EP2379978B1 - Rotationally symmetrical fluiddistributor - Google Patents
Rotationally symmetrical fluiddistributor Download PDFInfo
- Publication number
- EP2379978B1 EP2379978B1 EP09795934.0A EP09795934A EP2379978B1 EP 2379978 B1 EP2379978 B1 EP 2379978B1 EP 09795934 A EP09795934 A EP 09795934A EP 2379978 B1 EP2379978 B1 EP 2379978B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aperture
- tube
- fluid distributor
- inner tube
- sectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 132
- 239000000463 material Substances 0.000 claims description 30
- 238000001179 sorption measurement Methods 0.000 claims description 16
- 239000012528 membrane Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 13
- 230000001154 acute effect Effects 0.000 claims description 2
- 239000003570 air Substances 0.000 description 21
- 230000007704 transition Effects 0.000 description 15
- 244000089486 Phragmites australis subsp australis Species 0.000 description 9
- 238000010276 construction Methods 0.000 description 7
- 239000012080 ambient air Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 239000002594 sorbent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004744 fabric Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012809 cooling fluid Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 241001136792 Alle Species 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/432—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
- B01F25/4321—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0012—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
- F28D9/0018—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0052—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for mixers
Definitions
- the present invention relates to a fluid distributor and to an apparatus which has at least one fluid distributor and a heat and / or material exchanger arranged thereon.
- Fluid distributors are known inter alia from FR 983.419. Apparatuses for exchanging heat and / or substances between different fluids are state of the art. These include, for example, plate heat exchangers in which numerous flat fluid channels are arranged parallel to one another and thus offer a large exchange surface. This design is widely used, especially in air-air heat exchangers, which are used for example for heat recovery. In the case of two fluids A and B, the channels are arranged alternately, that is to say in the sequence ABABAB. A special challenge exists It is to distribute the volume flow of fluids from the respective supply lines evenly on these channels. At the same time this should be streamlined, so that the pressure loss remains as low as possible. The prior art often requires a transition from circular cross-section tubes to numerous parallel channels of rectangular cross-section, with only every second channel allowed to flow therethrough.
- a rotationally symmetrical fluid distributor is understood to mean a device which always has a round (ie circular) cross-section, but the diameter in the longitudinal direction of the fluid distributor does not have to be constant, but can be constant.
- the entire fluid distributor seen from the outside may have a cylindrical shape, but also have an increasing diameter, for example from the first to the second aperture.
- the fluid distributor has at its two ends on the first aperture and the second aperture.
- the fluid manifold consists essentially of two nested tubes, the inner tube enclosing a space A and the outer and inner tubes enclosing a space B, while the second aperture is segmented, with the respective segments alternating with the first Rooms A and B, so the spaces that are enclosed at the first aperture of the inner tube or of the two tubes, in conjunction.
- a transition takes place between the first and second apertures, in which the inner tube has increasing indentations and protuberances, the notches, ie the trajectories of the respective indentations, extending in the longitudinal direction from the first to the second aperture in the direction of the center of the fluid distributor and at the latest at the second Aperture converge with the center of the fluid manifold.
- the trajectory of the protuberances ie the radial course of the protuberances, in the longitudinal course of the first to the second aperture in the direction of the outer tube, wherein at the latest at the second aperture, the trajectory of the protuberances merges with the outer tube.
- a fluid transition between the circular / annular spatial distribution towards a segment-like spatial distribution of the spaces A and B is provided with the fluid distributor.
- the outer diameter of the entire fluid distributor can remain the same over the entire length of the distributor, but also vary.
- such a preferred arrangement of the cuts or protuberances that the resulting segments that represent the space A, each having an equal area, (in the cross section of the second aperture), but also the segments that represent the space B always one have the same area.
- the area of a segment representing the space A and the area of a segment representing the space B (in each case relative to the cross section of the second aperture) can always be the same size, ie the spatial relationship of the spaces A and B to one another is 1: 1, but it can also deviate cross-sectional area ratios occur.
- 1 ⁇ n ⁇ 1000 preferably 3 ⁇ n ⁇ 500, particularly preferably 30 ⁇ n ⁇ 100, ie the fluid distributor has the corresponding number of segments.
- the ratio of the cross-sectional areas with respect to space A and space B remains constant over the entire length of the fluid distributor.
- This preferred embodiment thus provides that at each point of the cross section of the fluid distributor, the ratio of the area which originates from room A to the area which originates from room B, is the same.
- the cross-sectional area of A / B at each point of the fluid distributor is equal to 1 in cross-section.
- the respective segments A and B resulting at the second aperture also have exactly the same areas.
- the cross-sectional areas of the space A can be much larger than those of B and vice versa (eg 50: 1 or 100: 1).
- the area ratio of A to B over the entire length of the fluid distributor is exactly the same, this means that, for example, in the case that space A is greater than space B, the inner tube relative to the outer tube has a relatively large diameter.
- the trajectories of the incisions and / or the protuberances are "sinusoidal"
- the trajectories of the protuberances which, starting from the original tube diameter of the inner tube at the first aperture, lead to a widening of the tube at this point, much like a sinusoid between 0 and ⁇ /.
- Such guidance of the trajectories results in excellent flow characteristics of the respective fluids within the fluid manifold.
- the incisions preferably run in such a way that a wedge-shaped structure results, wherein the acute angle of the wedge can also be rounded or arcuate concave. The same can preferably apply to the protuberances.
- webs may be present in the region between the outer and inner tubes which connect the outer and inner tubes and / or webs are present in the inner tube which connect the inner wall of the inner tube and the central axis of the inner tube, ie the webs run in the middle axis together.
- This embodiment applies to the entire fluid distributor except at the level of the second aperture, since starting from the first aperture, the webs, which are present for example between the outer and inner tube, have run together with the wall of the outer tube or the webs, the inner tube are arranged coincide at the level of the second aperture with the center of the fluid manifold.
- a core tube or a solid axis is arranged concentrically in the inner tube over the entire length of the fluid distributor, with the proviso that in this case the second aperture in cross-section instead of the circular sectors circular sectors, said trajectories the incisions on the core tube or the solid axis terminate and, in the case that webs are present in the inner tube, these connect the surface of the core tube or the solid axis with the notch base of the inner tube and the trajectories of the incisions on the core tube or the solid axis branch as soon as the notch bottom touches the surface of the core tube or the solid axis.
- the core tube has openings for mass transfer.
- the respective exchange openings can be fluidically connected to either one of the rooms A or B, but a mass transfer can take place with both rooms.
- the mass transfer openings of the core tube can be arranged over the entire length of the fluid distributor, but also only in certain areas.
- the fluid distributor comprises a further tube arranged longitudinally from the first aperture or the second aperture concentrically around the outer tube and enclosing a space C lying between the further tube and the outer tube, as well as a tube in the longitudinal direction after the second aperture arranged third aperture having in cross section 3n circular sectors, where n is an integer ⁇ 1, preferably ⁇ 2, and the sectors alternately with space A, space C, space B and space C and so on stand between the second and the third aperture, the outer tube in the longitudinal direction around the tube circumference around n incisions at the level of the boundaries of the circular sectors and alternately arranged n protuberances of the circular sectors, each incision having a trajectory which the radius of the outer tube starting from the original radius of the outer tube at the level of the second aperture along the direction of the third aperture, with all the trajectories of the incisions converging at the level of the third aperture in the center of the cross section of the fluid distributor, and each protuberance having a trajectory which the radius of the outer
- This embodiment of the invention is based on the same principle as the general principle of the present invention, namely that by the transition from an outer tube disposed around an inner tube by notches or protrusions of the tube therein, a course of the spaces between these tubes lie, can be adjusted so that at the exit aperture a segment-like side by side of the previously concentric arranged spaces can be done.
- the inventive concept described in the preceding paragraph is However, not limited to the three spaces mentioned A, B and C, it can connect to the third aperture described therein, which is in fluidic contact with three different rooms A, B and C, even more concentric tubes, so that the concept any number of different spaces can be expanded.
- the fluid distributor according to the invention can be used in a rotationally symmetrical heat and / or material exchanger whose cross section has at least 2n sectors separated from one another by a membrane, where n is an integer 1, preferably ⁇ 2.
- the membrane may be cloth-impermeable or at least partially permeable to fabric. In the event that a heat exchange is to take place with this exchanger, it is preferred if the membrane is material-impermeable, but has good heat-conducting properties. Particularly suitable materials for the membrane in this case are, for example, metals or metal sheets. In the event that a mass transfer should take place, semipermeable membranes or porous membranes are preferred.
- At least a portion of the sectors may be at least partially equipped with sorbent materials on the inside and / or outside.
- the heat and / or material exchanger comprises a core tube arranged in the center of the heat and / or mass exchanger in the longitudinal direction, with the proviso that annular sectors are present instead of the circular sectors, wherein the core tube openings for mass transfer with at least one part may have the circular sectors.
- This heat and / or material exchanger thus correlates with the previously described embodiment of the fluid distributor, in the event that it also has a core tube or a solid tube in the center.
- a heat and / or mass exchange apparatus comprising a heat and / or mass heat exchanger as described above, wherein at least one end or both ends of the heat and / or mass exchanger is one as described above Fluid distributor is positively mounted over the second aperture, wherein the number of sectors of the heat and / or mass exchanger and the fluid distributor is identical.
- the two components are joined together in such a way that the respective sectors of the fluid distributor and of the heat and / or mass exchanger congruently come to rest, ie not only the number of sectors of the fluid distributor and of the heat and / or mass exchanger must be identical the geometry of the sectors (for example, in the case where the sectors representing space A and the sectors representing space B are in cross section must not be the same area at the height of the second aperture) must be identical.
- positive fit can also include that distributor and heat / material exchanger firmly connected to each other, e.g. welded, glued, etc., are.
- the heat and / or material exchanger and the at least one fluid distributor are axially rotatable relative to one another, wherein the rotation is preferably carried out by means of a motor.
- the individual components can also be separated by a small gap.
- the invention described herein relates, in a first aspect, to a fluid distributor I, which starts from concentric inlet and outlet tubes for the fluids A (inner tube) and B (annular space between the inner and outer tube) and can be completely accommodated in a straight tube, which corresponds in outer diameter to the outer inlet and outlet pipe.
- Heat exchange usually refers to the exchange of heat between the non-mixing fluids through impermeable walls.
- Substance exchange refers to applications in which substances are transferred through the walls (eg filter processes). There are also combinations of heat and mass transfer conceivable; In this case, heat can also be transferred via fabric particles transferred through the walls.
- Stoff cap includes adsorptive processes.
- a substance is attached to the sorptive coating, but not transferred to the secondary side.
- the expulsion of the adsorbed substance takes place, for example, via thermal desorption with a hot medium, which flows through the same (primary) channels following adsorption.
- Such a fluid distributor I is for example in FIG. 1 shown in detail.
- the fluid distributor I is limited by an outer tube 3 and has at the level of the first aperture 1 an inner tube 2.
- the viewing direction is shown on the second aperture 4, which has the various segments (in this case 6) resulting from the transition from the two tubes 2 and 3 present on the first aperture side 1.
- the segments corresponding to the spaces A (this is the space enclosed by the pipe 2) and B (this is the space between the pipes 2 and 3) are the same in this case, ie the individual segments are at an angle of 60 ° to each other.
- the transition between the first aperture 1 and the second aperture 4 is designed such that the inner tube 2 has both notches 5 and protuberances 6, wherein the notches of the tube 2 with increasing course from the first aperture 1 to the second aperture 4 towards Center converge and meet at the height of the aperture 4 in the center.
- the notches 5 thereby taper the diameter of the tube 2.
- the tube 2 also has protuberances 6, which expand from the original tube diameter of the tube 2, the tube diameter and converge at the level of the aperture 4 with the outer tube 3. In this way, through the flowing transition between the one another ordered tubes 2 and 3 at the level of the first aperture 1 achieved a segmental structure according to the aperture 4.
- the ratio of the cross-sectional areas of the inner tube 2 (fluid A) and the annular space between tube 2 and 3 (fluid B) may be 1, for example, with the same fluids and similar mass flows, so that both cross-sectional areas are equal.
- the fluid distributor is constructed in such a way that the fluids A and B located in the inner tube 2 and in the annular space are alternately adjacent to one another in circular sectors at the end of the distributor, ie ABABAB .
- FIG. 3 shows the inlet and the outlet cross-section (inlet aperture 1 and outlet aperture 4) of a distributor I with 6 circular sectors.
- the peculiarity of the distributor is that the cross section continuously changes from concentric circles to circular sectors, on the one hand increases the diameter of the inner tube and on the other hand, for example, wedge-shaped incisions 5 are introduced, which are advantageously dimensioned such that they increase the area increase by the growing diameter again compensate. This ensures that the cross-sectional areas for fluid A and B and thus also their flow rates remain the same throughout the distributor.
- FIG. 4 A transition from the aperture 1 to the aperture 4 is based on several cross-sectional images in FIG FIG. 4 shown, which represent the changes in the circumference of the inner tube 2 in more detail. It can clearly be seen that, although the diameter of the outer tube 3 remains constant over the entire length from the aperture 1 to the aperture 4, but in the tube 2 Notches 5 and protuberances 6 are mounted, wherein the notches 5 converge at the aperture 4 at the center of the fluid distributor, while the protuberances 6 converge at the level of the aperture 4 with the outer tube 3, whereby the transition of two concentric tubes 2 and 3 in the Aperture 1 to a segment-like juxtaposition of the spaces A and B takes place at aperture 4.
- the fixed ratio of the cross-sectional areas for the fluids A and B may also differ significantly from 1, e.g. when fluid A is water and fluid B is air (e.g., an air-water heat exchanger).
- the narrow sectors get e.g. the character of water-cooled ribs (see Fig. La).
- a fluid distributor with 15 channels A and 16 channels B with an area ratio A / B >> 1 is shown.
- the diameter increase and the course of the wedge tips are advantageous to determine the diameter increase and the course of the wedge tips.
- a sinusoidal course is, for example, a sinusoidal course.
- the cuts 5 need not be wedge-shaped; they may also be rounded, for example, which may have a positive effect on the flow ( Fig. 5 ).
- the main advantage of the invention is that the distributor has a dual function: it distributes the fluids continuously and at the same time already serves as a pre-heat and / or mass exchanger. Heat and / or fabric can be transferred from the beginning. Initially, this takes place only over the outer surface of the inner tube 2; the exchange surface between the fluids is then increased continuously until the final cross-section is reached with circular sectors, where she finally reaches her maximum. The number of sectors determines the absolute maximum of the exchange area. By design, none of the sectors are excellent over the others and the flow is gradually diverted without abrupt changes of direction. As a result, a uniform flow is achieved with low pressure drop, so that together with an efficient heat and / or mass transfer a high overall efficiency can be achieved with a compact, modular design.
- the inlet and outlet cross sections 1 and 4 are circular, eliminates the otherwise often common transition pieces that increase pressure loss, cost and space requirements.
- only the inner tube 2 must be performed before and after the distributor I through the wall of the outer tube 3 (eg via elbows), or the inlet or outlet of the annular space takes place axially or (semi-) radially in one Distance to the inlet or outlet of the inner tube.
- Various such guides of the fluids A and B and the corresponding tubes 2 and 3 are in Fig. 6 illustrated, wherein the guide is not limited to the arrow directions.
- FIG. 7 illustrated variant of the construction described above has in the inner and / or in the outer part of the manifold webs (ribs) 7 and 8, which are internally connected to the central axis and outside to the outer tube 3.
- the inner webs 8 each lead from the wedge base radially to the central axis; the outer webs 7 lead radially from the outer contour of the distributor to the outer tube 3 and lie in each case on the bisector between two inner webs.
- the webs increase both the stability of the construction and, in the case of a heat exchanger, the heat transfer between the fluids, because heat is transported radially by heat conduction through this fin construction to the exchange surface between the fluids.
- FIG. 8 are in analogy to the comments regarding FIG. 4 a plurality of cross sections along the fluid distributor from aperture 1 to aperture 4 shown as a course of the geometric configuration of the inner tube 2 is designed when both between the inner tube 2 and the outer tube 3 webs 7 and in the interior of the inside lying tube 2 webs 8 are arranged. It can be seen that the webs 8 in course on the aperture 4 also due to the fact that the incisions 5 converge toward the center of the fluid distributor towards the center converge and disappear, while the webs 7 between the protuberances 6 and the outer tube 3 are and even here at the aperture 4 disappear. As a result, an extremely stable structure of the fluid distributor, in particular because the inner tube 2 is firmly fixed by the webs 7 in the outer tube 3.
- a third fluid C is introduced, so that finally at the outlet of the distributor all three fluids in the order ACBCACBC ... are adjacent ( Fig. 11 ).
- This cascading can theoretically be continued as desired; with another fluid D, for example, the order ADCDBDCDADCDBDCD ... would be achieved.
- the fluid C can also be supplied in an annular space surrounding the first manifold, as in eg Fig. 11 indicated in the fifth picture from the left.
- the first distributor is enclosed by a further tube 10 and fed to a third fluid C.
- A cold sea water
- B warm sea water
- C permeate
- semipermeable membrane between B and C capacitor film between A and C.
- the webs between A and B should in this case a low Have thermal conductivity, so that the least possible heat exchange between A and B takes place.
- Another application is that two fluids A and B heat a third fluid C (eg heating of the supply air C by two exhaust streams A and B, which should not mix).
- the apparatus could be used as a fuel cell in which A (oxygen) and C (hydrogen) react to B (water). Between A and C is an electrolyte membrane, between C and B is a water-permeable membrane.
- Both fluid manifolds I and heat exchangers can also be constructed with a core tube K or a solid axis.
- the core tube must be taken into account when calculating the cross-sectional areas. Once the wedge touches the core tube, the tip is replaced by a circular arc, so that eventually no longer circular sectors, but circular sectors arise at the outlet of the distributor. The transition from the wedge to the annulus sector must also be taken into account when calculating the cross-sectional areas.
- Fig. 12 shows sections through a fluid distributor I with core tube K; in Fig. 13 is the three-dimensional impression of the transition from the wedge to the circular sector sketched.
- a special construction of the manifold there are openings between the fluid channels and the core tube provided, which allow fluid can flow into the core tube. This may be useful, for example, if fluid A is used for cooling fluid B and accumulates in this condensate, which is to be removed via the core tube K.
- vertical installation of the apparatus may be advantageous.
- the channels can be drained one after the other by turning the distributor.
- the device can be installed at any angle.
- the core tube can also be used to supply fluids.
- a heat and / or material exchanger II the in FIG. 2a is shown as a separate component which can be arranged with two fluid distributors Ia and Ib, which can be arranged in each case at the ends of the heat and / or mass exchanger II.
- the respective circular sectors which can be connected to the fluid distributors Ia and / or Ib, are arranged identically to the resulting divisions of the circular segments on the aperture 4 of the fluid distributor Ia or Ib.
- the segments of the heat and / or mass exchanger II are parallel to each other.
- the membranes may be permeable to material and / or fabric impermeable.
- a core tube may be arranged in the heat and / or material exchanger II.
- the present invention relates to an apparatus for heat and / or material exchange III, the example in FIG. 2b is shown, and from the assembled parts, in the FIG. 2a are presented, is arranged.
- the apparatus consists of two fluid distributors Ia and Ib flanking a heat and / or material exchanger II at its respective ends.
- the apparatus III consists of at least one, usually two symmetrically arranged fluid distributors Ia and Ib and as a rule, but not necessarily, from an intermediate heat and / or material exchanger II ( Fig. 2b ). It can be operated both in DC and in countercurrent.
- the construction of the apparatus makes it possible to divert the fluid streams into different channels by rotating at least one distributor Ia and / or Ib and / or the heat or material exchanger II around the angle of a circular sector. For example, it is possible to allow fluid A in the inner tube and fluid B to enter the annular space and, depending on the rotation, either fluid A in the inner tube and fluid B in the annular space or fluid A in the annular space and fluid B in the inner tube. In this way, different channel connections can be switched using stepper motors, so that valves can be omitted.
- the distributor receives a third function; he is thus fluid distributor, heat and / or material exchanger and actuator in a component. This function can be used especially if the channels have different functions and the fluids alternately have these functions should use.
- a sorption heat exchanger in conventional design with parallel plates is in EP 1 508 015 B1 described.
- This has heat exchanger and sorption channels which are in thermal contact (eg alternately stacked).
- a sorption material is applied on the inner surfaces of the sorption channels.
- the heat exchange channels include a cooling fluid, the sorption channels a fluid from which at least one component to be extracted from the sorbent material is to be extracted.
- the sorptive heat exchanger also contains humidifying components for humidification or supersaturation of the cooling fluid.
- both fluids are air of different temperature and humidity; the medium to be extracted is water, and various sorbents (for example, silica gel) can be used as the sorbent material.
- the sorption heat exchanger of the prior art requires a plurality of valves to distribute different air streams to heat exchange or sorption channels. In the apparatus III described here, this can be done by rotation of the distributor Ia and / or Ib.
- a possible mode of operation is shown below as an example for a ventilation mode (supply air is conditioned ambient air) in DC configuration:
- the fluids at the inlet are exhaust air (inside) and ambient air (outside), the middle piece here consists of heat exchanger and sorption sectors, at the outlet are the fluids exhaust air (inside) and supply air (outside).
- the ambient air e.g., by heat from solar panels
- the heating of the ambient air may already take place in a component upstream of the distributor or e.g. take place over the outer surface of the outer tube at the entrance.
- the heat exchanger ducts must be able to be humidified, therefore humidifiers, e.g. Nozzle to provide, which provide radially every other sector with water.
- the heat exchanger and the sorption channels can be provided with further internal ribs (radially or parallel to the cylindrical surface) to increase the surface area within each sector.
- a second apparatus A2 which executes the same steps 1) to 7) with a time delay: while one of the apparatuses performs step 1), the other executes steps 3) to 5).
- the fluids must be recycled accordingly.
- This can be done in a third apparatus A3 consisting of only two by one sector staggered distributors without center piece exists and is flowed through in the reverse direction in comparison to the apparatuses A1 and A2.
- A3 / Manifold 1 (inside)
- A3 / distributor 2 (inside)
- A3 / distributor 2 (inside) must be connected to A1 / distributor 1 and A2 / distributor 1 via a changeover valve so that the exhaust air is blown into either A1 or A2 depending on the process step.
- distribution channels eg those for fluid A in Fig. 9 can be made for example by hydroforming (hydroforming, hydroforming).
- IHU is state of the art and is widely used for the production of complex components. It is conceivable to make the channels out of a tube ( Fig. 15 ) or from a partially plated sheet metal composite, which is formed by generating an internal pressure in the areas not connected by a previously applied release agent ( Fig. 16 ). In both cases, the shaping is achieved by forming in a suitable tool (pressing into the tool by internal pressure).
- Another possibility is to weave the channels three-dimensionally (this technology already exists) and, if appropriate, subsequently with a hardening material, such as e.g. Epoxy resin, to stabilize.
- a hardening material such as e.g. Epoxy resin
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Die vorliegende Erfindung betrifft einen Fluidverteiler sowie einen Apparat, der mindestens einen Fluidverteiler sowie einen daran angeordneten Wärme- und/oder Stofftauscher aufweist.The present invention relates to a fluid distributor and to an apparatus which has at least one fluid distributor and a heat and / or material exchanger arranged thereon.
Fluidverteiler sind unter anderem aus der FR 983.419 bekannt. Auch Apparate zum Austausch von Wärme und/oder Stoffen zwischen unterschiedlichen Fluiden sind Stand der Technik. Zu ihnen zählen beispielsweise Plattenwärmetauscher, bei denen zahlreiche flache Fluidkanäle parallel zueinander angeordnet sind und dadurch eine große Austauschfläche bieten. Diese Bauart ist vor allem bei Luft-Luft-Wärmetauschern, die z.B. für die Wärmerückgewinnung eingesetzt werden, weit verbreitet. Dabei sind im Falle von zwei Fluiden A und B die Kanäle abwechselnd, also in der Abfolge ABABAB..., angeordnet. Eine besondere Herausforderung besteht darin, den Volumenstrom der Fluide aus den jeweiligen Zuleitungen gleichmäßig auf diese Kanäle zu verteilen. Gleichzeitig sollte dies strömungsgünstig erfolgen, so dass der Druckverlust möglichst gering bleibt. Beim Stand der Technik ist oft ein Übergang von Rohren mit kreisförmigem Querschnitt auf zahlreiche parallele Kanäle mit rechteckigem Querschnitt notwendig, wobei nur jeder zweite Kanal durchströmt werden darf.Fluid distributors are known inter alia from FR 983.419. Apparatuses for exchanging heat and / or substances between different fluids are state of the art. These include, for example, plate heat exchangers in which numerous flat fluid channels are arranged parallel to one another and thus offer a large exchange surface. This design is widely used, especially in air-air heat exchangers, which are used for example for heat recovery. In the case of two fluids A and B, the channels are arranged alternately, that is to say in the sequence ABABAB. A special challenge exists It is to distribute the volume flow of fluids from the respective supply lines evenly on these channels. At the same time this should be streamlined, so that the pressure loss remains as low as possible. The prior art often requires a transition from circular cross-section tubes to numerous parallel channels of rectangular cross-section, with only every second channel allowed to flow therethrough.
An sich ist die Verteilung der Fluidströme bei Plattenwärmeübertragern schon durch die Geometrie gelöst (nur jeder zweite Kanal ist für die Strömung zugänglich). Insofern ist hier die Verteilung der Fluide nicht durch komplizierte Übergangsstücke zu lösen. Allerdings erfolgt durch dieses Prinzip eine schlagartige Querschnittsänderung (Halbierung), da jeder zweite Kanal verschlossen ist und das Fluid diese Bereiche umströmen muss. Dies führt zu hohen Druckverlusten. Die Übergangsstücke führen von einem runden auf eine eckigen Querschnitt und zur Trennung der Fluide werden unterschiedliche Querschnitte angeströmt. Beim Stand der Technik ist oft ein Übergang von Rohren mit kreisförmigem Querschnitt auf einen rechteckigen Anströmquerschnitt erforderlich.In itself, the distribution of fluid flows in plate heat exchangers is already solved by the geometry (only every second channel is accessible to the flow). In this respect, the distribution of the fluids can not be solved by complicated transition pieces. However, this principle results in a sudden change in cross section (halving), since every second channel is closed and the fluid has to flow around these areas. This leads to high pressure losses. The transition pieces lead from a round to an angular cross-section and for the separation of the fluids different cross-sections are flown. The prior art often requires a transition from circular cross section tubes to a rectangular cross section flow area.
Zudem sind bei derartigen Wärmetauschern, wie sie beispielsweise auch in der
Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, einen neuartigen Fluidverteiler bereitzustellen, der den Aufbau eines Wärmetauschers dentlich vereinfacht und den Betrieb des Wärmetauschers ohne Ventile ermöglicht.Proceeding from this, it was an object of the present invention to provide a novel fluid distributor, the dentlich simplifies the construction of a heat exchanger and allows the operation of the heat exchanger without valves.
Diese Aufgabe wird bezüglich des Fluidverteilers mit den Merkmalen des Patentanspruchs 1 sowie bezüglich eines Apparats zum Wärme- und/oder Stofftausch mit den Merkmalen des Patentanspruchs 10 gelöst, wobei jeweils die abhängigen Patentansprüche vorteilhafte Weiterbildungen darstellen.This object is achieved with respect to the fluid distributor with the features of
Erfindungsgemäß wird somit ein rotationssymmetrischer Fluidverteiler bereitgestellt, der in Längsrichtung
- eine erste Apertur, die im Querschnitt zwei konzentrisch angeordnete Rohre aufweist, wobei das innere Rohr einen ersten Raum A einschließt, das äußere und das innere Rohr einen Raum B umschließen und das äußere Rohr den Durchmesser des Fluidverteilers vorgibt, sowie
- eine zweite Apertur, die im Querschnitt 2n Kreissektoren aufweist, wobei n eine ganze Zahl ≥ 1, vorzugsweise ≥ 2, ist und die Sektoren abwechselnd mit Raum A oder Raum B in Verbindung stehen, wobei zwischen der ersten und der zweiten Apertur das innere Rohr in Längsrichtung um den Rohrumfang herum angeordnet n Einschnitte und alternierend angeordnet n Ausstülpungen aufweist, umfasst,
- wobei jeder Einschnitt eine in Längsrichtung von der ersten zur zweiten Apertur verlaufende Trajektorie aufweist, die den Radius des inneren Rohres ausgehend vom ursprünglichen Radius des inneren Rohres auf Höhe der ersten Apertur längs in Richtung der zweiten Apertur stetig verkleinert, wobei alle Trajektorien der Einschnitte auf Höhe der zweiten Apertur im Mittelpunkt des Querschnitts des Fluidverteilers zusammenlaufen, und jede Ausstülpung eine in Längsrichtung von der ersten zur zweiten Apertur verlaufende Trajektorie aufweist, die den Radius des inneren Rohres ausgehend vom ursprünglichen Durchmesser des inneren Rohres auf Höhe der ersten Apertur längs in Richtung der zweiten Apertur stetig vergrößert, wobei alle Trajektorien der Ausstülpungen auf Höhe der zweiten Apertur mit dem äußeren Rohr zusammenlaufen.
- a first aperture having in cross-section two concentrically arranged tubes, the inner tube enclosing a first space A, the outer and the inner tube enclosing a space B and the outer tube defining the diameter of the fluid distributor, and
- a second aperture having 2n circular sectors in cross section, where n is an
integer 1, preferably ≥ 2, and the sectors are alternately associated with space A or space B, with the inner pipe in between the first and second apertures Arranged longitudinally around the pipe circumference n incisions and alternately arranged n has protuberances comprises, - wherein each incision has a longitudinally extending from the first to the second aperture trajectory, the radius of the inner tube from the original radius of the inner tube at the height of the first aperture along the direction of the second aperture continuously reduced, all trajectories of the incisions in height the second aperture converge at the center of the cross-section of the fluid manifold, and each protuberance a longitudinally extending from the first to the second aperture trajectory, which increases the radius of the inner tube from the original diameter of the inner tube at the level of the first aperture longitudinally in the direction of the second aperture, all trajectories of the protuberances at the level of the second aperture converge with the outer tube.
Erfindungsgemäß wird unter einem rotationssymmetrischen Fluidverteiler eine Vorrichtung verstanden, die stets einen runden (d.h. kreisförmigen) Querschnitt aufweist, wobei jedoch der Durchmesser in Längsrichtung des Fluidverteilers nicht konstant sein muss, aber sein kann. Beispielsweise kann der gesamte Fluidverteiler von außen gesehen Zylinderform aufweisen, jedoch auch beispielsweise von der ersten zur zweiten Apertur einen zunehmenden Durchmesser aufweisen. Der Fluidverteiler weist an seinen beiden Enden die erste Apertur bzw. die zweite Apertur auf. An der ersten Apertur besteht der Fluidverteiler im Wesentlichen aus zwei ineinander geschachtelten Rohren, wobei das innen liegende Rohr einen Raum A und das äußere mit dem inneren Rohr einen Raum B einschließt, während die zweite Apertur segmentartig aufgebaut ist, wobei die jeweiligen Segmente alternierend mit den Räumen A bzw. B, also den Räumen, die an der ersten Apertur vom Innenrohr bzw. von den beiden Rohren eingeschlossen werden, in Verbindung stehen. Im Fluidverteiler findet zwischen erster und zweiter Apertur ein Übergang statt, in dem das innen liegende Rohr zunehmende Einkerbungen und Ausstülpungen aufweist, wobei die Einkerbungen, d.h. die Trajektorie der jeweiligen Einkerbungen, im Längsverlauf von der ersten zur zweiten Apertur in Richtung des Mittelpunktes des Fluidverteilers verlaufen und spätestens an der zweiten Apertur mit dem Mittelpunkt des Fluidverteilers zusammenlaufen. Im Gegenzug dazu verläuft die Trajektorie der Ausstülpungen, d.h. der radiale Verlauf der Ausstülpungen, im Längsverlauf von der ersten zur zweiten Apertur in Richtung des außen liegenden Rohres, wobei spätestens an der zweiten Apertur die Trajektorie der Ausstülpungen mit dem außen liegenden Rohr zusammenläuft. Insofern wird mit dem Fluidverteiler ein fließender Übergang zwischen der kreisförmigen/ringförmigen räumlichen Verteilung hin zu einer segmentartigen räumlichen Verteilung der Räume A und B bereitgestellt. Der Außendurchmesser des gesamten Fluidverteilers kann dabei über die gesamte Länge des Verteilers gleich bleiben, aber auch variieren.According to the invention, a rotationally symmetrical fluid distributor is understood to mean a device which always has a round (ie circular) cross-section, but the diameter in the longitudinal direction of the fluid distributor does not have to be constant, but can be constant. For example, the entire fluid distributor seen from the outside may have a cylindrical shape, but also have an increasing diameter, for example from the first to the second aperture. The fluid distributor has at its two ends on the first aperture and the second aperture. At the first aperture, the fluid manifold consists essentially of two nested tubes, the inner tube enclosing a space A and the outer and inner tubes enclosing a space B, while the second aperture is segmented, with the respective segments alternating with the first Rooms A and B, so the spaces that are enclosed at the first aperture of the inner tube or of the two tubes, in conjunction. In the fluid distributor, a transition takes place between the first and second apertures, in which the inner tube has increasing indentations and protuberances, the notches, ie the trajectories of the respective indentations, extending in the longitudinal direction from the first to the second aperture in the direction of the center of the fluid distributor and at the latest at the second Aperture converge with the center of the fluid manifold. In return, the trajectory of the protuberances, ie the radial course of the protuberances, in the longitudinal course of the first to the second aperture in the direction of the outer tube, wherein at the latest at the second aperture, the trajectory of the protuberances merges with the outer tube. In this respect, a fluid transition between the circular / annular spatial distribution towards a segment-like spatial distribution of the spaces A and B is provided with the fluid distributor. The outer diameter of the entire fluid distributor can remain the same over the entire length of the distributor, but also vary.
In einer bevorzugten Ausführungsform sind dabei die Einschnitte um das innere Rohr bei Winkeln α von
In einer vorteilhaften Ausführungsform ist 1 ≤ n ≤ 1000, bevorzugt 3 ≤ n ≤ 500, besonders bevorzugt 30 ≤ n ≤ 100, d.h. der Fluidverteiler weist die entsprechende Anzahl an Segmenten auf.In an
Weiter ist es vorteilhaft, wenn das Verhältnis der Querschnittsflächen bezüglich Raum A und Raum B über die gesamte Länge des Fluidverteilers konstant bleibt. Diese bevorzugte Ausführungsform sieht somit vor, dass an jeder Stelle des Querschnitts des Fluidverteilers das Verhältnis der Fläche, die von Raum A herrührt, zur Fläche, die von Raum B herrührt, gleich groß ist. Für den Fall, dass die Volumina A und B gleich groß sind, ist somit die Querschnittsfläche von A/B an jeder Stelle des Fluidverteilers im Querschnitt gleich 1. Als Schlussfolgerung weisen auch die jeweiligen Segmente A und B, die an der zweiten Apertur resultieren, genau die gleichen Flächen auf. Allerdings ist es jedoch auch möglich, dass die Querschnittsflächen des Raumes A sehr viel größer als die von B sein können bzw. umgekehrt (z.B. 50:1 oder 100:1). Im Fall der oben genannten bevorzugten Ausführungsform, dass das Flächenverhältnis von A zu B über die gesamte Länge des Fluidverteilers genau gleich groß ist, bedeutet dies, dass beispielsweise für den Fall, dass Raum A größer als Raum B ist, das innen liegende Rohr bezüglich des außen liegenden Rohres einen relativ großen Durchmesser aufweist. Für die Segmente, die an der zweiten Apertur vorliegen, bedeutet dies, dass die Segmente, die den Raum A repräsentieren, einen größeren Querschnitt aufweisen, als die Segmente, die den Raum B repräsentieren, so dass die Segmente A wesentlich breiter ausfallen als die Segmente, die den Raum B repräsentieren. Die Trajektorien der Einschnitte und/oder der Ausstülpungen verlaufen "sinusförming" Dabei verlauft die Trajektorie, die den Einschnitt repräsentiert und somit zu einer Verkleinerung des Rohrdurchmessers des inneren Rohres ausgehend vom originalen Rohrdurchmesser bis hin zu 0 (an der zweiten Apertur) führt, ungefähr so, wie eine Sinuskurve zwischen n/2 und n. Andererseits verlaufen die Trajektorien der Ausstülpungen, die ausgehend vom originalen Rohrdurchmesser des inneren Rohres an der ersten Apertur zu einer Aufweitung des Rohres an dieser Stelle führen, ungefähr so wie eine Sinuskurve zwischen 0 und π/2. Eine derartige Führung der Trajektorien führt zu ausgezeichneten Strömungseigenschaften der jeweiligen Fluide innerhalb des Fluidverteilers.Furthermore, it is advantageous if the ratio of the cross-sectional areas with respect to space A and space B remains constant over the entire length of the fluid distributor. This preferred embodiment thus provides that at each point of the cross section of the fluid distributor, the ratio of the area which originates from room A to the area which originates from room B, is the same. Thus, in the case where the volumes A and B are equal, the cross-sectional area of A / B at each point of the fluid distributor is equal to 1 in cross-section. In conclusion, the respective segments A and B resulting at the second aperture also have exactly the same areas. However, it is also possible that the cross-sectional areas of the space A can be much larger than those of B and vice versa (eg 50: 1 or 100: 1). In the case of the above preferred embodiment, that the area ratio of A to B over the entire length of the fluid distributor is exactly the same, this means that, for example, in the case that space A is greater than space B, the inner tube relative to the outer tube has a relatively large diameter. For the segments present at the second aperture, this means that the segments representing the space A have a larger cross-section than the segments representing the space B, so that the segments A are substantially wider than the segments representing the space B. The trajectories of the incisions and / or the protuberances are "sinusoidal" Here, the trajectory that represents the incision and thus leads to a reduction of the tube diameter of the inner tube from the original tube diameter to 0 (at the second aperture), approximately so On the other hand, the trajectories of the protuberances, which, starting from the original tube diameter of the inner tube at the first aperture, lead to a widening of the tube at this point, much like a sinusoid between 0 and π /. second Such guidance of the trajectories results in excellent flow characteristics of the respective fluids within the fluid manifold.
Die Einschnitte verlaufen dabei bevorzugt so, dass eine keilförmige Struktur resultiert, wobei der spitze Winkel des Keils auch abgerundet oder bogenförmig konkav sein kann. Gleiches kann bevorzugt für die Ausstülpungen gelten.The incisions preferably run in such a way that a wedge-shaped structure results, wherein the acute angle of the wedge can also be rounded or arcuate concave. The same can preferably apply to the protuberances.
In einer weiteren vorteilhaften Ausführungsform können im Bereich zwischen Außen- und Innenrohr Stege vorhanden sein, die Außen- und Innenrohr miteinander verbinden und/oder im Innenrohr Stege vorhanden sein, die die Innenwand des Innenrohres und die Mittelachse des Innenrohres miteinander verbinden, d.h. die Stege laufen in der Mittelachse zusammen. Diese Ausführungsform gilt selbstverständlich für den gesamten Fluidverteiler mit Ausnahme auf Höhe der zweiten Apertur, da hier ausgehend von der ersten Apertur die Stege, die beispielsweise zwischen Außen- und Innenrohr vorhanden sind, mit der Wandung des Außenrohres zusammengelaufen sind bzw. die Stege, die im Innenrohr angeordnet sind, auf Höhe der zweiten Apertur mit dem Mittelpunkt des Fluidverteilers zusammenfallen.In a further advantageous embodiment, webs may be present in the region between the outer and inner tubes which connect the outer and inner tubes and / or webs are present in the inner tube which connect the inner wall of the inner tube and the central axis of the inner tube, ie the webs run in the middle axis together. This embodiment of course applies to the entire fluid distributor except at the level of the second aperture, since starting from the first aperture, the webs, which are present for example between the outer and inner tube, have run together with the wall of the outer tube or the webs, the inner tube are arranged coincide at the level of the second aperture with the center of the fluid manifold.
In einer weiter bevorzugten Ausführungsform ist vorgesehen, dass konzentrisch im inneren Rohr über die gesamte Länge des Fluidverteilers ein Kernrohr oder eine massive Achse angeordnet ist, mit der Maßgabe, dass für diesen Fall die zweite Apertur im Querschnitt anstelle der Kreissektoren Kreisringsektoren aufweist, wobei die Trajektorien der Einschnitte auf dem Kernrohr oder der massiven Achse enden und für den Fall, dass im Innenrohr Stege vorhanden sind, diese die Oberfläche des Kernrohrs oder der massiven Achse mit dem Kerbgrund des Innenrohrs verbinden und die Trajektorien der Einschnitte sich auf dem Kernrohr oder der massiven Achse verzweigen, sobald der Kerbgrund die Oberfläche des Kernrohrs oder der massiven Achse berührt.In a further preferred embodiment it is provided that a core tube or a solid axis is arranged concentrically in the inner tube over the entire length of the fluid distributor, with the proviso that in this case the second aperture in cross-section instead of the circular sectors circular sectors, said trajectories the incisions on the core tube or the solid axis terminate and, in the case that webs are present in the inner tube, these connect the surface of the core tube or the solid axis with the notch base of the inner tube and the trajectories of the incisions on the core tube or the solid axis branch as soon as the notch bottom touches the surface of the core tube or the solid axis.
Vorteilhaft kann dabei sein, wenn das Kernrohr Öffnungen zum Stoffaustausch aufweist. Die jeweiligen Austauschöffnungen können dabei entweder mit einem der Räume A oder B fluidisch in Verbindung stehen, jedoch kann auch ein Stoffaustausch mit beiden Räumen stattfinden. Die Stoffaustauschöffnungen des Kernrohres können dabei über die gesamte Länge des Fluidverteilers, jedoch auch nur in bestimmten Bereichen angeordnet sein.It can be advantageous if the core tube has openings for mass transfer. The respective exchange openings can be fluidically connected to either one of the rooms A or B, but a mass transfer can take place with both rooms. The mass transfer openings of the core tube can be arranged over the entire length of the fluid distributor, but also only in certain areas.
Eine weiter bevorzugte Ausführungsform sieht vor, dass der Fluidverteiler ein weiteres in Längsrichtung von der ersten Apertur oder der zweiten Apertur an konzentrisch um das äußere Rohr angeordnetes Rohr, das einen zwischen dem weiteren Rohr und dem äußeren Rohr liegenden Raum C umschließt, umfasst, sowie eine in Längsrichtung nach der zweiten Apertur angeordnete dritte Apertur, die im Querschnitt 3n Kreissektoren aufweist, wobei n eine ganze Zahl ≥ 1, vorzugsweise ≥ 2 ist, und die Sektoren abwechselnd mit Raum A, Raum C, Raum B und Raum C usw. in Verbindung stehen, wobei zwischen der zweiten und der dritten Apertur das äußere Rohr in Längsrichtung um den Rohrumfang herum angeordnet n Einschnitte auf Höhe der Grenzen der Kreissektoren und alternierend angeordnet n Ausstülpungen der Kreissektoren aufweist, wobei jeder Einschnitt eine Trajektorie aufweist, die den Radius des äußeren Rohres ausgehend vom ursprünglichen Radius des äußeren Rohres auf Höhe der zweiten Apertur längs in Richtung der dritten Apertur stetig verkleinert, wobei alle Trajektorien der Einschnitte auf Höhe der dritten Apertur im Mittelpunkt des Querschnitts des Fluidverteilers zusammenlaufen, und jede Ausstülpung eine Trajektorie aufweist, die den Radius des äußeren Rohres ausgehend vom ursprünglichen Durchmesser des äußeren Rohres auf Höhe der zweiten Apertur längs in Richtung der dritten Apertur stetig vergrößert, wobei alle Trajektorien der Ausstülpungen auf Höhe der dritten Apertur mit dem weiteren Rohr zusammenlaufen.A further preferred embodiment provides that the fluid distributor comprises a further tube arranged longitudinally from the first aperture or the second aperture concentrically around the outer tube and enclosing a space C lying between the further tube and the outer tube, as well as a tube in the longitudinal direction after the second aperture arranged third aperture having in cross section 3n circular sectors, where n is an integer ≥ 1, preferably ≥ 2, and the sectors alternately with space A, space C, space B and space C and so on stand between the second and the third aperture, the outer tube in the longitudinal direction around the tube circumference around n incisions at the level of the boundaries of the circular sectors and alternately arranged n protuberances of the circular sectors, each incision having a trajectory which the radius of the outer tube starting from the original radius of the outer tube at the level of the second aperture along the direction of the third aperture, with all the trajectories of the incisions converging at the level of the third aperture in the center of the cross section of the fluid distributor, and each protuberance having a trajectory which the radius of the outer tube starting from the original one Diameter of the outer tube at the height of the second aperture is continuously increased longitudinally in the direction of the third aperture, all trajectories of the protuberances converge at the level of the third aperture with the other tube.
Diese Ausführungsform der Erfindung basiert auf dem gleichen Prinzip wie das allgemeine Prinzip der vorliegenden Erfindung, nämlich dass durch den Übergang von einem um ein innen liegendes Rohr angeordnetes äußeres Rohr durch Einkerbungen bzw. Ausstülpungen des darin liegenden Rohres ein Verlauf der Räume, die zwischen diesen Rohren liegen, so eingestellt werden kann, dass an der Austrittsapertur ein segmentartiges nebeneinander der vormals konzentrisch angeordneten Räume erfolgen kann. Das erfindungsgemäße Konzept, das im voranstehenden Absatz beschrieben wurde, ist jedoch nicht auf die drei genannten Räume A, B und C beschränkt, es können sich an die dort beschriebene dritte Apertur, die in fluidischem Kontakt mit drei verschiedenen Räumen A, B und C steht, noch weitere konzentrische Rohre anschließen, so dass das Konzept auf eine beliebige Anzahl verschiedener Räume ausweitbar ist.This embodiment of the invention is based on the same principle as the general principle of the present invention, namely that by the transition from an outer tube disposed around an inner tube by notches or protrusions of the tube therein, a course of the spaces between these tubes lie, can be adjusted so that at the exit aperture a segment-like side by side of the previously concentric arranged spaces can be done. The inventive concept described in the preceding paragraph is However, not limited to the three spaces mentioned A, B and C, it can connect to the third aperture described therein, which is in fluidic contact with three different rooms A, B and C, even more concentric tubes, so that the concept any number of different spaces can be expanded.
Der erfindungsgemäße Fluidverteiler kann bei einem rotationssymmetrischen Wärme- und/oder Stofftauscher, dessen Querschnitt mindestens 2n voneinander durch eine Membran separierte Sektoren aufweist, wobei n eine ganze Zahl ≥ 1, bevorzugt ≥ 2 ist, eingesetzt werden.The fluid distributor according to the invention can be used in a rotationally symmetrical heat and / or material exchanger whose cross section has at least 2n sectors separated from one another by a membrane, where n is an
Bezüglich der Sektoren, die für den zuvor beschriebe-Bezüglich der Sektoren, die für den zuvor beschriebenen Wärme- und/oder Stofftauscher ebenso Kreissektoren darstellen, gelten die auch schon für den Fluidverteiler genannten besonderen Ausführungsformen, beispielsweise hinsichtlich der gleichmäßigen Verteilung der jeweiligen Segmente bzw. der Flächenquerschnitte der einzelnen Segmente, die mit den Räumen A oder B in Verbindung gebracht werden sollen.With regard to the sectors described above with respect to the sectors which also constitute circular sectors for the heat and / or material exchanger described above, the particular embodiments already mentioned for the fluid distributor apply, for example with regard to the uniform distribution of the respective segments or the area cross sections of the individual segments to be associated with the rooms A or B.
Die Membran kann stoffundurchlässig oder zumindest teilweise stoffdurchlässig sein. Für den Fall, dass ein Wärmetausch mit diesem Austauscher erfolgen soll, ist es bevorzugt, wenn die Membran stoffundurchlässig ist, jedoch gute wärmeleitende Eigenschaften hat. Besonders geeignete Materialien für die Membran sind in diesem Fall beispielsweise Metalle bzw. Metallbleche. Für den Fall, dass ein Stoffaustausch stattfinden soll, bieten sich bevorzugt semipermeable Membranen bzw. poröse Membranen an.The membrane may be cloth-impermeable or at least partially permeable to fabric. In the event that a heat exchange is to take place with this exchanger, it is preferred if the membrane is material-impermeable, but has good heat-conducting properties. Particularly suitable materials for the membrane in this case are, for example, metals or metal sheets. In the event that a mass transfer should take place, semipermeable membranes or porous membranes are preferred.
Zumindest ein Teil der Sektoren kann zumindest teilweise auf der Innenseite und/oder Außenseite mit Sorptionsmaterialien ausgestattet sein.At least a portion of the sectors may be at least partially equipped with sorbent materials on the inside and / or outside.
Weiter vorteilhaft umfasst der Wärme- und/oder Stofftauscher ein im Mittelpunkt des Wärme- und/oder Stofftauschers in Längsrichtung angeordnetes Kernrohr oder eine massive Achse, mit der Maßgabe dass anstelle der Kreissektoren Kreisringsektoren vorhanden sind, wobei das Kernrohr Öffnungen zum Stoffaustausch mit zumindest einem Teil der Kreisringsektoren aufweisen kann. Dieser Wärme-und/oder Stofftauscher korreliert somit mit der vorher beschriebenen Ausführungsform des Fluidverteilers, für den Fall, dass dieser ebenso ein Kernrohr bzw. ein massives Rohr im Mittelpunkt aufweist.Further advantageously, the heat and / or material exchanger comprises a core tube arranged in the center of the heat and / or mass exchanger in the longitudinal direction, with the proviso that annular sectors are present instead of the circular sectors, wherein the core tube openings for mass transfer with at least one part may have the circular sectors. This heat and / or material exchanger thus correlates with the previously described embodiment of the fluid distributor, in the event that it also has a core tube or a solid tube in the center.
Weiter wird erfindungsgemäß ein Apparat zum Wärme- und/oder Stofftausch bereitgestellt, der einen Wärme- und/oder Stofftauscher, wie er zuvor beschrieben wurde, umfasst, wobei zumindest an ein Ende oder an beide Enden des Wärme- und/oder Stofftauschers ein vorstehend beschriebener Fluidverteiler über dessen zweite Apertur formschlüssig angebracht ist, wobei die Zahl der Sektoren des Wärme- und/oder Stofftauschers und des Fluidverteilers identisch ist. Die beiden Bestandteile sind dabei so zusammengefügt, dass die jeweiligen Sektoren des Fluidverteilers und des Wärme- und/oder Stofftauschers deckungsgleich aufeinander zum Liegen kommen, d.h. nicht nur die Anzahl der Sektoren des Fluidverteilers und des Wärme- und/oder Stofftauschers muss identisch sein, auch die Geometrie der Sektoren (beispielsweise für den Fall, dass die Sektoren, die den Raum A repräsentieren und die Sektoren, die den Raum B repräsentieren, im Querschnitt auf Höhe der zweiten Apertur nicht die gleiche Fläche aufweisen) muss identisch sein.Further, according to the invention, there is provided a heat and / or mass exchange apparatus comprising a heat and / or mass heat exchanger as described above, wherein at least one end or both ends of the heat and / or mass exchanger is one as described above Fluid distributor is positively mounted over the second aperture, wherein the number of sectors of the heat and / or mass exchanger and the fluid distributor is identical. The two components are joined together in such a way that the respective sectors of the fluid distributor and of the heat and / or mass exchanger congruently come to rest, ie not only the number of sectors of the fluid distributor and of the heat and / or mass exchanger must be identical the geometry of the sectors (for example, in the case where the sectors representing space A and the sectors representing space B are in cross section must not be the same area at the height of the second aperture) must be identical.
Unter formschlüssig kann auch umfasst sein, dass Verteiler und Wärme-/Stofftauscher fest miteinander verbunden, z.B. verschweißt, verklebt, etc., sind.The term positive fit can also include that distributor and heat / material exchanger firmly connected to each other, e.g. welded, glued, etc., are.
In einer bevorzugten Ausführungsform sind der Wärme- und/oder Stofftauscher und der mindestens eine Fluidverteiler relativ zueinander axial drehbar, wobei die Drehung bevorzugt mittels eines Motors durchgeführt wird. Die einzelnen Bauteile können auch durch einen kleinen Spalt voneinander getrennt sein.In a preferred embodiment, the heat and / or material exchanger and the at least one fluid distributor are axially rotatable relative to one another, wherein the rotation is preferably carried out by means of a motor. The individual components can also be separated by a small gap.
Die vorliegende Erfindung wird unter Bezugnahme der beigefügten Figuren nachstehend näher erläutert, ohne die Erfindung auf die dort dargestellten Parameter zu beschränken.The present invention will be explained in more detail below with reference to the attached figures, without restricting the invention to the parameters presented there.
Die hier beschriebene Erfindung betrifft in einem ersten Aspekt einen Fluidverteiler I, der von konzentrischen Eintritts- bzw. Austrittsrohren für die Fluide A (inneres Rohr) und B (Ringraum zwischen innerem und äußerem Rohr) ausgeht und vollständig in einem geraden Rohr untergebracht werden kann, das im Außendurchmesser dem äußeren Eintritts- bzw. Austrittsrohr entspricht. "Wärmeaustausch" bezieht sich dabei in der Regel auf den Austausch von Wärme zwischen den sich nicht mischenden Fluiden durch undurchlässige Wände. Unter "Stoffaustausch" sind Anwendungen zu verstehen, bei denen Stoffe durch die Wände übertragen werden (z.B. Filterprozesse). Es sind auch Kombinationen aus Wärme- und Stoffaustausch denkbar; in diesem Fall kann Wärme auch zusätzlich über durch die Wände übertragene Stoffpartikel übertragen werden. Ebenso werden durch die hier gegebene Definition des "Stoffaustauschs" adsorptive Prozesse mit umfasst. Bei der Adsorption wird ein Stoff an der sorptiven Beschichtung angelagert, aber nicht auf die Sekundärseite übertragen. Die Austreibung des adsorbierten Stoffes erfolgt z.B. über thermische Desorption mit einem heißen Medium, welches im Anschluss an die Adsorption dieselben (Primär)kanäle durchströmt.The invention described herein relates, in a first aspect, to a fluid distributor I, which starts from concentric inlet and outlet tubes for the fluids A (inner tube) and B (annular space between the inner and outer tube) and can be completely accommodated in a straight tube, which corresponds in outer diameter to the outer inlet and outlet pipe. "Heat exchange" usually refers to the exchange of heat between the non-mixing fluids through impermeable walls. "Substance exchange" refers to applications in which substances are transferred through the walls (eg filter processes). There are also combinations of heat and mass transfer conceivable; In this case, heat can also be transferred via fabric particles transferred through the walls. Likewise, by the definition given here of the "Stoffaustausch" includes adsorptive processes. During adsorption, a substance is attached to the sorptive coating, but not transferred to the secondary side. The expulsion of the adsorbed substance takes place, for example, via thermal desorption with a hot medium, which flows through the same (primary) channels following adsorption.
Ein derartiger Fluidverteiler I ist beispielsweise in
Das Verhältnis der Querschnittsflächen des inneren Rohrs 2 (Fluid A) und des Ringraums zwischen Rohr 2 und 3 (Fluid B) kann bei gleichen Fluiden und ähnlichen Massenströmen beispielsweise 1 betragen, so dass beide Querschnittsflächen gleich sind. Der Fluidverteiler ist derart konstruiert, dass die im inneren Rohr 2 und im Ringraum befindlichen Fluide A und B am Ende des Verteilers in Kreissektoren abwechselnd nebeneinander liegen, also ABABAB.......The ratio of the cross-sectional areas of the inner tube 2 (fluid A) and the annular space between
Ein Übergang von der Apertur 1 zur Apertur 4 ist anhand mehrerer Querschnittsbilder in
Das festgelegte Verhältnis der Querschnittsflächen für die Fluide A und B kann auch deutlich von 1 abweichen, z.B. wenn es sich bei Fluid A um Wasser und bei Fluid B um Luft handelt (z.B. bei einem Luft-Wasser-Wärmetauscher). In diesem Fall bekommen die schmalen Sektoren z.B. den Charakter wassergekühlter Rippen (siehe Fig. la). Hier ist ein Fluidverteiler mit 15 Kanälen A und 16 Kanälen B mit einem ein Flächenverhältnis A/B >> 1 dargestellt.The fixed ratio of the cross-sectional areas for the fluids A and B may also differ significantly from 1, e.g. when fluid A is water and fluid B is air (e.g., an air-water heat exchanger). In this case, the narrow sectors get e.g. the character of water-cooled ribs (see Fig. La). Here a fluid distributor with 15 channels A and 16 channels B with an area ratio A / B >> 1 is shown.
Um strömungstechnisch günstige Geometrien zu erhalten, ist es vorteilhaft, den Durchmesserzuwachs und den Verlauf der Keilspitzen festzulegen. Günstig ist hier beispielsweise ein sinusförmiger Verlauf. Die Einschnitte 5 müssen nicht keilförmig sein; sie können z.B auch abgerundet sein, was sich möglicherweise positiv auf die Strömung auswirkt (
Der Hauptvorteil der Erfindung besteht darin, dass der Verteiler eine Doppelfunktion hat: Er verteilt die Fluide kontinuierlich und dient gleichzeitig bereits als (Vor-)Wärme- und/oder Stofftauscher. Von Beginn an kann Wärme und/oder Stoff übertragen werden. Zunächst findet dies nur über die Außenfläche des Innenrohrs 2 statt; die Austauschfläche zwischen den Fluiden wird danach kontinuierlich erhöht, bis der Endquerschnitt mit Kreissektoren erreicht wird, wo sie schließlich ihr Maximum erreicht. Die Anzahl der Sektoren bestimmt das absolute Maximum der Austauschfläche. Durch die Konstruktion ist keiner der Sektoren gegenüber den anderen ausgezeichnet und die Strömung wird allmählich - ohne abrupte Richtungsänderungen - umgelenkt. Dadurch wird eine gleichmäßige Durchströmung bei geringem Druckverlust erzielt, so dass zusammen mit einer effizienten Wärme- und/oder Stoffübertragung eine hohe Gesamteffizienz bei gleichzeitig kompakter, modularer Bauweise erreicht werden kann. Da die Ein- bzw. Austrittsquerschnitte 1 bzw. 4 kreisförmig sind, entfallen die sonst oft üblichen Übergangsstücke, die Druckverlust, Kosten und Platzbedarf erhöhen. Bei der dargestellten Erfindung muss lediglich das Innenrohr 2 jeweils vor und nach dem Verteiler I durch die Wand des Außenrohrs 3 geführt werden (z.B. über Bogenstücke), oder aber der Ein- bzw. Austritt des Ringraums erfolgt axial oder (halb-)radial in einem Abstand zum Ein- bzw. Austritt des Innenrohrs. Verschiedene derartige Führungen der Fluide A und B bzw. der entsprechenden Rohre 2 und 3 sind in
Eine in
In
Dies wird insbesondere bei Verteilern mit vielen Sektoren deutlich (
Die Einführung von Stegen führt dazu, dass bereits die Eintrittsquerschnitte in mehrere Sektoren aufgeteilt werden. Dadurch ist es möglich, sowohl Innenrohr als auch den äußeren Ringraum mit mehr als einem Fluid zu durchströmen. Diese Tatsache kann genutzt werden, um beispielsweise durch eine Kaskadierung drei Fluide A, B und C derart zu verteilen, dass sie schließlich in Sektoren in der Reihenfolge ACBCACBC... nebeneinander liegen. Dies wird erreicht, indem die Fluide A und B wie bisher in einem ersten Verteiler verteilt werden und der Austritt dieses ersten Veteilers direkt an den Eintritt eines größeren Verteilers angeschlossen wird, dessen Innenrohrdurchmesser dem Außenrohrdurchmesser des ersten Verteilers entspricht und dessen Innenrohr in ebenso viele Sektoren aufgeteilt ist wie der Austritt des ersten Verteilers. Im Ringraum des zweiten Verteilers wird ein drittes Fluid C eingeführt, so dass schließlich am Austritt des Verteilers alle drei Fluide in der Reihenfolge ACBCACBC... nebeneinander liegen (
Sowohl Fluidverteiler I als auch Wärmetauscher können auch mit einem Kernrohr K oder einer massiven Achse konstruiert werden. Das Kernrohr ist bei der Berechnung der Querschnittsflächen zu berücksichtigen. Sobald der Keil das Kernrohr berührt, wird die Spitze durch einen Kreisbogen ersetzt, so dass schließlich am Austritt des Verteilers nicht mehr Kreissektoren, sondern Kreisringsektoren entstehen. Der Übergang vom Keil zum Kreisringsektor muss ebenfalls bei der Berechnung der Querschnittsflächen berücksichtigt werden.Both fluid manifolds I and heat exchangers can also be constructed with a core tube K or a solid axis. The core tube must be taken into account when calculating the cross-sectional areas. Once the wedge touches the core tube, the tip is replaced by a circular arc, so that eventually no longer circular sectors, but circular sectors arise at the outlet of the distributor. The transition from the wedge to the annulus sector must also be taken into account when calculating the cross-sectional areas.
Ein Wärme- und/oder Stofftauscher II, der in
In einer zweiten Ausführungsform betrifft die vorliegende Erfindung einen Apparat zum Wärme- und/oder Stofftausch III, der beispielsweise in
Der Apparat III besteht aus mindestens einem, üblicherweise zwei symmetrisch angeordneten Fluidverteilern Ia und Ib und in der Regel, aber nicht notwendigerweise, aus einem dazwischen liegenden Wärme- und/oder Stofftauscher II (
Die Konstruktion des Apparats ermöglicht es, die Fluidströme durch Drehung mindestens eines Verteilers Ia und/oder Ib und/oder des Wärme- oder Stoffaustauschers II um den Winkel eines Kreissektors in unterschiedliche Kanäle zu lenken. So ist es beispielsweise möglich, Fluid A im Innenrohr und Fluid B im Ringraum eintreten zu lassen und je nach Drehung entweder wiederum Fluid A im Innenrohr und Fluid B im Ringraum oder aber Fluid A im Ringraum und Fluid B im Innenrohr austreten zu lassen. Auf diese Weise können unterschiedliche Kanalverbindungen unter Verwendung von Schrittmotoren geschaltet werden, so dass dadurch Ventile entfallen können. Aufgrund der abwechselnden Anordnung der Sektoren wird dabei nur eine Drehrichtung benötigt; jedes Weiterschalten um den Winkel eines Sektors wechselt zwischen Innenrohr und Ringraum, eine weitere Drehung in dieselbe Richtung um denselben Winkel schaltet wieder in den Ursprungszustand zurück. Auf diese Weise erhält der Verteiler eine dritte Funktion; er ist somit Fluidverteiler, Wärme- und/oder Stoffaustauscher und Stellglied in einem Bauteil. Diese Funktion kann vor allem dann genutzt werden, wenn die Kanäle unterschiedliche Funktionen haben und die Fluide abwechselnd diese Funktionen nutzen sollen.The construction of the apparatus makes it possible to divert the fluid streams into different channels by rotating at least one distributor Ia and / or Ib and / or the heat or material exchanger II around the angle of a circular sector. For example, it is possible to allow fluid A in the inner tube and fluid B to enter the annular space and, depending on the rotation, either fluid A in the inner tube and fluid B in the annular space or fluid A in the annular space and fluid B in the inner tube. In this way, different channel connections can be switched using stepper motors, so that valves can be omitted. Due to the alternating arrangement of the sectors only one direction of rotation is required; each indexing by the angle of a sector alternates between inner tube and annulus, a further rotation in the same direction by the same angle switches back to the original state. In this way, the distributor receives a third function; he is thus fluid distributor, heat and / or material exchanger and actuator in a component. This function can be used especially if the channels have different functions and the fluids alternately have these functions should use.
Neben der klassischen Wärmetauscheranwendung im Gleich- oder Gegenstrom bietet der dargestellte Apparat in Kombination mit der Stellgliedfunktion durch Drehen die Möglichkeit, einen Sorptionswärmetauscher zu bauen, der beispielsweise für die solare Klimatisierung eingesetzt werden kann. Ein solcher Sorptionswärmetauscher in üblicher Bauart mit parallelen Platten wird in
Die Fluide am Eintritt sind Abluft (innen) und Umgebungsluft (außen), das Mittelstück besteht hier aus Wärmetauscher- und Sorptionssektoren, am Austritt sind die Fluide Fortluft (innen) und Zuluft (außen). Zur Regeneration des Sorptionsmaterials sollte die Möglichkeit bestehen, die Umgebungsluft aufzuheizen (z.B. durch Wärme aus Sonnenkollektoren). Die Erwärmung der Umgebungsluft kann bereits in einem dem Verteiler vorgeschalteten Bauteil oder z.B. über die Mantelfläche des Außenrohrs am Eintritt erfolgen. Die Wärmetauscherkanäle müssen befeuchtet werden können, daher sind Luftbefeuchter, z.B. Düsen, vorzusehen, die radial jeden zweiten Sektor mit Wasser versorgen. Die Wärmetauscher- und die Sorptionskanäle können zur Vergrößerung der Oberfläche innerhalb jedes Sektors mit weiteren internen Rippen versehen werden (radial oder parallel zur zylindrischen Mantelfläche).The fluids at the inlet are exhaust air (inside) and ambient air (outside), the middle piece here consists of heat exchanger and sorption sectors, at the outlet are the fluids exhaust air (inside) and supply air (outside). To regenerate the sorbent material, it should be possible to heat the ambient air (e.g., by heat from solar panels). The heating of the ambient air may already take place in a component upstream of the distributor or e.g. take place over the outer surface of the outer tube at the entrance. The heat exchanger ducts must be able to be humidified, therefore humidifiers, e.g. Nozzle to provide, which provide radially every other sector with water. The heat exchanger and the sorption channels can be provided with further internal ribs (radially or parallel to the cylindrical surface) to increase the surface area within each sector.
Im Folgenden sollen die verschiedenen Schaltzustände unter Bezugnahme auf
- UL =
- Umgebungsluft
- AL =
- Abluft
- ZL =
- Zuluft
- FL =
- Fortluft
- WK =
- Wärmetauscherkanäle
- SK =
- Sorptionskanäle
- 1) Konditionierung Frischluft Mantelheizung am Eintritt aus (bzw. keine Zufuhr von heißer Regenerationsluft) Befeuchtung in WK an
UL → SK (Adsorption) → ZL
AL → WK → FL - 2) Drehung von Verteiler 2 (Austritt)
- 3) Regeneration Adsorbens
Mantelheizung am Eintritt an (bzw. Zufuhr von heißer Regenerationsluft)
Befeuchtung in WK aus
UL → SK (Desorption) → FL
AL → WK → ZL (WK in Apparat A1 nicht durchströmt, AL wird auf zweiten Apparat geschaltet) - 4) Drehung von Verteiler 1 (Eintritt) und Verteiler 2 (Austritt)
- 5) Vorkühlung Wärmetauscher
Mantelheizung am Eintritt aus (bzw. keine Zufuhr von heißer Regenerationsluft)
Befeuchtung in WK an
UL → WK → FL
AL → SK → ZL (WK in Apparat A1 nicht durchströmt, AL wird auf zweiten Apparat geschaltet) - 6) Drehung von Verteiler Ia (Eintritt)
- 7)=1)
- UL =
- ambient air
- AL =
- exhaust
- ZL =
- supply air
- FL =
- Exhaust air
- WK =
- heat exchanger channels
- SK =
- sorption
- 1) Conditioning fresh air jacket heating at inlet (or no supply of hot regeneration air ) moistening in WK
UL → SK (adsorption) → ZL
AL → WK → FL - 2) Rotation of manifold 2 (exit)
- 3) Regeneration adsorbent
Jacket heating at the inlet (or supply of hot regeneration air)
Humidification in WK off
UL → SK (desorption) → FL
AL → WK → ZL (WK does not flow through apparatus A1, AL is switched to second apparatus) - 4) Rotation of manifold 1 (inlet) and manifold 2 (outlet)
- 5) Pre-cooling heat exchanger
Jacket heating at the inlet (or no supply of hot regeneration air)
Humidification in WK
UL → WK → FL
AL → SK → ZL (WK does not flow through apparatus A1, AL is switched to second apparatus) - 6) Rotation of manifold Ia (entrance)
- 7) = 1)
Zusätzlich zu dem beschriebenen Apparat A1 wird ein zweiter Apparat A2 benötigt, der die gleichen Schritte 1) bis 7) zeitlich versetzt ausführt: Während einer der Apparate Schritt 1) ausführt, führt der andere die Schritte 3) bis 5) aus. In dem Fall, dass die Abluft aus demselben Raum entnommen wird, in den auch die Zuluft geführt wird, und die Fortluft in die Umgebung geführt werden muss, aus der auch die Umgebungsluft entnommen wird, müssen die Fluide entsprechend rückgeführt werden. Dies kann in einem dritten Apparat A3 erfolgen, der nur aus zwei um einen Sektor versetzt angeordneten Verteilern ohne Mittelstück besteht und in umgekehrter Richtung im Vergleich zu den Apparaten A1 und A2 durchströmt wird. Die Fortluft des Austritts von A1/Verteiler 2 bzw. A2/Verteiler 2 (innen) wird in A3/Verteiler 1 (innen) eingeführt und bläst schließlich offen aus dem Ringraum in die Umgebung aus (weil die Verteiler gekreuzt wurden). Die Abluft des Raums wird wiederum offen in den Ringraum von A3/Verteiler 1 eingesaugt und endet in A3/Verteiler 2 (innen), der wiederum mit A1 bzw. 2/Verteiler 1 (innen) verbunden wird. A3/Verteiler 2 (innen) muss mit A1/Verteiler 1 und A2/Verteiler 1 über ein Umschaltventil verbunden werden, so dass die Abluft je nach Prozessschritt entweder in A1 oder A2 geblasen wird.In addition to the described apparatus A1, a second apparatus A2 is needed which executes the same steps 1) to 7) with a time delay: while one of the apparatuses performs step 1), the other executes steps 3) to 5). In the event that the exhaust air is taken from the same room in which the supply air is guided, and the exhaust air must be conducted into the environment from which the ambient air is removed, the fluids must be recycled accordingly. This can be done in a third apparatus A3 consisting of only two by one sector staggered distributors without center piece exists and is flowed through in the reverse direction in comparison to the apparatuses A1 and A2. The exhaust air from the outlet of A1 /
Die Geometrie der Verteiler ist sehr komplex. Aufgrund von Hinterschneidungen ist die Fertigung daher anspruchsvoll. Es kann daher vorteilhaft sein, einzelne Verteilerkanäle herzustellen, die anschließend radial auf eine Achse aufgebracht werden. Diese Verteilerkanäle, die z.B. jenen für Fluid A in
Eine weitere Möglichkeit besteht darin, die Kanäle dreidimensional zu weben (diese Technologie existiert bereits) und sie gegebenenfalls anschließend mit einem aushärtenden Werkstoff, wie z.B. Epoxidharz, zu stabilisieren.Another possibility is to weave the channels three-dimensionally (this technology already exists) and, if appropriate, subsequently with a hardening material, such as e.g. Epoxy resin, to stabilize.
Claims (14)
- Rotationally-symmetrical fluid distributor (I) comprising, in the longitudinal direction,
a first aperture (1) which has two tubes (2, 3) disposed concentrically in cross-section, the inner tube (2) enclosing a first chamber A, the outer (3) and inner (2) tube enclosing a chamber B and the outer tube (3) prescribing the diameter of the fluid distributor (I), and also
a second aperture (4) which has 2n circular sectors in cross-section, n being an integer ≥ 1, preferably ≥ 2, and the sectors being in connection alternately with chamber A or chamber B,
between the first and second aperture the inner tube (2) having n notches (5) disposed in the longitudinal direction around the tube circumference and n protuberances (6) disposed alternately,
each notch (5) having a trajectory which extends in the longitudinal direction from the first (1) to the second aperture (4) and constantly reduces the radius of the inner tube (2), starting from the original radius of the inner tube (2), at the height of the first aperture (1) longitudinally in the direction of the second aperture (4), all of the trajectories of the notches (5) converging in the centre of the fluid distributor at the height of the second aperture (4), and
each protuberance (6) having a trajectory which extends in the longitudinal direction from the first (1) to the second aperture (4) and constantly increases the radius of the inner tube (2), starting from the original diameter of the inner tube (2), at the height of the first aperture (1) longitudinally in the direction of the second aperture (4), all of the trajectories of the protuberances (6) converging with the outer tube (3) at the height of the second aperture (4),
characterised in that
the trajectories of the notches (5) and of the protuberances (6) extend sinusoidally,
the trajectory which represents the notch (5) essentially extending just like a sine curve between n/2 and n, and
the trajectory which represents the protuberance (6) essentially extending just like a sine curve between 0 and n/2. - Fluid distributor according to one of the preceding claims, characterised in that there applies 1 ≤ n ≤ 1,000, preferably 3 ≤ n ≤ 500, particularly preferred 30 ≤ n ≤ 100.
- Fluid distributor according to one of the preceding claims, characterised in that the ratio of the cross-sectional areas relating to chamber A and chamber B remains constant over the entire length of the fluid distributor (I).
- Fluid distributor according to one of the preceding claims, characterised in that the notches (5) are essentially wedgeshaped, the acute angle of the wedge being able also to be rounded or curved concavely.
- Fluid distributor according to one of the preceding claims, characterised in that, in the region between outer (3) and inner tube (2), webs (7) are present which connect the outer (3) and inner tube (2) and/or, in the inner tube (2), webs (8) are present which connect the inner wall of the inner tube (2) and the central axis of the inner tube (2).
- Fluid distributor according to one of the preceding claims, characterised in that a core tube (K) or a solid axis is disposed concentrically in the inner tube (2) over the entire length of the fluid distributor, with the proviso that in this case the second aperture (4) has, instead of the circular sectors, circular ring sectors, the trajectories of the notches (5 ending on the core tube (K) or on the solid axis, and in the case where webs (8) are present in the inner tube (2), these connect the surface of the core tube or on the solid axis to the notch base of the inner tube (2), and the trajectories of the notches (5) branch off on the core tube (K) or on the solid axis, as soon as the notch base contacts the surface of the core tube (K) or of the solid axis.
- Fluid distributor according to the preceding claim, characterised in that the core tube (K) has openings for material exchange.
- Fluid distributor according to one of the preceding claims, comprising a further tube (10) which is disposed in the longitudinal direction from the first aperture (1) or from the second aperture (4) concentrically around the outer tube (3) and encloses a chamber C which is situated between the further tube (10) and the outer tube (3),
and also a third aperture (11) which is disposed in the longitudinal direction after the second aperture (4) and has in cross-section 3n circular sectors, n being an integer ≥ 1, preferably ≥ 2, and the sectors being in connection alternately with chamber A, chamber C, chamber B and chamber C etc.,
characterised in that ,
between the second (4) and the third (11) aperture, the outer tube (3) has n notches (12) disposed in the longitudinal direction around the tube circumference at the height of the boundaries of the circular sectors and n protuberances (13) of the circular sectors disposed alternately,
each notch (12) having a trajectory which constantly reduces the radius of the outer tube (3), starting from the original radius of the outer tube (3), at the height of the second aperture (4) longitudinally in the direction of the third aperture (11), all of the trajectories of the notches (12) converging in the centre of the fluid distributor at the height of the third aperture (11), and
each protuberance (13) having a trajectory which constantly increases the radius of the outer tube (3), starting from the original diameter of the outer tube (3), at the height of the second aperture (4) longitudinally in the direction of the third aperture (11), all of the trajectories of the protuberances (13) converging with the further tube (10) at the height of the third aperture (11). - Apparatus for heat- and/or material exchange (III), comprising a rotationally-symmetrical heat- and/or material exchanger (II), the cross-section of which has at least 2n sectors which are separated from each other by a membrane, n being an integer ≥ 1, preferably ≥ 2,
at least one end of the heat- and/or material exchanger (II) being connected in a form fit to a fluid distributor (I) according to one of the claims 1 to 7 via the second aperture thereof, the number of sectors of the heat- and/or material exchanger (II) and of the fluid distributor (I) being identical. - Apparatus (III) according to the preceding claim, characterised in that the heat- and/or material exchanger (II) and the at least one fluid distributor (I) are rotatable axially relative to each other, the rotation being implemented preferably by means of a motor.
- Apparatus (III) according to one of the claims 10 to 11, characterised in that the membrane of the heat- and/or material exchanger (II) is material-impermeable or at least partially material-permeable.
- Apparatus (III) according to one of the claims 10 to 12, characterised in that at least a part of the sectors of the heat- and/or material exchanger (II) is equipped at least partially on the inside and/or outside with sorption materials.
- Apparatus (III) according to one of the claims 10 to 13, comprising a core tube or solid axis which is disposed in the centre of the heat- and/or material exchanger (II) in the longitudinal direction, with the proviso that, instead of the circular sectors, circular ring sectors are present, the core tube being able to have openings for the material exchange with at least a part of the circular ring sectors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09795934T PL2379978T3 (en) | 2008-12-19 | 2009-12-21 | Rotationally symmetrical fluiddistributor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008063866 | 2008-12-19 | ||
PCT/EP2009/009184 WO2010069602A2 (en) | 2008-12-19 | 2009-12-21 | Apparatus for the distribution of fluids and the heat and/or mass exchange thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2379978A2 EP2379978A2 (en) | 2011-10-26 |
EP2379978B1 true EP2379978B1 (en) | 2014-02-12 |
Family
ID=42136087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09795934.0A Active EP2379978B1 (en) | 2008-12-19 | 2009-12-21 | Rotationally symmetrical fluiddistributor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2379978B1 (en) |
PL (1) | PL2379978T3 (en) |
WO (1) | WO2010069602A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3882552A1 (en) | 2020-03-20 | 2021-09-22 | Viessmann Climate Solutions SE | Exchanger apparatus |
DE202020005950U1 (en) | 2020-03-20 | 2023-08-04 | Viessmann Climate Solutions Se | exchanger device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2474529B (en) | 2010-03-10 | 2011-09-21 | Green Structures Ltd | Ventilation system |
DE102012022363A1 (en) * | 2012-11-15 | 2014-05-15 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Internal heat exchanger for a motor vehicle air conditioning system |
DE102013207180A1 (en) * | 2013-04-19 | 2014-10-23 | Behr Gmbh & Co. Kg | Heat exchanger with arranged in a collection channel use |
DE102016222991A1 (en) * | 2016-11-22 | 2018-05-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Desiccant dehumidifier, dehumidifying device and method for dehumidifying |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1637697A (en) * | 1927-03-07 | 1927-08-02 | Duriron Co | Mixing nozzle |
FR983419A (en) * | 1943-08-19 | 1951-06-22 | Fluid division mixer | |
CH373356A (en) * | 1957-11-29 | 1963-11-30 | Onderzoekings Inst Res | Method and device for mixing flowing, gaseous, liquid and / or granular media by means of stationary guide elements |
US4363552A (en) * | 1981-03-18 | 1982-12-14 | E. I. Du Pont De Nemours And Company | Static mixer |
JPS59129391A (en) * | 1983-01-11 | 1984-07-25 | Matsushita Electric Ind Co Ltd | Heat exchanger |
EP0127683B1 (en) * | 1982-11-04 | 1987-04-29 | Matsushita Electric Industrial Co., Ltd. | Heat exchanger |
SU1144715A1 (en) * | 1983-08-12 | 1985-03-15 | Проектно-конструкторское бюро по проектированию оборудования для производства пластических масс и синтетических смол | Static mixer |
SE455229B (en) * | 1983-09-28 | 1988-06-27 | Folbex Ab | HEAD EXCHANGER WITH FOLDED LAMBLES PLACED IN THE RING |
CA2086399C (en) * | 1992-01-27 | 2004-03-30 | Joel Vatsky | Split stream burner assembly |
DE10220631A1 (en) | 2002-05-10 | 2003-11-20 | Loeffler Michael | Process for sorption air conditioning with process control in a heat exchanger |
-
2009
- 2009-12-21 WO PCT/EP2009/009184 patent/WO2010069602A2/en active Application Filing
- 2009-12-21 PL PL09795934T patent/PL2379978T3/en unknown
- 2009-12-21 EP EP09795934.0A patent/EP2379978B1/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3882552A1 (en) | 2020-03-20 | 2021-09-22 | Viessmann Climate Solutions SE | Exchanger apparatus |
WO2021185828A1 (en) | 2020-03-20 | 2021-09-23 | Viessmann Climate Solutions Se | Exchanger device |
DE202020005950U1 (en) | 2020-03-20 | 2023-08-04 | Viessmann Climate Solutions Se | exchanger device |
Also Published As
Publication number | Publication date |
---|---|
WO2010069602A2 (en) | 2010-06-24 |
WO2010069602A3 (en) | 2011-01-13 |
EP2379978A2 (en) | 2011-10-26 |
PL2379978T3 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2379978B1 (en) | Rotationally symmetrical fluiddistributor | |
EP3585509B1 (en) | Heat exchanger and reactor | |
EP1459026B1 (en) | Heat exchanger, particularly for a motor vehicle | |
WO2002026365A1 (en) | Fluid distribution frame for multiple-chamber stacks | |
DE2808854A1 (en) | A BUILT-IN FLOW CHANNEL FOR A MEDIUM INVOLVED IN AN INDIRECT EXCHANGE, IN PARTICULAR HEAT EXCHANGE | |
WO2015114105A2 (en) | Flow device and a method for guiding a fluid flow | |
WO1995019531A1 (en) | Heat exchanger | |
WO2006108796A1 (en) | Micro-evaporator | |
EP0892225B1 (en) | Air conditioning apparatus and its components | |
EP1305561A1 (en) | Heat transfer device | |
DE2231868B2 (en) | Reverse osmosis cell | |
WO1985004470A2 (en) | Installation for heat exchange and material transfer between two or more flowing media | |
WO2017211460A1 (en) | Gas exchange unit, method for producing a gas exchange unit and set with a gas exchange unit and a humidifying and heating device | |
WO2021121464A1 (en) | Moisture exchanger, in particular humidifier for a fuel cell, and fuel cell system | |
EP3271676B1 (en) | Exchange element for passenger cabin and passenger cabin equipped with such an exchange element | |
WO2015172954A1 (en) | Heat transfer device and use thereof | |
DE102013004934A1 (en) | Rohrbündelrekuperator on a sintering furnace and heat transfer method with a sintering furnace and with a Rohrbündelrekuperator | |
DE102012008197B4 (en) | Exchange system for the exchange of substances between two fluids | |
DE102008023662A1 (en) | heat pump | |
EP0524926B1 (en) | Heat exchanger using sintered metal | |
EP2470291A1 (en) | Three-dimensionally braided hollow fiber module for mass and energy transfer operations | |
DE19650086C1 (en) | Heat transmitter for gas-fluid heat exchange | |
WO2019242978A1 (en) | Heat transfer device for a fluid exchange device | |
EP0130404A2 (en) | Multi-stage heat exchanger | |
DE2155955A1 (en) | Combined filter and heat exchanger prodn - by sintering metal filter material onto heat exchange components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110719 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20131008 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 652326 Country of ref document: AT Kind code of ref document: T Effective date: 20140215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009008802 Country of ref document: DE Effective date: 20140327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140212 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140512 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140612 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140612 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009008802 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20141113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009008802 Country of ref document: DE Effective date: 20141113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141221 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 652326 Country of ref document: AT Kind code of ref document: T Effective date: 20141221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141221 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091221 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211222 Year of fee payment: 13 Ref country code: FR Payment date: 20211220 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20211222 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20211208 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211230 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502009008802 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221221 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231214 Year of fee payment: 15 |