EP2385816A1 - Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel - Google Patents

Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel

Info

Publication number
EP2385816A1
EP2385816A1 EP09799618A EP09799618A EP2385816A1 EP 2385816 A1 EP2385816 A1 EP 2385816A1 EP 09799618 A EP09799618 A EP 09799618A EP 09799618 A EP09799618 A EP 09799618A EP 2385816 A1 EP2385816 A1 EP 2385816A1
Authority
EP
European Patent Office
Prior art keywords
polymer particles
water
coated
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09799618A
Other languages
English (en)
French (fr)
Inventor
Volker Braig
Thomas Daniel
Axel Jentzsch
Andreas Brockmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP2385816A1 publication Critical patent/EP2385816A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a process for the preparation of odor-inhibiting water-absorbing polymer particles based on ethylenically unsaturated, acid group-carrying monomers, wherein the acid groups are neutralized to 35 to 75 mol% and the polymer particles are coated with a chelating agent.
  • Water-absorbing polymers are used for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • WO 2006/109842 A1 describes a process for preparing water-absorbing polymer particles, wherein a monomer solution having a defined content of hydroquinone monomethyl ether and iron and little protoanemonin and furfural is polymerized.
  • the object of the present invention was to provide an improved process for producing odor-inhibiting water-absorbing polymer particles.
  • the object has been achieved by a process for producing water-absorbing polymer particles, comprising
  • the degree of neutralization is preferably from 40 to 70 mol%, preferably from 45 to 65 mol%, particularly preferably from 48 to 62 mol%, very particularly preferably from 50 to 60 mol%.
  • the base preferably contains less than 0.0001% by weight, more preferably less than 0.00002% by weight, most preferably less than 0.00001% by weight, of iron ions.
  • Suitable stainless steels are austenitic steels with, for example, at least 0.08 wt% carbon.
  • the austenitic steels advantageously contain further alloy constituents, preferably niobium or titanium.
  • the preferred stainless steels are stainless steels with the material number 1.45xx according to DIN EN 10020, where xx can be a natural number between 0 and 99.
  • Particularly preferred materials are the steels with the material numbers 1.4541 and 1.4571, in particular steel with the material number 1.4541.
  • Suitable polymeric materials are polyethylene, polypropylene, polyester, polyamide, polytetrafluoroethylene, polyvinyl chloride, epoxy resins and silicone resins. Most preferred is polypropylene.
  • the initiator systems used are essentially free of iron ions, with the initiator systems used preferably containing less than 0.1% by weight, more preferably less than 0.01% by weight, most preferably less than 0.001% by weight, iron ions , in each case based on the total amount of the initiator system.
  • Chelating agents are compounds having at least two functional groups capable of chelating with polyvalent metal ions.
  • Suitable chelating agents are, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, iminodiacetic acid, 2,2 ', 2 "-triaminotriethylamine, nitrilotriacetic acid, ethylenediaminetetraacetic acid, oxalic acid, tartaric acid, citric acid, dimethylglyoxime, 8-hydroxyquinoline, 2,2'-bipyridine, 1 , 10-phenanthroline, dimercaptosuccinic acid.
  • acid groups in particular carboxylic acid groups, are preferred.
  • the at least one chelating agent preferably contains at least one, more preferably at least two, aminocarboxylic acid groups.
  • the aminocarboxylic acid group is preferably an aminodiacetic acid group.
  • the acid groups of the chelating agent are neutralized, i. the chelating agent is preferably used in neutralized form.
  • Suitable chelating agents having aminodiacetic acid groups are the tetrasodium salt of ethylenediaminetetraacetic acid, the trisodium salt of methylglycine diacetic acid, the trisodium salt of hydroxyethylethylenediaminetriacetic acid and the pentasodium salt of diethylenetriaminepentaacetic acid.
  • the polymer particles are preferably coated with 0.02 to 0.5 wt .-%, particularly preferably 0.05 to 0.3 wt .-%, most preferably 0.1 to 0.2 wt .-%, chelating agent.
  • the coating of the polymer particles is preferably carried out by means of mixers with moving mixing tools.
  • the mixers which can be used for surface postcrosslinking can also be used for the coating according to the invention.
  • the chelating agents are sprayed onto the polymer particles as a solution in a suitable solvent, preferably water, for coating.
  • the water-absorbing polymer particles are coated with a reducing agent and / or a zinc salt.
  • Suitable reducing agents are, for example, sodium sulfite, sodium hydrogen sulfite (sodium bisulfite), sodium dithionite, sulfinic acids and their salts, ascorbic acid, sodium hypophosphite, sodium phosphite, and also phosphinic acids and salts thereof.
  • salts of hypophosphorous acid for example sodium hypophosphite
  • salts of sulfinic acids are used, for example the disodium salt of 2-hydroxy-2-sulfinatoacetic acid.
  • the reducing agent but preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite is used.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE).
  • the amount of reducing agent used is preferably 0.01 to 5 wt .-%, particularly preferably 0.05 to 2 wt .-%, most preferably 0.1 to 1 wt .-%, each based on the water-absorbing polymer.
  • Suitable zinc salts are, for example, zinc hydroxide, zinc sulfate, zinc chloride, zinc acetate and zinc lactate.
  • Zinc salts of fatty acids for example, ricinoleic acid are preferably used.
  • the amount of zinc salt used is preferably 0.01 to 5 wt .-%, more preferably 0.05 to 2 wt .-%, most preferably 0.1 to 1 wt .-%, each based on the water-absorbing polymer ,
  • the reducing agents or zinc salts are usually used as a solution in a suitable solvent, preferably water.
  • the present invention is based on the finding that the combination of slightly acidic water-absorbing polymer particles with chelating agents leads to a significantly improved odor inhibition.
  • the chelating agents probably deactivate urease by complexing the essential nickel ions.
  • iron ions present in the water-absorbing polymer particles compete for the chelating agents.
  • present iron ions in conjunction with chelating agents may also be the cause of undesired discoloration.
  • iron ions for example, the frequently used as a base sodium hydroxide is considered. To carry out the process according to the invention, care must be taken that the caustic soda solution used has a very low proportion of iron ions.
  • the pipelines in which the base is supplied for neutralization critical.
  • caustic soda is not considered corrosive to unalloyed steels and is even used for passivation.
  • caustic soda from unalloyed steels dissolves small traces of iron ions. Therefore, the base must be made by means of a pipeline
  • Stainless steel can be pumped into the neutralization. Due to the associated lower input of iron ions, it is also advantageous to use stainless steel or a polymeric material as material for the other product-contacting parts of the production process.
  • an initiator system is used in which as possible no iron ions are used as a catalyst.
  • the tendency to discoloration can be favorably influenced.
  • the water-absorbing polymer particles are obtained, for example, by polymerization of a monomer solution or suspension containing
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • sulfonic acids such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight.
  • Propionic acid 0.0001% by weight of furfurals, 0.0001% by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as a storage stabilizer.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50% by weight .-ppm, hydroquinone, in each case based on the unneutralized monomer a).
  • an ethylenically unsaturated, acid group-carrying monomer having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
  • hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically copolymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinking agents b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as in EP 0 547 847 A1, EP 0 559 476 A1, EP 0 632 068 A1, WO 93/21237 A1, WO 2003/104299 A1, WO 2003/104300 A1, WO 2003/104301 A1 and DE 103 31 450 A1, mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated Groups, as described in DE 103 31 456
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraalloxyethane, methylenebis methacrylamide, 15-times ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol are particularly preferred.
  • triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol are particularly preferred.
  • the amount of crosslinker b) is preferably from 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-%, most preferably 0.3 to 0.6 wt .-%, each based on Monomer a).
  • the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 passes through a maximum.
  • initiators c) it is possible to use all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
  • Preference is given to using mixtures of thermal initiators and redox initiators, such as sodium peroxodisulfate / hydrogen peroxide / ascorbic acid.
  • a reducing component but is preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and
  • Examples of ethylenically unsaturated monomers d) which can be copolymerized with the ethylenically unsaturated monomers having acid groups are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.
  • water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose.
  • an aqueous monomer solution is used.
  • the water content of the monomer solution is preferably from 40 to 75 wt .-%, particularly preferably from 45 to 70 wt .-%, most preferably from 50 to 65 wt .-%.
  • monomer suspensions ie monomer solutions with excess monomer a), for example, sodium acrylate, use.
  • monomer suspensions ie monomer solutions with excess monomer a), for example, sodium acrylate
  • the monomer solution may be polymerized prior to polymerization by inerting, i. Flow through with an inert gas, preferably nitrogen or carbon dioxide, are freed of dissolved oxygen.
  • the oxygen content of the monomer solution before the polymerization is preferably reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight.
  • Suitable reactors are, for example, kneading reactors or belt reactors.
  • the polymer gel resulting from the polymerization of an aqueous monomer solution or suspension is continuously comminuted by, for example, counter-rotating stirring shafts, as described in WO 2001/038402 A1.
  • the polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
  • Polymerization in a belt reactor produces a polymer gel which must be comminuted in a further process step, for example in an extruder or kneader.
  • the acid groups of the polymer gels obtained are usually partially neutralized.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
  • the degree of neutralization is preferably from 40 to 70 mol%, preferably from 45 to 65 mol%, particularly preferably from 48 to 62 mol%, very particularly preferably from 50 to 60 mol%, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal bicarbonates and mixtures thereof. Instead of alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but most preferred are potassium hydroxide, sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the polymer gel is also possible to carry out the neutralization after the polymerization at the stage of the polymer gel formed during the polymerization. Furthermore, it is possible up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol% of the acid groups to neutralize prior to the polymerization by a part of the neutralizing agent already added to the monomer solution and the desired final degree of neutralization is set only after the polymerization at the level of the polymer gel. If the polymer gel is at least partially neutralized after the polymerization, the polymer gel is preferably comminuted mechanically, for example by means of an extruder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in. For this purpose, the gel mass obtained can be extruded several times for homogenization.
  • the polymer gel is then preferably dried with a belt dryer until the residual moisture content is preferably 0.5 to 15 wt .-%, particularly preferably 1 to 10 wt .-%, most preferably 2 to 8 wt .-%, wherein the residual moisture content according to determined by EDANA (European Disposables and Nonwovens Association) Test Method No. WSP 230.2-05 "Moisture Content". If the residual moisture content is too high, the dried polymer gel has too low a glass transition temperature T 9 and is difficult to process further. If the residual moisture content is too low, the dried polymer gel is too brittle and in the subsequent comminution steps undesirably large amounts of polymer particles with too small particle size (“fines") are produced. %, particularly preferably from 35 to 70% by weight, very particularly preferably from 40 to 60% by weight. Optionally, however, a fluidized bed dryer or a paddle dryer can also be used for the drying.
  • the dried polymer gel is then ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills, can be used.
  • the mean particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the test method No. WSP 220.2-05 "Particle Size Distribution" recommended by the EDANA (European Disposables and Nonwovens Association), in which the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically.
  • the mean particle size here is the value of the mesh size, which results for accumulated 50 wt .-%.
  • the proportion of particles having a particle size of at least 150 .mu.m is preferably at least 90 wt .-%, more preferably at least 95 wt .-%, most preferably at least 98 wt .-%.
  • Polymer particles with too small particle size lower the permeability (SFC). Therefore, the proportion of too small polymer particles ("fines") should be low.
  • Too small polymer particles are therefore usually separated and recycled to the process. This is preferably done before, during or immediately after the polymerization, i. before drying the polymer gel.
  • the too small polymer particles can be moistened with water and / or aqueous surfactant before or during the recycling.
  • the too small polymer particles are preferably added during the last third of the polymerization.
  • the too small polymer particles can be difficult to incorporate into the resulting polymer gel. Insufficiently incorporated too small polymer particles, however, dissolve again during the grinding of the dried polymer gel, are therefore separated again during classification and increase the amount of recycled too small polymer particles.
  • the proportion of particles having a particle size of at most 850 microns is preferably at least 90 wt .-%, more preferably at least 95 wt .-%, most preferably at least 98 wt .-%.
  • the proportion of particles having a particle size of at most 600 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles with too large particle size reduce the swelling rate. Therefore, the proportion of polymer particles too large should also be low. Too large polymer particles are therefore usually separated and recycled to the grinding of the dried polymer gel.
  • the polymer particles can be surface postcrosslinked to further improve the properties.
  • Suitable surface postcrosslinkers are compounds containing groups that can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230.
  • Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyloxazolidin-2-one, oxazolidin-2-one and 1,3-propanediol.
  • the amount of surface postcrosslinker is preferably 0.001 to 2 wt .-%, more preferably 0.02 to 1 wt .-%, most preferably 0.05 to 0.2 wt .-%, each based on the polymer particles.
  • polyvalent cations are applied to the particle surface before, during or after the surface postcrosslinking in addition to the surface postcrosslinkers.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, Iron and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of titanium and zirconium.
  • divalent cations such as the cations of zinc, magnesium, calcium, Iron and strontium
  • trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese
  • tetravalent cations such as the cations of titanium and zirconium.
  • chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate are possible.
  • Aluminum sulfate and aluminum lactate are
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. in each case based on the polymer particles.
  • the surface postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Subsequent to the spraying, the surface postcrosslinker coated polymer particles are thermally dried, whereby the surface postcrosslinking reaction can take place both before and during drying.
  • the spraying of a solution of the surface postcrosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, disc mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, disc mixers and paddle mixers.
  • horizontal mixers such as paddle mixers
  • vertical mixers very particularly preferred are vertical mixers.
  • the distinction between horizontal mixer and vertical mixer is made by the storage of the mixing shaft, i.
  • Horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Pflugschar® mixers (Gebr.
  • the surface postcrosslinkers are typically used as an aqueous solution.
  • the penetration depth of the surface postcrosslinker into the polymer particles can be adjusted by the content of nonaqueous solvent or total solvent amount.
  • solvent for example isopropanol / water, 1,3-propanediol / water and propylene glycol. col / water, wherein the mixture mass ratio is preferably from 20:80 to 40:60.
  • the thermal drying is preferably carried out in contact dryers, particularly preferably paddle dryers, very particularly preferably disc dryers.
  • Suitable dryers include Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH, Leingart, DE), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH, Leingart, DE), and Nara Paddle Dryer (NARA Machinery Europe, Frechen, DE).
  • fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air.
  • a downstream dryer such as a hopper dryer, a rotary kiln or a heatable screw. Particularly advantageous is mixed and dried in a fluidized bed dryer.
  • Preferred drying temperatures are in the range 100 to 250 0 C, preferably 120 to 220 0 C, particularly preferably 130 to 210 ° C most preferably 150 to 200 0 C. by weight, the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes , more preferably at least 20 minutes, most preferably at least 30 minutes, and usually at most 60 minutes.
  • the surface-postcrosslinked polymer particles can be classified again, wherein too small and / or too large polymer particles are separated and recycled into the process.
  • the surface-postcrosslinked polymer particles can be coated or post-moistened for further improvement of the properties.
  • the post-wetting is preferably carried out at 30 to 80 ° C, more preferably at 35 to 70 ° C, most preferably at 40 to 60 0 C performed. If the temperatures are too low, the water-absorbing polymer particles tend to clump together and at higher temperatures water is already noticeably evaporating.
  • the amount of water used for the rewetting is preferably from 1 to 10 wt .-%, particularly preferably from 2 to 8 wt .-%, most preferably from 3 to 5 wt .-%.
  • Suitable coatings for improving the swelling rate and the permeability are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations.
  • Suitable coatings for dust binding are For example, polyols.
  • Suitable coatings against the undesirable tendency for the polymer particles to cake are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • Another object of the present invention are the water-absorbing polymer particles prepared according to the inventive method.
  • the water-absorbing polymer particles produced according to the method of the invention have a low content of iron ions.
  • the content of iron ions is less than 0.001% by weight, preferably less than 0.0005% by weight, more preferably less than 0.0001% by weight, very particularly preferably less than 0.00002% by weight.
  • the weight ratio of iron ions to the chelating agent is less than 0.02, preferably less than 0.01, more preferably less than 0.005, most preferably less than 0.001.
  • the water-absorbing polymer particles produced by the process according to the invention have a moisture content of preferably 1 to 10 wt .-%, particularly preferably 2 to 8 wt .-%, most preferably 3 to 5 wt .-%, wherein the water content according to the EDANA (European Disposables and Nonwovens Association) recommended test method no. WSP 230.2-05 "Moisture Content”.
  • EDANA European Disposables and Nonwovens Association
  • the water-absorbing polymer particles prepared according to the method of the invention have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, more preferably at least 24 g / g, most preferably at least 26 g / g, up.
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is usually less than 60 g / g.
  • the centrifuge retention capacity (CRC) is determined according to the test method No. WSP 241.2-05 "Centrifuge Retention Capacity" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the water-absorbing polymer particles produced by the process according to the invention have an absorption under a pressure of 49.2 g / cm 2 of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, particularly preferably at least 24 g / g, most preferably at least 26 g / g, on.
  • the absorption under a pressure of 49.2 g / cm 2 of the water-absorbent polymer particles is usually less than 35 g / g.
  • the absorption under a pressure of 49.2 g / cm 2 is analogous to that of the EDANA (European Dispo- sables and Nonwovens Association) recommended test method no. WSP 242.2-05 "absorption under pressure", wherein instead of a pressure of 21, 0 g / cm 2, a pressure of 49.2 g / cm 2 is set.
  • the color of the samples was measured with a spectrophotometer (LabScan XE, Hunter Associates Laboratory, Inc., US).
  • the water-absorbing polymer particles (SAP) were filled in the lid of a polystyrene Petri dish (inner diameter 3.9 cm) and measured with the following settings:
  • UV filter Nominal Stdz Mode 0/45

Abstract

Verfahren zur Herstellung geruchsinhibierender wasserabsorbierender Polymerpartikel auf Basis ethylenisch ungesättigter, säuregruppentragender Monomere, wobei die Säuregruppen zu 35 bis 75 mol-% neutralisiert sind und die Polymerpartikel mit einem Chelatbildner beschichtet werden.

Description

Verfahren zur Herstellung geruchsinhibierender wasserabsorbierender Polymerpartikel
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung geruchsinhibierender wasserabsorbierender Polymerpartikel auf Basis ethylenisch ungesättigter, säuregrup- pentragender Monomere, wobei die Säuregruppen zu 35 bis 75 mol-% neutralisiert sind und die Polymerpartikel mit einem Chelatbildner beschichtet werden.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley- VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymere werden zur Herstellung von Windeln, Tampons, Da- menbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
WO 2006/109842 A1 beschreibt ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, wobei eine Monomerlösung mit einem definierten Gehalt an Hydrochi- nonmonomethylether und Eisen und wenig Protoanemonin und Furfural polymerisiert wird.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung geruchsinhibierender wasserabsorbierender Polymerpartikel.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, umfassend
i) die Neutralisation mindestens eines ethylenisch ungesättigten, säuregruppentra- genden Monomers mit einer Base bis zu einem Neutralisationsgrad von 35 bis 75 mol-%, wobei die Base weniger als 0,0005 Gew.-% Eisenionen enthält und die zur Förderung der Base verwendeten Leitungen aus Edelstahl und/oder einem poly- meren Material sind, ii) Polymerisation des neutralisierten Monomers in Gegenwart mindestens eines Ver- netzers und mindestens eines Initiators, wobei der Initiator im Wesentlichen frei von Eisenionen ist, iii) Trocknung des erhaltenen Polymergels, iv) Zerkleinerung des getrockneten Polymergels zu Polymerpartikeln, v) Klassierung der erhaltenen Polymerpartikel und vi) optional Oberflächennachvernetzung der klassierten Polymerpartikel, wobei die Polymerpartikel mit 0,01 bis 1 Gew.-% mindestens einem Chelatbildner beschichtet werden.
Der Neutralisationsgrad beträgt vorzugsweise von 40 bis 70 mol-%, bevorzugt von 45 bis 65 mol-%, besonders bevorzugt von 48 bis 62 mol-%, ganz besonders bevorzugt von 50 bis 60 mol-%.
Die Base enthält vorzugsweise weniger als 0,0001 Gew.-%, besonders bevorzugt weniger als 0,00002 Gew.-%, ganz besonders bevorzugt weniger als 0,00001 Gew.-%, an Eisenionen.
Geeignete Edelstahle sind austenitische Stähle mit beispielsweise mindestens 0,08 Gew.-% Kohlenstoff. Vorteilhaft enthalten die austenitischen Stähle neben Eisen, Kohlenstoff, Chrom, Nickel und optional Molybdän noch weitere Legierungsbestandteile, vorzugsweise Niob oder Titan.
Die bevorzugten Edelstahle sind Edelstahle mit der Werkstoffnummer 1.45xx gemäß der DIN EN 10020, wobei xx eine natürliche Zahl zwischen 0 und 99 sein kann. Besonders bevorzugte Werkstoffe sind die Stähle mit den Werkstoffnummern 1.4541 und 1.4571 , insbesondere Stahl mit der Werkstoffnummer 1.4541.
Geeignete polymere Materialien sind Polyethylen, Polypropylen, Polyester, Polyamid, Polytetrafluorethylen, Polyvinylchlorid, Epoxidharze und Silikonharze. Ganz besonders bevorzugt ist Polypropylen.
Die verwendeten Initiatorsystemen sind im Wesentlichen frei von Eisenionen, wobei die verwendeten Initiatorsysteme vorzugsweise weniger als 0,1 Gew.-%, besonders bevorzugt weniger als 0,01 Gew.-%, ganz besonders bevorzugt weniger als 0,001 Gew.- %, Eisenionen enthalten, jeweils bezogen auf die Gesamtmenge des Initiatorsystems.
Chelatbildner sind Verbindungen mit mindestens zwei funktionellen Gruppen, die zur Chelatbildung mit mehrwertigen Metallionen befähigt sind.
Geeignete Chelatbildner sind beispielsweise Ethylendiamin, Diethylentriamin, Triethy- lentetramin, Iminodiessigsäure, 2,2',2"-Triaminotriethylamin, Nitrilotriessigsäure, Ethy- lendiamintetraessigsäure, Oxalsäure, Weinsäure, Zitronensäure, Dimethylglyoxim, 8-Hydroxychinolin, 2,2'-Bipyridin, 1 ,10-Phenanthrolin, Dimercaptobernsteinsäure.
Als funktionelle Gruppen sind Säuregruppen, insbesondere Carbonsäuregruppen, be- vorzugt.
Der mindestens eine Chelatbildner enthält vorzugsweise mindestens eine, besonders bevorzugt mindestens zwei, Aminocarbonsäuregruppen. Die Aminocarbonsäuregruppe ist vorzugsweise eine Aminodiessigsäuregruppe.
Vorzugsweise sind die Säuregruppen des Chelatbildners neutralisiert, d.h. der Chelat- bildner wird vorzugsweise in neutralisierter Form eingesetzt.
Geeignete Chelatbildner mit Aminodiessigsäuregruppen sind beispielsweise das Tetranatriumsalz der Ethylendiamintetraessigsäure, das Trinatriumsalz der Methylglycin- diessigsäure, das Trinatriumsalz der Hydroxyethylethylendiamintriessigsäure und das Pentanatriumsalz der Diethylentriaminpentaessigsäure.
Die Polymerpartikel werden vorzugsweise mit 0,02 bis 0,5 Gew.-%, besonders bevorzugt 0,05 bis 0,3 Gew.-%, ganz besonders bevorzugt 0,1 bis 0,2 Gew.-%, Chelatbildner beschichtet.
Die Beschichtung der Polymerpartikel wird vorzugsweise mittels Mischern mit bewegten Mischwerkzeugen durchgeführt. Die zur Oberflächennachvernetzung einsetzbaren Mischer können auch für die erfindungsgemäße Beschichtung verwendet werden.
Es ist möglich die nach der Klassierung v) oder die nach der optionalen Oberflächennachvernetzung vi) erhaltenen Polymerpartikel mit einem Komplexbildner zu beschichten. Weiterhin ist es möglich die Beschichtung gleichzeitig mit der Oberflächennachvernetzung durchzuführen.
Vorzugsweise werden die Chelatbildner zur Beschichtung auf die Polymerpartikel als Lösung in einem geeigneten Lösungsmittel, vorzugsweise Wasser, aufgesprüht.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die wasserabsorbierenden Polymerpartikel mit einem Reduktionsmittel und/oder einem Zinksalz beschichtet.
Geeignete Reduktionsmittel sind beispielsweise Natriumsulfit, Natriumhydrogensulfit (Natriumbisulfit), Natriumdithionit, Sulfinsäuren und deren Salze, Ascorbinsäure, Natri- umhypophosphit, Natriumphosphit, sowie Phosphinsäuren und deren Salze. Vorzugs- weise werden aber Salze der unterphosphorigen Säure, beispielsweise Natriumhy- pophosphit, und Salze von Sulfinsäuren verwendet, beispielsweise das Dinatriumsalz der 2-Hydroxy-2-sulfinatoessigsäure. Als Reduktionsmittel wird aber vorzugsweise ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Natriumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE) erhältlich. Die eingesetzte Menge an Reduktionsmittel beträgt vorzugsweise 0,01 bis 5 Gew.-%, besonders bevorzugt 0,05 bis 2 Gew.-%, ganz besonders bevorzugt 0,1 bis 1 Gew.-%, jeweils bezogen auf das wasserabsorbierende Polymer.
Geeignete Zinksalze sind beispielsweise Zinkhydroxid, Zinksulfat, Zinkchlorid, Zinkace- tat und Zinklaktat. Vorzugsweise werden Zinksalze von Fettsäuren beispielweise der Ricinolsäure eingesetzt.
Die eingesetzte Menge an Zinksalz beträgt vorzugsweise 0,01 bis 5 Gew.-%, beson- ders bevorzugt 0,05 bis 2 Gew.-%, ganz besonders bevorzugt 0,1 bis 1 Gew.-%, jeweils bezogen auf das wasserabsorbierende Polymer.
Die Reduktionsmittel bzw. Zinksalze werden üblicherweise als Lösung in einem geeigneten Lösungsmittel, vorzugsweise Wasser, eingesetzt.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass die Kombination von leicht sauren wasserabsorbierenden Polymerpartikeln mit Chelatbildnern zu einer deutlich verbesserten Geruchsinhibierung führt. Die Chelatbildner deaktivieren Urease vermutlich durch Komplexierung der essentiellen Nickelionen. Gleichzeitig in den was- serabsorbierenden Polymerpartikeln anwesende Eisenionen konkurrieren um die Chelatbildner. Weiterhin können anwesende Eisenionen in Verbindung mit Chelatbildnern auch die Ursache für unerwünschte Verfärbungen sein. Durch strenge Kontrolle der Menge an Eisenionen können nun wasserabsorbierende Polymerpartikel bereitgestellt werden, die einerseits eine gute Geruchsinhibierung und andererseits nur wenig Che- latbildner enthalten.
Als Quelle für Eisenionen kommt beispielsweise die häufig als Base verwendete Natronlauge in Betracht. Zur Durchführung des erfindungsgemäßen Verfahrens ist darauf zu achten, dass die verwendete Natronlauge einen möglicht geringen Anteil an Eiseni- onen aufweist.
Weiterhin sind die Rohrleitungen, in denen die Base der Neutralisation zugeführt wird, kritisch. So gilt Natronlauge gegenüber unlegierten Stählen nicht als korrosiv und wird sogar zur Passivierung verwendet. Allerdings löst Natronlauge aus unlegierten Stählen geringe Spuren an Eisenionen. Daher muss die Base mittels einer Rohrleitung aus
Edelstahl in die Neutralisation gefördert werden. Aufgrund des damit verbundenen geringeren Eintrags an Eisenionen ist es vorteilhaft auch für die übrigen produktberührten Anlagenteile des Herstellverfahrens Edelstahl oder ein polymeres Material als Werkstoff zu verwenden.
Weiterhin ist darauf zu achten, dass ein Initiatorsystem verwendet wird, bei dem möglichst keine Eisenionen als Katalysator verwendet werden. Durch zusätzliche Beschichtung der Polymerpartikel mit Reduktionsmitteln und/oder Zinksalzen kann die Verfärbungsneigung günstig beeinflusst werden.
Im Folgenden wird die Herstellung der wasserabsorbierenden Polymerpartikel näher erläutert.
Die wasserabsorbierenden Polymerpartikel werden beispielsweise durch Polymerisation einer Monomerlösung oder -Suspension, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, wobei die Säuregruppen zu 35 bis 75 mol-% neutralisiert sind, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymerisier- bare ethylenisch ungesättigte Monomere und e) optional ein oder mehrere wasserlösliche Polymere,
hergestellt und sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfon- säuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher sollten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteilhaft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispielsweise in der WO 2002/055469 A1 , der WO 2003/078378 A1 und der WO 2004/035514 A1 beschrieben. Ein geeignetes Monomer a) ist beispielsweise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Wasser, 0,0203 Gew.-% Pro- pionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäureanhydrid, 0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether. Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesättigtes, säuregruppentragendes Monomer mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha-Tocopherol (Vitamin E).
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeig- neten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomeren a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Trially- lamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 beschrieben, Di- und Triacrylate, wie in EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/032962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraalloxyethan, Methylenbis- methacrylamid, 15-fach ethoxiliertes Trimethylolpropantriacrylat, Polyethylenglykoldiacrylat, Trimethylolpropantriacrylat und Triallylamin. Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, insbesondere das Triacrylat des 3-fach ethoxylierten Glyzerins.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-%, ganz besonders bevorzugt 0,3 bis 0,6 Gew.-%, jeweils bezogen auf Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifugenretenti- onskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren. Geeignete Redox-Initiatoren sind Natriumperoxodi- sulfat/Ascorbinsäure, Wasserstoffperoxid/Ascorbinsäure, Natriumperoxodisul- fat/Natriumbisulfit und Wasserstoffperoxid/Natriumbisulfit. Vorzugsweise werden Mischungen aus thermischen Initiatoren und Redox-Initiatoren eingesetzt, wie Natriumpe- roxodisulfat/Wasserstoffperoxid/Ascorbinsäure. Als reduzierende Komponente wird aber vorzugsweise ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2- sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und
Natriumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggoli- te® FF7 (Brüggemann Chemicals; Heilbronn; DE) erhältlich.
Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymeri- sierbare ethylenisch ungesättigte Monomere d) sind beispielsweise Acrylamid, Methac- rylamid, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethacry- lat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Als wasserlösliche Polymere e) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, modifizierte Cellulose, wie Methylcellulose oder Hydroxyethylcellulose, Gelatine, Polyglykole oder Polyacrylsäuren, vorzugsweise Stärke, Stärkederivate und modifizierte Cellulose, eingesetzt werden.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomerlösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.-%, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensionen, d.h. Monomerlösungen mit überschüssigem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch ungenügend abgeführt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisie- rung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffge- halt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt.
Geeignete Reaktoren sind beispielsweise Knetreaktoren oder Bandreaktoren. Im Kne- ter wird das bei der Polymerisation einer wässrigen Monomerlösung oder -Suspension entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/038402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das in einem weiteren Ver- fahrensschritt zerkleinert werden muss, beispielsweise in einem Extruder oder Kneter.
Es ist aber auch möglich eine wässrige Monomerlösung zu vertropfen und die erzeugten Tropfen in einem erwärmten Trägergasstrom zu polymerisieren. Hierbei können die Verfahrensschritte Polymerisation und Trocknung zusammengefasst werden, wie in WO 2008/040715 A2 und WO 2008/052971 A1 beschrieben.
Die Säuregruppen der erhaltenen Polymergele sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässri- ge Lösung oder bevorzugt auch als Feststoff. Der Neutralisationsgrad beträgt vorzugsweise von 40 bis 70 mol-%, bevorzugt von 45 bis 65 mol-%, besonders bevorzugt von 48 bis 62 mol-%, ganz besonders bevorzugt von 50 bis 60 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydro- xide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate so- wie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Kaliumhydroxid, Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen.
Es ist aber auch möglich die Neutralisation nach der Polymerisation auf der Stufe des bei der Polymerisation entstehenden Polymergels durchzuführen. Weiterhin ist es möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte End- neutralisationsgrad erst nach der Polymerisation auf der Stufe des Polymergels eingestellt wird. Wird das Polymergel zumindest teilweise nach der Polymerisation neutrali- siert, so wird das Polymergel vorzugsweise mechanisch zerkleinert, beispielsweise mittels eines Extruders, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung extrudiert werden.
Das Polymergel wird dann vorzugsweise mit einem Bandtrockner getrocknet bis der Restfeuchtegehalt vorzugsweise 0,5 bis 15 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%, ganz besonders bevorzugt 2 bis 8 Gew.-%, beträgt, wobei der Restfeuchtegehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture Content" bestimmt wird. Bei einer zu hohen Restfeuchte weist das getrocknete Polymergel eine zu niedrige Glasübergangstemperatur T9 auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Restfeuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleinerungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikelgröße („fines") an. Der Feststoffgehalt des Gels be- trägt vor der Trocknung vorzugsweise von 25 und 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein Schaufeltrockner verwendet werden.
Das getrocknete Polymergel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen, eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 220.2-05 "Partikel Size Distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Partikeln mit einer Partikelgröße von mindestens 150 μm beträgt vor- zugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%. Polymerpartikel mit zu niedriger Partikelgröße senken die Permeabilität (SFC). Daher sollte der Anteil zu kleiner Polymerpartikel („fines") niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückgeführt. Die geschieht vorzugsweise vor, während oder unmittelbar nach der Polymerisation, d.h. vor der Trocknung des Polymergels. Die zu kleinen Polymerpartikel können vor oder während der Rückführung mit Wasser und/oder wässrigem Tensid angefeuchtet werden.
Es ist auch möglich in späteren Verfahrensschritten zu kleine Polymerpartikel abzutrennen, beispielsweise nach der Oberflächennachvernetzung oder einem anderen Beschichtungsschritt. In diesem Fall sind die rückgeführten zu kleinen Polymerpartikel oberflächennachvernetzt bzw. anderweitig beschichtet, beispielsweise mit pyrogener Kieselsäure.
Wird zur Polymerisation ein Knetreaktor verwendet, so werden die zu kleinen Polymerpartikel vorzugsweise während des letzten Drittels der Polymerisation zugesetzt.
Werden die zu kleinen Polymerpartikel sehr früh zugesetzt, beispielsweise bereits zur Monomerlösung, so wird dadurch die Zentrifugenretentionskapazität (CRC) der erhaltenen wasserabsorbierenden Polymerpartikel gesenkt. Dies kann aber beispielsweise durch Anpassung der Einsatzmenge an Vernetzer b) kompensiert werden.
Werden die zu kleinen Polymerpartikel sehr spät zugesetzt, beispielsweise erst in ei- nem dem Polymerisationsreaktor nachgeschalteten Apparat, beispielsweise einem
Extruder, so lassen sich die zu kleinen Polymerpartikel nur noch schwer in das erhaltene Polymergel einarbeiten. Unzureichend eingearbeitete zu kleine Polymerpartikel lösen sich aber während der Mahlung wieder von dem getrockneten Polymergel, werden beim Klassieren daher erneut abgetrennt und erhöhen die Menge rückzuführender zu kleiner Polymerpartikel.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 850 μm, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 600 μm, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu großer Partikelgröße senken die Anquellgeschwindigkeit. Daher sollte der Anteil zu großer Polymerpartikel ebenfalls niedrig sein. Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung des getrockneten Polymergels rückgeführt.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften oberflä- chennachvernetzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder poly- funktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/031482 A1 Morpholin-2,3- dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben.
Bevorzugte Oberflächennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidy- lether, Umsetzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol.
Ganz besonders bevorzugte Oberflächennachvernetzer sind 2-Hydroxyethyloxazolidin- 2-on, Oxazolidin-2-on und 1 ,3-Propandiol.
Weiterhin können auch Oberflächennachvernetzer eingesetzt werden, die zusätzliche polymerisierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.- %, jeweils bezogen auf die Polymerpartikel.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden vor, während oder nach der Oberflächennachvernetzung zusätzlich zu den Oberflächennach- vernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium, Eisen und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat und Aluminiumlaktat sind bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen eingesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.- %, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf die Polymerpartikel.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit Oberflächennachvernetzer beschichteten Polymerpartikel thermisch getrocknet, wobei die Oberflächennachvernetzungsre- aktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Horizontalmischer, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Vertikalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind beispielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschinenbau GmbH; Paderborn; DE), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; NL), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; US) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; NL). Es ist aber auch möglich die O- berflächennachvernetzerlösung in einem Wirbelbett aufzusprühen oder die in der WO 2008/141821 A2 offenbarten Mischer einzusetzen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden.
Wird ausschließlich Wasser als Lösungsmittel verwendet, so wird vorteilhaft ein Tensid zugesetzt. Dadurch wird das Benetzungsverhalten verbessert und die Verklumpungs- neigung vermindert. Vorzugsweise werden aber Lösungsmittelgemische eingesetzt, beispielsweise Isopropanol/Wasser, 1 ,3-Propandiol/Wasser und Propylengly- kol/Wasser, wobei das Mischungsmassenverhältnis vorzugsweise von 20:80 bis 40:60 beträgt.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevor- zugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingarten; DE), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingarten; DE) und Nara Paddle Dryer (NARA Machinery Europe; Frechen; DE). Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
Bevorzugte Trocknungstemperaturen liegen im Bereich 100 bis 2500C, bevorzugt 120 bis 2200C, besonders bevorzugt 130 bis 210°C, ganz besonders bevorzugt 150 bis 2000C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindes- tens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten.
Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Ver- fahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 30 bis 80°C, besonders bevorzugt bei 35 bis 70°C, ganz besonders bevorzugt bei 40 bis 600C, durchgeführt. Bei zu niedrigen Temperaturen neigen die wasserabsorbierenden Polymerpartikel zum Verklumpen und bei höheren Temperaturen verdampft bereits merklich Wasser. Die zur Nachbefeuchtung eingesetzte Wassermenge beträgt vorzugsweise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevorzugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität der Polymerpartikel erhöht und deren Neigung zur statischen Aufladung vermindert.
Geeignete Beschichtungen zur Verbesserung der Anquellgeschwindigkeit sowie der Permeabilität (SFC) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen. Geeignete Beschichtungen zur Staubbindung sind bei- spielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verba- ckungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie Span® 20.
Ein weiterer Gegenstand der vorliegenden Erfindung sind die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen einen niedrigen Gehalt an Eisenionen auf. Der Gehalt an Eise- nionen beträgt weniger als 0,001 Gew.-%, vorzugsweise weniger als 0,0005 Gew.-%, besonders bevorzugt weniger als 0,0001 Gew.-%, ganz besonders bevorzugt weniger als 0,00002 Gew.-%.
Wichtig ist auch ein ausreichender Überschuss an einem Chelatbildner gegenüber den Eisenionen. Das Gewichtsverhältnis von Eisenionen zu dem Chelatbildner beträgt weniger als 0,02, vorzugsweise weniger als 0,01 , besonders bevorzugt weniger als 0,005, ganz besonders bevorzugt weniger als 0,001.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen einen Feuchtegehalt von vorzugsweise 1 bis 10 Gew.-%, besonders bevorzugt 2 bis 8 Gew.-%, ganz besonders bevorzugt 3 bis 5 Gew.-%, auf, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Non- wovens Association) empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture Content" bestimmt wird.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt mindestens 26 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 60 g/g. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 241.2-05 "Centrifuge Retention Ca- pacity" bestimmt.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Absorption unter einem Druck von 49,2 g/cm2 von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt min- destens 26 g/g, auf. Die Absorption unter einem Druck von 49,2 g/cm2 der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 35 g/g. Die Absorption unter einem Druck von 49,2 g/cm2 wird analog der von der EDANA (European Dispo- sables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption under Pressure" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 ein Druck von 49,2 g/cm2 eingestellt wird.
Beispiele
Folgende Lösungen wurden hergestellt:
1. 1 ,67 g 2,2'-Bipyridin (CAS no. [366-18-7]; Arcos Organics BVBA; Geel; BE) wurden in ein Weithalsglasgefäß eingewogen, mit Ethanol auf 10,02 g aufgefüllt und bis zur vollständigen Lösung gerührt.
2. 0,167 g Eisensulfat Hydrat (86,0-89.0% FeSO4; CAS no. [13463-43-9]; Riedel- de Häen) wurden in ein Weithalsglasgefäß eingewogen, mit dest. Wasser auf
10,10 g aufgefüllt und bis zur vollständigen Lösung gerührt.
3. Je 5,0 g der 2,2'-Bipyridinlösung und der Eisensulfatlösung wurden gemischt.
20,0 g wasserabsorbierende Polymerpartikel (HySorb® B7065; BASF SE; DE) wurden in eine modifizierte Kaffeemühle (Blender 8012 Model 34BL99; Waring Laboratory; US) mit einem Aufsatz aus Edelstahl (Innendurchmesser 8 cm, Innenhöhe 4 cm, Werkzeugdurchmesser 7 cm, Zugabepunkt im Deckel 1 ,3 cm vom Rand entfernt, Stromstö- rer im Deckel) eingefüllt. Die modifizierte Kaffeemühle wurde auf Stufe 3 betrieben. Über eine Spritze mit Kanüle wurden 0,60 g der Lösung 1 oder 2 bzw. 1 ,20 g der Lösung 3 langsam zugegeben. Nach Ende der Zugabe wurden die wasserabsorbierenden Polymerpartikel in eine Glasschale umgefüllt und 30 Minuten bei 500C im Trockenschrank getrocknet.
Die Farbe der Proben wurde mit einem Spektrophotometer (LabScan XE; Hunter Associates Laboratory, Inc.; US) vermessen. Die wasserabsorbierenden Polymerpartikel (SAP) wurden in den Deckel einer Polystyrol-Petrischale (Innendurchmesser 3,9 cm) gefüllt und mit folgenden Einstellungen vermessen:
Potsize: 1 ,2 Zoll
Viewing Area: 1 Zoll
Illuminant: C
Observer: 2°
UV-Filter: Nominal Stdz Mode 0/45
Man erkennt, dass die mit Lösung 3 behandelten wasserabsorbierenden Polymerpartikel einen kleineren L-Wert aufweisen und damit weniger weiß ist.

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, umfassend
i) die Neutralisation mindestens eines ethylenisch ungesättigten, säuregrup- pentragenden Monomers mit einer Base bis zu einem Neutralisationsgrad von 35 bis 75 mol-%, wobei die Base weniger als 0,0005 Gew.-% Eisenionen enthält und die zur Förderung der Base verwendeten Leitungen aus Edelstahl und/oder einem polymeren Material sind, ii) Polymerisation des neutralisierten Monomers in Gegenwart mindestens eines Vernetzers und mindestens eines Initiators, wobei der Initiator im Wesentlichen frei von Eisenionen ist, iii) Trocknung des erhaltenen Polymergels, iv) Zerkleinerung des getrockneten Polymergels zu Polymerpartikeln, v) Klassierung der erhaltenen Polymerpartikel und vi) optional Oberflächennachvernetzung der klassierten Polymerpartikel,
wobei die Polymerpartikel mit 0,01 bis 1 Gew.-% mindestens einem Chelatbildner beschichtet werden.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Polymerpartikel mit polyvalenten Kationen beschichtet werden.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die PoIy- merpartikel mit mindestens einer Verbindung, die mit mindestens zwei Carboxy- latgruppen der wasserabsorbierenden Polymerpartikel kovalente Bindungen bilden kann, oberflächennachvernetzt werden.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die oberflächen- nachvernetzten Polymerpartikel mit einer wässrigen Lösung nachbefeuchtet werden.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Polymerpartikel mit mindestens einem Reduktionsmittel beschichtet werden.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Polymerpartikel mit mindestens einem Zinksalz beschichtet werden.
7. Wasserabsorbierende Polymerpartikel, erhältlich durch Polymerisation einer wässrigen Monomerlösung oder -Suspension, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, wobei die Säuregruppen zu 35 bis 75 mol-% neutralisiert sind, b) mindestens einen Vernetzer und c) mindestens einen Initiator,
wobei die Polymerpartikel weniger als 0,001 Gew.-% Eisenionen enthalten und mit 0,01 bis 1 Gew.-% mindestens einem Chelatbildner beschichtet sind, wobei das Gewichtsverhältnis von Eisenionen zu Chelatbildner weniger als 0,02 beträgt.
8. Polymerpartikel gemäß Anspruch 7, dadurch gekennzeichnet, dass die Polymer- partikel mit polyvalenten Kationen beschichtet wurden.
9. Polymerpartikel gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Polymerpartikel mit einer Verbindung, die mit mindestens zwei Carboxylatgrup- pen der wasserabsorbierenden Polymerpartikel kovalente Bindungen bilden kann, oberflächennachvernetzt wurden.
10. Polymerpartikel gemäß einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass mindestens 95% der Polymerpartikel eine Partikelgröße von 150 bis 600 μm aufweisen.
1 1. Polymerpartikel gemäß einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Polymerpartikel einen Feuchtegehalt von 1 bis 10 Gew.-% aufweisen.
12. Polymerpartikel gemäß einem der Ansprüche 7 bis 1 1 , dadurch gekennzeichnet, dass die Polymerpartikel mit mindestens einem Reduktionsmittel beschichtet wurden.
13. Polymerpartikel gemäß einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Polymerpartikel mit mindestens einem Zinksalz beschichtet wurden.
14. Polymerpartikel gemäß einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Polymerpartikel eine Zentrifugenretentionskapazität von 15 bis 60 g/g aufweisen.
15. Polymerpartikel gemäß einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass die Polymerpartikel eine Absorption unter einem Druck von 49,2 g/cm2 von 15 bis 35 g/g aufweisen.
16. Hygieneartikel, enthaltend Polymerpartikel gemäß einem der Ansprüche 7 bis 15.
EP09799618A 2009-01-09 2009-12-17 Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel Withdrawn EP2385816A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14343609P 2009-01-09 2009-01-09
PCT/EP2009/067421 WO2010079075A1 (de) 2009-01-09 2009-12-17 Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel

Publications (1)

Publication Number Publication Date
EP2385816A1 true EP2385816A1 (de) 2011-11-16

Family

ID=41693440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09799618A Withdrawn EP2385816A1 (de) 2009-01-09 2009-12-17 Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel

Country Status (5)

Country Link
US (1) US20100178513A1 (de)
EP (1) EP2385816A1 (de)
JP (1) JP2012514670A (de)
CN (1) CN102348435A (de)
WO (1) WO2010079075A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347548B (zh) * 2011-02-07 2017-09-19 巴斯夫欧洲公司 具有高溶胀速度的吸水性聚合物颗粒的制备方法
CN103930201B (zh) 2011-11-15 2016-04-27 株式会社日本触媒 吸水剂组合物及其制造方法、以及其保管及库存方法
US9126186B2 (en) * 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
CN104853705A (zh) * 2012-12-20 2015-08-19 巴斯夫欧洲公司 气味抑制超吸收剂
SG11201602804SA (en) * 2013-10-09 2016-05-30 Nippon Catalytic Chem Ind Particulate Water-Absorbing Agent Containing Water-Absorbing Resin asMain Component and Method for Producing The Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG86324A1 (en) * 1997-07-03 2002-02-19 Kao Corp Superabsorbent resin composition
EP2112172B2 (de) * 2007-01-24 2018-10-17 Nippon Shokubai Co., Ltd. Partikelförmiges wasserabsorbierendes polymer und verfahren zu seiner herstellung
EP2116571B1 (de) * 2007-02-05 2019-05-01 Nippon Shokubai Co., Ltd. Granularer wasserabsorber und verfahren zu seiner herstellung
SA08290402B1 (ar) * 2007-07-04 2014-05-22 نيبون شوكوباي كو. ، ليمتد عامل دقائقي ماص للماء وطريقة لتصنيعه

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010079075A1 *

Also Published As

Publication number Publication date
JP2012514670A (ja) 2012-06-28
CN102348435A (zh) 2012-02-08
WO2010079075A1 (de) 2010-07-15
US20100178513A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
EP2445942B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit geringer verbackungsneigung und hoher absorption unter druck
WO2010108875A1 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2731975B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
WO2009153196A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2341881B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011131526A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2430056B1 (de) Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel
EP2547705A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2385816A1 (de) Verfahren zur herstellung geruchsinhibierender wasserabsorbierender polymerpartikel
WO2011061125A2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2274087A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2300061B1 (de) Verfahren zur oberflächennachvernetzung wasserabsorbierender polymerpartikel
EP2288645B1 (de) Verfahren zur kontinuierlichen thermischen oberflächennachvernetzung wasserabsorbierender polymerpartikel
EP2714750B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2861631B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
EP2485773B1 (de) Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
EP2861633A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2485774B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2714103B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
WO2012107344A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3827031A1 (de) Verfahren zur herstellung von superabsorbern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120320