EP2392702A2 - Broyage de fibres de polyéthylène à molécules ultra élevées - Google Patents

Broyage de fibres de polyéthylène à molécules ultra élevées Download PDF

Info

Publication number
EP2392702A2
EP2392702A2 EP11168116A EP11168116A EP2392702A2 EP 2392702 A2 EP2392702 A2 EP 2392702A2 EP 11168116 A EP11168116 A EP 11168116A EP 11168116 A EP11168116 A EP 11168116A EP 2392702 A2 EP2392702 A2 EP 2392702A2
Authority
EP
European Patent Office
Prior art keywords
fibers
cutting
molecular weight
fiber
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11168116A
Other languages
German (de)
English (en)
Other versions
EP2392702A3 (fr
Inventor
Heinrich Derenowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hd Kunststoffe & Kunststofferzeugnisse GmbH
Original Assignee
Hd Kunststoffe & Kunststofferzeugnisse GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hd Kunststoffe & Kunststofferzeugnisse GmbH filed Critical Hd Kunststoffe & Kunststofferzeugnisse GmbH
Publication of EP2392702A2 publication Critical patent/EP2392702A2/fr
Publication of EP2392702A3 publication Critical patent/EP2392702A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/02Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form
    • D01G1/04Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form by cutting
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/06Converting tows to slivers or yarns, e.g. in direct spinning
    • D01G1/10Converting tows to slivers or yarns, e.g. in direct spinning by cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the invention relates to a process for processing fibers of polyethylene having a molecular weight Mw of at least 10,000,000 g / mol and the use of the fiber pieces thus obtained.
  • UHMGPE ultra-high molecular weight polyethylene
  • HMPE high molecular weight polyethylene
  • HPPE high polyethylene
  • UHMWPE ultra-high molecular weight polyethylene
  • Mw molecular weight Mw in a range of 2 to 6 x 10 6 g / mo (see http://en.wikipedia.org/wiki/Ultra high molecular weight polyethylene).
  • UHMGPE is still machinable (for example DE69525924T2 . WO2008 / 097170A1 . DE69737356T2 . DE69028519T12 or DE69631076T2 ).
  • UHMGPE having a molecular weight M w of well below 6 ⁇ 10 6 g / mol must often be radiolabelled or thermally treated so that the polymer decomposes, so that the molecular weight decreases and the polymer becomes mechanically processable at all.
  • the melting point of UHMGPE is usually between 125 and 145 ° C, depending on the quality. It is known that UHMGPE already decomposes significantly before, for example from temperatures of 120 ° C., and that the molecular weight decreases.
  • UHMGPE having a molecular weight Mw of more than 8 ⁇ 10 6 g / mol can hitherto no longer be processed mechanically and is practically only available as a fiber (cf. W02009 / 077168A2 . WO2005 / 066401A1 or WO2010 / 057982A1 ).
  • Fibers with a molecular weight Mw of up to 16 ⁇ 10 6 g / mol are well known (cf. DM REIN et al. "Electrospinning of Ultrahigh Molecular Weight Polyethylene Nanofibers "Journal of Polymer Science: Part B: Polymer Physics, 2007, 766 ).
  • the object of the present invention is achieved in a first embodiment by a method for processing fibers of polyethylene having a molecular weight Mw of at least 10,000,000 g / mol, characterized in that the fibers are cut and fixed during the cutting process.
  • polymer fibers or polymer strands leaving an extruder are cut with a blade without stopping the advancing movement of the strands during the cutting process.
  • the polymer strands continuously pouring out of the nozzles of the extruder are cut off.
  • stopping the cuttings during the cutting process was uneconomical.
  • the object of the present invention is achieved in a further embodiment by a process for processing fibers of polyethylene having a molecular weight Mw of at least 10,000,000 g / mol, characterized in that the fibers are cut with a blade and the cutting edge of the blade during the dicing process relative to the fiber also moves in a direction which deviates at least 20 ° from the cutting direction.
  • polymer fibers are cut with blades that impinge perpendicularly on the fibers.
  • a straight blade rotating knife strikes the extruded polymer strands leaving the extruder dies.
  • Polymer fibers are also ground in mills. In this case, a mill is often used, which has a cutting edge on a roller which is straight and is arranged exactly parallel to a fixed cutting edge next to the roller and can form a cutting gap with this.
  • the fibers are fixed during the cutting process in the method according to the invention, one can advantageously split the fibers with a blade and move the cutting edge of the blade during the dicing relative to the fiber advantageously in a direction which deviates at least 20 ° from the cutting direction.
  • the fibers are cut in the process according to the invention with a blade and the cutting edge of the blade during the dicing process moves relative to the fiber in a direction that deviates at least 20 ° from the cutting direction, you can advantageously cut the fibers and fix during the cutting process.
  • the cutting edge of the blade may preferably be moved in a direction at least 20 ° from the cutting direction during the dicing process relative to the fiber by bending the cutting edge of the blade in the same direction as the curvature of the fiber (for example inserting a sickle blade) ), or, for example, the cutting edge of the blade presses not only in the cutting direction through the fiber, but also additionally reciprocated in deviating direction (see. Fig. 1 ).
  • the fibers are cut with a pulling cut.
  • the cutting movement is preferably oblique to the tool.
  • the fibers are preferably ground to a cotton wool or wool-like product in appearance. This has the advantage that it is easy to agglomerate this cotton or wool in a commercially available agglomerator (for example, a Pallmann agglomerator type PVF 120).
  • agglomerator for example, a Pallmann agglomerator type PVF 120.
  • it is preferably not used as usual at rotational speeds in a range of 8,000 to 16,000 revolutions per minute, but the rotational speed of the roller is set to a speed in a range of 1,000 to 5,000 revolutions per minute.
  • the material of at least the cutting edge may preferably be selected from the group of ceramic, diamond-coated metal or nitrided metal. It was found that the temperature during cutting or dicing so much less quickly increased and so a higher material throughput could be realized.
  • the amount of processed fibers is preferably adjusted so that the temperature does not exceed 100.degree. C., in particular 60.degree. C., during the dicing process or cutting process. This ensures that the material properties of the fibers do not change. It has been observed that it is just the molecular weight and thus properties such as cut resistance of the fibers can be reduced from this temperature.
  • the fibers are preferably cut into pieces having a length in a range of 0.01 to 100 mm, in particular 0.1 to 60 mm, most preferably at most 1 mm. Below this range, the production of the fiber pieces is no longer very economical. Above this range, further processing is difficult.
  • polyethylene fibers having a molecular weight Mw of at least 20,000,000 g / mol are used. It is preferable to use polyethylene fibers having a filament diameter in a range of 2 to 50 ⁇ m.
  • the cutting tools or cutting rollers can be cooled by internal cooling, for example.
  • the yarn strand or fiber strand can also be cooled with air.
  • the cooling air is also used to remove the clippings.
  • the object of the present invention is achieved in a further embodiment by fiber pieces produced by a method according to the invention, characterized in that 90% of the fiber pieces have a length in a range of 0.1 to 100 mm.
  • the object of the present invention is achieved in another embodiment by an agglomerate obtained by agglomerating the fiber pieces according to the invention.
  • agglomerator for example, a Pallmann agglomerator type PVF 120.
  • the container of the agglomerator can be cooled (for example with nitrogen, air or water).
  • the object of the present invention is achieved in a further embodiment by a powder obtained by grinding the agglomerate according to the invention and / or the fiber pieces according to the invention.
  • at the grinding is preferably set at a temperature of less than 120 ° C, in particular less than 100 ° C in order to prevent decomposition of the material and possibly decrease the molecular weight as possible.
  • the average grain size (determined, for example, by sieving) of the powder is preferably in a range of 10 to 2000 ⁇ m.
  • the grinding can be done for example with a commercially available baffle plate mill. If necessary, the mill can be cooled with liquid nitrogen.
  • the primer may be selected from commercially available primers such as epoxy resin.
  • the tool for pressing is preferably provided with a release agent such as foil or a Silkonbetikung.
  • a release agent such as foil or a Silkonbetikung.
  • the pressing takes place at most at 40 ° C, since the material properties of the polyethylene are retained.
  • the object of the present invention is achieved in a further embodiment by a molding predominantly of polyethylene having a Molekulargwicht Mw of at least 10,000,000 g / mol, obtained by compression of the fiber pieces of the invention and / or the agglomerate of the invention and / or the powder according to the invention, wherein during the compression, a temperature in a range of 120 to 250 ° C is allowed to act for a period of time in a range of 0.5 to 5 hours.
  • fiber pieces and / or the agglomerate according to the invention and / or the powder according to the invention having a molecular weight Mw of at least 20,000,000 g / mol in order nevertheless to obtain a molecular weight of the molded piece according to the invention by the possible decomposition during pressing and thus possibly a decrease in the molecular weight to achieve.
  • the temperature exposure is limited to a period of up to 2 hours in order to minimize degradation.
  • a temperature of at least 220 ° C is used, since it has surprisingly been found that a shorter treatment at a higher temperature has caused much less decomposition of the material than a longer treatment at lower temperatures.
  • the object of the present invention is achieved in a further embodiment by the use of the fitting according to the invention, as underbody protection for vehicles or as armor or bullet-resistant equipment of walls, people, vehicles or real estate.
  • the fitting according to the invention as underbody protection for vehicles or as armor or bullet-resistant equipment of walls, people, vehicles or real estate.
  • walls of mobile buildings such as mobile toilets can be equipped accordingly.
  • Dyneema® SK 78 fiber from DSM was cut using a device.
  • a filament of this fiber has a diameter of about 20 microns.
  • the yarn (fiber) to be taken off on reel spools was fed via a feed to a transport feed.
  • the feed roller equipped with a gear stage transports the fiber necessary according to the cut length to a hold-down device Steel jaws.
  • a bundle of about 100 filaments of fiber was passed through a gap between two relatively movable steel jaws and clamped between the steel jaws so that the filament bundle survived about 3 cm.
  • the outer edges of the steel jaws were hardened by plasma nitriding.
  • Dyneema® SK 78 fiber from DSM was produced by means of a commercially available fiber cutting converter with a cutting roller (for example from Schlumberger; Franz Fourné “Synthetic Fibers: Production, Machines and Apparatus, Properties", Hanser Verlag, 1995, p. 583 ) parts.
  • the cutting roller was modified so that the cutting blade was not located just along the major axis on the outer surface of the roller, but the cutting blade was spirally arranged around the roller.
  • the cutting edge was made of plasma nitrided steel.
  • the roller was operated at a rotational speed of about 3,000 rpm. It was a cotton or wool-like product obtained from different lengths of fiber pieces, but practically all had a length between 0.3 and 6 cm.
  • Example 1 The cut fibers from Example 1 or the ground / cracked fibers from Example 2 were fed to a commercial agglomerator Pallmann agglomerator type PVF 120 and agglomerated with conventional parameters. Care was taken that the temperature did not exceed 100 ° C. The product could be used as bulk material.
  • the agglomerate from example 3 was ground in a commercially available baffle plate mill to a powder having an average particle size of about 1000 ⁇ m.
  • the product could be used as bulk material.
  • Example 4 The powder of Example 4 was compressed by conventional methods to a plate. During compression, a temperature of 210 ° C was set over a period of 1.5 h. The plate had a thickness of 1.5 cm after pressing. This plate withstood a nato caliber shot from a 308 Winchester rifle. The material still had a molecular weight Mw of more than 10,000,000 g / mol.
  • the fiber pieces obtained from Example 1 were compacted with a commercially available compactor. The material still had a molecular weight Mw of more than 10,000,000 g / mol. Then,% of the compacted pieces of fiber, a mixture of 12 volume was.% Expoxidharzbindesch ASODUR® ® SFE and 88 vol. Prepared and then pressed in a conventional manner. The molded piece thus obtained was taken out. During the entire process, the material was not heated, so that a degradation of the material has not occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP11168116.9A 2010-06-02 2011-05-30 Broyage de fibres de polyéthylène à molécules ultra élevées Withdrawn EP2392702A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010029633A DE102010029633A1 (de) 2010-06-02 2010-06-02 Zerkleinerung von ultrahochmolekularen Polyethylenfasern

Publications (2)

Publication Number Publication Date
EP2392702A2 true EP2392702A2 (fr) 2011-12-07
EP2392702A3 EP2392702A3 (fr) 2013-07-31

Family

ID=44801246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11168116.9A Withdrawn EP2392702A3 (fr) 2010-06-02 2011-05-30 Broyage de fibres de polyéthylène à molécules ultra élevées

Country Status (3)

Country Link
US (1) US20110300375A1 (fr)
EP (1) EP2392702A3 (fr)
DE (1) DE102010029633A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023134446A1 (de) * 2023-12-08 2025-06-12 Brückner Maschinenbau GmbH System und Verfahren zur Wiederaufbereitung von ultrahochmolekularen Polymerfolienabschnitten

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69028519T2 (de) 1990-05-25 1997-01-30 Anagnostis E Zachariades Verbundwerkstoffe aus Polymeren mit ultrahohem Molekulargewicht, wie zum Beispiel UHMG-Polyethylen-Produkten und Methode zu ihrer Herstellung
DE69525924T2 (de) 1994-09-21 2002-09-05 Bmg Inc., Kyoto Polyethylenguss mit ultrahohem molekulargewicht für künstliche verbindungen und verfahren zu dessen herstellung
DE69631076T2 (de) 1995-01-20 2004-10-21 Univ Southern California Chemisch vernetztes ultrahochmolekulares Polyethylen für künstliche menschliche Gelenke
WO2005066401A1 (fr) 2004-01-01 2005-07-21 Dsm Ip Assets B.V. Procede de fabrication d'un fil multifilament de polyethylene haute performance
US20070148452A1 (en) 2003-12-12 2007-06-28 Godo Sakamoto High strength polyethylene fiber
DE69737356T2 (de) 1996-10-02 2007-08-16 DePuy Orthopaedics, Inc., Warsaw Herstellung von medizinischen Implantatan aus Quervernetztem Ultrahochmolokularem Polyethylen mit verbesserter Abstimmung von Abriebfestigkeit und Oxidationsbeständigkeit
WO2008097170A1 (fr) 2007-02-08 2008-08-14 Seco Tools Ab Outil de découpe doté de multiples cannelures définissant des profils différents, et procédé
WO2009077168A2 (fr) 2007-12-17 2009-06-25 Dsm Ip Assets B.V. Procedé de filage d'uhmwpe, fils multifilaments d'uhmwpe ainsi produits et leur utilisation
WO2010057982A1 (fr) 2008-11-20 2010-05-27 Dsm Ip Assets B.V. Fibre de polyéthylène filée à l'état de gel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858299A (en) * 1953-04-02 1958-10-28 Montedison Spa Process for pulverizing polyethylene
NL8701219A (nl) * 1987-05-22 1988-12-16 Stamicarbon Werkwijze voor het bereiden van een ultra-verstrekbaar polymeer materiaal, ultra-verstrekbaar polymeermateriaal, alsmede werkwijze voor het vervaardigen van voorwerpen.
NL9100279A (nl) * 1991-02-18 1992-09-16 Stamicarbon Microporeuze folie uit polyetheen en werkwijze voor de vervaardiging daarvan.
DK0632792T3 (da) * 1992-08-24 1999-01-18 Vontech Int Corp Cement med sammen-formalede fibre
JP3953154B2 (ja) * 1997-09-30 2007-08-08 帝人テクノプロダクツ株式会社 アラミド繊維束の切断装置
DE60011310T2 (de) * 1999-08-11 2005-06-16 Toyo Boseki K.K. Ballistisches Material enthaltend hochfeste Polyethylenfasern
JP2002127139A (ja) * 2000-10-27 2002-05-08 Du Pont Toray Co Ltd 高機能繊維廃物の再生処理方法及びその再生品
US6637085B2 (en) * 2001-10-26 2003-10-28 E. I. Du Pont De Nemours And Company Process for recycling articles containing high-performance fiber
JP2011501786A (ja) * 2007-10-17 2011-01-13 テイジン・アラミド・ゲーエムベーハー フィブリル状高性能短繊維を製造する方法、フィブリル状高性能短繊維、およびそれを含む物品
PL210079B1 (pl) * 2009-06-20 2011-11-30 Centrum Badań Molekularnych i Makromolekularnych Polskiej Akademii Nauk Sposób recyklingu wyrobów zawierających włókna polietylenowe o ultra wysokiej masie cząsteczkowej

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69028519T2 (de) 1990-05-25 1997-01-30 Anagnostis E Zachariades Verbundwerkstoffe aus Polymeren mit ultrahohem Molekulargewicht, wie zum Beispiel UHMG-Polyethylen-Produkten und Methode zu ihrer Herstellung
DE69525924T2 (de) 1994-09-21 2002-09-05 Bmg Inc., Kyoto Polyethylenguss mit ultrahohem molekulargewicht für künstliche verbindungen und verfahren zu dessen herstellung
DE69631076T2 (de) 1995-01-20 2004-10-21 Univ Southern California Chemisch vernetztes ultrahochmolekulares Polyethylen für künstliche menschliche Gelenke
DE69737356T2 (de) 1996-10-02 2007-08-16 DePuy Orthopaedics, Inc., Warsaw Herstellung von medizinischen Implantatan aus Quervernetztem Ultrahochmolokularem Polyethylen mit verbesserter Abstimmung von Abriebfestigkeit und Oxidationsbeständigkeit
US20070148452A1 (en) 2003-12-12 2007-06-28 Godo Sakamoto High strength polyethylene fiber
WO2005066401A1 (fr) 2004-01-01 2005-07-21 Dsm Ip Assets B.V. Procede de fabrication d'un fil multifilament de polyethylene haute performance
WO2008097170A1 (fr) 2007-02-08 2008-08-14 Seco Tools Ab Outil de découpe doté de multiples cannelures définissant des profils différents, et procédé
WO2009077168A2 (fr) 2007-12-17 2009-06-25 Dsm Ip Assets B.V. Procedé de filage d'uhmwpe, fils multifilaments d'uhmwpe ainsi produits et leur utilisation
WO2010057982A1 (fr) 2008-11-20 2010-05-27 Dsm Ip Assets B.V. Fibre de polyéthylène filée à l'état de gel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. M. REIN ET AL.: "Electro- spinning of Ultrahigh-Molecular-Weight Polyethylene Nanofibers", JOURNAL OF POLYMER SCIENCE: PART B: POLYMER PHYSICS, 2007, pages 766
FRANZ FOURNE: "Synthetische Fasern: Herstellung, Maschinen und Apparate, Eigenschaften", 1995, HANSER VERLAG, pages: 583

Also Published As

Publication number Publication date
EP2392702A3 (fr) 2013-07-31
US20110300375A1 (en) 2011-12-08
DE102010029633A1 (de) 2011-12-08

Similar Documents

Publication Publication Date Title
EP2995436B1 (fr) Dispositif et procédé de fabrication d'un matériau composite en polymère rempli
JP6119876B2 (ja) 繊維強化樹脂成形材料およびその製造方法
EP3261813B1 (fr) Procédé de fabrication de composants ou demi-produits renforcés de fibres
EP2536545A2 (fr) Procédé de fabrication de granulés en matériaux composites renforcés par des fibres
DE19518188A1 (de) Verfahren zur Entfaserung bzw. Entholzung von Bastfasergewächsen
EP2165821B1 (fr) Procédé et dispositif pour la fabrication d'un matériau composite renforcé par des fibres et utilisation du composite renforcé par des fibres
EP3007883A1 (fr) Procédé et dispositif permettant de fabriquer un élément composite renforcé par des fibres, et élément composite renforcé par des fibres
KR102478812B1 (ko) 섬유 강화 수지 성형 재료 및 그 제조 방법
EP2322713A1 (fr) Procédé de fabrication de fibres de bambou et matières synthétiques en étant pourvues
EP3081368B1 (fr) Semi-produit composite en plastique/fibres et procede de production
EP2794220B1 (fr) Procédé de production d'un matériau composite renforcé par des fibres et dispositif pour la mise en oeuvre de ce procédé
EP2942173A1 (fr) Procédé de fabrication de granulé pour moulage par injection ; Procédé de fabrication d'une pièce moulée et pièce moulée fabriquée selon ce procédé
EP2392702A2 (fr) Broyage de fibres de polyéthylène à molécules ultra élevées
EP0027277A1 (fr) Procédés de fabrication de nattes ou de plaques de fibres minérales et dispositif pour la mise en oeuvre de ces procédés
DE102010060911A1 (de) Vorrichtung und Verfahren zur Herstellung von Polymeragglomeraten
DE102005033734B4 (de) Verfahren zum Trennen von Gummi-Verbundwerkstoff
EP3117974A2 (fr) Dispositif de coupe
EP3455038B1 (fr) Procédé pour la découpe des procuits secs renforcées par de fibres, en particulier pour la production d'un dispositif pour la production de energie éolique
EP2959044A1 (fr) Structure de support à base de fibres pour liquides et particules solides
EP3570968A1 (fr) Procédé et dispositif d'obtention de substances pulvérulentes en matière plastique
EP1932644B1 (fr) Méthode et dispositif pour la production de granulés
DE10304097A1 (de) Vorrichtung und Verfahren zur Herstellung eines Granulats
WO2012089583A1 (fr) Procédé de production de particules aptes à l'écoulement à partir de fibres polymères
DE10112766A1 (de) Verfahren zum Herstellen eines Halbzeugs
DE4300269A1 (de) Verfahren zur Herstellung faserverstärkter Kunststoffe mit einer Matrix aus thermoplastischem Kunststoff und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: D01G 1/10 20060101ALI20130624BHEP

Ipc: D01G 1/00 20060101AFI20130624BHEP

Ipc: D01G 1/04 20060101ALI20130624BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131203