glass of the adhesive polarizing film.
  • <Probe tack test>
  • In accordance with JIS Z0237, an adhesive polarizing film (length: 75 mm × width: 25 mm) was brought into contact with a columnar probe of a probe-tack device for probe tack for one second while applying a constant load in an atmosphere of 23°C and 50% RH (relative humidity). Subsequently, a force (N/cm2) necessary for peeling the probe from the adhesive surface of the test specimen in the vertical direction was measured.
  • As for the measurement conditions, the diameter of the columnar probe was 5 mm, the contact speed and the peeling speed were each 10 ± 0.1 mm per second, the contact load was 0.98 ± 0.01 N/cm2, and the contact time was 1.0 ± 0.1 seconds.
  • This measurement was conducted using ten adhesive polarizing films for each type of film. The average of the ten measured values (probe-tack values) was defined as the result. It is possible to determine that when the probe-tack value is 300 to 500 (N/cm2), the adhesive subjected to the measurement has moderate flexibility necessary for maintaining stable adhesion between the polarizing film and the adherend.
  • <Shear load test>
  • A marked line was drawn at a position 10 mm from an end in a longitudinal direction of an adhesive polarizing film (length; 100 mm × width; 10 mm). The adhesive polarizing film was bonded to non-alkali-treated glass (length; 50 mm × width; 50 mm, mass; 0.2 kg) using the marked line as a marker such that the bonding area was 10 mm X 10 mm. Thus, a sample for measuring a shear load was prepared.
  • The sample for measuring a shear load was treated in an autoclave for two hours under the conditions of 50°C and 5 kgf/cm2, and then left to stand for 24 hours in an atmosphere of 23°C and 50% RH (relative humidity).
  • Next, the adhesive polarizing film adhered to the sample for measuring a shear load was drawn at a shear rate of 0.1 mm/min in a shear direction using a tensile testing machine (manufactured by Instron), and the load was measured. A load when the displacement of the bonded portion between the adhesive polarizing film and the non-alkali-treated glass became 1 mm or when the adhesive polarizing film was detached from the glass was defined as a measured value (maximum shear load) (N).
  • This measurement was conducted using two adhesive polarizing films for each type of film. The average of the two measured values was defined as the result. Note that the magnitude of the maximum shear load and the magnitude of the tensile strength have a positive correlation.
  • [Table 2] Table 2
    Adhesive polarizing film Evaluation
    Light leakage resistance Durability
    (85°C)
    Durability
    (60°C/95% RH)
    Adhesive force to glass
    (g/25 mm)
    Probe tack
    (N/cm2)
    Shear load
    (N)
    Example 1 1 A A A 300 345 92.5
    Example 2 2 A A A 240 315 88.5
    Example 3 3 A A A 330 325 89.8
    Example 4 4 B A A 515 475 90.9
    Example 5 5 B A A 460 420 89.9
    Example 6 6 B A A 450 410 89.3
    Example 7 7 A A A 560 400 85.7
    Example 8 8 B A A 490 440 86.8
    Example 9 9 B A A 510 460 84.8
    Example 10 10 A A A 380 395 88.4
    Example 11 11 A A A 270 305 94.5
    Example 12 12 A A B 350 340 89.6
    Example 13 13 A A A 340 305 91.1
    Example 14 14 B A A 360 380 84.9
    Comparative Example 1 15 D B B 1,300 590 8.3
    Comparative Example 2 16 C C C 910 540 70.6
    Comparative Example 3 17 C C D 780 495 67.6
    Comparative Example 4 18 C C D 300 165 81.3
    Comparative Example 5 19 D C D 500 215 51.5
    Comparative Example 6 20 B C D 150 115 92.4
    Comparative Example 7 21 B D D 250 220 15.7
    (detached)
    Comparative Example 8 22 D C D 250
    (cohesive failure)
    625 6.7
    Comparative Example 9 23 B C C 260 190 88.4
    Comparative Example 10 24 B C C 590 485 84.7
    Comparative Example 11 25 C B C 175 175 36.2
    (detached)
    Comparative Example 12 26 B C D 335 360 27.8
    (detached)
  • As is apparent from Table 2, all the adhesive polarizing films (adhesive polarizing films 1 to 14) produced by using adhesive compositions of the present invention exhibited a certain degree of adhesive force (adhesive force to glass). In addition, from the results of the shear load test and the probe tack test, it was confirmed that both a high tensile strength and moderate flexibility could be exhibited. Furthermore, changes in appearance under the high-temperature condition (85°C) and the high-temperature and high-humidity condition (60°C/95% RH) were small, and light leakage under the high-temperature and high-humidity condition was also small. Thus, it was confirmed that excellent light leakage resistance and durability could be exhibited.
  • In contrast, in the adhesive polarizing films (adhesive polarizing films 15, 16, and 18) produced by using adhesive compositions that did not contain at least one of the components (B) and (C) (Comparative Examples 1, 2, and 4), it was found that, from the results of the shear load test and the probe tack test, it was not possible to achieve a combination of a high tensile strength and moderate flexibility. Furthermore, it was confirmed that the adhesive polarizing films 1 to 14 could achieve a combination of excellent light leakage resistance and durability (under the high-temperature condition and the high-temperature and high-humidity condition), whereas the adhesive polarizing films 15, 16, and 18 could not exhibit excellent light leakage resistance or durability (under the high-temperature condition and the high-temperature and high-humidity condition), or a satisfactory combination of light leakage resistance and durability could not be achieved even when one of these characteristics was excellent.
  • It was also confirmed that the adhesive polarizing films (adhesive polarizing films 17 and 20) in the case where the amount of component (B) mixed was larger than 20 parts by weight (Comparative Example 3) and the case where the amount of component (C) mixed was larger than 50 parts by weight and the total amount of component (B) and component (C) was larger than 60 parts by weight (Comparative Example 6) could not achieve a combination of a high tensile strength and moderate flexibility. It was also confirmed that, in the adhesive polarizing films 17 and 20, excellent light leakage resistance or durability (under the high-temperature condition and the high-temperature and high-humidity condition) could not be exhibited, or a satisfactory combination of light leakage resistance and durability could not be achieved even when one of these characteristics was excellent.
  • Focusing on the photopolymerization initiator, it was confirmed that the adhesive polarizing films (adhesive polarizing films 19, 21, and 22) in the case where a non-hydrogen abstraction-type photopolymerization initiator was used (Comparative Example 5), the case where the amount of hydrogen abstraction-type photopolymerization initiator mixed was larger than 10 parts by weight (Comparative Example 7), and the case where no hydrogen abstraction-type photopolymerization initiator was incorporated (Comparative Example 8) could not achieve a combination of a high tensile strength and moderate flexibility. It was also confirmed that, in the adhesive polarizing films 19, 21, and 22, excellent light leakage resistance or durability (under the high-temperature condition and the high-temperature and high-humidity condition) could not be exhibited, or a satisfactory combination of light leakage resistance and durability could not be achieved even when one of these characteristics was excellent.
  • Focusing on the isocyanate crosslinking agent, the adhesive polarizing films (adhesive polarizing films 23 and 24) in the case where the amount of isocyanate crosslinking agent mixed was larger than 10 parts by weight (Comparative Example 9) and the case where no isocyanate crosslinking agent was incorporated (Comparative Example 10) could not achieve a combination of a high tensile strength and moderate flexibility, though the adhesive polarizing films exhibited good light leakage resistance. Furthermore, durability (under the high-temperature condition and the high-temperature and high-humidity condition) of these adhesive polarizing films was inferior to that of the adhesive polarizing films 1 to 14.
  • Focusing on the silane compound, the adhesive polarizing films (adhesive polarizing films 25 and 26) in the case where the amount of silane compound mixed was larger than 3 parts by weight (Comparative Example 11) and the case where no silane compound was incorporated (Comparative Example 12) could not achieve a combination of a high tensile strength and moderate flexibility, though the adhesive polarizing films exhibited good light leakage resistance or excellent durability (under the high-temperature condition). Furthermore, durability under the high-temperature and high-humidity condition of these adhesive polarizing films was inferior to that of the adhesive polarizing films 1 to 14.
  • Industrial Applicability
  • According to the present invention, it is possible to provide a radiation-curable adhesive composition for an optical component that can exhibit a high tensile strength and flexibility suitable for enabling stable adhesion between the optical component and an adherend when light-cured, and that can exhibit excellent durability even under high-temperature conditions and high-temperature and high-humidity conditions.
  • It is also possible to provide an adhesive optical component that can sufficiently prevent light leakage even under high-temperature conditions and high-temperature and high-humidity conditions and that exhibits excellent durability, specifically, that can suppress occurrence of detachment, foaming, and the like and can suppress a change in appearance because the adhesive optical component includes the above adhesive composition.

Claims (6)

  1. A radiation-curable adhesive composition for an optical component comprising:
    100 parts by weight of a (meth)acrylic copolymer (A) composed of 80% to 99.8% by mass of an alkyl (meth)acrylate monomer (a1), 0.1% to 10% by mass of a carboxyl-group-containing (meth)acrylic monomer (a2), and 0.1% to 10% by mass of a hydroxyl-group-containing (meth)acrylic monomer (a3) (where the total amount of (a1) to (a3) is 100% by mass), the (meth)acrylic copolymer (A) having a glass transition temperature of -20°C or lower and a weight-average molecular weight of 500,000 to 2,000,000;
    2 to 20 parts by weight of a radiation-curable acrylic compound (B) having two (meth)acryloyl groups in its molecule;
    3 to 50 parts by weight of a radiation-curable acrylic compound (C) represented by general formula (1) or (2) below:
    Figure imgb0029
    Figure imgb0030
    (where m is an integer of 1 to 5,
    a is an integer of 1 or more, b is an integer of 0 or more, c is an integer of 0 or more, the sum of a and b is 3 to 10, and the condition a + b + c = 2m + 2 is satisfied,
    n is an integer of 2 to 6,
    R1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms,
    R2 represents hydrogen or a methyl group, and
    R3 represents a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent)
    Figure imgb0031
    Figure imgb0032
    (where m is an integer of 1 to 5,
    a is an integer of 1 or more, b is an integer of 0 or more, c is an integer of 0 or more, the sum of a and b is 3 to 10, and the condition a + b + c = 2m + 1 is satisfied,
    n is an integer of 2 to 6,
    R1 represents an alkyl group which may have a substituent and which has 2 to 4 carbon atoms,
    R2 represents hydrogen or a methyl group, and
    R3 and R4 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, an oxygen-containing functional group which may have a substituent, or a nitrogen-containing functional group which may have a substituent);
    0.1 to 10 parts by weight of a hydrogen abstraction-type photopolymerization initiator (D);
    0.01 to 10 parts by weight of an isocyanate crosslinking agent (E) having two or more isocyanate groups in its molecule; and
    0.01 to 3 parts by weight of a silane compound (F) having an organic functional group having reactivity with a carboxyl group,
    wherein the total amount of the amount of radiation-curable acrylic compound (B) mixed and the amount of radiation-curable acrylic compound (C) mixed is 5 to 60 parts by weight.
  2. The radiation-curable adhesive composition for an optical component according to Claim 1, wherein the radiation-curable acrylic compound (B) is a compound represented by general formula (3) below:
    Figure imgb0033
    (where n1 and n2 each independently represent an integer of 0 to 10, R1 and R2 each independently represent a hydrogen atom or a methyl group,
    X represents a linear or branched divalent alkyl group having 1 to 20 carbon atoms, a linear or branched divalent cycloalkyl group having 3 to 20 carbon atoms, an alkoxyl group represented by general formula (4) below, or a diphenylalkyl group represented by general formula (5) below)
    Figure imgb0034
    (where n represents an integer of 1 to 20, and m represents an integer of 1 to 10)

            [Chem. 5]   -Ar-CnH2n-Ar-     (5)

    (where n represents an integer of 1 to 20, and Ar represents an aryl group which may have a substituent.)
  3. The radiation-curable adhesive composition for an optical component according to Claim 1 or 2, wherein the radiation-curable acrylic compound (B) is at least one compound selected from the group consisting of neopentyl glycol diacrylate, 1,9-nonanediol diacrylate, dimethylol tricyclodecane diacrylate, polypropylene glycol diacrylate, polyethylene glycol diacrylate, bisphenol A polyethylene glycol diacrylate, and α-phenyl-ω-acryloyloxypolyoxyethylene-formaldehyde polycondensate.
  4. The radiation-curable adhesive composition for an optical component according to Claim 1, wherein the radiation-curable acrylic compound (C) is at least one compound selected from the group consisting of acrylic acid ester of dipentaerythritol caprolactone, acrylic acid ester of pentaerythritol ethylene oxide, and acrylic acid ester of trimethylolpropane ethylene oxide.
  5. An adhesive optical component comprising an optical component and an adhesive layer provided on one surface or both surfaces of the optical component, the adhesive layer being composed of the adhesive composition according to any one of Claims 1 to 4.
  6. The adhesive optical component according to Claim 5, wherein the optical component is an optical film selected from the group consisting of a polarizing film, a retardation film, an elliptically polarizing film, an antireflection film, a luminance-improving film, a light diffusion film, and an optical compensation film.
EP10741272.8A 2009-02-16 2010-02-10 Radiation curable adhesive composition for optical components and adhesive optical component Not-in-force EP2397533B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009032787 2009-02-16
PCT/JP2010/051997 WO2010092995A1 (en) 2009-02-16 2010-02-10 Radiation curable adhesive composition for optical components and adhesive optical component

Publications (3)

Publication Number Publication Date
EP2397533A1 true EP2397533A1 (en) 2011-12-21
EP2397533A4 EP2397533A4 (en) 2012-06-27
EP2397533B1 EP2397533B1 (en) 2013-04-17

Family

ID=42561835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10741272.8A Not-in-force EP2397533B1 (en) 2009-02-16 2010-02-10 Radiation curable adhesive composition for optical components and adhesive optical component

Country Status (7)

Country Link
US (1) US20120028041A1 (en)
EP (1) EP2397533B1 (en)
JP (1) JP5540221B2 (en)
KR (1) KR20110128808A (en)
CN (1) CN102317398B (en)
TW (1) TW201038701A (en)
WO (1) WO2010092995A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482550B (en) * 2009-09-01 2013-12-18 综研化学株式会社 Radiation-curable pressure-sensitive adhesive composition for optical members, and pressure-sensitive adhesion type optical members
CN102667895A (en) * 2010-09-06 2012-09-12 三菱树脂株式会社 Method for producing laminate for configuring image display device, and image display device using the laminate
JP5613535B2 (en) * 2010-11-16 2014-10-22 リンテック株式会社 Active energy ray-curable pressure-sensitive adhesive composition, pressure-sensitive adhesive, pressure-sensitive adhesive sheet, and optical member with a pressure-sensitive adhesive layer
JP5764040B2 (en) * 2010-11-25 2015-08-12 株式会社日本触媒 Optical UV-curable resin composition, cured product, and display device
KR101509855B1 (en) * 2011-03-23 2015-04-06 주식회사 엘지화학 Pressure-sensitive adhesive composition
JP5651526B2 (en) * 2011-04-28 2015-01-14 藤森工業株式会社 Hard coat film and touch panel using the same
CN104024363B (en) * 2011-12-28 2016-08-31 综研化学株式会社 Adhesive composition used for optical part, bonding sheet, optics and display
KR101895139B1 (en) * 2012-01-25 2018-09-04 데쿠세리아루즈 가부시키가이샤 Method of manufacturing image display device
CN104603168B (en) 2012-09-14 2016-07-06 富士胶片株式会社 Solidification compound and image forming method
KR102246144B1 (en) * 2012-10-26 2021-04-30 헨켈 아이피 앤드 홀딩 게엠베하 Adhesive compositions
JP2015021082A (en) * 2013-07-19 2015-02-02 日東電工株式会社 Thermal peeling type adhesive tape for cutting-off electronic component and cutting-off method of electronic component
JP6044720B2 (en) * 2013-09-19 2016-12-14 東亞合成株式会社 Active energy ray-curable pressure-sensitive adhesive composition
JP6297290B2 (en) * 2013-09-27 2018-03-20 住友理工株式会社 Light transmissive laminate
JP6159290B2 (en) * 2013-10-31 2017-07-05 日東電工株式会社 Liquid crystal panel and polarizer laminate used for the liquid crystal panel
JP5858347B2 (en) * 2014-02-05 2016-02-10 大日本印刷株式会社 Adhesive composition and adhesive film using the same
JP2016089066A (en) * 2014-11-06 2016-05-23 綜研化学株式会社 Photocuring type adhesive composition, adhesive sheet and laminate
TWI521037B (en) * 2015-04-10 2016-02-11 博威電子股份有限公司 Optical adhesive composition, optical adhesive film and optical laminate
JP6389198B2 (en) * 2016-02-22 2018-09-12 リンテック株式会社 Adhesive sheet, display body, and production method thereof
JP6460541B2 (en) * 2017-02-08 2019-01-30 藤森工業株式会社 Adhesive composition and adhesive film
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films
WO2019225000A1 (en) * 2018-05-25 2019-11-28 日立化成株式会社 Method for producing circuit board and moisture-proofing material
CN112640116A (en) * 2018-09-18 2021-04-09 深圳市柔宇科技股份有限公司 Adhesive and flexible display panel
JP6896822B2 (en) * 2018-12-20 2021-06-30 藤森工業株式会社 Adhesive layer and adhesive film
JP2020176242A (en) * 2019-04-22 2020-10-29 日東電工株式会社 Pressure sensitive adhesive sheet and utilization thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255325A1 (en) * 2002-05-21 2005-11-17 Masashi Inagaki Protective film for surface of display

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210182A (en) * 1987-02-26 1988-08-31 Sanyo Chem Ind Ltd Pressure-sensitive adhesive composition
JPH0436916A (en) * 1990-06-01 1992-02-06 Hitachi Ltd Gas blast circuit breaker
JPH0756334A (en) * 1993-08-18 1995-03-03 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
JPH09236916A (en) * 1995-12-27 1997-09-09 Mitsubishi Rayon Co Ltd Resin composition curable by crosslinking laminated body and curing method
US6485826B1 (en) * 1997-04-08 2002-11-26 Lintec Corporation Adhesive sheet
EP0938026B1 (en) * 1998-02-18 2009-05-27 DSM IP Assets B.V. Photocurable liquid resin composition
JP4803524B2 (en) 2001-05-15 2011-10-26 綜研化学株式会社 Optical member pressure-sensitive adhesive and optical member provided with the pressure-sensitive adhesive
JP4686960B2 (en) * 2003-06-30 2011-05-25 綜研化学株式会社 Adhesive for surface protective film and surface protective film
JP4515357B2 (en) * 2005-01-27 2010-07-28 リンテック株式会社 Adhesive for polarizing plate, polarizing plate with adhesive and method for producing the same
JP4369878B2 (en) * 2005-02-15 2009-11-25 日本化工塗料株式会社 Adhesive composition for printing surface coating of paper substrate for confidential postcards
JP2006316203A (en) 2005-05-13 2006-11-24 Emulsion Technology Co Ltd Adhesive composition
KR101177685B1 (en) * 2005-09-20 2012-08-27 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Pressure-sensitive adhesive composition for polarizing plate and polarizing plate with pressure-sensitive adhesive layer
JP3997270B2 (en) * 2005-11-21 2007-10-24 綜研化学株式会社 Optical film pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet, and optical member using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255325A1 (en) * 2002-05-21 2005-11-17 Masashi Inagaki Protective film for surface of display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010092995A1 *

Also Published As

Publication number Publication date
JPWO2010092995A1 (en) 2012-08-16
KR20110128808A (en) 2011-11-30
CN102317398A (en) 2012-01-11
CN102317398B (en) 2013-08-28
WO2010092995A1 (en) 2010-08-19
EP2397533B1 (en) 2013-04-17
EP2397533A4 (en) 2012-06-27
TW201038701A (en) 2010-11-01
US20120028041A1 (en) 2012-02-02
JP5540221B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
EP2397533B1 (en) Radiation curable adhesive composition for optical components and adhesive optical component
US20110300377A1 (en) Radiation-Curable Adhesive Composition for Optical Component and Adhesive Optical Component
JP5715955B2 (en) Radiation curable adhesive composition for optical member and adhesive optical member
JP4531099B2 (en) Adhesive composition, and adhesive product and display using the same
WO2010064623A1 (en) Acrylic pressure-sensitive adhesive sheet, acrylic pressure-sensitive adhesive sheet manufacturing method, and laminated construction
CN109423251B (en) Ultraviolet-curable adhesive composition for protective film, adhesive layer, and protective plate
EP2085444A1 (en) Photocurable acrylic viscoelastic material composition, acrylic viscoelastic material, acrylic viscoelastic material layer tape or sheet and process for producing the same
KR20180068322A (en) Adhesive composition for optical film, adhesive layer, optical member and image display device
KR20170047240A (en) Polyurethane compound and resin composition containing same
WO2011065341A1 (en) Double-sided pressure-sensitive adhesive sheet for optical use
CN113383052A (en) Optical film adhesive, adhesive layer, optical element and image display device
JP2018135512A (en) Active energy ray-curable resin composition
KR20190066527A (en) Adhesive composition for optical film, adhesive layer, optical member and optical display apparatus
JP2019164293A (en) Image display device, copolymer solution, and film material
TWI824013B (en) Adhesive composition for surface protection sheet and surface protective sheet
KR102403279B1 (en) Adhesive for optical film, adhesive layer, optical member and display apparatus
TW202244214A (en) Optical adhesive sheet for foldable device
KR101947864B1 (en) Pressure-sensitive adhesive composition for optical member, pressure-sensitive adhesive sheet, and laminate
KR20210045337A (en) Curable Composition
JP2020060689A (en) Image display device and impact absorption film
WO2023074557A1 (en) Optical pressure-sensitive adhesive sheet
WO2023074556A1 (en) Optical pressure-sensitive adhesive sheet
KR20230096891A (en) Optical laminate
KR20230098040A (en) Optical adhesive sheet
KR20230098039A (en) Optical adhesive sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120529

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 5/30 20060101ALI20120522BHEP

Ipc: C09J 133/14 20060101ALI20120522BHEP

Ipc: C09J 175/04 20060101AFI20120522BHEP

Ipc: C09J 11/06 20060101ALI20120522BHEP

Ipc: G02F 1/1335 20060101ALI20120522BHEP

Ipc: C09J 4/02 20060101ALI20120522BHEP

Ipc: C09J 133/02 20060101ALI20120522BHEP

Ipc: C09J 7/02 20060101ALI20120522BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010006437

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 607313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010006437

Country of ref document: DE

Effective date: 20140120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140228

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140220

Year of fee payment: 5

Ref country code: GB

Payment date: 20140220

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010006437

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150210

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417