EP2392877A1 - Système unitaire comprenant un condenseur, un échangeur de chaleur interne et une bouteille - Google Patents
Système unitaire comprenant un condenseur, un échangeur de chaleur interne et une bouteille Download PDFInfo
- Publication number
- EP2392877A1 EP2392877A1 EP11004400A EP11004400A EP2392877A1 EP 2392877 A1 EP2392877 A1 EP 2392877A1 EP 11004400 A EP11004400 A EP 11004400A EP 11004400 A EP11004400 A EP 11004400A EP 2392877 A1 EP2392877 A1 EP 2392877A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- internal heat
- bottle
- condenser
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 64
- 239000012530 fluid Substances 0.000 claims description 33
- 238000004378 air conditioning Methods 0.000 claims description 18
- 239000002826 coolant Substances 0.000 claims description 15
- 239000002274 desiccant Substances 0.000 claims description 8
- 230000008901 benefit Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/044—Condensers with an integrated receiver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/18—Optimization, e.g. high integration of refrigeration components
Definitions
- the technical sector of the present invention is that of air conditioning loops otherwise called loops or refrigeration circuits.
- the invention relates to a unitary unit constituting such a loop.
- An air conditioning loop is conventionally used on motor vehicles to generate a flow of hot air or a cold air flow sent into the passenger compartment of the vehicle.
- This loop conventionally comprises a condenser, a bottle, an expansion member, an evaporator and a compressor traversed in this order by a refrigerant fluid.
- the condenser is an exchanger crossed by an outside air flow while the evaporator is a heat exchanger through which the interior air flow flows, that is to say the flow of air sent into the passenger compartment of the motor vehicle. .
- the refrigerant fluid that flows between an outlet of the compressor and an inlet of the expansion member is subjected to high pressure and high temperature while the refrigerant fluid circulating between the outlet of the expansion member and the inlet of the compressor is subjected to low pressure and low temperature.
- Such an air conditioning loop can be improved by the addition of an internal heat exchanger whose function is to create a heat exchange between the refrigerant fluid subjected to high pressure / high temperature and the refrigerant fluid subjected to low pressure / low temperature .
- the addition of this component improves the overall efficiency of the air conditioning loop.
- FIGs 8 and 9 illustrate the technical differences between a battery and a bottle.
- the structure of an accumulator is different from the structure of a bottle.
- the figure 9 illustrates an accumulator which receives the refrigerant in the two-phase state (reference A). The latter separates in the liquid phase B and the gas phase C, the liquid phase B accumulating at the bottom and the gas phase C being in the upper part of the accumulator.
- This accumulator comprises an outlet tube 40 bent whose inlet 41 is arranged to capture only the gas portion C of the refrigerant, accompanied by a determined amount of oil sucked by an oil hole 42 formed in the tube .
- Figure 10 illustrating a bottle has an opposite structure.
- the fluid enters the liquid state B, passes through the desiccant then the filter and stagnates at the bottom of the bottle.
- the outlet tube 40 immerses in this fluid in the liquid state B so that the intake 41 captures the refrigerant fluid only in the liquid state to send it in this state to the expansion member.
- the object of the present invention is therefore to propose a new architecture of certain components of the air conditioning loop by combining in the same unitary unit and in a particular order the condenser, the internal heat exchanger and the bottle so as to gather these elements to pool the circulation of the refrigerant and thus gain compactness.
- the invention therefore relates to a system comprising a condenser, an internal heat exchanger and a bottle adapted to be traversed by a refrigerant, said condenser comprising a coolant outlet orifice connected to the internal heat exchanger, said exchanger internal heat comprising a coolant passage connected to the innovative bottle in that the condenser, the internal heat exchanger and the bottle are adapted to be traversed in this order by the refrigerant and are unitarily collected.
- the internal heat exchanger is directly downstream of the condenser and that the bottle is directly downstream of the internal heat exchanger in the direction of circulation of the refrigerant.
- an expansion member for expanding the refrigerant fluid comprises a second channel connected to an output of said system, said detent member being part of the unitary unit.
- the condenser has a beam capable of being traversed by an air flow, a first flank bordering said beam and a second flank bordering said beam and opposite to the first flank with respect to the beam, and in which the internal heat exchanger is secured to the first side while the bottle is secured to the second side. It is therefore understood that the beam is placed between the first and the second sidewall, and therefore between the internal heat exchanger and the bottle.
- the internal heat exchanger is integral with the condenser while the expansion member is integral with the internal heat exchanger.
- Solidarity means that the parts concerned are fixed to one another by removable or non-removable fastening means so that once assembled, there is no relative movement of a part by report to the other.
- a first duct and a second duct run through the bundle, the first duct connects the outlet orifice of the condenser to the internal heat exchanger and the second duct connects the internal heat exchanger to the bottle.
- the two ducts extend from the first side to the second side, said ducts being installed under the beam.
- the system includes a second sidewall sidewall outlet and a high pressure inlet port, a low pressure outlet port, and a low pressure inlet port which are on the first sidewall of the beam.
- the condenser has a beam capable of being traversed by an air flow, a first flank bordering said beam and a second flank bordering said beam and opposite to the first flank with respect to the beam, and in which the bottle is secured to the second sidewall and the internal heat exchanger extends from the first sidewall to the second sidewall in the extension of the beam.
- the internal heat exchanger and the bottle are secured to the second sidewall.
- the bottle is secured to the internal heat exchanger. In this case, the bottle is not in contact with the condenser.
- the system comprises a high pressure inlet port on the first side of the beam and an outlet, a low pressure outlet orifice and a low pressure inlet port which are on the second side of the beam.
- the high pressure inlet port is adapted to receive a refrigerant fluid subjected to high pressure and high temperature from the air conditioning loop, more particularly from a compressor.
- the low-pressure outlet orifice is intended to supply the air conditioning loop, and more particularly the compressor, with the refrigerant fluid subjected to low pressure and low temperature, that is to say after having been relaxed by the relaxation.
- the low pressure inlet port is intended to receive the refrigerant fluid subjected to low pressure and low temperature from the air conditioning loop, in particular from an evaporator.
- the outlet is intended to supply the refrigerant fluid subjected to high pressure and high temperature to a regulator constituting the air conditioning loop.
- the bottle comprises a desiccant and a filter.
- the invention covers an air conditioning loop traversed by a refrigerant fluid and comprising a compressor, an expansion member, an evaporator and a system according to one of the characteristics set out above.
- a first advantage of the invention lies in the ability to easily integrate an internal heat exchanger in an air conditioning loop using a bottle located between the heat exchanger internal and the expansion member, that is to say directly downstream of the internal heat exchanger and directly upstream of the expansion member in the direction of circulation of the refrigerant.
- the unitary and one-piece character facilitates the integration of these components in the engine compartment of the vehicle by avoiding the multiplication of supports, pipes and sealing devices between these components.
- the figure 1 illustrates the invention in a longitudinal section where is apparent a gas cooler or condenser 1, a bottle 2 and an internal heat exchanger 3.
- a gas cooler or condenser 1 a gas cooler or condenser 1
- a bottle 2 a bottle 2
- an internal heat exchanger 3 These three components of an air conditioning loop are assembled so as to form a unit or unitary system and monobloc, that is to say physically assembled on the same support, for example the condenser.
- This system is traversed by a refrigerant symbolized on all the figures by arrows referenced 4.
- the condenser 1 comprises a bundle 6 traversed by a flow of air outside the vehicle.
- This beam comprises a multiplicity of flat tubes 11 which extend transversely with respect to the outside air flow.
- These flat tubes 11 carry the coolant 4 between a first manifold 13 and a second manifold 14.
- These manifolds 13 and 14 are therefore fluidly connected to each flat tube 11 and are partitioned into a refrigerant distribution chamber in groups of flat tubes thus forming passages 7, 8 and 9 for circulation of the refrigerant fluid.
- the partition of the collector boxes is operated by means of separators 15 installed in the through of the collector box so as to impose the flow of refrigerant in the pass concerned.
- the beam 6 is divided into three passes, the upper pass 7 comprising 5 flat tubes, the intermediate pass 8 comprising 6 flat tubes and the lower pass 9 comprising 4 flat tubes.
- each flat tube 11 is installed a spacer or fin 12 whose function is to increase the heat exchange surface between the refrigerant and the outside air flow.
- the coolant 4 enters the system through a high-pressure inlet 5 of the condenser 1, this inlet 5 being more particularly installed on the wall of the first header 13 and in the upper part of the latter.
- a bottle 2 is contiguous to the second sidewall 16.
- the bottle 2 and the collecting box 14 can share a same wall 19 which thus delimits in a common manner the internal volume of the bottle 2 and the internal volume of the box. collector 14.
- This bottle takes the form of a tube that extends over substantially the entire height of the beam 6 and inside which is installed a desiccant 17 and a filter 18.
- the desiccant 17 serves to collect the water particles circulating in the refrigerant 4 while the filter 18 captures the solid particles that circulate in the coolant and resulting from wear of the components of the air conditioning loop.
- the filter 18 is placed in the lower part of the bottle 2 and completely closes the internal volume of the bottle 2 so as to be constantly traversed by the refrigerant. In doing so, the filter 18 delimits with the wall of the bottle a lower chamber 29.
- the system according to the invention comprises a first conduit 28 and a second conduit 50 which extend in the bundle 6 of the first sidewall 10 to the second sidewall 16.
- these two ducts 28 and 50 are placed under the lower pass 9 and bear against the last fin 12.
- These ducts are hollow tubes which are installed one above the other along a vertical axis.
- the first duct 28 is interposed between the beam 6 and the second duct 50.
- the two ducts 28 and 50 are side-by-side, that is to say installed in the same plane and in the thickness of the beam 6.
- the first conduit 28 communicates a distribution chamber 51 delimited by the walls of the second manifold with a high pressure inlet 52 of the internal heat exchanger 3, this inlet being placed facing the first conduit 28 in the lower part of the the internal heat exchanger.
- the refrigerant fluid 4 therefore flows from the distribution chamber to the internal heat exchanger. This communication is effected by means of an outlet orifice 20 of the condenser formed in the wall of the distribution chamber 51 and in the first duct 28.
- the second conduit 50 communicates a high pressure output 53 of the internal heat exchanger with the bottle 2, more particularly with the internal volume of the latter in which the desiccant 17 extends. This connection is made via a passage 34 formed in the wall 19 of the bottle 2, substantially facing the second duct 50 and above the filter 18.
- the internal heat exchanger comprises means arranged so that the circulation of the refrigerant fluid subjected here at high pressure and high temperature rises vertically in the internal heat exchanger after its arrival by the high pressure inlet 52 and then descends vertically in the direction of the high pressure outlet 53 before entering the second conduit 50.
- the latter is delimited by an outer envelope 21, one face 22 is common with the first manifold 13.
- the outer casing 21 may be welded to the wall defining the first manifold 13.
- high pressure channels 24 and low pressure channels 23 allow heat exchange between the refrigerant fluid subjected to high pressure and high temperature and the same refrigerant fluid subjected to low pressure and low temperature.
- the high pressure channels 24 are connected to the high pressure outlet 53.
- the internal heat exchanger 3 also includes a low pressure inlet port 26 and a low pressure outlet port 27 which each communicate with one end of the low pressure channels 23.
- the high-pressure inlet orifice 5, the low-pressure inlet orifice 26 and the low-pressure outlet orifice 27 are installed on the first side 10 of the bundle 6, whereas an outlet 25 is installed on the side of the second sidewall 16.
- the system is unitary in that the condenser 1, the bottle 2 and the internal heat exchanger 3 form a single unit. This is made possible for example when these components are collected by means fastening such as screwing or welding.
- the components are side by side in the following order from left to right looking at the figure 1 : internal heat exchanger 3, condenser 1 and bottle 2.
- the flow direction of the refrigerant 4 inside the system takes on importance.
- the refrigerant 4 enters the system through the high pressure inlet 5 and then flows in a first direction in the upper pass 7.
- the second manifold 14 collects this refrigerant and channels it to the intermediate pass 8 where the fluid refrigerant circulates in the opposite direction to the direction of flow in the first pass 7.
- the first manifold 13 then collects the coolant and channels it to the lower pass 9 where the fluid flows in the same direction as the direction of flow in the upper pass 7.
- the distribution chamber 51 of the second header 14 collects the coolant 4 which then passes through the outlet orifice 20 of the condenser 1, where it enters the first conduit 28 to be directed towards the internal heat exchanger 3.
- the coolant 4 thermally exchanges with the outside air flow which passes through the in a direction perpendicular to the plane of the figure 1 .
- the coolant 4 then enters the internal heat exchanger 3, particularly in the high pressure channels 24.
- the high pressure and high temperature refrigerant then rises the internal heat exchanger then down to exit through the high pressure outlet 53
- the refrigerant fluid 4 subjected to low pressure and low temperature enters the internal heat exchanger 3 through the low pressure inlet port 26 and then travels the low pressure channels 23 downwards to exit through the orifice Low pressure outlet 27.
- the circulation of the refrigerant side high pressure is "U" while the circulation of the coolant side low pressure is "I".
- the refrigerant fluid at high pressure and high temperature then circulates in the second conduit 50 to enter the bottle 2, via the passage 34, then pass through the desiccant 17, through the filter 18 to reach the lower chamber 29 of the bottle 2. At this point, the refrigerant 4 exits the system through the outlet 25.
- the figure 2 illustrates a section of the internal heat exchanger in a section symbolized by the reference A in the figures.
- a high pressure channel 24 is next to each side of a low pressure channel 23. It will be noted that the high pressure channels are subdivided into sub-channels 24a to 24l, subdivision walls 30 ensuring the separation between the subchannels 24a to 24l while ensuring the mechanical strength of the high pressure channel 23.
- the figure 3 also illustrates a section of the internal heat exchanger 3 but the cut is made at the first duct 28 and the second duct 50 as illustrated by the cut line referenced B on the figure 1 .
- the outer casing 21 has a hole through which the ducts 28 and 50 pass, the latter being connected to the high pressure channels 24 by passing through the first low pressure channel 23.
- a distribution chamber connects on one side the end of the first conduit 28 with a first end of the set of high pressure channels 24 so as to simultaneously supply refrigerant 4.
- a second distribution chamber connects the other end of the high pressure channels 24 with one end of the second conduit 50.
- FIG 4 illustrates a second variant of the unitary system according to the invention.
- the description of the first variant applies to identical components and the differences will now be described.
- the internal heat exchanger 3 is installed on the same side as the bottle 2, that is to say on the side of the second flank 16 bordering the beam 6 of the condenser 1.
- the internal heat exchanger 3 shares a face 35 of its outer envelope 21 with the bottle 2. This face 35 is therefore common to the bottle 2 and the internal heat exchanger 3.
- This face 35 comprises the passage 34 which communicates the high pressure channels 24 of the internal heat exchanger 3 with the internal volume of the bottle 2. This passage 34 is made above the filter 18.
- the internal heat exchanger also comprises a face 54 opposite the face 35, this face 54 being common with the second header 16 and comprises the outlet orifice 20 of the condenser to allow the refrigerant to flow from the distribution chamber 51 to the high pressure channels 24 of the internal heat exchanger 3.
- the high pressure inlet orifice 5 is therefore on the side of the first sidewall 10 being secured to the first manifold 13 then the low pressure inlet port 26, the outlet 25 and the outlet orifice low pressure 27 are located on the side of the second sidewall 16.
- the components are side by side in the following order from left to right looking at the figure 4 : condenser 1, internal heat exchanger 3 and bottle 2.
- the bottle Preferably, the bottle not being in contact with the condenser.
- the figure 5 illustrates a third variant of the invention. This is an improvement of the system according to the second variant in which the detent member is integrated in the unitary and monobloc system, so as to be part too of the unitary system and benefit from the advantage of approximation of the components.
- An expansion member 31 is therefore part of the unitary system and is secured on one side to a wall of the bottle 2 and the other on the internal heat exchanger 3.
- This expansion member is a thermostatic expansion valve or a electrically or electronically controlled expansion valve, but it may be an orifice-tube or expansion tube.
- the expansion member comprises a first channel 32 for circulating the refrigerant fluid which communicates with the low-pressure inlet orifice 26, this orifice here taking the form of a tube whose free end ends in the same plane as the free end of the outlet 25.
- the expansion member 31 further comprises a second channel 33 which communicates with the outlet 25, and more particularly with an intermediate chamber 57 in which the refrigerant 4 is stored.
- This intermediate chamber 25 then acts as a refrigerant storage zone or thermal buffer whose level varies according to the parameters mentioned in the introduction, which smooths the variations of the thermodynamic cycle of the loop.
- first channel 32 and the second channel 33 are identical to the distance between the low pressure inlet port 26 and the outlet 25 which allows to simply align the trigger member on the orifices where he has to connect tightly.
- the components are side by side in the following order from left to right looking at the figure 5 : condenser 1, internal heat exchanger 3, bottle 2 and expansion member 31.
- the bottle is not in contact with the condenser.
- the figure 6 shows a fourth variant of the invention.
- the description of the first variant applies to identical components and the differences will now be described.
- the internal heat exchanger 3 is installed in the plane of the beam 6 of the condenser 3 but under the lower pass 9. It is therefore understood that the internal heat exchanger 3 extends from the first sidewall 10 to the second sidewall 16 bordering the distribution chamber 51 communicates with the high-pressure channels 24 of the internal heat exchanger 3 via the outlet orifice 20, and the coolant 4 then flows from the second sidewall 16 towards the high-pressure channels 24 of the internal heat exchanger 3. the first flank 10 which surround the condenser 1.
- the internal heat exchanger 3 comprises means for imposing a half-turn on the refrigerant at one end 36 of the internal heat exchanger 3 and driving it towards the bottle 2 secured to the second flank 16 of the condenser 1.
- the coolant 4 circulates in the passage 34 to enter the internal volume of the bottle 2, then passes through the desiccant 17 and the filter 18.
- the fluid is directed towards the end 36 by a second conduit 50, the latter being connected to the exit 25.
- the passage 34 which communicates the bottle 2 with the high pressure channels 24 is formed in the wall 19 which is common to the bottle 2 and the second manifold 14.
- the outer casing 21 of the internal heat exchanger 3 is here contiguous on the beam 6, the face 35 of this casing being against the last fin 12 of the beam 6.
- This outer casing 21 opens out of the first sidewall 10 forming the end 36 on which are manufactured some of the connection ports.
- This end 36 has a lower face 56 from which opens the low pressure outlet orifice 27 and an upper face 38, opposite to the lower face 37 relative to the internal heat exchanger 3, including open out the outlet 25 and the low pressure inlet port 26.
- the circulation of the refrigerant fluid in the low-pressure channels 23 of the exchanger is effected from the low-pressure inlet orifice 26 towards the second flank 16 bordering the bundle and then returns in the opposite direction towards the end 36 to exit through the low pressure outlet orifice 27.
- the refrigerant fluid subjected to low pressure / low temperature and the refrigerant fluid subjected to high pressure / high temperature flow in "U" and in the opposite direction in the internal heat exchanger.
- the fifth variant of the invention is represented on the figure 7 .
- This expansion member 31 is secured to the upper face 38 of the end 36 constituting the internal heat exchanger 3.
- the refrigerant 4 enters the system through the high pressure inlet 5, passes through the three passes 7, 8 and 9 and opens into the internal heat exchanger 3 secured in the beam 6 of the condenser 1.
- the refrigerant then passes through the high pressure channels 24 and leaves the internal heat exchanger through the passage 34 to enter the bottle 2.
- the coolant 4 passes into the second channel 33 of the expansion member 31 to be relaxed.
- the coolant 4 After passing through the evaporator, the coolant 4 enters at low pressure and low temperature in the expansion member 31 by the first channel 32 and then flows through the low pressure channels 23 to finally exit the system through the low outlet orifice pressure 27 and move towards the compressor.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
- Le secteur technique de la présente invention est celui des boucles de climatisation autrement appelées boucles ou circuits de réfrigération. L'invention vise un ensemble unitaire constitutif d'une telle boucle.
- Une boucle de climatisation est classiquement utilisée sur les véhicules automobiles pour générer un flux d'air chaud ou un flux d'air froid envoyé dans l'habitacle du véhicule. Cette boucle comprend classiquement un condenseur, une bouteille, un organe de détente, un évaporateur et un compresseur parcourus dans cet ordre par un fluide réfrigérant. Le condenseur est un échangeur traversé par un flux d'air extérieur alors que l'évaporateur est un échangeur traversé par le flux d'air intérieur, c'est-à-dire le flux d'air envoyé dans l'habitacle du véhicule automobile. Le fluide réfrigérant qui circule entre une sortie du compresseur et une entrée de l'organe de détente est soumis à haute pression et haute température alors que le fluide réfrigérant qui circule entre la sortie de l'organe de détente et l'entrée du compresseur est soumis à basse pression et basse température.
- Une telle boucle de climatisation peut être améliorée par l'ajout d'un échangeur de chaleur interne dont la fonction est de créer un échange thermique entre le fluide réfrigérant soumis à haute pression/haute température et le fluide réfrigérant soumis à basse pression/basse température. L'ajout de ce composant améliore le rendement global de la boucle de climatisation.
- Cependant, il s'agit d'un composant supplémentaire à intégrer dans un compartiment moteur du véhicule, ce dernier étant déjà particulièrement encombré.
- Il est connu du document
US6539746 de combiner cet échangeur de chaleur interne avec un refroidisseur de gaz et un accumulateur. Cependant, un accumulateur ne procure pas les mêmes fonctions et effets qu'une bouteille placée dans le circuit de réfrigérant entre l'échangeur de chaleur interne et l'organe de détente. - Les
figures 8 et 9 illustrent les différences techniques entre un accumulateur et une bouteille. Outre le placement de ce composant dans la boucle de climatisation (l'accumulateur est entre la sortie de l'évaporateur et l'entrée du compresseur alors que la bouteille est placée entre la sortie du condenseur et l'entrée du détendeur), la structure d'un accumulateur est différente de la structure d'une bouteille. En effet, lafigure 9 illustre un accumulateur qui reçoit le fluide réfrigérant à l'état diphasique (référence A). Ce dernier se sépare en phase liquide B et en phase gazeuse C, la phase liquide B s'accumulant au fond et la phase gazeuse C étant dans la partie supérieure de l'accumulateur. Cet accumulateur comprend un tube de sortie 40 coudé dont l'admission 41 est disposée de sorte à capter seulement la partie gazeuse C du fluide réfrigérant, accompagnée d'une quantité déterminée d'huile aspirée par un trou d'huile 42 pratiqué dans le tube. - La figure 10 illustrant une bouteille présente une structure opposée. En effet, le fluide entre à l'état liquide B, traverse le dessicant puis le filtre et stagne au fond de la bouteille. Le tube de sortie 40 plonge dans ce fluide à l'état liquide B de sorte que l'admission 41 capte le fluide réfrigérant seulement à l'état liquide pour l'envoyer dans cet état à l'organe de détente.
- Il existe donc un besoin pour intégrer astucieusement un tel échangeur de chaleur interne dans une boucle de climatisation comprenant une bouteille.
- Par ailleurs, le rendement d'une telle boucle varie en fonction de paramètres tels que l'alimentation en air extérieur du condenseur ou la variation de vitesse de rotation du compresseur. Ces variations ont pour conséquence que la température du fluide réfrigérant à l'entrée de l'organe de détente n'est pas stable, ce qui provoque des difficultés pour maintenir la température de l'air intérieur envoyé dans l'habitacle du véhicule au niveau demandé par l'utilisateur sans que ce dernier ne décèle de variations.
- Le but de la présente invention est donc de proposer une nouvelle architecture de certains composants de la boucle de climatisation en combinant dans un même ensemble unitaire et selon un ordre particulier le condenseur, l'échangeur de chaleur interne et la bouteille de sorte à rassembler ces éléments pour mutualiser la circulation du fluide réfrigérant et ainsi gagner en compacité.
- L'invention a donc pour objet un système comprenant un condenseur, un échangeur de chaleur interne et une bouteille aptes à être parcourus par un fluide réfrigérant, ledit condenseur comprenant un orifice de sortie de fluide réfrigérant raccordée à l'échangeur de chaleur interne, ledit échangeur de chaleur interne comprenant un passage de fluide réfrigérant raccordé à la bouteille innovant en ce que le condenseur, l'échangeur de chaleur interne et la bouteille sont aptes à être parcourus dans cet ordre par le fluide réfrigérant et sont rassemblés de manière unitaire.
- On comprend donc que l'échangeur de chaleur interne est directement en aval du condenseur et que la bouteille est directement en aval de l'échangeur de chaleur interne selon le sens de circulation du fluide réfrigérant.
- Selon une première caractéristique de l'invention, un organe de détente destiné à détendre le fluide réfrigérant comprend un second canal raccordé à une sortie dudit système, ledit organe de détente faisant partie de l'ensemble unitaire.
- Selon une deuxième caractéristique de l'invention, le condenseur présente un faisceau apte à être traversé par un flux d'air, un premier flanc bordant ledit faisceau et un deuxième flanc bordant ledit faisceau et opposé au premier flanc par rapport au faisceau, et dans lequel l'échangeur de chaleur interne est solidarisé au premier flanc alors que la bouteille est solidarisée au deuxième flanc. On comprend donc que le faisceau est placé entre le premier et le deuxième flanc, et par conséquent entre l'échangeur de chaleur interne et la bouteille.
- Selon une autre caractéristique de l'invention, l'échangeur de chaleur interne est solidaire du condenseur alors que l'organe de détente est solidaire de l'échangeur de chaleur interne. On entend par solidaire le fait que les pièces concernées sont fixées l'une sur l'autre par des moyens de fixation amovibles ou non amovibles de telle sorte qu'une fois assemblées, il n'existe pas de mouvement relatif d'une pièce par rapport à l'autre.
- Un premier conduit et un second conduit parcourent le faisceau, le premier conduit relie l'orifice de sortie du condenseur à l'échangeur de chaleur interne et le second conduit relie l'échangeur de chaleur interne à la bouteille.
- Avantageusement, les deux conduits s'étendent du premier flanc au deuxième flanc, lesdits conduits étant installés sous le faisceau.
- Selon encore une caractéristique de l'invention, le système comprend une sortie côté deuxième flanc du faisceau et un orifice d'entrée haute pression, un orifice de sortie basse pression et un orifice d'entrée basse pression qui sont côté premier flanc du faisceau.
- Selon un mode de réalisation de l'invention, le condenseur présente un faisceau apte à être traversé par un flux d'air, un premier flanc bordant ledit faisceau et un deuxième flanc bordant ledit faisceau et opposé au premier flanc par rapport au faisceau, et dans lequel la bouteille est solidarisée au deuxième flanc et l'échangeur de chaleur interne s'étend du premier flanc jusqu'au deuxième flanc dans le prolongement du faisceau.
- Selon une alternative de réalisation de l'invention, l'échangeur de chaleur interne et la bouteille sont solidarisés côté deuxième flanc.
- La bouteille est solidarisée sur l'échangeur de chaleur interne. Dans ce cas, la bouteille n'est pas en contact avec le condenseur.
- Avantageusement, le système comprend un orifice d'entrée haute pression côté premier flanc du faisceau et une sortie, un orifice de sortie basse pression et un orifice d'entrée basse pression qui sont côté deuxième flanc du faisceau. L'orifice d'entrée haute pression est destiné à recevoir un fluide réfrigérant soumis à haute pression et haute température en provenance de la boucle de climatisation, plus particulièrement en provenance d'un compresseur. L'orifice de sortie basse pression est destiné à fournir à la boucle de climatisation, et plus particulièrement au compresseur, le fluide réfrigérant soumis à basse pression et basse température, c'est-à-dire après avoir été détendu par l'organe de détente. L'orifice d'entrée basse pression est destiné à recevoir le fluide réfrigérant soumis à basse pression et basse température en provenance de la boucle de climatisation, en particulier en provenance d'un évaporateur. Enfin, la sortie est destinée à fournir le fluide réfrigérant soumis à haute pression et haute température à un détendeur constitutif de la boucle de climatisation.
- Selon encore une caractéristique de l'invention, la bouteille comprend un dessicant et un filtre.
- Enfin, l'invention couvre une boucle de climatisation parcourue par un fluide réfrigérant et comprenant un compresseur, un organe de détente, un évaporateur et un système selon l'une des caractéristiques énoncées précédemment.
- Un tout premier avantage selon l'invention réside dans la possibilité d'intégrer aisément un échangeur de chaleur interne dans une boucle de climatisation utilisant une bouteille localisée entre l'échangeur de chaleur interne et l'organe de détente, c'est-à-dire directement en aval de l'échangeur de chaleur interne et directement en amont de l'organe de détente selon le sens de circulation du fluide réfrigérant. Le caractère unitaire et monobloc facilite l'intégration de ces composants dans le compartiment moteur du véhicule en évitant la multiplication de supports, de conduites et de dispositifs d'étanchéité entre ces composants.
- Un autre avantage non négligeable réside dans le bénéfice en compacité, en particulier en termes dimensionnels, que l'ensemble unitaire offre en rassemblant en un même point, autrement dit sur un même support, trois composants de la boucle de climatisation.
- Enfin, la bouteille placée après ou en aval de l'échangeur de chaleur interne, selon le sens de circulation du fluide réfrigérant dans la boucle de climatisation, joue un rôle de tampon thermique qui lisse les fluctuations de température du fluide réfrigérant en entrée de l'organe de détente malgré les variations des régimes de roulage (alimentation en air extérieur du faisceau du condenseur ou variation de vitesse de rotation du compresseur).
- D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :
- la
figure 1 est une vue en coupe d'une première variante du système selon l'invention, - la
figure 2 est une vue en coupe de l'échangeur de chaleur interne selon l'invention au droit de la coupe A, - la
figure 3 est une vue en coupe partielle d'une zone particulière du système selon la première variante au droit de la coupe B, - la
figure 4 est une vue en coupe d'une deuxième variante du système selon l'invention, - la
figure 5 est une vue en coupe d'une troisième variante du système selon l'invention, - la
figure 6 est une vue en coupe d'une quatrième variante du système selon l'invention, - la
figure 7 est une vue en coupe d'une cinquième variante du système selon l'invention, - la
figure 8 illustre un accumulateur, - la
figure 9 illustre une bouteille. - Il faut noter que les figures exposent l'invention de manière détaillée et suffisante pour sa mise en oeuvre, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant.
- La
figure 1 illustre l'invention selon une coupe longitudinale où est apparent un refroidisseur de gaz ou condenseur 1, une bouteille 2 et un échangeur de chaleur interne 3. Ces trois composants d'une boucle de climatisation sont rassemblés de sorte à former un ensemble ou système unitaire et monobloc, c'est-à-dire rassemblé physiquement sur un même support, par exemple le condenseur. Ce système est parcouru par un fluide réfrigérant symbolisé sur l'ensemble des figures par des flèches référencées 4. - Le condenseur 1 comprend un faisceau 6 traversé par un flux d'air extérieur au véhicule. Ce faisceau comprend une multiplicité de tubes plats 11 qui s'étendent transversalement par rapport au flux d'air extérieur. Ces tubes plats 11 transportent le fluide réfrigérant 4 entre une première boîte collectrice 13 et une seconde boîte collectrice 14. Ces boîtes collectrices 13 et 14 sont donc raccordées fluidiquement avec chaque tube plat 11 et sont partitionnées en chambre de distribution du fluide réfrigérant en des groupes de tubes plats formant ainsi des passes 7, 8 et 9 de circulation du fluide réfrigérant. La partition des boîtes collectrices est opérée au moyen de séparateurs 15 installés dans le travers de la boîte collectrice de sorte à imposer la circulation du fluide réfrigérant dans la passe concernée.
- Dans le cas d'espèce, le faisceau 6 est divisé en trois passes, la passe supérieure 7 comprenant 5 tubes plats, la passe intermédiaire 8 comprenant 6 tubes plats et la passe inférieure 9 comprenant 4 tubes plats.
- Entre chaque tube plat 11 est installé une intercalaire ou ailette 12 dont la fonction est d'augmenter la surface d'échange thermique entre le fluide réfrigérant et le flux d'air extérieur.
- Ces boîtes collectrices 13, 14 forment donc respectivement un premier flanc 10 du faisceau 6 et un deuxième flanc 16 bordant le faisceau et opposé au premier flanc 10 par rapport au faisceau 6.
- Le fluide réfrigérant 4 pénètre dans le système par un orifice d'entrée haute pression 5 du condenseur 1, cette orifice d'entrée 5 étant plus particulièrement installé sur la paroi de la première boîte collectrice 13 et dans la partie supérieure de cette dernière.
- Une bouteille 2 est accolée au deuxième flanc 16. A titre d'exemple, la bouteille 2 et la boîte collectrice 14 peuvent partager une même paroi 19 qui délimite ainsi de manière commune le volume interne de la bouteille 2 et le volume interne de la boîte collectrice 14.
- Cette bouteille prend la forme d'un tube qui s'étend sur sensiblement toute la hauteur du faisceau 6 et à l'intérieur duquel est installé un dessicant 17 et un filtre 18. Le dessicant 17 a pour fonction de capter les particules d'eau circulant dans le fluide réfrigérant 4 alors que le filtre 18 capte les particules solides qui circulent dans le fluide réfrigérant et qui résultent de l'usure des composants de la boucle de climatisation. Le filtre 18 est placé dans la partie inférieure de la bouteille 2 et ferme complètement le volume interne de la bouteille 2 de sorte à être constamment traversé par le fluide réfrigérant. Ce faisant, le filtre 18 délimite avec la paroi de la bouteille une chambre inférieure 29.
- Le système selon l'invention comprend un premier conduit 28 et un deuxième conduit 50 qui s'étendent dans le faisceau 6 du premier flanc 10 au deuxième flanc 16. Dans l'exemple de la
figure 1 , ces deux conduits 28 et 50 sont placés sous la passe inférieure 9 et en appui contre la dernière ailette 12. Ces conduits sont des tubes creux qui sont installés l'un au dessus de l'autre selon un axe vertical. Autrement dit, le premier conduit 28 est intercalé entre le faisceau 6 et le deuxième conduit 50. - Dans une alternative illustrée sur la
figure 3 , les deux conduits 28 et 50 sont côte-à-côte, c'est-à-dire installés dans un même plan et dans l'épaisseur du faisceau 6. - Le premier conduit 28 met en communication une chambre de distribution 51 délimitée par les parois de la seconde boîte collectrice avec une entrée haute pression 52 de l'échangeur de chaleur interne 3, cette entrée étant placée face au premier conduit 28 dans la partie inférieure de l'échangeur de chaleur interne. Le fluide réfrigérant 4 circule donc de la chambre de distribution vers l'échangeur de chaleur interne. Cette mise en communication est opéré au moyen d'un orifice de sortie 20 du condenseur pratiqué dans la paroi de la chambre de distribution 51 et dans le premier conduit 28.
- Le deuxième conduit 50 met en communication une sortie haute pression 53 de l'échangeur de chaleur interne avec la bouteille 2, plus particulièrement avec le volume interne de cette dernière dans lequel s'étend le dessicant 17. Cette mise en communication intervient via un passage 34 ménagé dans la paroi 19 de la bouteille 2, sensiblement en face du deuxième conduit 50 et au dessus du filtre 18.
- L'échangeur de chaleur interne comprend des moyens organisés pour que la circulation du fluide réfrigérant soumis ici à haute pression et haute température monte verticalement dans l'échangeur de chaleur interne après son arrivée par l'entrée haute pression 52 puis descend verticalement en direction de la sortie haute pression 53 avant de pénétrer dans le deuxième conduit 50.
- On comprend donc que la circulation du fluide réfrigérant dans le premier conduit 28 est en sens opposé au sens de circulation du fluide dans le deuxième conduit 50.
- Le premier flanc 10, et plus particulièrement la paroi délimitant la première boîte collectrice 13, supporte l'échangeur de chaleur interne 3. Ce dernier est délimité par une enveloppe externe 21 dont une face 22 est commune avec la première boîte collectrice 13. Alternativement, l'enveloppe externe 21 peut être soudée sur la paroi qui délimite la première boîte collectrice 13.
- A l'intérieur de l'enveloppe externe 21, des canaux haute pression 24 et des canaux basse pression 23 permettent un échange thermique entre le fluide réfrigérant soumis à haute pression et haute température et ce même fluide réfrigérant soumis à basse pression et basse température. Les canaux haute pression 24 sont reliés à la sortie haute pression 53.
- L'échangeur de chaleur interne 3 comprend également un orifice d'entrée basse pression 26 et un orifice de sortie basse pression 27 qui communiquent chacun avec une extrémité des canaux basse pression 23.
- Dans cette première variante de l'invention, l'orifice d'entrée haute pression 5, l'orifice d'entrée basse pression 26 et l'orifice de sortie basse pression 27 sont installés côté premier flanc 10 du faisceau 6, alors qu'une sortie 25 est installée du côté du deuxième flanc 16.
- Le système est unitaire en ce sens que le condenseur 1, la bouteille 2 et l'échangeur de chaleur interne 3 forment un unique ensemble. Ceci est rendu possible par exemple quand ces composants sont rassemblés par des moyens de solidarisation comme le vissage ou le soudage.
- Dans cette première variante de l'invention, les composants sont côte à côte selon l'ordre suivant de gauche à droite en regardant la
figure 1 : échangeur de chaleur interne 3, condenseur 1 et bouteille 2. - Le sens de circulation du fluide réfrigérant 4 à l'intérieur du système prend une importance. Le fluide réfrigérant 4 pénètre dans le système par l'orifice d'entrée haute pression 5 puis circule dans un premier sens dans la passe supérieure 7. La deuxième boîte collectrice 14 collecte ce fluide réfrigérant et le canalise vers la passe intermédiaire 8 où le fluide réfrigérant circule en sens opposé au sens de circulation dans la première passe 7. La première boîte collectrice 13 collecte alors le fluide réfrigérant et le canalise vers la passe inférieure 9 où le fluide circule dans le même sens que le sens de circulation dans la passe supérieure 7. Finalement, la chambre de distribution 51 de la deuxième boîte collectrice 14 collecte le fluide réfrigérant 4 qui passe alors au travers de l'orifice de sortie 20 du condenseur 1, où il pénètre dans le premier conduit 28 pour être dirigé vers l'échangeur de chaleur interne 3. Pendant ce parcours, le fluide réfrigérant 4 échange thermiquement avec le flux d'air extérieur qui passe au travers du faisceau 6 selon une direction perpendiculaire au plan de la
figure 1 . - Le fluide réfrigérant 4 pénètre alors dans l'échangeur de chaleur interne 3, particulièrement dans les canaux haute pression 24. Le fluide réfrigérant à haute pression et haute température remonte alors l'échangeur de chaleur interne puis descend pour sortir par la sortie haute pression 53. En parallèle, le fluide réfrigérant 4 soumis à basse pression et basse température pénètre dans l'échangeur de chaleur interne 3 par l'orifice d'entrée basse pression 26 puis parcours les canaux basse pression 23 vers le bas pour sortir par l'orifice de sortie basse pression 27. On comprend ici que la circulation du fluide réfrigérant côté haute pression est en « U » alors que la circulation du fluide réfrigérant côté basse pression est en « I».
- Le fluide réfrigérant à haute pression et haute température circule ensuite dans le deuxième conduit 50 pour entrer dans la bouteille 2, via le passage 34, puis passer au travers du dessicant 17, au travers du filtre 18 pour atteindre la chambre inférieure 29 de la bouteille 2. A ce stade, le fluide réfrigérant 4 sort du système par la sortie 25.
- La
figure 2 illustre une section de l'échangeur de chaleur interne selon une coupe symbolisée par la référence A sur les figures. On voit de manière plus détaillée l'enveloppe externe 21 à l'intérieur de laquelle les canaux haute pression 24 et basse pression 23 cheminent. - Ces canaux sont alternés. Autrement dit, un canal haute pression 24 côtoie de chaque côté un canal basse pression 23. On notera que les canaux haute pression sont subdivisés en sous-canaux 24a à 24l, des parois de subdivision 30 assurant la séparation entre les sous-canaux 24a à 24l tout en garantissant la tenue mécanique du canal haute pression 23.
- La
figure 3 illustre elle aussi une section de l'échangeur de chaleur interne 3 mais la coupe est effectuée au niveau du premier conduit 28 et du deuxième conduit 50 comme illustré par le trait de coupe référencé B sur lafigure 1 . - L'enveloppe externe 21 présente un trou au travers duquel les conduits 28 et 50 passent, ces derniers étant raccordés aux canaux haute pression 24 en passant au travers du premier canal basse pression 23. Bien entendu, une chambre de répartition raccorde d'un côté l'extrémité du premier conduit 28 avec une première extrémité de l'ensemble des canaux haute pression 24 de sorte à les alimenter simultanément en fluide réfrigérant 4. Une seconde chambre de répartition raccorde l'autre extrémité des canaux haute pression 24 avec une extrémité du deuxième conduit 50.
- La
figure 4 illustre une deuxième variante du système unitaire selon l'invention. La description de la première variante s'applique aux composants identiques et les différences vont maintenant être décrites. - Selon cette deuxième variante, l'échangeur de chaleur interne 3 est installé du même côté que la bouteille 2, c'est-à-dire du côté du deuxième flanc 16 bordant le faisceau 6 du condenseur 1. L'échangeur de chaleur interne 3 partage une face 35 de son enveloppe externe 21 avec la bouteille 2. Cette face 35 est donc commune à la bouteille 2 et à l'échangeur de chaleur interne 3. Cette face 35 comprend le passage 34 qui met en communication les canaux haute pression 24 de l'échangeur de chaleur interne 3 avec le volume interne de la bouteille 2. Ce passage 34 est pratiqué au dessus du filtre 18.
- L'échangeur de chaleur interne comprend aussi une face 54 opposé à la face 35, cette face 54 étant commune avec la deuxième boîte collectrice 16 et comprend l'orifice de sortie 20 du condenseur pour autoriser le fluide réfrigérant à circuler de la chambre de distribution 51 vers les canaux haute pression 24 de l'échangeur de chaleur interne 3.
- Dans cette variante, l'orifice d'entrée haute pression 5 est donc du côté du premier flanc 10 en étant solidarisé sur la première boîte collectrice 13 alors l'orifice d'entrée basse pression 26, la sortie 25 et l'orifice de sortie basse pression 27 sont localisés du côté du deuxième flanc 16.
- Dans cette deuxième variante, les composants sont côte à côte selon l'ordre suivant de gauche à droite en regardant la
figure 4 : condenseur 1, échangeur de chaleur interne 3 et bouteille 2. Préférentiellement, la bouteille n'étant pas en contact avec le condenseur. - La
figure 5 illustre une troisième variante de l'invention. Il s'agit d'un perfectionnement du système selon la deuxième variante dans lequel l'organe de détente est intégré au système unitaire et monobloc, de manière à faire partie lui aussi du système unitaire et bénéficier de l'avantage de rapprochement des composants. - La description de la
figure 4 s'applique en tous points à la variante montrée sur lafigure 5 . Un organe de détente 31 fait donc partie du système unitaire et il est solidarisé d'un côté sur une paroi de la bouteille 2 et de l'autre sur l'échangeur de chaleur interne 3. Cet organe de détente est un détendeur thermostatique ou un détendeur à commande électrique ou électronique, mais il peut s'agir d'un orifice-tube ou tube de détente. - L'organe de détente comprend un premier canal 32 de circulation du fluide réfrigérant qui communique avec l'orifice d'entrée basse pression 26, cet orifice prenant ici la forme d'un tube dont l'extrémité libre se termine dans le même plan que l'extrémité libre de la sortie 25. L'organe de détente 31 comprend encore un second canal 33 qui communique avec la sortie 25, et plus particulièrement avec une chambre intermédiaire 57 dans laquelle le fluide réfrigérant 4 est stocké. Cette chambre intermédiaire 25 agit alors comme une zone de stockage de fluide réfrigérant ou tampon thermique dont le niveau varie en fonction des paramètres évoqués en introduction, ce qui permet de lisser les variations du cycle thermodynamique de la boucle.
- On notera que l'entraxe entre le premier canal 32 et le deuxième canal 33 est identique à l'entraxe entre l'orifice d'entrée basse pression 26 et la sortie 25 ce qui permet d'aligner simplement l'organe de détente sur les orifices où il doit se connecter de manière étanche.
- Dans cette variante de l'invention, les composants sont côte à côte selon l'ordre suivant de gauche à droite en regardant la
figure 5 : condenseur 1, échangeur de chaleur interne 3, bouteille 2 et organe de détente 31. De manière préférentielle, la bouteille n'étant pas en contact avec le condenseur. - La
figure 6 montre une quatrième variante de l'invention. La description de la première variante s'applique aux composants identiques et les différences vont maintenant être décrites. - L'échangeur de chaleur interne 3 est installé dans le plan du faisceau 6 du condenseur 3 mais sous la passe inférieure 9. On comprend donc que l'échangeur de chaleur interne 3 s'étend du premier flanc 10 jusqu'au deuxième flanc 16 bordant de part et d'autre le faisceau 6. La chambre de distribution 51 communique avec les canaux haute pression 24 de l'échangeur de chaleur interne 3 via l'orifice de sortie 20, et le fluide réfrigérant 4 circule alors du deuxième flanc 16 vers le premier flanc 10 qui bordent le condenseur 1.
- L'échangeur de chaleur interne 3 comprend des moyens pour imposer un demi-tour au fluide réfrigérant au niveau d'une extrémité 36 de l'échangeur de chaleur interne 3 et le conduire en direction de la bouteille 2 solidarisée sur le deuxième flanc 16 du condenseur 1.
- Le fluide réfrigérant 4 circule dans le passage 34 pour entrer dans le volume interne de la bouteille 2, puis traverse le dessicant 17 et le filtre 18. Le fluide est dirigé vers l'extrémité 36 par un deuxième conduit 50, ce dernier étant raccordé à la sortie 25.
- Le passage 34 qui met en communication la bouteille 2 avec les canaux haute pression 24 est formé dans la paroi 19 qui est commune à la bouteille 2 et à la deuxième boîte collectrice 14.
- L'enveloppe externe 21 de l'échangeur de chaleur interne 3 est ici accolée sur le faisceau 6, la face 35 de cette enveloppe étant contre la dernière ailette 12 du faisceau 6. Cette enveloppe externe 21 débouche du premier flanc 10 en formant l'extrémité 36 sur laquelle sont fabriqués certains des orifices de raccordements.
- Cette extrémité 36 présente une face inférieure 56 de laquelle débouche l'orifice de sortie basse pression 27 et une face supérieure 38, opposée à la face inférieure 37 par rapport à l'échangeur de chaleur interne 3, dont débouchent la sortie 25 et l'orifice d'entrée basse pression 26.
- Dans cette variante, la circulation du fluide réfrigérant dans les canaux basse pression 23 de l'échangeur s'effectue de l'orifice d'entrée basse pression 26 vers le deuxième flanc 16 bordant le faisceau puis revient en sens inverse en direction de l'extrémité 36 pour sortir par l'orifice de sortie basse pression 27. Il en va de même pour la circulation du fluide réfrigérant soumis à haute pression/haute température qui pénètre dans les canaux haute pression 24 après avoir traversé l'orifice de sortie 20 du condenseur 1 et circule du deuxième flanc 16 vers le premier flanc 10 pour revenir vers le deuxième flanc 16 avant de pénétrer dans la bouteille 2.
- Le fluide réfrigérant soumis à basse pression/basse température et le fluide réfrigérant soumis à haute pression/haute température circulent en « U » et en sens opposé dans l'échangeur de chaleur interne.
- La cinquième variante de l'invention est représentée sur la
figure 7 . Il s'agit d'un perfectionnement de la quatrième variante où l'organe de détente 31 est intégré au système unitaire selon l'invention. - Cet organe de détente 31 est solidarisé sur la face supérieure 38 de l'extrémité 36 constitutive de l'échangeur de chaleur interne 3.
- Dans la quatrième variante et la cinquième variante de l'invention, le fluide réfrigérant 4 pénètre le système par l'orifice d'entrée haute pression 5, parcourt les trois passes 7, 8 et 9 puis débouche dans l'échangeur de chaleur interne 3 solidarisée sous le faisceau 6 du condenseur 1. Le fluide réfrigérant passe alors au travers des canaux haute pression 24 puis sort de l'échangeur de chaleur interne par le passage 34 pour pénétrer dans la bouteille 2. Dans le cas de la
figure 7 , le fluide réfrigérant 4 passe dans le second canal 33 de l'organe de détente 31 pour y être détendu. - Après passage dans l'évaporateur, le fluide réfrigérant 4 entre à basse pression et basse température dans l'organe de détente 31 par le premier canal 32 puis circule dans les canaux basse pression 23 pour finalement sortir du système par l'orifice de sortie basse pression 27 et circuler en direction du compresseur.
Claims (12)
- Système comprenant un condenseur (1), un échangeur de chaleur interne (3) et une bouteille (2) aptes à être parcourus par un fluide réfrigérant (4), ledit condenseur (1) comprenant un orifice de sortie (20) de fluide réfrigérant raccordée à l'échangeur de chaleur interne (3), ledit échangeur de chaleur interne (3) comprenant un passage (34) de fluide réfrigérant raccordée à la bouteille (2) caractérisé en ce que le condenseur (1), l'échangeur de chaleur interne (3) et la bouteille (2) sont aptes à être parcourus dans cet ordre par le fluide réfrigérant (4) et sont rassemblés de manière unitaire.
- Système selon la revendication 1, dans lequel un organe de détente (31) destiné à détendre le fluide réfrigérant (4) comprend un second canal (33) raccordé à une sortie (25) dudit système, ledit organe de détente (31) faisant partie de l'ensemble unitaire.
- Système selon l'une quelconque des revendications 1 à 2, dans lequel le condenseur (1) présente un faisceau (6) apte à être traversé par un flux d'air, un premier flanc (10) bordant ledit faisceau (6) et un deuxième flanc (16) bordant ledit faisceau (6) et opposé au premier flanc (10) par rapport au faisceau (6), et dans lequel l'échangeur de chaleur interne (3) est solidarisé au premier flanc (10) alors que la bouteille (2) est solidarisée au deuxième flanc (16).
- Système selon la revendication 3, dans lequel un premier conduit (28) et un second conduit (50) parcourent le faisceau (6), le premier conduit (28) relie l'orifice de sortie (20) du condenseur à l'échangeur de chaleur interne (3) et le second conduit (50) relie l'échangeur de chaleur interne (3) à la bouteille (2).
- Système selon la revendication 4, dans lequel les deux conduits s'étendent du premier flanc (10) au deuxième flanc (16), lesdits conduits étant installés sous le faisceau (6).
- Système selon l'une quelconque des revendications 3 à 5, comprenant une sortie (25) côté deuxième flanc (16) du faisceau (6) et un orifice d'entrée haute pression (5), un orifice de sortie basse pression (27) et un orifice d'entrée basse pression (26) qui sont côté premier flanc (10) du faisceau (6).
- Système selon l'une quelconque des revendications 1 à 2, dans lequel le condenseur (1) présente un faisceau (6) apte à être traversé par un flux d'air, un premier flanc (10) bordant ledit faisceau (6) et un deuxième flanc (16) bordant ledit faisceau (6) et opposé au premier flanc (10) par rapport au faisceau (6), et dans lequel la bouteille (2) est solidarisée au deuxième flanc (16) et l'échangeur de chaleur interne (3) s'étend du premier flanc (10) jusqu'au deuxième flanc (16) dans le prolongement du faisceau (6).
- Système selon l'une quelconque des revendications 1 à 2, dans lequel le condenseur (1) présente faisceau (6) apte à être traversé par un flux d'air, un premier flanc (10) bordant ledit faisceau (6) et un deuxième flanc (16) bordant ledit faisceau (6) et opposé au premier flanc (10) par rapport au faisceau (6), et dans lequel l'échangeur de chaleur interne (3) et la bouteille (2) sont solidarisés côté deuxième flanc (16).
- Système selon la revendication 8, dans lequel la bouteille (2) est solidarisée sur l'échangeur de chaleur interne (3).
- Système selon l'une quelconque des revendications 8 à 9, comprenant un orifice d'entrée haute pression (5) côté premier flanc (10) du faisceau (6) et une sortie (25), un orifice de sortie basse pression (27) et un orifice d'entrée basse pression (26) qui sont côté deuxième flanc (16) du faisceau (6).
- Système selon l'une quelconque des revendications précédentes, dans lequel la bouteille (2) comprend un dessicant (17) et un filtre (18).
- Boucle de climatisation parcourue par un fluide réfrigérant (4) et comprenant un compresseur, un organe de détente (31), un évaporateur et un système selon l'une quelconque des revendications précédentes.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1002389A FR2960951B1 (fr) | 2010-06-07 | 2010-06-07 | Systeme unitaire comprenant un condenseur, un echangeur de chaleur interne et bouteille d'une boucle de climatisation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2392877A1 true EP2392877A1 (fr) | 2011-12-07 |
EP2392877B1 EP2392877B1 (fr) | 2017-10-18 |
Family
ID=43736143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11004400.5A Active EP2392877B1 (fr) | 2010-06-07 | 2011-05-30 | Système unitaire comprenant un condenseur, un échangeur de chaleur interne et une bouteille |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2392877B1 (fr) |
FR (1) | FR2960951B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3063136A1 (fr) * | 2017-02-23 | 2018-08-24 | Valeo Systemes Thermiques | Dispositif d'echange de chaleur et circuit de climatisation correspondant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830757A1 (de) * | 1998-07-09 | 2000-01-13 | Behr Gmbh & Co | Klimaanlage |
EP1046524A2 (fr) * | 1999-04-23 | 2000-10-25 | Valeo Klimatechnik GmbH | Refroidisseur de gaz à haute pression pour un circuit frigorifique d'une climatisation de véhicule automobile |
JP2004190956A (ja) * | 2002-12-11 | 2004-07-08 | Calsonic Kansei Corp | コンデンサ |
EP1512932A2 (fr) * | 2003-09-03 | 2005-03-09 | Delphi Technologies, Inc. | Condenseur multi-fonction |
EP1762803A1 (fr) * | 2005-09-13 | 2007-03-14 | Valeo Systemes Thermiques | Ensemble intégré pour circuit de climatisation fonctionnant avec un fluide réfrigérant supercritique |
FR2906353A1 (fr) * | 2006-09-21 | 2008-03-28 | Valeo Systemes Thermiques | Echangeur de chaleur interne pour circuit de fluide refrigerant |
-
2010
- 2010-06-07 FR FR1002389A patent/FR2960951B1/fr not_active Expired - Fee Related
-
2011
- 2011-05-30 EP EP11004400.5A patent/EP2392877B1/fr active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830757A1 (de) * | 1998-07-09 | 2000-01-13 | Behr Gmbh & Co | Klimaanlage |
EP1046524A2 (fr) * | 1999-04-23 | 2000-10-25 | Valeo Klimatechnik GmbH | Refroidisseur de gaz à haute pression pour un circuit frigorifique d'une climatisation de véhicule automobile |
US6539746B1 (en) | 1999-04-23 | 2003-04-01 | Valeo Klimatechnik Gmbh | High pressure gas cooler for a refrigerant circuit of a motor-vehicle air-conditioning system |
JP2004190956A (ja) * | 2002-12-11 | 2004-07-08 | Calsonic Kansei Corp | コンデンサ |
EP1512932A2 (fr) * | 2003-09-03 | 2005-03-09 | Delphi Technologies, Inc. | Condenseur multi-fonction |
EP1762803A1 (fr) * | 2005-09-13 | 2007-03-14 | Valeo Systemes Thermiques | Ensemble intégré pour circuit de climatisation fonctionnant avec un fluide réfrigérant supercritique |
FR2906353A1 (fr) * | 2006-09-21 | 2008-03-28 | Valeo Systemes Thermiques | Echangeur de chaleur interne pour circuit de fluide refrigerant |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3063136A1 (fr) * | 2017-02-23 | 2018-08-24 | Valeo Systemes Thermiques | Dispositif d'echange de chaleur et circuit de climatisation correspondant |
WO2018154250A1 (fr) * | 2017-02-23 | 2018-08-30 | Valeo Systemes Thermiques | Dispositif d'échange de chaleur et circuit de climatisation correspondant |
Also Published As
Publication number | Publication date |
---|---|
FR2960951A1 (fr) | 2011-12-09 |
EP2392877B1 (fr) | 2017-10-18 |
FR2960951B1 (fr) | 2013-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1992891B1 (fr) | Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur | |
EP1068967B1 (fr) | Installation de chauffage-climatisation pour véhicule automobile | |
EP1620637B1 (fr) | Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes | |
EP0415840A1 (fr) | Condenseur avec réservoir/refroidisseur secondaire | |
EP2199709B1 (fr) | Dispositif combiné comprenant un échangeur de chaleur interne et un accumulateur | |
FR2765956A1 (fr) | Condenseur refrigerant incluant une partie de super-refroidissement | |
EP2726804A1 (fr) | Echangeur thermique notamment pour vehicule automobile | |
FR2962199A1 (fr) | Condenseur, notamment pour systeme de climatisation d'un vehicule automobile. | |
FR2912811A1 (fr) | Echangeur de chaleur pour fluides a circulation en u | |
FR2846736A1 (fr) | Module d'echange de chaleur a plaques empilees, notamment pour un vehicule automobile | |
EP1892492A2 (fr) | Module d'échange de chaleur, notamment pour un véhicule automobile, comportant un radiateur principal et un radiateur secondaire, et système comprenant ce module | |
FR2779809A1 (fr) | Condenseur a recepteur integre pour cycle de refrigeration | |
FR2935475A1 (fr) | Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique | |
EP2392877B1 (fr) | Système unitaire comprenant un condenseur, un échangeur de chaleur interne et une bouteille | |
EP2392876B1 (fr) | Système unitaire comprenant un condenseur, une bouteille et un échangeur de chaleur interne | |
EP4399470A1 (fr) | Module de traitement thermique avec organe de detente | |
WO2014064079A1 (fr) | Boite collectrice pour échangeur de chaleur, notamment refroidisseur d'air de suralimentation de moteur de véhicule automobile | |
FR2986316A1 (fr) | Ensemble comprenant un echangeur de chaleur et un support sur lequel ledit echangeur est monte | |
WO2023030791A1 (fr) | Échangeur thermique pour une boucle de fluide réfrigérant | |
FR3126766A1 (fr) | Echangeur de chaleur d’une boucle de fluide refrigerant. | |
FR3133432A1 (fr) | Plaque commune d’un module thermique d’un circuit de fluide réfrigérant | |
FR3126648A1 (fr) | Module de traitement thermique avec dispositif d’accumulation | |
FR2995670A3 (fr) | Echangeur thermique ayant une partie condenseur et une partie radiateur basse temperature | |
FR3133434A1 (fr) | Plaque commune d’un module thermique d’un circuit de fluide réfrigérant | |
FR3128521A1 (fr) | Echangeur thermique avec conduits de circulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120608 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170523 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 938323 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011042440 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 938323 Country of ref document: AT Kind code of ref document: T Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180118 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180118 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180218 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180119 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011042440 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
26N | No opposition filed |
Effective date: 20180719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180530 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180530 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110530 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240513 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240524 Year of fee payment: 14 |