EP2393619B1 - Method for producing die-cast parts - Google Patents

Method for producing die-cast parts Download PDF

Info

Publication number
EP2393619B1
EP2393619B1 EP10743166A EP10743166A EP2393619B1 EP 2393619 B1 EP2393619 B1 EP 2393619B1 EP 10743166 A EP10743166 A EP 10743166A EP 10743166 A EP10743166 A EP 10743166A EP 2393619 B1 EP2393619 B1 EP 2393619B1
Authority
EP
European Patent Office
Prior art keywords
aluminum alloy
working space
nanoparticles
oxide
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10743166A
Other languages
German (de)
French (fr)
Other versions
EP2393619A1 (en
Inventor
Rüdiger Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinfelden Alloys GmbH and Co KG
Original Assignee
Rheinfelden Alloys GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42167439&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2393619(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rheinfelden Alloys GmbH and Co KG filed Critical Rheinfelden Alloys GmbH and Co KG
Priority to PL10743166T priority Critical patent/PL2393619T3/en
Priority to EP10743166A priority patent/EP2393619B1/en
Priority to SI201030249T priority patent/SI2393619T1/en
Publication of EP2393619A1 publication Critical patent/EP2393619A1/en
Application granted granted Critical
Publication of EP2393619B1 publication Critical patent/EP2393619B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Definitions

  • the invention relates to a method for the production of die cast parts from an aluminum alloy according to the preamble of claim 1.
  • molten metal in a liquid state is filled in a cylinder tube in which a push rod is coaxially arranged.
  • the outer diameter of the push rod here is smaller than the inner diameter of the cylinder tube, so that the liquid metal flows in the space between the cylinder tube and push rod.
  • the push rod is provided to effect axial reciprocation and rotation about its longitudinal axis.
  • a valve surrounding the push rod and slidable on the inner wall of the cylinder tube while overcoming a frictional resistance divides the cylinder tube into upper and lower chambers. Depending on the axial displacement direction of the push rod, the valve opens and closes, allowing or blocking the flow of metal between the upper and lower chambers.
  • the valve As the push rod advances, the valve remains closed and the metal in the lower chamber of the cylinder tube is pushed through an outlet opening into the fill chamber of a die casting machine.
  • the temperature profile of the molten metal in the cylinder tube is controlled so that adjusts a partially solid melt with a certain solids content.
  • From the lateral surface of the push rod wings protrude radially.
  • the wings serve on the one hand, the coaxial storage of the push rod in the cylinder tube by the wings are supported on the inner wall of the cylinder tube.
  • the blades lead by the rotation of the push rod about its longitudinal axis to a stirring of the molten metal with the aim of a uniform temperature distribution in the metal.
  • the invention has for its object to provide a method of the type mentioned, with which continuously a partially solid aluminum alloy melt can be provided inexpensively and further processed to die-cast parts.
  • Another object of the invention is to provide a process for the production of nanoparticle-reinforced aluminum alloy die-cast parts, with which a partially solid aluminum alloy melt continuously under the action of process-typical
  • Shear forces with a high fine dispersion of nanoparticles can be inexpensively provided and further processed into die-cast parts.
  • the solution of the second object according to the invention results in nanoparticles in the mixing and kneading machine being mixed with the aluminum alloy and finely dispersed by high shear forces in the aluminum alloy to produce nanoparticle-reinforced die-cast parts, with liquid aluminum alloy and nanoparticles at one end of the housing facing the working space supplied and removed at the other end of the housing the working space as a partially solid aluminum alloy with a predetermined solid content and with finely dispersed in the aluminum alloy nanoparticles.
  • the high shear forces present in the partially solidified phase state in the kneading process cause, in addition to the comminution of forming dendritic branches and the higher ductility thus achieved, a fine dispersion of the nanoparticles which is required for their strength-increasing effect.
  • the inner housing shell is surrounded by an outer housing shell to form a preferably hollow cylindrical space and for cooling and heating of the working space cold and / or hot gases are passed through the gap.
  • cold and / or hot gases are passed through the gap.
  • hot gases preferably combustion gases
  • the gases are preferably passed in countercurrent to the transport direction of the aluminum alloy through the gap.
  • the solid content of the aluminum alloy is preferably adjusted to 40 to 80%, in particular to more than 50%.
  • the partially solid aluminum alloy is removed from the working space as a semi-solid metal strand.
  • the continuously emerging, partially solid metal strand is subdivided into partially solid metal portions and the partially solid metal portions are transferred into the filling chamber of the die casting machine.
  • the weight fraction of the nanoparticles in the alloy is preferably between about 0.1 to 10%.
  • Suitable, inexpensive nanoparticles are preferably made of fumed silica, such as. B. Aerosil ®.
  • other nanoparticles can be used, such as.
  • As the known carbon nanotubes (carbon nanotubes, CNT), and other, for example, according to the known Aerosil ® method produced nanoscale particles of metal and Halbmetalloxiden, such as. Example, alumina (Al 2 O 3 ), titanium dioxide (TiO 2 ), zirconium oxide (ZrO 2 ), antimony (III) oxide, chromium (III) oxide, iron (III) oxide germanium (IV) oxide, vanadium (V) oxide or tungsten (VI) oxide.
  • the system for die casting of aluminum alloy die castings optionally reinforced with nanoparticles has a die casting machine 10 and one of the die casting machine 10 prefixed mixing and kneading machine 30.
  • the only partially reproduced in the drawing die casting machine 10 is a commercially available machine for conventional die casting of aluminum alloys and has u. a. a filling chamber 12 connected to a fixed side 18 of a casting mold and having an opening 16 for receiving the metal to be ejected from the filling chamber 12 by means of a piston 20 and to be injected into a mold cavity 14 of the casting mold.
  • the mixing and kneading machine 30 is in the FIGS. 2 and 3 shown in detail.
  • the basic structure of such a mixing and kneading machine is for example from the CH-A-278 575 known.
  • the mixing and kneading machine 30 has a housing 31 with a working space 34 enclosed by an inner housing jacket 32, in which a worm shaft 36 which rotates in the inner housing jacket 32 about a longitudinal axis x and translates in the longitudinal axis x is arranged.
  • the worm shaft 36 is interrupted in the circumferential direction to form individual Kneteriel 38. In this way arise between the individual kneading blades 38 axial passage openings 40.
  • the working chamber 34 delimiting, cylindrical inner housing shell 32 of the mixing and kneading machine 30 is of a cylindrical outer housing shell 46 surrounded.
  • the inner housing shell 32 and the outer housing shell 46 form a double jacket and enclose a hollow cylindrical space 48.
  • a filling opening 50 for supplying liquid aluminum alloy and optionally nanoparticles into the working space 34 is provided. Although only one fill opening 50 is shown in the drawing, two separate fill openings may be provided for the aluminum alloy and for the nanoparticles. In principle, it is also possible to mix the nanoparticles of the liquid aluminum alloy into the kneading and mixing machine 30 before the metal is introduced.
  • an outlet opening 52 is provided for removing semi-solid aluminum alloy with optionally dispersed nanoparticles in it.
  • inlet openings 54, 56 for introducing cold or hot gases into the intermediate space 48 are provided in the outer housing shell 46.
  • outlet openings 58, 60 for the exit of the gases from the intermediate space 48 are provided on the end of the housing 36 near the drive end of the worm shaft.
  • Fig. 4 shows a schematic representation of characteristic shear and Dehnungsströmfelder in a product mass P, as in a trained in the prior art mixing and kneading machine 30 through a a kneading stud 42 passing Knethoff 38 occur.
  • the direction of rotation of the kneading blade 38 is schematically indicated by a curved arrow A, while the translational movement of the kneading blade 38 is indicated by a double arrow B. Due to the rotational movement of the kneading blade 38 whose tip divides the product mass P, as indicated by arrows C, D.
  • a maximum approximation of kneading blade 38 and kneading pin 42 is produced per shear cycle by the sinusoidal axial movement of the respective kneading blade 38 on a line and thus a maximum shear rate in the product mass P.
  • An aluminum alloy melt held just above the liquidus temperature of the alloy is metered into the working space 34 alone or together with nanoparticles via the filling opening 50.
  • By crushing the partially solidified aluminum alloy with nanoparticles between the kneading blades 38 and the kneading pin 42 high shear forces are applied, which lead both to the comminution of dendrite branches and cause fine dispersion of the present in the form of agglomerates nanoparticles.
  • An efficient, homogenizing mixing results from the superposition of radial and longitudinal mixing effect.
  • the solid portion of the aluminum alloy in the working space 34 is so is set to be in the desired range upon removal of the metal through the outlet port 52.
  • the desired solid content of the aluminum alloy is adjusted by measuring the change in the viscosity of the molten metal in the kneading and mixing machine 30.
  • the viscosity increasing with increasing solid fraction of the partially solid aluminum alloy can be detected, for example, by measuring the rotational resistance on the drive shaft 44 of the worm shaft 36.
  • By determining the rotational resistance for defined fixed fractions it is possible to determine corresponding setpoint values to which measured actual values are regulated by controlling the flow of cold and hot gases through the intermediate space 48 between the inner and outer housing shells 32, 46.
  • the aluminum alloy containing the desired solid fraction and optionally finely dispersed nanoparticles is introduced via the filling opening 16 into the filling chamber 12 of the die casting machine 10 and cyclically shot from the filling chamber 12 into the mold cavity 14 of the casting mold by the piston 20 in a known manner.
  • the aluminum alloy containing the desired solid fraction and optionally finely dispersed nanoparticles is continuously ejected via the outlet opening 52 in the form of a partially solid metal strand 70.
  • partially solid metal portions 72 are cut to length, for example, with a rotating knife.
  • the partially fixed metal portions 72 usually correspond to those for the production of a single die casting required amount of metal and are transferred individually for each shot in the filling chamber 12 of the die casting machine 10 and shot from this intermittently by means of the piston 20 in a known manner from the filling chamber 12 into the mold cavity 14 of the mold.
  • the semi-solid metal strand 70 leaves the mixing and kneading machine 30 in the direction of the longitudinal axis x of the worm shaft 36 in the horizontal direction, but is also another, z. B. vertical, exit direction conceivable.
  • the cross section of the metal strand 70 depends on the cross section of the outlet opening 52 and is usually circular.
  • the partially fixed metal portions 72 can be gripped, for example, with a pair of pliers and transferred into the filling chamber 12 of the die casting machine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Druckgussteilen aus einer Aluminiumlegierung nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for the production of die cast parts from an aluminum alloy according to the preamble of claim 1.

Druckgussteile aus Aluminiumlegierungen finden u. a. in der Automobilindustrie aus Gründen einer zunehmend geforderten Gewichtsreduktion immer häufiger Anwendung. Aus giesstechnischen Gründen kann beispielsweise bei Knoten für Space Frame Strukturen mit konventionellen Druckgiessverfahren eine Gussteil-Wandstärke von etwa 2 mm in der Regel nicht unterschritten werden. Die Füllung der Druckgiessform mit teilfesten Metallschmelzen durch Anwendung von Thixo- oder Rheocasting führt zu einer besseren Formfüllung und in der Folge zu einer möglichen weiteren Reduktion der Gussteil-Wanddicke auf etwa 1 mm. Mit abnehmender Wanddicke wird aber das verminderte Kraftaufnahmevermögen zunehmend zum limitierenden Faktor. Diesem Nachteil könnte an sich durch Zusatz von Nanopartikeln zu einer Aluminiumlegierungsmatrix begegnet werden. Jedoch mangelt es an geeigneten Verfahren zur kostengünstigen Herstellung von mit nanoskaligen Partikeln verstärkten Aluminiumlegierungen und deren Aufbereitung zu teilfesten Metallschmelzen zum Druckgiessen.Die castings made of aluminum alloys find u. a. in the automotive industry for reasons of increasingly required weight reduction more and more application. For technical reasons, for example, in nodes for space frame structures with conventional die casting a casting wall thickness of about 2 mm usually not be exceeded. The filling of the die with partially solid molten metal by the use of thixo or rheocasting leads to a better mold filling and, consequently, to a possible further reduction of the casting wall thickness to about 1 mm. With decreasing wall thickness, however, the reduced force absorption capacity is increasingly becoming the limiting factor. This disadvantage could in itself be counteracted by adding nanoparticles to an aluminum alloy matrix. However, there is a lack of suitable methods for the cost-effective production of nano-scale particles reinforced aluminum alloys and their preparation to semi-solid metal melts for die casting.

Bei einem in US 2003/0201088 A1 offenbarten Verfahren wird eine Metallschmelze in flüssigem Zustand in ein Zylinderrohr eingefüllt, in welchem eine Druckstange koaxial angeordnet ist. Der Aussendurchmesser der Druckstange ist hierbei kleiner als der Innendurchmesser des Zylinderrohrs, so dass das flüssige Metall im Zwischenraum zwischen Zylinderrohr und Druckstange fliesst. Die Druckstange ist zur Ausführung einer axialen Hin- und Herbewegung und einer Rotation um ihre Längsachse vorgesehen. Eine die Druckstange umfangendes und an der Innenwand des Zylinderrohrs unter Überwindung eines Reibwiderstands gleitend verschiebbares Ventil unterteilt das Zylinderrohr in eine obere und in eine untere Kammer. Abhängig von der axialen Verschiebungsrichtung der Druckstange öffnet bzw. schliesst das Ventil und ermöglicht bzw. blockiert den Metallfluss zwischen der oberen und der unteren Kammer. Bei Vorwärtsbewegung der Druckstange bleibt das Ventil geschlossen und das Metall in der unteren Kammer des Zylinderrohrs wird durch eine Auslassöffnung in die Füllkammer einer Druckgiessmaschine gestossen. Mittels Heizelementen wird das Temperaturprofil der Metallschmelze im Zylinderrohr so gesteuert, dass sich eine teilfeste Schmelze mit einem bestimmten Feststoffanteil einstellt. Von der Mantelfläche der Druckstange ragen Flügel radial ab. Die Flügel dienen einerseits der koaxialen Lagerung der Druckstange im Zylinderrohr, indem sich die Flügel an der Innenwand des Zylinderrohrs abstützen. Andererseits führen die Flügel durch die Rotation der Druckstange um ihre Längsachse zu einem Rühren der Metallschmelze mit dem Ziel einer gleichmässigen Temperaturverteilung im Metall.At an in US 2003/0201088 A1 In the disclosed method, molten metal in a liquid state is filled in a cylinder tube in which a push rod is coaxially arranged. The outer diameter of the push rod here is smaller than the inner diameter of the cylinder tube, so that the liquid metal flows in the space between the cylinder tube and push rod. The push rod is provided to effect axial reciprocation and rotation about its longitudinal axis. A valve surrounding the push rod and slidable on the inner wall of the cylinder tube while overcoming a frictional resistance divides the cylinder tube into upper and lower chambers. Depending on the axial displacement direction of the push rod, the valve opens and closes, allowing or blocking the flow of metal between the upper and lower chambers. As the push rod advances, the valve remains closed and the metal in the lower chamber of the cylinder tube is pushed through an outlet opening into the fill chamber of a die casting machine. By means of heating elements, the temperature profile of the molten metal in the cylinder tube is controlled so that adjusts a partially solid melt with a certain solids content. From the lateral surface of the push rod wings protrude radially. The wings serve on the one hand, the coaxial storage of the push rod in the cylinder tube by the wings are supported on the inner wall of the cylinder tube. On the other hand, the blades lead by the rotation of the push rod about its longitudinal axis to a stirring of the molten metal with the aim of a uniform temperature distribution in the metal.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit welchem kontinuierlich eine teilfeste Aluminiumlegierungsschmelze kostengünstig bereitgestellt und zu Druckgussteilen weiterverarbeitet werden kann. Eine weitere Aufgabe der Erfindung liegt in der Schaffung eines Verfahrens zur Herstellung von mit Nanopartikeln verstärkten Druckgussteilen aus einer Aluminiumlegierung, mit welchem kontinuierlich eine teilfeste Aluminiumlegierungsschmelze unter der Wirkung verfahrenstypischerThe invention has for its object to provide a method of the type mentioned, with which continuously a partially solid aluminum alloy melt can be provided inexpensively and further processed to die-cast parts. Another object of the invention is to provide a process for the production of nanoparticle-reinforced aluminum alloy die-cast parts, with which a partially solid aluminum alloy melt continuously under the action of process-typical

Scherkräfte mit einer hohen Fein-Dispersion von Nanopartikeln kostengünstig bereitgestellt und zu Druckgussteilen weiterverarbeitet werden kann.Shear forces with a high fine dispersion of nanoparticles can be inexpensively provided and further processed into die-cast parts.

Zur erfindungsgemässen Lösung der ersten Aufgabe führt ein Verfahren mit den Merkmalen des Anspruchs 1. Dabei bewirken die im teilerstarrten Phasenzustand im Knetprozess vorhandenen hohen Scherkräfte ein ständiges Zerkleinern von sich bildenden Dendritenästen, was zu einer erhöhten Duktilität der Druckgussteile führt. Die hohen Kompressionskräfte führen zudem zu einem höheren Wärmeübergang, was letztlich eine präzisere Einstellung des Festanteils in der Aluminiumlegierung ermöglicht.For the inventive solution of the first object performs a method having the features of claim 1. The effect of the present in the partially solid phase state in the kneading process high shear forces a constant crushing of forming dendrite branches, resulting in increased ductility of the die castings. The high compressive forces also lead to a higher heat transfer, which ultimately allows a more precise adjustment of the solid content in the aluminum alloy.

Zur erfindungsgemässen Lösung der zweiten Aufgabe führt, dass zur Herstellung von mit Nanopartikeln verstärkten Druckgussteilen Nanopartikel in der Misch- und Knetmaschine mit der Aluminiumlegierung vermischt und durch hohe Scherkräfte in der Aluminiumlegierung fein dispergiert werden, wobei flüssige Aluminiumlegierung und Nanopartikel an einem Ende des Gehäuses dem Arbeitsraum zugeführt und am anderen Ende des Gehäuses dem Arbeitsraum als teilfeste Aluminiumlegierung mit einem vorgegebenen Festanteil und mit in der Aluminiumlegierung fein dispergierten Nanopartikeln entnommen wird. Dabei bewirken die im teilerstarrten Phasenzustand im Knetprozess vorhandenen hohen Scherkräfte neben dem Zerkleinern von sich bildenden Dendritenästen und der damit erzielten höheren Duktilität eine feine Dispersion der Nanopartikel, die für ihre festigkeitserhöhende Wirkung erforderlich ist.The solution of the second object according to the invention results in nanoparticles in the mixing and kneading machine being mixed with the aluminum alloy and finely dispersed by high shear forces in the aluminum alloy to produce nanoparticle-reinforced die-cast parts, with liquid aluminum alloy and nanoparticles at one end of the housing facing the working space supplied and removed at the other end of the housing the working space as a partially solid aluminum alloy with a predetermined solid content and with finely dispersed in the aluminum alloy nanoparticles. The high shear forces present in the partially solidified phase state in the kneading process cause, in addition to the comminution of forming dendritic branches and the higher ductility thus achieved, a fine dispersion of the nanoparticles which is required for their strength-increasing effect.

Zweckmässigerweise ist der innere Gehäusemantel von einem äusseren Gehäusemantel unter Bildung eines vorzugsweise hohlzylinderförmigen Zwischenraumes umgeben und zum Abkühlen und Aufheizen des Arbeitsraumes werden kalte und/oder heisse Gase durch den Zwischenraum geleitet werden. Zum Abkühlen werden bevorzugt Luft, vorzugsweise Druckluft, und zum Aufheizen Heissgase, vorzugsweise Verbrennungsgase, durch den Zwischenraum geleitet.Conveniently, the inner housing shell is surrounded by an outer housing shell to form a preferably hollow cylindrical space and for cooling and heating of the working space cold and / or hot gases are passed through the gap. For cooling, preferably air, preferably compressed air, and for heating hot gases, preferably combustion gases, passed through the gap.

Die Gase werden bevorzugt im Gegenstrom zur Transportrichtung der Aluminiumlegierung durch den Zwischenraum geleitet.The gases are preferably passed in countercurrent to the transport direction of the aluminum alloy through the gap.

Der Festanteil der Aluminiumlegierung wird bevorzugt auf 40 bis 80 %, insbesondere auf mehr als 50 %, eingestellt.The solid content of the aluminum alloy is preferably adjusted to 40 to 80%, in particular to more than 50%.

Bei einer bevorzugten Ausführung des erfindungsgemässen Verfahrens wird die teilfeste Aluminiumlegierung dem Arbeitsraum als teilfester Metallstrang entnommen. Der kontinuierlich austretende, teilfeste Metallstrang wird in teilfeste Metallportionen unterteilt und die teilfesten Metallportionen werden in die Füllkammer der Druckgiessmaschine überführt werden.In a preferred embodiment of the method according to the invention, the partially solid aluminum alloy is removed from the working space as a semi-solid metal strand. The continuously emerging, partially solid metal strand is subdivided into partially solid metal portions and the partially solid metal portions are transferred into the filling chamber of the die casting machine.

Der Gewichtsanteil der Nanopartikel in der Legierung liegt bevorzugt zwischen etwa 0,1 bis 10 %. Geeignete, kostengünstige Nanopartikel bestehen bevorzugt aus pyrogener Kieselsäure, wie z. B. Aerosil®. Jedoch können auch andere Nanopartikel eingesetzt werden, wie z. B. die bekannten Kohlenstoffnanoröhrchen (carbon nanotubes, CNT), sowie weitere, beispielsweise nach dem bekannten Aerosil® -Verfahren hergestellte, nanoskalige Partikel aus Metall- und Halbmetalloxiden, wie z. B. Aluminiumoxid (Al2O3), Titandioxid (TiO2), Zirkonoxid (ZrO2), Antimon(III)oxid, Chrom(III)oxid, Eisen(III)oxid Germanium(IV)oxid, Vanadium(V)oxid oder Wolfram(VI)oxid.The weight fraction of the nanoparticles in the alloy is preferably between about 0.1 to 10%. Suitable, inexpensive nanoparticles are preferably made of fumed silica, such as. B. Aerosil ®. However, other nanoparticles can be used, such as. As the known carbon nanotubes (carbon nanotubes, CNT), and other, for example, according to the known Aerosil ® method produced nanoscale particles of metal and Halbmetalloxiden, such as. Example, alumina (Al 2 O 3 ), titanium dioxide (TiO 2 ), zirconium oxide (ZrO 2 ), antimony (III) oxide, chromium (III) oxide, iron (III) oxide germanium (IV) oxide, vanadium (V) oxide or tungsten (VI) oxide.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung, die lediglich zur Erläuterung dient und nicht einschränkend auszulegen ist. Die Zeichnung zeigt schematisch in

Fig. 1
einen Längsschnitt durch eine Druckgiessmaschine mit vorangestellter Misch- und Knetmaschine;
Fig. 2
einen Längsschnitt durch einen Teil einer Misch- und Knetmaschine;
Fig. 3
einen Querschnitt durch die Misch- und Knetmaschine von Fig. 1;
Fig. 4
charakteristische Scher- und Dehnungsströmfelder in einer Produktmasse, ausgelöst durch einen sich an einem Knetbolzen vorbeibewegenden Knetflügel;
Fig. 5
die kontinuierliche Herstellung von teilfestem Vormaterial zum Druckgiessen mit einer Anordnung gemäss Fig. 1.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawing, which is merely illustrative and not restrictive interpreted. The drawing shows schematically in
Fig. 1
a longitudinal section through a die casting machine with prefixed mixing and kneading machine;
Fig. 2
a longitudinal section through a part of a mixing and kneading machine;
Fig. 3
a cross section through the mixing and kneading machine of Fig. 1 ;
Fig. 4
characteristic shear and strain flow fields in a product mass, triggered by a kneading blade moving past a kneading stud;
Fig. 5
the continuous production of semi-solid starting material for die casting with an arrangement according to Fig. 1 ,

Ein in Fig. 1 gezeigte Anlage zum Druckgiessen von optional mit Nanopartikeln verstärkten Druckgussteilen aus einer Aluminiumlegierung weist eine Druckgiessmaschine 10 und eine der Druckgiessmaschine 10 vorangestellte Misch- und Knetmaschine 30 auf.An in Fig. 1 The system for die casting of aluminum alloy die castings optionally reinforced with nanoparticles has a die casting machine 10 and one of the die casting machine 10 prefixed mixing and kneading machine 30.

Die in der Zeichnung nur teilweise wiedergegebene Druckgiessmaschine 10 ist eine handelsübliche Maschine zum konventionellen Druckgiessen von Aluminiumlegierungen und weist u. a. eine mit einer feststehenden Seite 18 einer Giessform verbundene Füllkammer 12 mit einer Öffnung 16 zur Aufnahme des mittels eins Kolbens 20 aus der Füllkammer 12 auszustossenden und in einen Formhohlraum 14 der Giessform einzuschiessenden Metalls auf.The only partially reproduced in the drawing die casting machine 10 is a commercially available machine for conventional die casting of aluminum alloys and has u. a. a filling chamber 12 connected to a fixed side 18 of a casting mold and having an opening 16 for receiving the metal to be ejected from the filling chamber 12 by means of a piston 20 and to be injected into a mold cavity 14 of the casting mold.

Die Misch- und Knetmaschine 30 ist in den Fig. 2 und 3 detailliert dargestellt. Der grundsätzliche Aufbau einer derartigen Misch- und Knetmaschine ist beispielsweise aus der CH-A- 278 575 bekannt. Die Misch- und Knetmaschine 30 weist ein Gehäuse 31 mit einem von einem inneren Gehäusemantel 32 umschlossenen Arbeitsraum 34 auf, in welchem eine im inneren Gehäusemantel 32 um eine Längsachse x rotierende und sich translatorisch in der Längsachse x hin und her bewegende Schneckenwelle 36 angeordnet ist. Die Schneckenwelle 36 ist in Umfangrichtung unter Bildung einzelner Knetflügel 38 unterbrochen. Auf diese Weise entstehen zwischen den einzelnen Knetflügeln 38 axiale Durchtrittsöffnungen 40. Von der Innenseite des inneren Gehäusemantels 32 ragen Knetbolzen 42 in den Arbeitsraum 34 hinein. Die gehäuseseitigen Knetbolzen 42 greifen in die axialen Durchtrittsöffnungen 40 der auf der Haupt- oder Schneckenwelle 36 angeordneten Knetflügel 38 ein. Eine konzentrisch zur Schneckenwelle 36 angeordnete Antriebswelle 44 ist stirnseitig aus dem inneren Gehäusemantel 32 herausgeführt und mit einer in der Zeichnung nicht dargestellten Antriebseinheit zur Ausführung einer Rotationsbewegung der Schneckenwelle 36 verbunden. In der Zeichnung ebenfalls nicht dargestellt ist eine mit der Schneckenwelle 36 zusammenwirkende Einrichtung zur Ausführung der translatorischen Bewegung der Schneckenwelle 36.The mixing and kneading machine 30 is in the FIGS. 2 and 3 shown in detail. The basic structure of such a mixing and kneading machine is for example from the CH-A-278 575 known. The mixing and kneading machine 30 has a housing 31 with a working space 34 enclosed by an inner housing jacket 32, in which a worm shaft 36 which rotates in the inner housing jacket 32 about a longitudinal axis x and translates in the longitudinal axis x is arranged. The worm shaft 36 is interrupted in the circumferential direction to form individual Knetflügel 38. In this way arise between the individual kneading blades 38 axial passage openings 40. From the inside of the inner housing shell 32 project kneading bolts 42 into the working space 34 inside. The housing-side kneading bolts 42 engage in the axial passage openings 40 of the arranged on the main or worm shaft 36 Knetflügel 38 a. A concentric with the worm shaft 36 arranged drive shaft 44 is led out frontally from the inner housing shell 32 and connected to a drive unit, not shown in the drawing for performing a rotational movement of the worm shaft 36. Also not shown in the drawing is a cooperating with the worm shaft 36 means for performing the translational movement of the worm shaft 36th

Der den Arbeitsraum 34 begrenzende, zylindrische innere Gehäusemantel 32 der Misch- und Knetmaschine 30 ist von einem zylindrischen äusseren Gehäusemantel 46 umgeben. Der innere Gehäusemantel 32 und der äussere Gehäusemantel 46 bilden einen Doppelmantel und schliessen dabei einen hohlzylinderförmigen Zwischenraum 48 ein.The working chamber 34 delimiting, cylindrical inner housing shell 32 of the mixing and kneading machine 30 is of a cylindrical outer housing shell 46 surrounded. The inner housing shell 32 and the outer housing shell 46 form a double jacket and enclose a hollow cylindrical space 48.

An dem der Antriebseite der Schneckenwelle 36 nahen Ende des Gehäuses 31 ist eine Einfüllöffnung 50 zur Zuführung von flüssiger Aluminiumlegierung und optional von Nanopartikeln in den Arbeitsraum 34 vorgesehen. Obschon in der Zeichnung nur eine Einfüllöffnung 50 gezeigt ist, können für die Aluminiumlegierung und für die Nanopartikel zwei separate Einfüllöffnungen vorgesehen sein. Grundsätzlich ist es auch möglich, die Nanopartikel der flüssigen Aluminiumlegierung bereits vor dem Einfüllen des Metalls in die Knet- und Mischmaschine 30 beizumischen. An dem der Antriebseite der Schneckenwelle 36 fernen Ende des inneren Gehäusemantels 32 ist eine Auslassöffnung 52 zur Entnahme von teilfester Aluminiumlegierung mit optional in dieser dispergierten Nanopartikeln vorgesehen.At the end of the housing 31 near the drive side of the worm shaft 36, a filling opening 50 for supplying liquid aluminum alloy and optionally nanoparticles into the working space 34 is provided. Although only one fill opening 50 is shown in the drawing, two separate fill openings may be provided for the aluminum alloy and for the nanoparticles. In principle, it is also possible to mix the nanoparticles of the liquid aluminum alloy into the kneading and mixing machine 30 before the metal is introduced. At the end of the inner housing shell 32 remote from the drive side of the worm shaft 36, an outlet opening 52 is provided for removing semi-solid aluminum alloy with optionally dispersed nanoparticles in it.

An dem der Antriebseite der Schneckenwelle 36 fernen Ende des Gehäuses 31 sind im äusseren Gehäusemantel 46 Einlassöffnungen 54, 56 zum Einleiten von kalten bzw. heissen Gasen in den Zwischenraum 48 vorgesehen. Entsprechend sind an dem der Antriebseite der Schneckenwelle 36 nahen Ende des Gehäuses 31 Austrittsöffnungen 58, 60 für den Austritt der Gase aus dem Zwischenraum 48 vorgesehen. Um einen maximalen und über den Umfang des inneren Gehäusemantels 32 gleichmässigen verteilten Gasdurchfluss von den Einlassöffnungen 54, 56 zu den Austrittsöffnungen 58, 60 und damit einen gleichmässigen Wärmeaustrag aus dem Arbeitsraum 34 bzw. einen gleichmässigen Wärmeeintrag in den Arbeitsraum 34 zu gewährleisten, sind die Ein- und Auslassöffnungen 54, 56 bzw. 58, 60 gemäss Fig. 3 gleichmässig um den Umfang des äusseren Gehäusemantels 46 verteilt angeordnet.At the end of the housing 31 remote from the drive side of the worm shaft 36, inlet openings 54, 56 for introducing cold or hot gases into the intermediate space 48 are provided in the outer housing shell 46. Correspondingly, outlet openings 58, 60 for the exit of the gases from the intermediate space 48 are provided on the end of the housing 36 near the drive end of the worm shaft. In order to ensure a maximum and over the circumference of the inner housing shell 32 evenly distributed gas flow from the inlet openings 54, 56 to the outlet openings 58, 60 and thus a uniform heat output from the working space 34 and a uniform heat input into the working space 34, the one - and outlet openings 54, 56 and 58, 60 according to Fig. 3 uniformly distributed around the circumference of the outer casing 46.

Fig. 4 zeigt in schematischer Darstellung charakteristische Scher- und Dehnungsströmfelder in einer Produktmasse P, wie sie bei einer nach dem Stand der Technik ausgebildeten Misch- und Knetmaschine 30 durch einen sich an einem Knetbolzen 42 vorbeibewegenden Knetflügel 38 auftreten. Die Drehrichtung des Knetflügels 38 ist durch einen gekrümmten Pfeil A schematisch angedeutet, während die translatorische Bewegung des Knetflügels 38 durch einen Doppelpfeil B angedeutet ist. Durch die Drehbewegung des Knetflügels 38 teilt dessen Spitze die Produktmasse P auf, wie dies durch Pfeile C, D angedeutet ist. Zwischen dem Knetbolzen 42 und der dem Knetbolzen 42 zugewandten Hauptfläche 39 des Knetflügels 38 und dem sich daran vorbeibewegenden Knetflügel 38 besteht ein Spalt 41, dessen Breite durch die Drehung und translatorische Bewegung der Schneckenwelle 36 variiert. In diesem Spalt 41 wird ein Schervorgang in der Produktmasse P bewirkt, was durch Pfeile E angedeutet ist. Sowohl vor wie auch hinter dem Knetbolzen 42 entspannt und reorientiert sich die Produktmasse P, wie dies durch Rotationspfeile F, G angedeutet ist. Wie bereits eingangs ausgeführt, entsteht pro Scherzyklus durch die sinusförmige Axialbewegung des jeweiligen Knetflügels 38 an einer Linie eine maximale Annäherung von Knetflügel 38 und Knetbolzen 42 und damit eine maximale Schergeschwindigkeit in der Produktmasse P. Fig. 4 shows a schematic representation of characteristic shear and Dehnungsströmfelder in a product mass P, as in a trained in the prior art mixing and kneading machine 30 through a a kneading stud 42 passing Knetflügel 38 occur. The direction of rotation of the kneading blade 38 is schematically indicated by a curved arrow A, while the translational movement of the kneading blade 38 is indicated by a double arrow B. Due to the rotational movement of the kneading blade 38 whose tip divides the product mass P, as indicated by arrows C, D. Between the kneading pin 42 and the main surface 39 of the kneading blade 38 facing the kneading pin 42 and the kneading blade 38 moving past it there is a gap 41 whose width varies as a result of the rotation and translational movement of the worm shaft 36. In this gap 41, a shearing action in the product mass P is effected, which is indicated by arrows E. Both before and behind the kneading pin 42 relaxes and reorientiert the product mass P, as indicated by rotation arrows F, G. As already mentioned, a maximum approximation of kneading blade 38 and kneading pin 42 is produced per shear cycle by the sinusoidal axial movement of the respective kneading blade 38 on a line and thus a maximum shear rate in the product mass P.

Nachfolgend wird anhand der Fig. 1 und 2 die Funktionsweise der Anlage zum Druckgiessen von optional mit Nanopartikeln verstärkten Druckgussteilen aus einer Aluminiumlegierung beispielhaft näher erläutert.The following is based on the Fig. 1 and 2 the operation of the system for die casting of optionally with nanoparticles reinforced die cast parts made of an aluminum alloy explained in more detail by way of example.

Eine knapp über der Liquidustemperatur der Legierung gehaltene Aluminiumlegierungsschmelze wird allein oder zusammen mit Nanopartikeln über die Einfüllöffnung 50 dosiert dem Arbeitsraum 34 zugeführt. Durch die Quetschung der teilerstarrten Aluminiumlegierung mit Nanopartikeln zwischen den Knetflügeln 38 und den Knetbolzen 42 werden hohe Scherkräfte aufgebracht, die sowohl zum Zerkleinern von Dendritenästen führen als auch eine Feindispersion der in der Form von Agglomeraten vorliegenden Nanopartikel bewirken. Ein effizientes, homogenisierendes Mischen ergibt sich aus der Überlagerung von Radial- und Längsmischeffekt. Durch Regelung des Gasflusses kalter und heisser Gase durch den Zwischenraum 48 zwischen innerem Gehänzmantel 32 und äusserem Gehäusemantel 46 wird der Festanteil der Aluminiumlegierung im Arbeitsraum 34 so eingestellt, dass dieser bei der Entnahme des Metalls durch die Auslassöffnung 52 im gewünschten Bereich liegt.An aluminum alloy melt held just above the liquidus temperature of the alloy is metered into the working space 34 alone or together with nanoparticles via the filling opening 50. By crushing the partially solidified aluminum alloy with nanoparticles between the kneading blades 38 and the kneading pin 42 high shear forces are applied, which lead both to the comminution of dendrite branches and cause fine dispersion of the present in the form of agglomerates nanoparticles. An efficient, homogenizing mixing results from the superposition of radial and longitudinal mixing effect. By regulating the gas flow of cold and hot gases through the gap 48 between inner Gehänzmantel 32 and outer housing shell 46, the solid portion of the aluminum alloy in the working space 34 is so is set to be in the desired range upon removal of the metal through the outlet port 52.

Die Einstellung des gewünschten Festanteils der Aluminiumlegierung erfolgt durch Messung der Änderung der Viskosität der Metallschmelze in der Knet- und Mischmaschine 30. Die mit zunehmendem Festanteil der teilfesten Aluminiumlegierung ansteigende Viskosität lässt sich beispielsweise durch die Messung des Drehwiderstands an der Antriebswelle 44 der Schneckenwelle 36 erfassen. Durch die Bestimmung des Drehwiderstands für definierte Festanteile lassen sich entsprechende Sollwerte festlegen, auf welche gemessene Istwerte durch Steuerung des Durchflusses kalter und heisser Gase durch den Zwischenraum 48 zwischen innerem und äusserem Gehäusemantel 32, 46 geregelt werden.The desired solid content of the aluminum alloy is adjusted by measuring the change in the viscosity of the molten metal in the kneading and mixing machine 30. The viscosity increasing with increasing solid fraction of the partially solid aluminum alloy can be detected, for example, by measuring the rotational resistance on the drive shaft 44 of the worm shaft 36. By determining the rotational resistance for defined fixed fractions, it is possible to determine corresponding setpoint values to which measured actual values are regulated by controlling the flow of cold and hot gases through the intermediate space 48 between the inner and outer housing shells 32, 46.

Die den gewünschten Festanteil aufweisende und optional fein dispergierte Nanopartikel enthaltende Aluminiumlegierung wird über die Einfüllöffnung 16 in die Füllkammer 12 der Druckgiessmaschine 10 gegeben und aus dieser taktweise mittels des Kolbens 20 in bekannter Art aus der Füllkammer 12 in den Formhohlraum 14 der Giessform eingeschossen.The aluminum alloy containing the desired solid fraction and optionally finely dispersed nanoparticles is introduced via the filling opening 16 into the filling chamber 12 of the die casting machine 10 and cyclically shot from the filling chamber 12 into the mold cavity 14 of the casting mold by the piston 20 in a known manner.

Anhand von Fig. 5 wird nachfolgend die kontinuierliche Herstellung von teilfestem, stangenförmigem Vormaterial zum Druckgiessen von optional mit Nanopartikeln verstärkten Druckgussteilen aus einer Aluminiumlegierung beispielhaft näher erläutert. Die vorstehend anhand der Fig. 1 und 2 erläuterte Funktionsweise wird beibehalten.Based on Fig. 5 Below, the continuous production of partially solid rod-shaped starting material for die casting of optionally with nanoparticles reinforced die cast parts made of an aluminum alloy is exemplified in more detail. The above based on the Fig. 1 and 2 explained operation is maintained.

Die den gewünschten Festanteil aufweisende und optional fein dispergierte Nanopartikel enthaltende Aluminiumlegierung wird kontinuierlich über die Auslassöffnung 52 in der Form eines teilfesten Metallstranges 70 ausgestossen. Vom teilfesten Metallstrang 70 werden, beispielsweise mit einem mitlaufenden Messer, teilfeste Metallportionen 72 abgelängt. Die teilfesten Metallportionen 72 entsprechen üblicherweise jeweils der zur Herstellung eines einzelnen Druckgussteils benötigten Metallmenge und werden für jeden Schuss einzeln in die Füllkammer 12 der Druckgiessmaschine 10 überführt und aus dieser taktweise mittels des Kolbens 20 in bekannter Art aus der Füllkammer 12 in den Formhohlraum 14 der Giessform eingeschossen.The aluminum alloy containing the desired solid fraction and optionally finely dispersed nanoparticles is continuously ejected via the outlet opening 52 in the form of a partially solid metal strand 70. From partially solid metal strand 70, partially solid metal portions 72 are cut to length, for example, with a rotating knife. The partially fixed metal portions 72 usually correspond to those for the production of a single die casting required amount of metal and are transferred individually for each shot in the filling chamber 12 of the die casting machine 10 and shot from this intermittently by means of the piston 20 in a known manner from the filling chamber 12 into the mold cavity 14 of the mold.

Üblicherweise verlässt der teilfeste Metallstrang 70 die Misch- und Knetmaschine 30 in Richtung der Längsachse x der Schneckenwelle 36 in horizontaler Richtung, jedoch ist auch eine andere, z. B. vertikale, Austrittsrichtung denkbar. Der Querschnitt des Metallstranges 70 richtet sich nach dem Querschnitt der Auslassöffnung 52 und ist üblicherweise kreisrund. Die teilfesten Metallportionen 72 können beispielsweise mit einer Zange ergriffen und in die Füllkammer 12 der Druckgiessmaschine 10 überführt werden.Usually, the semi-solid metal strand 70 leaves the mixing and kneading machine 30 in the direction of the longitudinal axis x of the worm shaft 36 in the horizontal direction, but is also another, z. B. vertical, exit direction conceivable. The cross section of the metal strand 70 depends on the cross section of the outlet opening 52 and is usually circular. The partially fixed metal portions 72 can be gripped, for example, with a pair of pliers and transferred into the filling chamber 12 of the die casting machine 10.

Claims (10)

  1. A process for producing die-cast parts made of an aluminum alloy, wherein the aluminum alloy runs through a machine, having a housing (31) with a working space (34), which is surrounded by an inner housing sleeve (32), and a worm shaft (36), which rotates about a longitudinal axis (x) and moves back and forth translationally in the longitudinal axis (x) in the inner housing sleeve (32) and is provided with blades, wherein liquid aluminum alloy is fed to the working space (34) at one end of the housing (31) and, at the other end of the housing (31), is removed from the working space (34) as partially solid aluminum alloy with a predefined solids content, is transferred into a filling chamber (12) of a die-casting machine (10) and is introduced into a casting mold by means of a piston (20), wherein the solids content of the aluminum alloy in the working space (34) is set to the predefined solids content by cooling and heating the working space (34) in a targeted manner,
    characterized in that
    the aluminum alloy is exposed to high shearing forces in a mixing and kneading machine (30) with a worm shaft (36) interrupted in the circumferential direction such that individual kneading blades (38) are formed and with axial through openings (40) in between the kneading blades (38) and kneading bolts (42), which are fastened to the inner housing sleeve (32) and protrude into the working space (34).
  2. The process as claimed in claim 1, characterized in that the inner housing sleeve (32) is surrounded by an outer housing sleeve (46) such that an intermediate space (48) preferably in the form of a hollow cylinder is formed, and cold and/or hot gases are conducted through the intermediate space (48) for cooling and heating the working space (34).
  3. The process as claimed in claim 2, characterized in that air, preferably compressed air, is conducted through the intermediate space (48) for cooling, and hot gases, preferably combustion gases, are conducted through the intermediate space (48) for heating.
  4. The process as claimed in claim 2 or 3, characterized in that the gases are conducted through the intermediate space (48) in countercurrent to the direction in which the aluminum alloy is transported.
  5. The process as claimed in one of claims 1 to 4, characterized in that, in order to set a desired solids content, the viscosity of the aluminum alloy in the working space (34) is measured and set to a predefined value by cooling and heating the working space (34) in a targeted manner.
  6. The process as claimed in one of claims 1 to 5, characterized in that the solids content of the aluminum alloy is set to 40 to 80%, preferably to more than 50%.
  7. The process as claimed in one of claims 1 to 6, characterized in that the partially solid aluminum alloy is removed from the working space (34) as a partially solid metal strand (70), the partially solid metal strand (70) is split into partially solid metal portions (72) and the partially solid metal portions (72) are transferred into the filling chamber (12) of the die-casting machine (10).
  8. The process as claimed in one of claims 1 to 7, characterized in that, in order to produce die-cast parts reinforced with nanoparticles, nanoparticles are mixed with the aluminum alloy and finely dispersed in the aluminum alloy by high shearing forces in the mixing and kneading machine (30), wherein liquid aluminum alloy and nanoparticles are fed to the working space (34) at one end of the housing (31) and, at the other end of the housing (31), are removed from the working space (34) as partially solid aluminum alloy with a predefined solids content and with nanoparticles finely dispersed in the aluminum alloy.
  9. The process as claimed in claim 8, characterized in that the content of the nanoparticles in the alloy is 0.1 to 10% by volume.
  10. The process as claimed in claim 9, characterized in that the nanoparticles used are fumed silica, carbon nanotubes (CNT) and also further, nanoscale particles of metal and semimetal oxides, such as e.g. aluminum oxide (A2O3), titanium dioxide (TiO2), zirconium oxide (ZrO2), antimony(III) oxide, chromium(III) oxide, iron(III) oxide, germanium(IV) oxide, vanadium(V) oxide or tungsten(VI) oxide.
EP10743166A 2010-03-24 2010-08-19 Method for producing die-cast parts Not-in-force EP2393619B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL10743166T PL2393619T3 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts
EP10743166A EP2393619B1 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts
SI201030249T SI2393619T1 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10157519 2010-03-24
PCT/EP2010/062089 WO2011116838A1 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts
EP10743166A EP2393619B1 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts

Publications (2)

Publication Number Publication Date
EP2393619A1 EP2393619A1 (en) 2011-12-14
EP2393619B1 true EP2393619B1 (en) 2013-04-03

Family

ID=42167439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10743166A Not-in-force EP2393619B1 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts

Country Status (16)

Country Link
US (1) US20130220568A1 (en)
EP (1) EP2393619B1 (en)
KR (1) KR20130055563A (en)
CN (1) CN102834203A (en)
AU (1) AU2010349399A1 (en)
BR (1) BR112012023916A2 (en)
CA (1) CA2792432A1 (en)
DK (1) DK2393619T3 (en)
ES (1) ES2423326T3 (en)
HR (1) HRP20130605T1 (en)
MX (1) MX2012010807A (en)
PL (1) PL2393619T3 (en)
PT (1) PT2393619E (en)
RU (1) RU2012143377A (en)
SI (1) SI2393619T1 (en)
WO (1) WO2011116838A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061959A1 (en) * 2010-11-25 2012-05-31 Rolls-Royce Deutschland Ltd & Co Kg Method of making high temperature engine components
EP2522885A1 (en) 2011-05-11 2012-11-14 Rheinfelden Alloys GmbH & Co. KG Seal arrangement
EP2564953A1 (en) * 2011-09-05 2013-03-06 Rheinfelden Alloys GmbH & Co. KG Process for producing formed parts
CN103008610B (en) * 2012-12-18 2015-05-27 华南理工大学 Squeeze casting method of zinc alloy worm gear
AT518824A1 (en) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Method for producing a profile from a metal alloy
AT518825A1 (en) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Method for producing a profile from a metal alloy
DE102021203642B3 (en) 2021-04-13 2022-09-08 Volkswagen Aktiengesellschaft Bearing core for a rubber-metal bearing, rubber-metal bearing and motor vehicle with such

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH278575A (en) 1949-11-04 1951-10-31 List Heinz Mixing and kneading machine.
US2892224A (en) * 1957-05-09 1959-06-30 Nat Lead Co Heating of dies by internal combustion
DE2401654C2 (en) * 1974-01-15 1975-11-20 Matthias 4150 Krefeld Welsch Method and device for the production of aluminum
IT1257114B (en) * 1992-09-29 1996-01-05 Weber Srl PROCEDURE FOR OBTAINING REOCOLATED SOLID WOODS, IN PARTICULAR SUITABLE FOR USE FOR THE PRODUCTION OF HIGH MECHANICAL PERFORMANCE DIE CASTINGS.
IT1260684B (en) * 1993-09-29 1996-04-22 Weber Srl METHOD AND PLANT FOR THE DIE-CASTING OF SEMI-LIQUID COMPONENTS WITH HIGH MECHANICAL PERFORMANCE STARTING FROM REOCOLATED SOLID.
JP3817786B2 (en) * 1995-09-01 2006-09-06 Tkj株式会社 Alloy product manufacturing method and apparatus
US5881796A (en) * 1996-10-04 1999-03-16 Semi-Solid Technologies Inc. Apparatus and method for integrated semi-solid material production and casting
KR100607219B1 (en) * 1998-03-31 2006-08-01 다카다 가부시키가이샤 Method and apparatus for manufacturing metallic parts by fine die casting
EP1121214A4 (en) * 1998-07-24 2005-04-13 Gibbs Die Casting Aluminum Semi-solid casting apparatus and method
DE19907118C1 (en) * 1999-02-19 2000-05-25 Krauss Maffei Kunststofftech Injection molding apparatus for producing molded metal parts with dendritic properties comprises an extruder with screw system
GB2354471A (en) * 1999-09-24 2001-03-28 Univ Brunel Producung semisolid metal slurries and shaped components therefrom
CA2530871A1 (en) * 2003-07-02 2005-01-13 Honda Motor Co., Ltd. Molding of slurry-form semi-solidified metal
US7509993B1 (en) * 2005-08-13 2009-03-31 Wisconsin Alumni Research Foundation Semi-solid forming of metal-matrix nanocomposites
PT1815958E (en) * 2006-02-06 2008-10-28 Buss Ag Mixer and kneader
CN101070571B (en) * 2006-05-12 2011-04-20 日精树脂工业株式会社 Method for manufacturing composite material for carbon nano material and metal material
JP4224083B2 (en) * 2006-06-15 2009-02-12 日精樹脂工業株式会社 Method for producing composite metal material and method for producing composite metal molded product

Also Published As

Publication number Publication date
ES2423326T3 (en) 2013-09-19
RU2012143377A (en) 2014-05-10
PL2393619T3 (en) 2013-09-30
CN102834203A (en) 2012-12-19
EP2393619A1 (en) 2011-12-14
SI2393619T1 (en) 2013-08-30
DK2393619T3 (en) 2013-07-08
BR112012023916A2 (en) 2016-08-02
AU2010349399A1 (en) 2012-09-27
PT2393619E (en) 2013-07-09
WO2011116838A1 (en) 2011-09-29
CA2792432A1 (en) 2011-09-29
HRP20130605T1 (en) 2013-08-31
KR20130055563A (en) 2013-05-28
MX2012010807A (en) 2013-01-22
US20130220568A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2393619B1 (en) Method for producing die-cast parts
EP0718059B1 (en) Oxide remover
DE69916708T2 (en) Method and device for injection molding semi-liquid metals
WO2000049192A1 (en) Method for producing a metal matrix composite material and device for carrying out said method
DE60107690T2 (en) METHOD AND DEVICE FOR PRODUCING METAL ALLOY CASTORS
DE10062310C2 (en) Process for the treatment of metallic materials
DE69916707T2 (en) Method and device for injection molding semi-liquid metals
DE3022682A1 (en) METHOD FOR PRODUCING A MIXTURE CONTAINING THE SOLID PHASE AND THE LIQUID PHASE OF A METAL ALLOY, AND DEVICE FOR CARRYING OUT THIS METHOD
DE60213977T2 (en) SYSTEM FOR THE SUPPLY OF METAL MELT UNDER CONSTANT PRESSURE AND METHOD FOR THE PRODUCTION OF FINAL METAL ARTICLES
DE2823330C2 (en)
EP3013500B1 (en) Method for producing an impeller of an exhaust gas turbocharger
DE10002670C2 (en) Die casting process and device for carrying it out
DE19918229C2 (en) Method of manufacturing blanks for cylinder liners
DE102007020638B4 (en) Centrifugal casting method and arrangement for a centrifugal casting apparatus
EP1349686A1 (en) Method for providing a partially solidified alloy suspension and devices
DE60210126T2 (en) PREPARATION OF MATERIAL FOR FORMING IN HALF-RESISTANT CONDITION
CH704535A2 (en) Mixing and kneading machine for continuous treatment processes.
DE19918228C2 (en) Method of manufacturing blanks for cylinder liners
DE19918231C2 (en) Method of manufacturing blanks for cylinder liners
EP3251766A1 (en) Method and extruder for producing a profile from a metal alloy
EP0940206A1 (en) Oxide remover
DE102013010739B4 (en) Method for producing an impeller of an exhaust gas turbocharger
DE2360883C3 (en) Method and device for the production of metal alloys
DE2848248C2 (en) Centrifugal casting machine, especially for casting steel
AT525111A1 (en) Stirring cast blooms with an oscillating strand stirrer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20120113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 604362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002814

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20130605

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130627

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130403

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20130605

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2423326

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20130401319

Country of ref document: GR

Effective date: 20130829

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 14508

Country of ref document: SK

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E008200

Country of ref document: EE

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BUSS AG

Effective date: 20140103

R26 Opposition filed (corrected)

Opponent name: BUSS AG

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010002814

Country of ref document: DE

Effective date: 20140103

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E018583

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20130605

Country of ref document: HR

Payment date: 20140729

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20140814

Year of fee payment: 5

Ref country code: NL

Payment date: 20140820

Year of fee payment: 5

Ref country code: FI

Payment date: 20140813

Year of fee payment: 5

Ref country code: DK

Payment date: 20140820

Year of fee payment: 5

Ref country code: EE

Payment date: 20140813

Year of fee payment: 5

Ref country code: CZ

Payment date: 20140813

Year of fee payment: 5

Ref country code: IS

Payment date: 20140721

Year of fee payment: 5

Ref country code: IE

Payment date: 20140828

Year of fee payment: 5

Ref country code: GR

Payment date: 20140827

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140826

Year of fee payment: 5

Ref country code: GB

Payment date: 20140820

Year of fee payment: 5

Ref country code: HR

Payment date: 20140729

Year of fee payment: 5

Ref country code: HU

Payment date: 20140821

Year of fee payment: 5

Ref country code: PL

Payment date: 20140722

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140826

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140820

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150626

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20150818

Year of fee payment: 6

Ref country code: PT

Payment date: 20150817

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20150812

Year of fee payment: 6

Ref country code: SE

Payment date: 20150819

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20130605

Country of ref document: HR

Effective date: 20150819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502010002814

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150831

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E008200

Country of ref document: EE

Effective date: 20150831

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160301

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150820

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20130401319

Country of ref document: GR

Effective date: 20160303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20140801

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

27O Opposition rejected

Effective date: 20160317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160926

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 604362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150820

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 14508

Country of ref document: SK

Effective date: 20160819

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20150819

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180822

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002814

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819