EP2384837B1 - Method for manufacturing a heat exchanger pipe - Google Patents

Method for manufacturing a heat exchanger pipe Download PDF

Info

Publication number
EP2384837B1
EP2384837B1 EP11163326.9A EP11163326A EP2384837B1 EP 2384837 B1 EP2384837 B1 EP 2384837B1 EP 11163326 A EP11163326 A EP 11163326A EP 2384837 B1 EP2384837 B1 EP 2384837B1
Authority
EP
European Patent Office
Prior art keywords
tube
heat exchanger
max
exchanger tube
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11163326.9A
Other languages
German (de)
French (fr)
Other versions
EP2384837A2 (en
EP2384837A3 (en
Inventor
Ingo Toparkus
Rainer Vösgen
Nicole Rotzoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP2384837A2 publication Critical patent/EP2384837A2/en
Publication of EP2384837A3 publication Critical patent/EP2384837A3/en
Application granted granted Critical
Publication of EP2384837B1 publication Critical patent/EP2384837B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/12Bending tubes into wave form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Definitions

  • the present invention relates to a method for producing a heat exchanger tube having the features of patent claim 1.
  • the heat exchangers In addition to the higher heat transfer performance requirements, the heat exchangers must be able to operate at increasingly higher pressures. In particular, in the heat exchangers, which flows through a gaseous fluid to be cooled, the requirement increases to be transferred Pressure increasingly by ever higher engine charging levels. In addition, a low pressure loss within the heat exchanger is increasingly required.
  • the flow coefficients of the body are being optimized more and more, which adversely affects the cooling capacity of the heat exchanger with smaller cooling holes.
  • the total weight of the vehicle should decrease, so that low fuel consumption and thus lower CO2 emissions can be realized.
  • the GB 519593 discloses an apparatus for manufacturing a heat exchanger tube.
  • a tube with a circular cross-section serves as Blank for the forming process.
  • This blank is reshaped by hydroforming into a heat exchanger tube which has a hexagonal cross-sectional area and is corrugated along its longitudinal direction.
  • this device is characterized in that blanks are used, which are open only on one side.
  • the disadvantage of this device is that it leads to a high susceptibility to errors, resulting in high set-up times.
  • the shape of the finished heat exchanger tube is severely limited by this device.
  • the US 2008/0173060 A1 shows a method and apparatus for making a helical tube.
  • the tube is inserted into a bending device, which consists of a plurality of spaced-apart rollers which are able to deform the blank along its longitudinal axis. Due to the fact that the blank can also be set in rotation during the bending process, it is possible to impart a helical shape to the tube.
  • a disadvantage of this device and the associated method is that the design forms of the tube are severely limited. For example, it is not possible to produce a tube having a rectangular or polygonal cross-section.
  • the US 1605545 discloses a method for producing a wave-shaped profile, which is produced by a combined bending and pressing process.
  • a circular tube is inserted into a device which is constructed in two parts.
  • the outside of this device has a positive impression of a wave, the inside, however, accordingly has a negative wave profile.
  • the forming process is realized in that a mandrel passes through the inner part of the bending device and presses it with its negative impression in the positive impression of the outer molding.
  • the disadvantage of this invention is again in the high set-up and cycle times.
  • the method used involves the risk that the blank will suffer damage during the forming process, which increases the percentage of rejects.
  • the object of the present invention is therefore to provide a cost-effective and efficient method for producing a heat exchanger tube, which has a high cooling capacity, low flow resistance and compact space dimensions.
  • a tube with a circular cross section is formed into a tube with a non-circular cross section, preferably a rectangular cross section, and the tube with a non-circular cross section is corrugated in its longitudinal direction and / or transverse direction.
  • the inventive method for producing a heat exchanger tube has the particular advantage that a heat exchanger tube with compact space dimensions and high pressure tightness can be produced.
  • a substantially circular tube which may be formed, for example, by a roll-rolled longitudinally welded pipe, a tube with a non-circular cross section is produced by a forming process.
  • a non-circular cross-section may, for example, be an oval, an elliptical, preferably a rectangular cross-section and / or a hybrid form of the aforementioned cross-sectional shapes.
  • the thus produced substantially non-circular tube profile has an approximately equal pressure resistance compared to a round tube profile. Subsequently, the originally circular tube is referred to as a round tube profile.
  • the heat exchanger tube is provided with a wave shape in the longitudinal direction and / or transverse direction.
  • the amplitude of the waveform can be under Reference the longitudinal direction as X-axis in both the Y- and Z-axis are formed pointing. It is also conceivable to make a combination of training in the Y and Z directions.
  • the waveform may also be formed in the transverse direction of the heat exchanger tube. This results, for example, in cross-section a tendency U-shaped or S-shaped configuration of previously converted to a non-circular cross-section tube.
  • the waveform is made with an amplitude corresponding to 0.2 to 1.2 times an outer diameter of the round tube profile. Particularly preferably, an amplitude is produced which corresponds to 0.5 to 0.75 times the outside diameter of the round tube profile. The amplitude corresponds to the height of the respective deflection of the waveform in the Y or Z-axis direction. This results in a particularly advantageous embodiment, a low pressure drop when flowing through a fluid through the heat exchanger tube and a good mixing of the exhaust gas in the heat exchanger tube at the same time low flow resistance.
  • the heat exchanger tube is manufactured with a wave shape having a wavelength which corresponds to 1 to 7 times the outside diameter of the round tube profile. Particularly preferably, the wavelength corresponds to 3 to 6 times the outer diameter of the round tube profile.
  • the heat exchanger tube is made of a stainless steel. Under a stainless steel is to be understood in the context of the invention significantly a stainless steel. Also, an austenitic steel can be used in the invention. In particular, this results in the advantage that the high demands placed on the corrosion resistance of the steel material used in an application in an exhaust system of a vehicle are achieved.
  • chemically aggressive cooling media such as cooling water with cooling additive, flow through the heat exchanger and, on the other hand, corrosive exhaust gases.
  • the heat exchanger is subject to strong thermal fluctuations.
  • the steel provides a particularly good thermal conductivity, which is transferred from one medium to the other by convection and heat conduction within the heat exchanger and thus ensures high efficiency of the heat exchanger.
  • a stainless steel By using a stainless steel, a high longevity of the heat exchanger is realized.
  • the heat exchanger tube is made of a stainless steel alloy, which has the following alloy constituents expressed in wt .-%: Carbon (C): Max. 0.08 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.2 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Chrome (Cr): 16.5 to 21.0 Nickel (Ni): 8.0 to 26.0 Rest: Iron (Fe)
  • the aforementioned alloy additionally has at least one of the following alloy constituents expressed in% by weight: Nitrogen (N): Max. 0.15 Molybdenum (Mo): 2.0 to 5.0 Titanium (Ti): Max. 0.7 Copper (Cu): 1.2 to 2.0.
  • FIG. 1 a side view of a heat exchanger tube, which is produced by the method according to the invention
  • FIG. 2 a perspective view of a heat exchanger tube produced by the method according to the invention
  • FIG. 3 a side view of an exhaust gas-carrying heat exchanger, which comprises a plurality of heat exchanger tubes produced by the method according to the invention
  • FIG. 4 a cross-sectional view of a circular tube
  • FIG. 5 a side view of a heat exchanger tube with Geometriebelopung prepared by the process according to the invention.
  • FIG. 1 shows a heat exchanger tube 1 in a side view, which has been produced by a method according to the invention.
  • the heat exchanger tube 1 has a waveform in the longitudinal direction 2.
  • the waveform has, in relation to the drawing plane, in the vertical direction, a height exhibition in the form of an amplitude 4 and in the horizontal direction one
  • Wavelength 5 is limited by the distance from wave trough WT to wave trough WT or wave mountain WB to wave mountain WB.
  • FIG. 2 shows a perspective view of the heat exchanger tube 1.
  • the heat exchanger tube 1 is formed in cross-section substantially by a rectangular cross-section 6.
  • the rectangular cross-section 6 is flat in each case with reference to the image plane on its upper side 7 and its underside 8. In side regions 9, it has a curvature 10.
  • this curvature 10 can have an advantageous effect on the flow S and the resulting flow resistance.
  • the inner flow direction Si relative to the coordinate system, extends essentially in the X direction and the amplitude 4 is aligned in the Y direction for this purpose.
  • the width b of the heat exchanger tube according to the invention is preferably 0.5 to 12.0 mm.
  • FIG. 3 shows a heat exchanger 11 in a side view.
  • the heat exchanger 11 consists of several combined heat exchanger tubes 1, which are coupled together at their ends 12 via tube sheets 13.
  • the coupling of the ends 12 of the heat exchanger tubes 1 with the tubesheets 13 can be effected by a positive connection, adhesion or even material connection in a respective end region of the heat exchanger tube 1.
  • the heat exchanger tubes 1 are arranged in total so that the troughs of adjacent heat exchanger tubes 1 lie in one plane. The tubes are therefore not offset from each other in the longitudinal direction. This results in a high packing density.
  • FIG. 4 shows a cross-sectional view of a circular tube 3.
  • the circular tube 3 has an outer diameter D in its initial state. It serves as a semi-finished product for producing the heat exchanger tube 1 and is flattened and corrugated accordingly. With respect to the outer diameter D, the amplitude 4 and the wavelength 5 of the waveform are set.
  • FIG. 5 shows a side view of a heat exchanger tube 1, in which case the wavelength L (shown in the other figures as reference numeral 5), the height of the total pipe H. a radius of a wave R, a flow base G and a simple wave height A are shown.
  • H / L G HA G / H R / H 0.1 to 0.3 -4 to 2 mm -1 to 1 1 to 5

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Wärmetauscherrohres mit den Merkmalen des Patentanspruchs 1.The present invention relates to a method for producing a heat exchanger tube having the features of patent claim 1.

Beim Bau von Wärmeüberträgern oder Wärmetauschern für Kraftfahrzeuge werden zunehmend höhere Anforderungen an die Übertragungsleistung gestellt. Die steigenden Anforderungen basieren auf höheren Anforderungen an die effiziente Ausnutzung des Kraftstoffes durch eine Verbrennungskraftmaschine sowie zunehmend verschärften Abgasemissionsgrenzwerten.In the construction of heat exchangers or heat exchangers for motor vehicles increasingly higher demands are placed on the transmission power. The increasing requirements are based on higher demands on the efficient use of the fuel by an internal combustion engine and increasingly stringent exhaust emission limits.

Insbesondere bei der Kühlung von Abgasen bei der Abgasrückführung zu einem Verbrennungsmotor müssen immer höhere Wärmeleistungen abgeführt werden, um einen hohen Beladungsgrad der Zylinderfüllung zu erreichen. Auch bei anderen Wärmetauschern, wie beispielsweise Ölkühler-, Ladeluftkühler- oder aber Kühlkreislaufwärmetauschern, treten zunehmend höhere Anforderungen an die Übertragungsleistung auf.In particular, in the cooling of exhaust gases in the exhaust gas recirculation to an internal combustion engine higher and higher heat outputs must be dissipated in order to achieve a high degree of loading of the cylinder filling. In other heat exchangers, such as oil cooler, intercooler or cooling cycle heat exchangers, increasingly higher demands on the transmission performance.

Neben den höheren Anforderungen an die Wärmeübertragungsleistungen müssen die Wärmetauscher auch mit zunehmend höheren Drücken arbeiten können. Insbesondere bei den Wärmetauschern, die ein zu kühlendes gasförmiges Fluid durchströmt, steigt die Anforderung an den zu übertragenden Druck zunehmend durch immer höhere Motoraufladestufen. Außerdem wird zunehmend ein geringer Druckverlust innerhalb des Wärmetauschers gefordert.In addition to the higher heat transfer performance requirements, the heat exchangers must be able to operate at increasingly higher pressures. In particular, in the heat exchangers, which flows through a gaseous fluid to be cooled, the requirement increases to be transferred Pressure increasingly by ever higher engine charging levels. In addition, a low pressure loss within the heat exchanger is increasingly required.

Im Rahmen der Reduzierung von CO2-Ausstößen von Kraftfahrzeugen werden die Strömungsbeiwerte der Karosserie immer stärker optimiert, was bei durch kleiner werdenden Kühlungsöffnungen nachteilig auf die Kühlleistung des Wärmetauschers auswirkt. Gleichzeitig soll das Gesamtgewicht des Fahrzeuges sinken, damit ein geringer Kraftstoffverbrauch und somit ein geringerer CO2-Ausstoß realisiert werden kann. Diese gewichtsreduzierenden Anforderungen gelten auch für einzelne Bauteile der Fahrzeuge.As part of the reduction of CO2 emissions from motor vehicles, the flow coefficients of the body are being optimized more and more, which adversely affects the cooling capacity of the heat exchanger with smaller cooling holes. At the same time, the total weight of the vehicle should decrease, so that low fuel consumption and thus lower CO2 emissions can be realized. These weight-reducing requirements also apply to individual components of the vehicles.

Verfahren und Vorrichtungen zum Herstellen eines Wärmetauscherrohres, bei dem ein Rohr mit kreisrundem Querschnitt zu einem Rohr mit nicht kreisrundem Querschnitt verformt wird, zählen zum Stand der TechnikMethods and apparatus for making a heat exchanger tube in which a tube having a circular cross-section is deformed into a tube of non-circular cross-section are known in the art

So offenbart die US 731124 eine Vorrichtung zum Herstellen eines gewellten Rohres, welches aus einem kreisrunden Rohling hergestellt wird. Hierbei wird der Rohling, welcher durch ein kreisrundes Rohr gebildet wird, in eine Pressvorrichtung eingelegt und an zwei gegenüberliegenden Seiten mit einem Wellenprofil versehen Die beiden anderen Seiten bilden dabei zwei plane Flächen, die parallel zueinander verlaufen. Hergestellt wird dieses gewellte Rohr durch ein Verfahren, bei dem der Rohling in die Pressvorrichtung eingelegt wird, welche die späteren Abmessungen des gewellten Rohres definieren. Anschließend werden die beiden offenen Enden des Rohres verschlossen und von einer Seite Wasser eingeführt, wodurch ein solcher Druck entsteht, dass sich das Rohr bis an die durch das Presswerkzeug vorgegebene Kontur ausdehnt Das dieser Vorrichtung zugrunde liegende Verfahren ist nachteilig, da eine Vielzahl von Produktionsschritten miteinander kombiniert werden müssen, um ein Fertigbauteil zu erhalten. Auch die Anwendung des Innenhochdruckumformens, welches mittels Einpressen von Wasser umgesetzt wird, ist fehleranfällig und verursacht hohe Rüstzeiten.So revealed the US 731124 a device for producing a corrugated pipe, which is produced from a circular blank. Here, the blank, which is formed by a circular tube, inserted into a pressing device and provided on two opposite sides with a wave profile The other two sides form two flat surfaces which are parallel to each other. This corrugated tube is manufactured by a process in which the blank is inserted into the pressing device, which define the later dimensions of the corrugated tube. Subsequently, the two open ends of the tube are closed and introduced water from one side, whereby such pressure arises that the tube expands to the predetermined by the pressing tool contour The method underlying this device is disadvantageous because a plurality of production steps with each other must be combined to obtain a prefabricated component. The application of hydroforming, which is implemented by pressing in water, is prone to errors and causes high set-up times.

Auch die GB 519593 offenbart eine Vorrichtung zur Herstellung eines Wärmetauscherrohres. Auch hier dient ein Rohr mit kreisrundem Querschnitt als Rohling für den Umformprozess. Dieser Rohling wird mittels Innenhochdruckumformung zu einem Wärmetauscherrohr umgeformt, welches eine sechseckige Querschnittsfläche aufweist und entlang seiner Längsrichtung gewellt Ist. Des Weiteren zeichnet sich diese Vorrichtung dadurch aus, dass Rohlinge verwendet werden, welche lediglich auf einer Seite geöffnet sind. Der Nachteil dieser Vorrichtung liegt wiederum darin, dass es zu einer hohen Fehleranfälligkeit kommt, wodurch hohe Rüstzeiten entstehen. Auch die Formgebung des fertigen Wärmetauscherrohres ist durch diese Vorrichtung stark eingeschränkt.Also the GB 519593 discloses an apparatus for manufacturing a heat exchanger tube. Again, a tube with a circular cross-section serves as Blank for the forming process. This blank is reshaped by hydroforming into a heat exchanger tube which has a hexagonal cross-sectional area and is corrugated along its longitudinal direction. Furthermore, this device is characterized in that blanks are used, which are open only on one side. The disadvantage of this device, in turn, is that it leads to a high susceptibility to errors, resulting in high set-up times. The shape of the finished heat exchanger tube is severely limited by this device.

Die US 2008/0173060 A1 zeigt ein Verfahren und eine Vorrichtung zur Herstellung eines helixförmigen Rohres. Hierbei wird das Rohr in eine Biegevorrichtung eingelegt, welche aus mehreren voneinander beabstandeten Rollen besteht, die in der Lage sind, den Rohling entlang seiner Längsachse zu verformen. Dadurch, dass der Rohling während des Biegeprozesses auch in eine Rotation versetzt werden kann, ist es möglich, dem Rohr eine helixförmige Form aufzuprägen. Nachteilig an dieser Vorrichtung und dem dazu gehörigen Verfahren ist allerdings, dass die Gestaltungsformen des Rohres stark begrenzt sind. So ist es zum Beispiel nicht möglich, ein Rohr herzustellen, welches einen rechteckigen oder mehreckigen Querschnitt aufweist.The US 2008/0173060 A1 shows a method and apparatus for making a helical tube. In this case, the tube is inserted into a bending device, which consists of a plurality of spaced-apart rollers which are able to deform the blank along its longitudinal axis. Due to the fact that the blank can also be set in rotation during the bending process, it is possible to impart a helical shape to the tube. A disadvantage of this device and the associated method, however, is that the design forms of the tube are severely limited. For example, it is not possible to produce a tube having a rectangular or polygonal cross-section.

Die US 1605545 offenbart ein Verfahren zur Herstellung eines wellenförmigen Profils, welches durch einen kombinierten Biege- und Pressvorgang hergestellt wird. Hierzu wird ein kreisrundes Rohr in eine Vorrichtung eingelegt, welche zweiteilig aufgebaut ist. Die Außenseite dieser Vorrichtung weist einen positiven Abdruck einer Welle auf, die Innenseite hingegen weist dementsprechend ein negatives Wellenprofil auf. Der Umformprozess wird dadurch realisiert, dass ein Dorn durch den Innenteil der Biegevorrichtung fährt und diese so mit ihrem negativen Abdruck in den positiven Abdruck des äußeren Formteils presst. Der Nachteil dieser Erfindung liegt wiederum in den hohen Rüst- und Taktzeiten. Des Weiteren bietet das angewandte Verfahren das Risiko, dass der Rohling während des Umformprozesses Schäden erleidet, welches den prozentualen Anteil an Ausschussteilen erhöht.The US 1605545 discloses a method for producing a wave-shaped profile, which is produced by a combined bending and pressing process. For this purpose, a circular tube is inserted into a device which is constructed in two parts. The outside of this device has a positive impression of a wave, the inside, however, accordingly has a negative wave profile. The forming process is realized in that a mandrel passes through the inner part of the bending device and presses it with its negative impression in the positive impression of the outer molding. The disadvantage of this invention is again in the high set-up and cycle times. Furthermore, the method used involves the risk that the blank will suffer damage during the forming process, which increases the percentage of rejects.

Aufgabe der vorliegenden Erfindung ist es daher, ein kostengünstiges und effizientes Verfahren zur Herstellung eines Wärmetauscherrohres zur Verfügung zu stellen, der eine hohe Kühlleistung, einen geringen Strömungswiderstand und kompakte Bauraumabmaße aufweist.The object of the present invention is therefore to provide a cost-effective and efficient method for producing a heat exchanger tube, which has a high cooling capacity, low flow resistance and compact space dimensions.

Die zuvor genannte Aufgabe wird erfindungsgemäß mit einem Verfahren zur Herstellung eines Wärmetauscherrohres gemäß Patentanspruch 1 gelöst.The aforementioned object is achieved with a method for producing a heat exchanger tube according to claim 1.

Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind Bestandteil der abhängigen Patentansprüche.Advantageous developments of the present invention are part of the dependent claims.

Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Wärmetauscherrohres, wird ein Rohr mit einem kreisrunden Querschnitt zu einem Rohr mit einem nicht kreisrunden Querschnitt, vorzugsweise rechteckförmigen Querschnitt umgeformt und das Rohr mit nicht kreisförmigem Querschnitt wird in seiner Längsrichtung und/oder Querrichtung gewellt.In the method according to the invention for producing a heat exchanger tube, a tube with a circular cross section is formed into a tube with a non-circular cross section, preferably a rectangular cross section, and the tube with a non-circular cross section is corrugated in its longitudinal direction and / or transverse direction.

Das erfindungsgemäße Verfahren zur Herstellung eines Wärmetauscherrohres bietet insbesondere den Vorteil, dass ein Wärmetauscherrohr mit kompakten Bauraumabmaßen und hoher Druckdichtigkeit hergestellt werden kann. Aus einem im Wesentlichen kreisrunden Rohr, das beispielsweise durch ein rollgewalztes längsnahtverschweißtes Rohr ausgebildet sein kann, wird durch einen Umformprozess ein Rohr mit nicht kreisrundem Querschnitt erzeugt. Bei einem nicht kreisrunden Querschnitt kann es sich beispielsweise um einen ovalen, einen elliptischen, vorzugsweise um einen rechteckförmigen Querschnitt und/oder um eine Mischform aus den zuvor genannten Querschnittsformen handeln. Das so erzeugte im Wesentlichen nicht kreisrunde Rohrprofil weist eine annähernd gleiche Druckbeständigkeit im Vergleich zu einem runden Rohrprofil auf. Nachfolgend wird das ursprünglich kreisrunde Rohr als Rundrohrprofil bezeichnet.The inventive method for producing a heat exchanger tube has the particular advantage that a heat exchanger tube with compact space dimensions and high pressure tightness can be produced. From a substantially circular tube, which may be formed, for example, by a roll-rolled longitudinally welded pipe, a tube with a non-circular cross section is produced by a forming process. A non-circular cross-section may, for example, be an oval, an elliptical, preferably a rectangular cross-section and / or a hybrid form of the aforementioned cross-sectional shapes. The thus produced substantially non-circular tube profile has an approximately equal pressure resistance compared to a round tube profile. Subsequently, the originally circular tube is referred to as a round tube profile.

In einem weiteren Verfahrensschritt, der zeitlich versetzt nach der Verformung des nicht kreisrunde Rohrprofils oder aber auch gleichzeitig ausgeführt werden kann, wird das Wärmetauscherrohr in Längsrichtung und/oder Querrichtung mit einer Wellenform versehen. Die Amplitude der Wellenform kann dabei unter Bezugnahme der Längsrichtung als X-Achse sowohl in Form der Y- als auch der Z-Achse zeigend ausgebildet werden. Ebenfalls ist es vorstellbar, eine Kombination der Ausbildung in Y- und Z-Richtung vorzunehmen. Die Wellenform kann auch in Querrichtung des Wärmetauscherrohrs ausgebildet sein. Hierdurch ergibt sich beispielsweise im Querschnitt eine tendenziell U-förmige oder S-förmige Konfiguration des zuvor zu einem nicht kreisrunden Querschnitt umgeformten Rohres.In a further method step, which can be executed offset in time after the deformation of the non-circular tube profile or else simultaneously, the heat exchanger tube is provided with a wave shape in the longitudinal direction and / or transverse direction. The amplitude of the waveform can be under Reference the longitudinal direction as X-axis in both the Y- and Z-axis are formed pointing. It is also conceivable to make a combination of training in the Y and Z directions. The waveform may also be formed in the transverse direction of the heat exchanger tube. This results, for example, in cross-section a tendency U-shaped or S-shaped configuration of previously converted to a non-circular cross-section tube.

Hieraus erzielt sich der Vorteil, dass bei gleichem Abmaß in Längsrichtung eine größere Oberfläche des Wärmetauscherrohres geschaffen wird. Durch die in Längsrichtung ausgestaltete Wellenform, erzeugt der Wärmetauscher eine höhere Leistung als ein Wärmetauscher mit geradlinig ausgeführten Wärmetauscherrohren, bei nahezu gleichbleibendem Druckverlust über die Länge des Wärmetauscherrohres.This results in the advantage that with the same dimension in the longitudinal direction, a larger surface of the heat exchanger tube is created. Due to the longitudinally configured waveform, the heat exchanger generates a higher performance than a heat exchanger with rectilinear heat exchanger tubes, with almost constant pressure loss over the length of the heat exchanger tube.

Die Wellenform wird mit einer Amplitude hergestellt, die dem 0,2- bis 1,2-fachen eines Außendurchmessers des Rundrohrprofils entspricht. Besonders bevorzugt wird eine Amplitude hergestellt, die dem 0,5- bis 0,75-fachen des Außendurchmessers des Rundrohrprofils entspricht. Die Amplitude entspricht dabei der Höhe der jeweiligen Auslenkung der Wellenform in Y- oder Z-Achsenrichtung. Hierdurch ergibt sich in besonders vorteiliger Ausgestaltung ein geringer Druckverlust beim Durchströmen eines Fluids durch das Wärmetauscherrohr sowie eine gute Durchmischung des Abgases im Wärmetauscherrohr bei gleichzeitig geringem Strömungswiderstand.The waveform is made with an amplitude corresponding to 0.2 to 1.2 times an outer diameter of the round tube profile. Particularly preferably, an amplitude is produced which corresponds to 0.5 to 0.75 times the outside diameter of the round tube profile. The amplitude corresponds to the height of the respective deflection of the waveform in the Y or Z-axis direction. This results in a particularly advantageous embodiment, a low pressure drop when flowing through a fluid through the heat exchanger tube and a good mixing of the exhaust gas in the heat exchanger tube at the same time low flow resistance.

In einer weiteren bevorzugten Ausführungsform wird das Wärmetauscherrohr mit einer Wellenform hergestellt, die eine Wellenlänge aufweist, die dem 1 bis 7-fachen des Außendurchmessers des Rundrohrprofils entspricht. Besonders bevorzugt entspricht die Wellenlänge dem 3 bis 6-fachen des Außendurchmessers des Rundrohrprofils. Auch hierdurch ergibt sich eine hohe Kühlleistung bei gleichzeitig verbesserter Oberflächennutzung und verbesserter Durchmischung des Abgases im Rohr bei geringem Strömungswiderstand. Vorzugsweise wird das Wärmetauscherrohr aus einem Edelstahl hergestellt. Unter einem Edelstahl ist im Rahmen der Erfindung maßgeblich ein nicht rostender Stahl zu verstehen. Auch kann ein austenitischer Stahl im Rahmen der Erfindung eingesetzt werden. Hierdurch ergibt sich insbesondere der Vorteil, dass die bei einem Einsatzgebiet in einem Abgasstrang eines Fahrzeuges gestellten hohen Anforderungen an die Korrosionsbeständigkeit des verwendeten Stahlwerkstoffes erreicht werden. Zum einen durchströmen chemisch aggressive Kühlungsmedien, wie beispielsweise Kühlwasser mit Kühlzusatz, den Wärmetauscher, zum anderen sind es korrosive Abgase.In a further preferred embodiment, the heat exchanger tube is manufactured with a wave shape having a wavelength which corresponds to 1 to 7 times the outside diameter of the round tube profile. Particularly preferably, the wavelength corresponds to 3 to 6 times the outer diameter of the round tube profile. This also results in a high cooling capacity at the same time improved surface use and improved mixing of the exhaust gas in the pipe with low flow resistance. Preferably, the heat exchanger tube is made of a stainless steel. Under a stainless steel is to be understood in the context of the invention significantly a stainless steel. Also, an austenitic steel can be used in the invention. In particular, this results in the advantage that the high demands placed on the corrosion resistance of the steel material used in an application in an exhaust system of a vehicle are achieved. On the one hand, chemically aggressive cooling media, such as cooling water with cooling additive, flow through the heat exchanger and, on the other hand, corrosive exhaust gases.

Weiterhin unterliegt der Wärmetauscher starken thermischen Schwankungen. Der Stahl bietet eine besonders gute Wärmeleitfähigkeit, die durch Konvektion und Wärmeleitung innerhalb des Wärmetauschers von einem Medium auf das Andere übertragen wird und somit für einen hohen Wirkungsgrad des Wärmetauschers sorgt. Durch den Einsatz eines Edelstahls wird hierdurch eine hohe Langlebigkeit des Wärmetauschers realisiert.Furthermore, the heat exchanger is subject to strong thermal fluctuations. The steel provides a particularly good thermal conductivity, which is transferred from one medium to the other by convection and heat conduction within the heat exchanger and thus ensures high efficiency of the heat exchanger. By using a stainless steel, a high longevity of the heat exchanger is realized.

In einer bevorzugten Ausführungsvariante wird das Wärmetauscherrohr aus einer Edelstahllegierung hergestellt, die die nachfolgenden Legierungsbestandteile ausgedrückt in Gew.-% aufweist: Kohlenstoff (C): max. 0,08 Silizium (Si): max. 1,0 Mangan (Mn): max. 2,2 Phosphor (P): max. 0,045 Schwefel (S): max. 0,03 Chrom (Cr): 16,5 bis 21,0 Nickel (Ni): 8,0 bis 26,0 Rest: Eisen (Fe) In a preferred embodiment, the heat exchanger tube is made of a stainless steel alloy, which has the following alloy constituents expressed in wt .-%: Carbon (C): Max. 0.08 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.2 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Chrome (Cr): 16.5 to 21.0 Nickel (Ni): 8.0 to 26.0 Rest: Iron (Fe)

Darüber hinaus besteht die Option, dass die zuvor genannte Legierung zusätzlich mindestens eines der nachfolgend genannten Legierungsbestandteile ausgedrückt in Gew.-% aufweist: Stickstoff (N): max. 0,15 Molybdän (Mo): 2,0 bis 5,0 Titan (Ti): max. 0,7 Kupfer (Cu): 1,2 bis 2,0. In addition, there is the option that the aforementioned alloy additionally has at least one of the following alloy constituents expressed in% by weight: Nitrogen (N): Max. 0.15 Molybdenum (Mo): 2.0 to 5.0 Titanium (Ti): Max. 0.7 Copper (Cu): 1.2 to 2.0.

Ganz besonders bevorzugt wird eine der nachfolgend genannten Edelstahllegierungen mit den jeweiligen Legierungsbestandteilen ausgedrückt in Gew.-% zur Herstellung eines erfindungsgemäßen Wärmetauscherrohrs verwendet. 1. Legierung: Kohlenstoff (C): max. 0,07 Silizium (Si): max. 1,0 Mangan (Mn): max. 2,0 Phosphor (P): max. 0,045 Schwefel (S): max. 0,03 Stickstoff (N): max. 0,11 Chrom (Cr): 17,5 bis 19,5 Nickel (Ni): 8,0 bis 10,5 2. Legierung: Kohlenstoff (C): max. 0,03 Silizium (Si): max. 1,0 Mangan (Mn): max. 2,0 Phosphor (P): max. 0,045 Schwefel (S): max. 0,03 Stickstoff (N): max. 0,11 Chrom (Cr): 18,0 bis 20,0 Nickel (Ni): 10,0 bis 13,0 3. Legierung: Kohlenstoff (C): max. 0,03 Silizium (Si): max. 1,0 Mangan (Mn): max. 2,0 Phosphor (P): max. 0,045 Schwefel (S): max. 0,03 Stickstoff (N): max. 0,11 Chrom (Cr): 17,5 bis 19,5 Nickel (Ni): 8,0 bis 10,5 4. Legierung: Kohlenstoff (C): max. 0,03 Silizium (Si): max. 1,0 Mangan (Mn): max. 2,0 Phosphor (P): max. 0,045 Schwefel (S): max. 0,03 Stickstoff (N): max. 0,11 Chrom (Cr): 16,5 bis 18,5 Molybdän (Mn): 2,0 bis 2,5 Nickel (Ni): 10,0 bis 14,5 5. Legierung: Kohlenstoff (C): max. 0,08 Silizium (Si): max. 1,0 Mangan (Mn): max. 2,0 Phosphor (P): max. 0,045 Schwefel (S): max. 0,03 Chrom (Cr): 16,5 bis 18,5 Molybdän (Mn): 2,0 bis 2,5 Nickel (Ni): 10,5 bis 13,5 Titan (Ti): max. 0,7 6. Legierung: Kohlenstoff (C): max. 0,02 Silizium (Si): max. 0,7 Mangan (Mn): max. 2,0 Phosphor (P): max. 0,03 Schwefel (S): max. 0,01 Chrom (Cr): 19,0 bis 21,0 Molybdän (Mn): 4,0 bis 5,0 Nickel (Ni): 24,0 bis 26,0 Stickstoff (N): max. 0, 15 Kupfer (Cu): 1,2 bis 2,0 Very particular preference is given to using one of the following stainless steel alloys with the respective alloy constituents, expressed in% by weight, for the production of a heat exchanger tube according to the invention. 1. Alloy: Carbon (C): Max. 0.07 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.0 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Nitrogen (N): Max. 0.11 Chrome (Cr): 17.5 to 19.5 Nickel (Ni): 8.0 to 10.5 2. Alloy: Carbon (C): Max. 0.03 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.0 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Nitrogen (N): Max. 0.11 Chrome (Cr): 18.0 to 20.0 Nickel (Ni): 10.0 to 13.0 3. Alloy: Carbon (C): Max. 0.03 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.0 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Nitrogen (N): Max. 0.11 Chrome (Cr): 17.5 to 19.5 Nickel (Ni): 8.0 to 10.5 4. Alloy: Carbon (C): Max. 0.03 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.0 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Nitrogen (N): Max. 0.11 Chrome (Cr): 16.5 to 18.5 Molybdenum (Mn): 2.0 to 2.5 Nickel (Ni): 10.0 to 14.5 5. Alloy: Carbon (C): Max. 0.08 Silicon (Si): Max. 1.0 Manganese (Mn): Max. 2.0 Phosphorus (P): Max. 0,045 Sulfur (S): Max. 0.03 Chrome (Cr): 16.5 to 18.5 Molybdenum (Mn): 2.0 to 2.5 Nickel (Ni): 10.5 to 13.5 Titanium (Ti): Max. 0.7 6. Alloy: Carbon (C): Max. 0.02 Silicon (Si): Max. 0.7 Manganese (Mn): Max. 2.0 Phosphorus (P): Max. 0.03 Sulfur (S): Max. 0.01 Chrome (Cr): 19.0 to 21.0 Molybdenum (Mn): 4.0 to 5.0 Nickel (Ni): 24.0 to 26.0 Nitrogen (N): Max. 0, 15 Copper (Cu): 1.2 to 2.0

Weitere Vorteile, Merkmale, Eigenschaften und Aspekte der vorliegenden Erfindung ergeben sich aus der folgenden Beschreibung, bevorzugte Ausführungsformen anhand der schematischen Zeichnungen. Diese dienen dem einfachen Verständnis der Erfindung. Es zeigen: Figur 1 eine Seitenansicht eines Wärmetauscherrohres, welches mit dem erfindungsgemäßen Verfahren hergestellt ist; Figur 2 eine perspektivische Ansicht eines mit dem erfindungsgemäßen Verfahren hergestellten Wärmetauscherrohres; Figur 3 eine Seitenansicht eines abgasführenden Wärmetauschers, welcher mehrere nach dem erfindungsgemäßen Verfahren hergestellte Wärmetauscherrohre umfasst; Figur 4 eine Querschnittansicht eines kreisrunden Rohres und Figur 5 eine Seitenansicht eines mit dem erfindungsgemäßen Verfahren hergestellten Wärmetauscherrohres mit Geometriebemaßung. Further advantages, features, characteristics and aspects of the present invention will become apparent from the following description, preferred embodiments with reference to the schematic drawings. These are for easy understanding of the invention. Show it: FIG. 1 a side view of a heat exchanger tube, which is produced by the method according to the invention; FIG. 2 a perspective view of a heat exchanger tube produced by the method according to the invention; FIG. 3 a side view of an exhaust gas-carrying heat exchanger, which comprises a plurality of heat exchanger tubes produced by the method according to the invention; FIG. 4 a cross-sectional view of a circular tube and FIG. 5 a side view of a heat exchanger tube with Geometriebemaßung prepared by the process according to the invention.

In den Figuren werden für gleiche oder ähnliche Teile dieselben Bezugszeichen verwendet, wobei entsprechende oder vergleichende Vorteile erreicht werden, auch wenn eine wiederholte Beschreibung aus Vereinfachungsgründen entfällt.In the figures, the same reference numerals are used for the same or similar parts, with corresponding or comparative advantages being achieved, even if a repeated description is omitted for reasons of simplification.

Figur 1 zeigt ein Wärmetauscherrohr 1 in einer Seitenansicht, welches mit einem erfindungsgemäßen Verfahren hergestellt worden ist. Das Wärmetauscherrohr 1 weist in Längsrichtung 2 eine Wellenform auf. Die Wellenform besitzt, bezogen auf die Zeichenebene, in vertikaler Richtung eine Höhenausstellung in Form einer Amplitude 4 und in horizontaler Richtung eine FIG. 1 shows a heat exchanger tube 1 in a side view, which has been produced by a method according to the invention. The heat exchanger tube 1 has a waveform in the longitudinal direction 2. The waveform has, in relation to the drawing plane, in the vertical direction, a height exhibition in the form of an amplitude 4 and in the horizontal direction one

Wellenlänge 5. Die Wellenlänge 5 ist dabei begrenzt durch den Abstand von Wellental WT zu Wellental WT oder Wellenberg WB zu Wellenberg WB.Wavelength 5. The wavelength 5 is limited by the distance from wave trough WT to wave trough WT or wave mountain WB to wave mountain WB.

Figur 2 zeigt eine perspektivische Ansicht des Wärmetauscherrohres 1. Hierbei ist zu erkennen, dass das Wärmetauscherrohr 1 im Querschnitt im Wesentlichen durch einen rechteckförmigen Querschnitt 6 ausgebildet ist. Der rechteckförmige Querschnitt 6 ist dabei in der hier gezeigten Ausführungsform jeweils bezogen auf die Bildebene an seiner Oberseite 7 und seiner Unterseite 8 flach ausgebildet. In Seitenbereichen 9 weist es eine Krümmung 10 auf. FIG. 2 shows a perspective view of the heat exchanger tube 1. Here, it can be seen that the heat exchanger tube 1 is formed in cross-section substantially by a rectangular cross-section 6. In the embodiment shown here, the rectangular cross-section 6 is flat in each case with reference to the image plane on its upper side 7 and its underside 8. In side regions 9, it has a curvature 10.

Je nach Anwendungsform, beispielsweise im Falle eines Kreuzstromwärmeübertragers, kann sich diese Krümmung 10 vorteilig auf die Strömung S und den daraus resultierenden Strömungswiderstand auswirken. In der hier dargestellten Ausführungsvariante verläuft die innere Strömungsrichtung Si, bezogen auf das Koordinatensystem, im Wesentlichen in X-Richtung und die Amplitude 4 ist dazu in Y-Richtung ausgerichtet. Bevorzugt beträgt die Breite b des erfindungsgemäßen Wärmetauscherrohres 0,5 bis 12,0 mm.Depending on the application form, for example in the case of a cross-flow heat exchanger, this curvature 10 can have an advantageous effect on the flow S and the resulting flow resistance. In the embodiment variant shown here, the inner flow direction Si, relative to the coordinate system, extends essentially in the X direction and the amplitude 4 is aligned in the Y direction for this purpose. The width b of the heat exchanger tube according to the invention is preferably 0.5 to 12.0 mm.

Figur 3 zeigt einen Wärmetauscher 11 in einer Seitenansicht. Der Wärmetauscher 11 besteht aus mehreren zusammengefassten Wärmetauscherrohren 1, die an ihren Enden 12 über Rohrböden 13 miteinander gekoppelt sind. Die Koppelung der Enden 12 der Wärmetauscherrohre 1 mit den Rohrböden 13 kann durch einen Formschluss, Kraftschluss oder aber auch Stoffschluss in einem jeweiligen Endbereich des Wärmetauscherrohres 1 erfolgen. Die Wärmetauscherrohre 1 sind insgesamt so angeordnet, dass die Wellentäler benachbarter Wärmetauscherrohre 1 in einer Ebene liegen. Die Rohre sind also nicht in Längsrichtung zueinander versetzt angeordnet. Dadurch ergibt sich eine hohe Packungsdichte. FIG. 3 shows a heat exchanger 11 in a side view. The heat exchanger 11 consists of several combined heat exchanger tubes 1, which are coupled together at their ends 12 via tube sheets 13. The coupling of the ends 12 of the heat exchanger tubes 1 with the tubesheets 13 can be effected by a positive connection, adhesion or even material connection in a respective end region of the heat exchanger tube 1. The heat exchanger tubes 1 are arranged in total so that the troughs of adjacent heat exchanger tubes 1 lie in one plane. The tubes are therefore not offset from each other in the longitudinal direction. This results in a high packing density.

Figur 4 zeigt eine Querschnittansicht eines kreisrunden Rohres 3. Das kreisrunde Rohr 3 hat in seinem Ausgangszustand einen Außendurchmesser D. Es dient als Halbzeug zur Herstellung des Wärmetauscherrohrs 1 und wird entsprechend abgeflacht und gewellt. In Bezug auf den Außendurchmesser D werden die Amplitude 4 und die Wellenlänge 5 der Wellenform festgelegt. FIG. 4 shows a cross-sectional view of a circular tube 3. The circular tube 3 has an outer diameter D in its initial state. It serves as a semi-finished product for producing the heat exchanger tube 1 and is flattened and corrugated accordingly. With respect to the outer diameter D, the amplitude 4 and the wavelength 5 of the waveform are set.

Figur 5 zeigt eine Seitenansicht eines Wärmetauscherrohres 1, wobei hier die Wellenlänge L (in den anderen Figuren als Bezugszeichen 5 dargestellt), die Höhe des Gesamtrohres H. ein Radius eines Wellentales R, ein Strömungsgrundbereich G sowie eine einfache Wellenhöhe A gezeigt sind. Im Rahmen der Erfindung ergibt sich eine Kombination von guter Strömungseigenschaft, guter Wärmetauscherleistung und guter Raumausnutzung, bei der Verwirklichung mindestens einer der in der nachfolgend eingeblendeten Tabelle genannten geometrischen Verhältnisse: H/L G = H-A G/H R/H 0,1 bis 0,3 -4 bis 2 mm -1 bis 1 1 bis 5 FIG. 5 shows a side view of a heat exchanger tube 1, in which case the wavelength L (shown in the other figures as reference numeral 5), the height of the total pipe H. a radius of a wave R, a flow base G and a simple wave height A are shown. In the context of the invention, a combination of good flow properties, good heat exchanger performance and good utilization of space results in the realization of at least one of the geometrical relationships mentioned in the following table: H / L G = HA G / H R / H 0.1 to 0.3 -4 to 2 mm -1 to 1 1 to 5

Bezugszeichen:Reference numerals:

1 -1 -
Wärmetauscherrohrheat exchanger tube
2 -2 -
Längsrichtunglongitudinal direction
3 -3 -
Rohrpipe
4 -4 -
Amplitudeamplitude
5 -5 -
Wellenlängewavelength
6 -6 -
rechteckförmiger Querschnittrectangular cross-section
7 -7 -
Oberseitetop
8 -8th -
Unterseitebottom
9 -9 -
Seitenbereichpage range
10 -10 -
Krümmungcurvature
11 -11 -
Wärmetauscherheat exchangers
12 -12 -
Endenend up
13 -13 -
Rohrbödentube sheets
L -L -
Wellenlängewavelength
A -A -
Wellenhöhewave height
b -b -
Breitewidth
G -G -
StrömungsgrundbereichFlow base area
H -H -
Höheheight
R -R -
Radiusradius
S -S -
Strömungsrichtungflow direction
Si -Si -
innere Strömungsrichtunginner flow direction
WT -WT -
Wellentaltrough
WB -WB -
WellenbergWellenberg
D -D -
Außendurchmesserouter diameter

Claims (7)

  1. Method for producing a heat exchanger tube (1), in which a tube having a circular cross section is deformed to a tube having a rectangular cross section (6) and in which the tube having a rectangular cross section is undulated in its longitudinal direction (2) and/or transverse direction, characterised in that the undulation of the heat exchanger tube (1) is produced with an amplitude (4) which corresponds to 0.2 to 1.2 times an outer diameter (D) of the circular tube and in that the heat exchanger tube (1) is produced from stainless steel.
  2. Method according to claim 1, characterised in that the tube is undulated during or after the deformation of the cross section.
  3. Method according to either claim 1 or claim 2, characterised in that the undulation is produced with an amplitude (4) which corresponds to 0.5 to 0.75 times an outer diameter (D) of the circular tube.
  4. Method according to claim 3, characterised in that the undulation is produced with a wavelength (5) which corresponds to 1 to 7 times the outer diameter (D) of the circular tube.
  5. Method according to any of claims 1 to 4, characterised in that the undulation is produced with a wavelength (5) which corresponds to 3 to 6 times the outer diameter of the circular tube.
  6. Method according to any of claims 1 to 5, characterised in that a stainless steel alloy is used for producing the heat exchanger tube (1) which contains the following alloying elements expressed in percentage by weight: Carbon (C) max. 0.08 Silicon (Si) max. 1.0 Manganese (Mn) max. 2.2 Phosphorus (P) max. 0.045 Sulphur (S) max. 0.03 Chromium (Cr) 16.5 to 21.0 Nickel (Ni) 8.0 to 26.0 Remainder iron (Fe).
  7. Method according to claim 6, characterised in that the alloy optionally comprises at least one of the following alloying elements expressed in percentage by weight: Nitrogen (N) max. 0.15 Molybdenum (Mo) 2.0 to 5.0 Titanium (Ti) max. 0.7 Copper (Cu) 1.2 to 2.0.
EP11163326.9A 2010-05-03 2011-04-21 Method for manufacturing a heat exchanger pipe Not-in-force EP2384837B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010019241A DE102010019241A1 (en) 2010-05-03 2010-05-03 Process for the preparation of a heat exchanger tube and heat exchanger

Publications (3)

Publication Number Publication Date
EP2384837A2 EP2384837A2 (en) 2011-11-09
EP2384837A3 EP2384837A3 (en) 2012-04-04
EP2384837B1 true EP2384837B1 (en) 2013-11-06

Family

ID=44358416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11163326.9A Not-in-force EP2384837B1 (en) 2010-05-03 2011-04-21 Method for manufacturing a heat exchanger pipe

Country Status (3)

Country Link
US (1) US20120111548A1 (en)
EP (1) EP2384837B1 (en)
DE (1) DE102010019241A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101631A1 (en) * 2012-03-06 2013-09-12 Babcock Borsig Steinmüller Gmbh Corrosion resistant heat exchanger
CN103047882A (en) * 2013-01-11 2013-04-17 哈尔滨工程大学 Deflecting fence type square heat exchanger with waved tube
CN103017570A (en) * 2013-01-14 2013-04-03 哈尔滨工程大学 Self-support type heat exchanger with micro wavy tubes and straight tubes mixedly arranged
US9724746B2 (en) * 2013-03-14 2017-08-08 Pratt & Whitney Canada Corp. Aerodynamically active stiffening feature for gas turbine recuperator
CN104185315A (en) * 2013-05-24 2014-12-03 陈树炼 Wave-shaped electric heating construction and manufacturing method thereof
CN103307813B (en) * 2013-07-05 2016-08-17 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger and manufacturing process thereof
PL223582B1 (en) 2013-08-02 2016-10-31 Aic Spółka Akcyjna Pipe of the fired heat-exchanger
US9845729B2 (en) 2013-10-08 2017-12-19 Pratt & Whitney Canada Corp. Method of manufacturing recuperator air cells
FR3026164B1 (en) * 2014-09-24 2019-03-22 Valeo Systemes Thermiques HEAT EXCHANGER FOR MOTOR VEHICLE
FR3030029B1 (en) * 2014-12-16 2017-01-20 Commissariat Energie Atomique THERMAL EXCHANGE PLATE WITH MICROCHANNELS AND HEAT EXCHANGER COMPRISING AT LEAST ONE SUCH PLATE
CN106152853A (en) * 2015-04-09 2016-11-23 丹佛斯微通道换热器(嘉兴)有限公司 Waveform flat tube, flat tube process equipment and flat tube forming method
PL232197B1 (en) 2015-07-05 2019-05-31 Aic Spolka Akcyjna Furnace flue of a condensing heat exchange coil
PL232198B1 (en) 2015-07-05 2019-05-31 Aic Spolka Akcyjna Furnace flue of a condensing heat exchange coil
US11112183B2 (en) * 2016-01-14 2021-09-07 Hamilton Sundstrand Corporation Heat exchanger channels
PL230056B1 (en) 2016-10-13 2018-09-28 Aic Spolka Akcyjna Furnace flue of the fired heat exchanger
US20190257592A1 (en) * 2018-02-20 2019-08-22 K&N Engineering, Inc. Modular intercooler block
CN109108129B (en) * 2018-10-15 2019-09-24 西北工业大学 A kind of pipe axis pressing formation method of bellows
US11098962B2 (en) * 2019-02-22 2021-08-24 Forum Us, Inc. Finless heat exchanger apparatus and methods

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US731124A (en) * 1902-04-17 1903-06-16 Kennedy Park Apparatus for forming serpentine hollow bodies.
US1605545A (en) * 1923-06-11 1926-11-02 Babcock & Wilcox Co Mandrel for use in making sinuous headers
DE594367C (en) * 1932-10-02 1934-03-16 Fried Krupp Akt Ges Device for corrugating sub-chambers for water tube boilers
GB519593A (en) * 1938-09-27 1940-04-01 Percy St George Kirke Improvements in and relating to tubes for heat-exchange apparatus
US3596495A (en) * 1969-04-01 1971-08-03 Modine Mfg Co Heat transfer device and method of making
EP0112366A1 (en) * 1982-06-29 1984-07-04 AB Zander & Ingestrom Tube heat exchanger
DE3543893A1 (en) * 1985-12-12 1987-06-25 Mtu Muenchen Gmbh HEAT EXCHANGER
IT1293570B1 (en) * 1996-06-26 1999-03-08 Heinrich Franz Wallnofer PROCEDURE FOR THE CREATION OF CONDUITS FOR THE FORMATION OF PANELS CONDUCTING HEAT VEHICLES, PRESS FOR THE IMPLEMENTATION OF
CN100380083C (en) * 2001-10-01 2008-04-09 安格斯公司 Exchange apparatus
US20040173341A1 (en) * 2002-04-25 2004-09-09 George Moser Oil cooler and production method
JP4756585B2 (en) * 2005-09-09 2011-08-24 臼井国際産業株式会社 Heat exchanger tube for heat exchanger
US20080173060A1 (en) * 2006-12-14 2008-07-24 Undultec, Inc. Method and apparatus for forming undulating conduit
TWI404903B (en) * 2007-03-09 2013-08-11 Sulzer Chemtech Ag An apparatus for the heat-exchanging and mixing treatment of fluid media
JP5082120B2 (en) * 2007-03-23 2012-11-28 国立大学法人 東京大学 Heat exchanger
DE102007023361A1 (en) * 2007-05-18 2008-11-20 Modine Manufacturing Co., Racine Heat exchanger core, manufacturing process, roller mill

Also Published As

Publication number Publication date
EP2384837A2 (en) 2011-11-09
EP2384837A3 (en) 2012-04-04
US20120111548A1 (en) 2012-05-10
DE102010019241A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
EP2384837B1 (en) Method for manufacturing a heat exchanger pipe
DE10204107B4 (en) Exhaust gas heat exchanger
DE202007019617U1 (en) heat exchangers
DE102008062704A1 (en) Extruded tube for a heat exchanger
DE102005007591A1 (en) heat exchangers
DE102006059234A1 (en) heat exchangers
WO2005028990A1 (en) Heat exchanger
DE102004047891A1 (en) Heat exchanger comprises a heat exchange block having tubes with tube ends and ribs arranged between the tubes, and lateral collecting boxes made by partially hydroforming a metallic semi-finished material
DE102012023800A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
EP2803827B2 (en) Metallic hollow valve
DE102012023990A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
EP1657512A1 (en) Heat exchanger with open profile as housing
WO2007137866A1 (en) Heat exchanger, in particular an intercooler, comprising a reinforced pipe base
DE202018102108U1 (en) Exhaust pipe element
WO2006105925A1 (en) Heat exchanger, in particular for a motor vehicle
DE102010015782A1 (en) Heat exchanger pipe, particularly for recycling of exhaust gases radiator, has tubing body with impression that is arranged in longitudinal direction with distance
DE102007038713A1 (en) Partially reinforced hollow profile
EP1630513A2 (en) Flat tube for heat exchanger, in particular for vehicles and method for producing the same
DE102012023801A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
DE102015201808A1 (en) Heat exchanger tube assembly and method of making same
DE102017202667B4 (en) Heat exchanger
EP2950031B1 (en) Exhaust gas heat exchanger made from duplex steel
DE112006002196T5 (en) Pipe construction for an air-to-air aftercooler
EP2708294B1 (en) Method for producing a torsion profile
DE10016113A1 (en) Radiator for motor vehicle comprises block of flat tubes, between which are ribs, ends of tubes being bent around to issue into opposing collection boxes

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B21D 53/06 20060101AFI20120227BHEP

Ipc: F28D 7/08 20060101ALI20120227BHEP

Ipc: F28F 1/02 20060101ALI20120227BHEP

Ipc: B21D 15/12 20060101ALI20120227BHEP

17P Request for examination filed

Effective date: 20121001

17Q First examination report despatched

Effective date: 20121107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 1/02 20060101ALI20130712BHEP

Ipc: F28D 7/08 20060101ALI20130712BHEP

Ipc: B21D 15/12 20060101ALI20130712BHEP

Ipc: B21D 53/06 20060101AFI20130712BHEP

INTG Intention to grant announced

Effective date: 20130822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 639092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001586

Country of ref document: DE

Effective date: 20140102

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140306

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001586

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

26N No opposition filed

Effective date: 20140807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001586

Country of ref document: DE

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140421

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150421

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150422

Year of fee payment: 5

Ref country code: FR

Payment date: 20150421

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140207

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110421

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011001586

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160421

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 639092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106