EP2376765B1 - Decoupling element for a fuel injection device - Google Patents
Decoupling element for a fuel injection device Download PDFInfo
- Publication number
- EP2376765B1 EP2376765B1 EP09771734.2A EP09771734A EP2376765B1 EP 2376765 B1 EP2376765 B1 EP 2376765B1 EP 09771734 A EP09771734 A EP 09771734A EP 2376765 B1 EP2376765 B1 EP 2376765B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- decoupling element
- fuel injection
- injection valve
- decoupling
- receiving bore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 107
- 238000002347 injection Methods 0.000 title claims description 91
- 239000007924 injection Substances 0.000 title claims description 91
- 239000000463 material Substances 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 230000000750 progressive effect Effects 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 3
- 238000013016 damping Methods 0.000 description 26
- 238000009434 installation Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229920006362 TeflonĀ® Polymers 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00Ā -Ā F02M57/00 or F02M67/00
- F02M61/14—Arrangements of injectors with respect to engines; Mounting of injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/004—Joints; Sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00Ā -Ā F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02Ā -Ā F02M61/14
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/09—Fuel-injection apparatus having means for reducing noise
Definitions
- the invention relates to a decoupling element for a fuel injection device according to the preamble of the main claim ( DE-A-10 2004 049 277 ).
- FIG. 1 By way of example, a fuel injector known from the prior art is shown in which a flat intermediate element is provided on a fuel injection valve installed in a receiving bore of a cylinder head of an internal combustion engine.
- such intermediate elements are stored as support elements in the form of a washer on a shoulder of the receiving bore of the cylinder head.
- manufacturing and assembly tolerances are compensated and ensured a lateral force-free storage even with slight misalignment of the fuel injector.
- the fuel injector is particularly suitable for use in fuel injection systems of mixture-compression spark-ignition internal combustion engines.
- the intermediate element is a sub-ring having a circular cross-section which is frusto-conical in a region in which both the fuel injection valve and the wall of the receiving bore in the cylinder head are frustoconical run, arranged and serves as a compensation element for storage and support of the fuel injection valve.
- Complicated and in the production significantly more expensive intermediate elements for fuel injection devices include the DE 100 27 662 A1 .
- These intermediate elements are characterized by the fact that they are all constructed in several parts or multi-layered and should partially take over sealing and damping functions. That from the DE 100 27 662 A1 known intermediate element comprises a base and carrier body, in which a sealing means is used, which is penetrated by a nozzle body of the fuel injection valve.
- a multi-layer compensating element is known, which is composed of two rigid rings and sandwiched therebetween elastic intermediate ring. This compensating element allows both a tilting of the fuel injection valve to the axis of the receiving bore over a relatively large angular range as well as a radial displacement of the fuel injection valve from the central axis of the receiving bore.
- a likewise multi-layered intermediate element is also from the EP 1 223 337 A1 known, this intermediate element is composed of a plurality of washers, which consist of a damping material.
- the damping material made of metal, rubber or PTFE is chosen and designed so that a noise attenuation of the vibrations generated by the operation of the fuel injection valve and noise is made possible.
- the intermediate element must, however, include four to six layers to achieve a desired damping effect.
- Damping elements in disk form for a fuel injector in particular an injector for injection of diesel fuel in a common rail system are also already from the DE 10 2005 057 313 A1 known.
- the damping discs should be introduced between the injection valve and the wall of the receiving bore in the cylinder head so that even at high contact forces damping of structure-borne noise is made possible, so that the noise emissions be reduced.
- the annular damping element abuts with an annular surface on the support surface of the cylinder head and with a circumferential bead on the conical support surface of the injector.
- the fuel injection device comprises at least one fuel injection valve and a receiving bore for the fuel injection valve, while the decoupling element is inserted between a valve housing of the fuel injection valve and a washer in the receiving bore.
- a decoupling material may also be provided in this area. The decoupling material is inserted as a disk-shaped element in the above-described area.
- Suitable materials for the decoupling element are composite materials such as metal-fiber reinforced plastic based on a phenolic matrix.
- the decoupling material is placed or applied on a carrier body, which is formed as a washer and forms a rigid body, which in turn serves in the support area at a stage of the receiving bore as an abutment for the decoupling element from the decoupling material.
- the decoupling element according to the invention for a fuel injection device with the characterizing features of claim 1 has the advantage that in a very simple design improved noise reduction by decoupling or isolation is achieved.
- the spring stiffness of the decoupling element is selected to be so low and the decoupling element is placed between the valve housing of the fuel injection valve and the wall of the receiving bore, that the Entkoppelresonanz f R is in the frequency range below 2.5 kHz.
- the low rigidity of the decoupling element enables effective decoupling of the fuel injection valve from the cylinder head and thereby significantly reduces in noise-critical operation the introduced into the cylinder head structure-borne sound power and thus the radiated from the cylinder head noise.
- the receiving bore for the fuel injection valve is formed in a cylinder head and the receiving bore has a shoulder which is perpendicular to the extension of the receiving bore and on which the decoupling element partially rests with its radially outer bearing region and the fuel injection valve in turn with a vertical extending to the valve longitudinal axis outer contour of the valve housing rests against the radially inner bearing region of the decoupling element.
- the decoupling element is annular disk-shaped and overall cup-shaped or dish-shaped.
- the cross section of the decoupling element has an S-shaped contour with two radii to the support areas. The installation can be done both orientations of the decoupling element, so cup-shaped with the bottom down or inversely cup-shaped with the bottom up.
- the decoupling element is designed in a particularly advantageous manner with a non-linear progressive spring characteristic or with a non-linear degressive spring characteristic.
- FIG. 1 a valve in the form of an injection valve 1 for fuel injection systems of mixture-compression spark-ignited internal combustion engines in a side view.
- the fuel injection valve 1 is part of the fuel injection device.
- the fuel injection valve 1 which is designed in the form of a direct-injection injector for injecting fuel directly into a combustion chamber 25 of the internal combustion engine, is installed in a receiving bore 20 of a cylinder head 9.
- a sealing ring 2, in particular of TeflonĀ®, ensures optimum sealing of the fuel injection valve 1 with respect to the wall of the receiving bore 20 of the cylinder head 9.
- a flat intermediate element 24 is inserted, which is designed in the form of a washer.
- the fuel injection valve 1 has at its inlet-side end 3 a plug connection to a fuel rail (fuel rail) 4, which by a sealing ring 5 between a connecting piece 6 of the fuel distribution line 4, the is shown in section, and an inlet nozzle 7 of the fuel injection valve 1 is sealed.
- the fuel injection valve 1 is inserted into a receiving opening 12 of the connection piece 6 of the fuel distribution line 4.
- the connecting piece 6 is, for example, in one piece from the actual fuel distributor line 4 and has upstream of the receiving opening 12 a smaller diameter flow opening 15 through which the flow of the fuel injection valve 1 takes place.
- the fuel injection valve 1 has an electrical connection plug 8 for the electrical contacting for actuating the fuel injection valve 1.
- a holding-down device 10 is provided between the fuel injection valve 1 and the connecting piece 6.
- the hold-down 10 is designed as a bow-shaped component, e.g. as punching and bending part.
- the hold-down device 10 has a part-ring-shaped base element 11, from which a hold-down bar 13 extends, which abuts against a downstream end face 14 of the connecting piece 6 on the fuel distributor line 4 in the installed state.
- the object of the invention is to achieve over the known Bacetti- and DƤmpfungsscalenfiten in a simple manner improved noise reduction, especially in noise-critical idling operation but also in constant pressure systems at system pressure, through a targeted design and geometry of the intermediate element 24.
- the relevant source of noise of the fuel injection valve 1 in the direct high-pressure injection are introduced during the valve operation in the cylinder head 9 forces (structure-borne sound), which lead to a structural excitation of the cylinder head 9 and are emitted from this as airborne sound.
- a minimization of the introduced into the cylinder head 9 forces should be sought. In addition to reducing the forces caused by the injection, this can be achieved by influencing the transmission behavior between the fuel injection valve 1 and the cylinder head 9.
- the bearing of the fuel injector 1 can be mapped on the passive intermediate member 24 in the receiving bore 20 of the cylinder head 9 as a conventional spring-mass-damper system, as shown in FIG FIG. 2 is shown.
- the mass M of the cylinder head 9 can be assumed to be infinite compared to the mass m of the fuel injection valve 1 in the first approximation.
- the transmission behavior of such a system is characterized by a gain at low frequencies in the range of the resonant frequency f R (decoupling resonance) and an isolation range above the decoupling frequency f E (see FIG. 3 ).
- the aim of the invention is the design of an intermediate element 24 under the priority use of elastic isolation (decoupling) for noise reduction.
- the invention comprises on the one hand the definition and design of a suitable spring characteristic taking into account the typical requirements and boundary conditions in the direct fuel injection and on the other the design of an intermediate element 24 which is able to map the characteristic of the spring characteristic defined in this way and easier on a choice geometric parameter to the specific boundary conditions of the Injection system can be adjusted. To the spring characteristics is determined by the FIGS. 13 and 14 Referenced.
- decoupling element 240 The decoupling of the fuel injection valve 1 from the cylinder head 9 by means of a low spring stiffness c of the intermediate element 24, which is referred to below as decoupling element 240, is made more difficult in addition to the small installation space by restricting the maximum permissible movement of the fuel injection valve 1 during engine operation.
- Damping elements of the known type aim at a reduction of the force input by broadband energy dissipation, e.g. by micro-slip or material damping in the interior of the damping element.
- broadband energy dissipation e.g. by micro-slip or material damping in the interior of the damping element.
- the adhesion between the fuel injection valve and the environment can be reduced only limited. Damping mechanisms are proportional to the displacement or speed over the damping element, for the formation of which a force must be present, which is thus introduced into the structure via the damping element.
- a decoupling element 240 By contrast, with the aid of a decoupling element 240 according to the invention, the force flow from the fuel injection valve 1 can largely be prevented over a large frequency range above the decoupling resonance f R.
- the decoupling element 240 is characterized in that it serves to reduce the flow of force between the fuel injector 1 and its installation environment with the aim of reducing unwanted noise excitation in the surrounding structure.
- the respective advantageous characteristics of the spring characteristic are included in the geometry design and material selection of the decoupling element 240, i. progressive behavior in constant pressure systems and degressive behavior in alternating pressure systems.
- the decoupling element 240 in its design and installation situation thus primarily aims at the effect of the vibration decoupling and not the vibration damping.
- the decoupling element 240 is designed with regard to its rigidity properties and not with respect to the damping behavior, as is the case with known damping disks. Damping, for example in the form of plastic or elastomer layers, but can be used in addition to control the Entkoppelresonanz f R.
- FIG. 4 a partially shown fuel injector is shown with a decoupling element 240 according to the invention, while in FIG. 5 a cross-section through a first embodiment of the decoupling element 240 according to FIG. 4 is shown.
- the fuel injection device is a system for gasoline direct injection with fuel injection valves 1, which are operated with piezo actuators and used for example in a constant pressure system.
- the decoupling element 240 is carried out in an advantageous manner as a metallic perforated disc, which extends in this respect annular.
- a metallic material also lends itself to the extent that it can be processed with cost-effective production methods (for example, turning, deep-drawing) in order to be able to produce the desired geometries of the decoupling element 240 dimensionally stable.
- the spring stiffness of the decoupling element 240 is low (20-40 kN / mm) in relation to the mass of the fuel injection valve 1, which is approximately 250 g. In this way, disturbing noises occurring in the gasoline direct injection of this type, which are typically in a frequency range of 2.5-14 kHz, can be intentionally decoupled in a broadband manner.
- the Entkoppelresonanz f R is in the frequency range below 2.5 kHz, where it is masked by combustion and engine noise and not disturbing perceived.
- the low spring stiffness of the decoupling element 240 is achieved by a plurality of targeted measures.
- the decoupling element 240 has, when installed, two support regions 30, 31, a radially outer support region 30 and a radially inner support region 31. With the outer support region 30, the decoupling element 240 lies annularly on the e.g. perpendicular to the valve longitudinal axis extending shoulder 23 of the receiving bore 20 in the cylinder head 9. With the inner bearing region 31, the decoupling element 240 engages below the fuel injection valve 1 annularly in a region in which the valve housing 22, e.g. also has an outer contour perpendicular to the valve longitudinal axis, so that the fuel injection valve 1 rests against the inner edge region of the decoupling element 240.
- the arrangement of the two support areas 30, 31 of the decoupling element 240 is selected so that the maximum possible lever arm is formed.
- these bearing areas 30, 31 are placed in the widest possible edge areas on the outer diameter and on the inner diameter of the decoupling element 240.
- the cross-section of the decoupling element 240 has an S-shaped contour with two large radii R1, R2 towards the outer and inner bearing area 30, 31, whose common leg merges tangentially into one another. Overall, the decoupling element 240 thus has a cup-shaped or dish-shaped form. With this configuration, the space in the receiving bore 20 of the cylinder head 9 typically only small space is also used optimally in favor of the longest possible lever arm.
- the two radii R1, R2 of this contour are chosen in their size and their relationship to each other so that the most favorable Stress distribution in the material is created and the specified stiffness characteristic is optimally fulfilled. In the present case, these are, for example, an upper radius R1 of 2 mm and a lower radius R2 of 2.5 mm.
- the decoupling element 240 With the cup-shaped design of the decoupling element 240, it is possible to use sufficient material thicknesses for the strength of the decoupling element 240, and at the same time with a low overall spring rigidity of the decoupling element 240. In the case of a metallic material, a material thickness of the order of magnitude of 0, 5 mm. However, the thickness of the material can also be varied on a decoupling element 240 in favor of an optimized stiffness characteristic over its radial extent.
- FIG. 6 a cross-section through a second embodiment of a decoupling element 240 according to the invention is shown in a two-part solution.
- this decoupling element 240 in turn has a cup-shaped shape.
- This embodiment takes into account assembly requirements in which it can lead to an increased misalignment of the fuel injection valve 1.
- the decoupling element 240 is therefore divided into two nested sub-elements 34, 35. While the radially outer and thus upper part of the element 34 has the radially outer bearing portion 30 and bent with the radius R1 outwardly, the radially inner and thus lower part element 35 is provided with the radially inner support portion 31 and with the radius R2 inwardly inflected.
- the inner sub-element 35 is inserted into the outer sub-element 34.
- the sub-elements 34, 35 of the decoupling element 240 allow a slight shift to compensate for a misalignment, but follow in their overall behavior the desired design target.
- FIG. 8 shows a cross section through the inventive decoupling element 240 along the line VIII-VIII in FIG. 7
- This embodiment variant of the decoupling element 240 is characterized in that the radially inner support region 31 is changed compared with the previously described solutions.
- a plurality of spaced-apart support points 31a, 31b, 31c are provided, which are arranged distributed at a number of three support points 31a, 31b, 31c, for example at a distance of 120 Ā°.
- Such an embodiment also takes into account the possibility of a misalignment of the fuel injection valve 1 by the spherical bearing points 31a, 31b, 31c formed on the decoupling element 240, within which the fuel injection valve 1 can align.
- FIG. 10 shows a cross section through the inventive decoupling element 240 along the line XX in FIG. 9 .
- This further embodiment starts a possible misalignment of the fuel injection valve 1 by a local weakening of the inner bearing region 31.
- This local weakening of the radially inner bearing region 31 is achieved, for example, by radially extending slots 37, which extend from the inner diameter of the decoupling element 240 and extend, for example, to the inner radius R2.
- these slots 37 or other stiffness reducing apertures may be provided in the number of three to twenty.
- FIGS. 11 and 12 two further fuel injectors are partially shown, which are provided with a fifth invention or sixth decoupling element 240. That in the FIG. 11 shown decoupling element 240 differs in particular from that in the FIGS. 4 and 5 shown decoupling element 240 by its inverse bulge upwards.
- the decoupling element 240 is in turn designed cup-shaped or dish-shaped, but installed in an inverted position, ie the radially outer bearing portion 30 at the shoulder 23 of the cylinder head 9 is lower than the radially inner bearing portion 31 on the valve housing 22 of the fuel injection valve. 1
- the non-inventive embodiment of FIG. 12 indicates that the decoupling element 240 may also be in the form of a flat disc.
- the decoupling element 240 may also be in the form of a flat disc.
- the material thickness can also vary over the radial extent of the decoupling element 240 here.
- the decoupling element 240 In some systems, the fuel pressure is kept constant high (constant pressure system), in other systems, the system pressure varies depending on the load or speed (alternating pressure systems) - typically in the latter at idle, a lowering of the fuel pressure.
- the fuel pressure acts as a static hydraulic force on the fuel injector and claims the decoupler 240 with a constant preload and thus displacement. In the linear case, this is proportional to the force. With regard to tightness and wear of the injector connections to the fuel system and cylinder head, there are maximum limits for the permissible travel. Therefore, according to the invention, a non-linear relationship between force and spring travel for the decoupling element 240 is selected here.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Die Erfindung geht aus von einem Entkopplungselement fĆ¼r eine Brennstoffeinspritzvorrichtung nach der Gattung des Hauptanspruchs (
In der
Eine andere Art eines einfachen Zwischenelements fĆ¼r eine Brennstoffeinspritzvorrichtung ist bereits aus der
Kompliziertere und in der Herstellung deutlich aufwƤndigere Zwischenelemente fĆ¼r Brennstoffeinspritzvorrichtungen sind u.a. auch aus den
Ein ebenfalls mehrlagiges Zwischenelement ist auch aus der
DƤmpfungselemente in Scheibenform fĆ¼r einen Kraftstoffinjektor, insbesondere einen Injektor zur Einspritzung von Dieselkraftstoff in einem Common-Rail-System sind auch bereits aus der
Zur Reduzierung von GerƤuschemissionen schlƤgt die
Aus der
Das erfindungsgemƤĆe Entkopplungselement fĆ¼r eine Brennstoffeinspritzvorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass in sehr einfacher Bauweise eine verbesserte GerƤuschminderung durch Entkopplung bzw. Isolation erreicht wird. ErfindungsgemĆ¤Ć ist die Federsteifigkeit des Entkopplungselements derart niedrig gewƤhlt und ist das Entkopplungselement so zwischen dem VentilgehƤuse des Brennstoffeinspritzventils und der Wandung der Aufnahmebohrung platziert, dass die Entkoppelresonanz fR im Frequenzbereich unter 2,5 kHz liegt. Auf diese Weise ergeben sich beim Einbau des Entkopplungselements in einer Brennstoffeinspritzvorrichtung mit Injektoren fĆ¼r eine Kraftstoffdirekteinspritzung, insbesondere mit piezoaktorbetriebenen Injektoren mehrere positive und vorteilhafte Aspekte. Die niedrige Steifigkeit des Entkopplungselements ermƶglicht eine effektive Entkopplung des Brennstoffeinspritzventils vom Zylinderkopf und verringert dadurch im gerƤuschkritischen Betrieb deutlich die in den Zylinderkopf eingeleitete Kƶrperschallleistung und damit das vom Zylinderkopf abgestrahlte GerƤusch.The decoupling element according to the invention for a fuel injection device with the characterizing features of
Dazu ist es von Vorteil, dass die Aufnahmebohrung fĆ¼r das Brennstoffeinspritzventil in einem Zylinderkopf ausgebildet ist und die Aufnahmebohrung eine Schulter besitzt, die senkrecht zur Erstreckung der Aufnahmebohrung verlƤuft und auf der das Entkopplungselement mit seinem radial ƤuĆeren Auflagebereich teilweise aufliegt und das Brennstoffeinspritzventil wiederum mit einer senkrecht zur VentillƤngsachse verlaufenden AuĆenkontur des VentilgehƤuses an dem radial inneren Auflagebereich des Entkopplungselements anliegt.For this purpose, it is advantageous that the receiving bore for the fuel injection valve is formed in a cylinder head and the receiving bore has a shoulder which is perpendicular to the extension of the receiving bore and on which the decoupling element partially rests with its radially outer bearing region and the fuel injection valve in turn with a vertical extending to the valve longitudinal axis outer contour of the valve housing rests against the radially inner bearing region of the decoupling element.
In vorteilhafter Weise ist das Entkopplungselement ringscheibenfƶrmig und insgesamt napf- bzw. tellerfƶrmig ausgebildet. Der Querschnitt des Entkopplungselements hat dabei eine S-fƶrmige Kontur mit zwei Radien zu den Auflagebereichen hin. Der Einbau kann beiden Ausrichtungen des Entkopplungselements erfolgen, also napffƶrmig mit dem Boden nach unten oder invers napffƶrmig mit dem Boden nach oben.In an advantageous manner, the decoupling element is annular disk-shaped and overall cup-shaped or dish-shaped. The cross section of the decoupling element has an S-shaped contour with two radii to the support areas. The installation can be done both orientations of the decoupling element, so cup-shaped with the bottom down or inversely cup-shaped with the bottom up.
Durch die in den UnteransprĆ¼chen aufgefĆ¼hrten MaĆnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Brennstoffeinspritzvorrichtung mƶglich.The measures listed in the dependent claims advantageous refinements and improvements of the
Besonders vorteilhaft ist es, das Entkopplungselement so auszubilden, dass die beiden Auflagebereiche des Entkopplungselements im radial ƤuĆeren und radial inneren Randbereich derart weitestmƶglich voneinander beabstandet gewƤhlt sind, dass ein maximal mƶglicher Hebelarm entsteht.It is particularly advantageous to design the decoupling element in such a way that the two bearing regions of the decoupling element in the radially outer and radially inner edge regions are selected as far apart as possible so that a maximum possible lever arm is created.
Je nach Einsatz in einem Wechseldrucksystem oder in einem Konstantdrucksystem ist das Entkopplungselement in besonders vorteilhafter Weise mit einer nicht-linearen progressiven Federkennlinie oder mit einer nicht-linearen degressiven Federkennlinie ausgelegt.Depending on the use in an alternating pressure system or in a constant pressure system, the decoupling element is designed in a particularly advantageous manner with a non-linear progressive spring characteristic or with a non-linear degressive spring characteristic.
AusfĆ¼hrungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung nƤher erlƤutert. Es zeigen
Figur 1- eine teilweise dargestellte Brennstoffeinspritzvorrichtung in einer bekannten AusfĆ¼hrung mit einem scheibenfƶrmigen Zwischenelement,
Figur 2- ein mechanisches Ersatzschaltbild der AbstĆ¼tzung des Brennstoffeinspritzventils im Zylinderkopf bei der Kraftstoffdirekteinspritzung, das ein gewƶhnliches Feder-Masse-DƤmpfer-System wiedergibt,
Figur 3- das Ćbertragungsverhalten eines in
gezeigten Feder-Masse-DƤmpfer-Systems mit einer VerstƤrkung bei niedrigen Frequenzen im Bereich der Resonanzfrequenz fR und einem Isolationsbereich oberhalb der Entkoppelfrequenz fE,Figur 2 - Figur 4
- eine teilweise dargestellte Brennstoffeinspritzvorrichtung mit einem erfindungsgemƤĆen Entkopplungselement,
- Figur 5
- einen Querschnitt durch eine erste AusfĆ¼hrung eines erfindungsgemƤĆen Entkopplungselements gemƤĆ
Figur 4 , - Figur 6
- einen Querschnitt durch eine zweite AusfĆ¼hrung eines erfindungsgemƤĆen Entkopplungselements in einer zweiteiligen Lƶsung,
Figur 7- eine dritte AusfĆ¼hrung eines erfindungsgemƤĆen Entkopplungselements in einer Draufsicht,
Figur 8- einen Querschnitt durch das erfindungsgemƤĆe Entkopplungselement entlang der Linie VIII-VIII in
,Figur 7 Figur 9- eine vierte AusfĆ¼hrung eines erfindungsgemƤĆen Entkopplungselements in einer Draufsicht,
Figur 10- einen Querschnitt durch das erfindungsgemƤĆe Entkopplungselement entlang der Linie X-X in
,Figur 9 Figur 11- eine teilweise dargestellte Brennstoffeinspritzvorrichtung mit einem fĆ¼nften erfindungsgemƤĆen Entkopplungselement,
Figur 12- eine teilweise dargestellte Brennstoffeinspritzvorrichtung mit einem sechsten erfindungsgemƤĆen Entkopplungselement,
Figur 13- eine nicht-lineare, progressive Federkennlinie fĆ¼r ein erfindungsgemƤĆes Entkopplungselement, das in einem Wechseldrucksystem zum Einsatz kommen kann und
Figur 14- eine nicht-lineare, degressive Federkennlinie fĆ¼r ein erfindungsgemƤĆes Entkopplungselement, das in einem Konstantdrucksystem zum Einsatz kommen kann.
- FIG. 1
- a partially illustrated fuel injection device in a known embodiment with a disc-shaped intermediate element,
- FIG. 2
- a mechanical equivalent circuit diagram of the fuel injection valve in the cylinder head in the direct fuel injection, which represents a conventional spring-mass-damper system,
- FIG. 3
- the transmission behavior of an in
FIG. 2 shown spring mass-damper system with a gain at low frequencies in the range of the resonant frequency f R and an isolation range above the decoupling frequency f E , - FIG. 4
- a partially illustrated fuel injection device with a decoupling element according to the invention,
- FIG. 5
- a cross section through a first embodiment of a decoupling element according to the invention according to
FIG. 4 . - FIG. 6
- a cross section through a second embodiment of a decoupling element according to the invention in a two-part solution,
- FIG. 7
- a third embodiment of a decoupling element according to the invention in a plan view,
- FIG. 8
- a cross section through the decoupling element according to the invention along the line VIII-VIII in
FIG. 7 . - FIG. 9
- A fourth embodiment of a decoupling element according to the invention in a plan view,
- FIG. 10
- a cross section through the decoupling element according to the invention along the line XX in
FIG. 9 . - FIG. 11
- a partially illustrated fuel injection device with a fifth inventive decoupling element,
- FIG. 12
- a partially illustrated fuel injection device with a sixth decoupling element according to the invention,
- FIG. 13
- a non-linear, progressive spring characteristic for a decoupling element according to the invention which can be used in an alternating pressure system and
- FIG. 14
- a non-linear, degressive spring characteristic for a decoupling element according to the invention, which can be used in a constant pressure system.
Zum VerstƤndnis der Erfindung wird im Folgenden anhand der
Zwischen einem Absatz 21 eines VentilgehƤuses 22 (nicht gezeigt) oder einer unteren Stirnseite 21 eines AbstĆ¼tzelements 19 (
Das Brennstoffeinspritzventil 1 weist an seinem zulaufseitigen Ende 3 eine Steckverbindung zu einer Brennstoffverteilerleitung (Fuel Rail) 4 auf, die durch einen Dichtring 5 zwischen einem Anschlussstutzen 6 der Brennstoffverteilerleitung 4, der im Schnitt dargestellt ist, und einem Zulaufstutzen 7 des Brennstoffeinspritzventils 1 abgedichtet ist. Das Brennstoffeinspritzventil 1 ist in eine Aufnahmeƶffnung 12 des Anschlussstutzens 6 der Brennstoffverteilerleitung 4 eingeschoben. Der Anschlussstutzen 6 geht dabei z.B. einteilig aus der eigentlichen Brennstoffverteilerleitung 4 hervor und besitzt stromaufwƤrts der Aufnahmeƶffnung 12 eine durchmesserkleinere Strƶmungsƶffnung 15, Ć¼ber die die Anstrƶmung des Brennstoffeinspritzventils 1 erfolgt. Das Brennstoffeinspritzventil 1 verfĆ¼gt Ć¼ber einen elektrischen Anschlussstecker 8 fĆ¼r die elektrische Kontaktierung zur BetƤtigung des Brennstoffeinspritzventils 1.The
Um das Brennstoffeinspritzventil 1 und die Brennstoffverteilerleitung 4 weitgehend radialkraftfrei voneinander zu beabstanden und das Brennstoffeinspritzventil 1 sicher in der Aufnahmebohrung des Zylinderkopfes niederzuhalten, ist ein Niederhalter 10 zwischen dem Brennstoffeinspritzventil 1 und dem Anschlussstutzen 6 vorgesehen. Der Niederhalter 10 ist als bĆ¼gelfƶrmiges Bauteil ausgefĆ¼hrt, z.B. als Stanz-BiegeTeil. Der Niederhalter 10 weist ein teilringfƶrmiges Grundelement 11 auf, von dem aus abgebogen ein NiederhaltebĆ¼gel 13 verlƤuft, der an einer stromabwƤrtigen EndflƤche 14 des Anschlussstutzens 6 an der Brennstoffverteilerleitung 4 im eingebauten Zustand anliegt.In order to space the
Aufgabe der Erfindung ist es, gegenĆ¼ber den bekannten Zwischenelemente- und DƤmpfungsscheibenlƶsungen auf einfache Art und Weise eine verbesserte GerƤuschminderung, vor allen Dingen im gerƤuschkritischen Leerlaufbetrieb aber auch in Konstantdrucksystemen bei Systemdruck, durch eine gezielte Auslegung und Geometrie des Zwischenelements 24 zu erreichen. Die maĆgebliche GerƤuschquelle des Brennstoffeinspritzventils 1 bei der direkten Hochdruckeinspritzung sind die wƤhrend des Ventilbetriebs in den Zylinderkopf 9 eingeleiteten KrƤfte (Kƶrperschall), die zu einer strukturellen Anregung des Zylinderkopfs 9 fĆ¼hren und von diesem als Luftschall abgestrahlt werden. Um eine GerƤuschverbesserung zu erreichen, ist daher eine Minimierung der in den Zylinderkopf 9 eingeleiteten KrƤfte anzustreben. Neben der Verringerung der durch die Einspritzung verursachten KrƤfte kann dies durch eine Beeinflussung des Ćbertragungsverhaltens zwischen dem Brennstoffeinspritzventil 1 und dem Zylinderkopf 9 erreicht werden.The object of the invention is to achieve over the known Zwischenelemente- and DƤmpfungsscheibenlƶsungen in a simple manner improved noise reduction, especially in noise-critical idling operation but also in constant pressure systems at system pressure, through a targeted design and geometry of the
Im mechanischen Sinne kann die Lagerung des Brennstoffeinspritzventils 1 auf dem passiven Zwischenelement 24 in der Aufnahmebohrung 20 des Zylinderkopfes 9 als ein gewƶhnliches Feder-Masse-DƤmpfer-System abgebildet werden, wie dies in
Ausgehend von diesem sich aus dem Feder-Masse-DƤmpfer-System ergebenden Ćbertragungsverhalten ergeben sich zur GerƤuschminderung mehrere Mƶglichkeiten:
- 1. Verschiebung der Eigenfrequenz zu kleineren Frequenzen, so dass der Isolationsbereich einen mƶglichst groĆen Teil des hƶrbaren Frequenzspektrums umfasst. Dies kann Ć¼ber eine niedrigere Steifigkeit c des Zwischenelementes 24 erreicht werden.
- 2. Erhƶhung der DƤmpfungseigenschaften (z.B. Reibung) des Zwischenelementes 24, um eine AbschwƤchung der VerstƤrkung bei niedrigen Frequenzen zu erreichen. Mit hƶheren DƤmpfungseigenschaften verringert sich jedoch ebenso die Isolationswirkung in den hƶheren Frequenzbereichen.
- 3. Eine Kombination der beiden vorgenannten Mƶglichkeiten.
- 1. shift the natural frequency to lower frequencies, so that the isolation range covers as much of the audible frequency spectrum. This can be achieved via a lower rigidity c of the
intermediate element 24. - 2. Increasing the damping characteristics (eg, friction) of the
intermediate element 24 to achieve attenuation of the gain at low frequencies. With higher damping properties, however, also reduces the insulation effect in the higher frequency ranges. - 3. A combination of the two aforementioned possibilities.
Ziel der Erfindung ist die Auslegung eines Zwischenelementes 24 unter der vorrangigen Verwendung der elastischen Isolation (Entkopplung) zur GerƤuschminderung. Die Erfindung umfasst dabei zum einen die Definition und Auslegung einer geeigneten Federkennlinie unter BerĆ¼cksichtigung der typischen Anforderungen und Randbedingungen bei der Kraftstoffdirekteinspritzung und zum anderen die Auslegung eines Zwischenelementes 24, welches in der Lage ist, die Charakteristik der so definierten Federkennlinie abzubilden und Ć¼ber eine Wahl einfacher geometrischer Parameter an die spezifischen Randbedingungen des Einspritzsystems angepasst werden kann. Zu den Federkennlinien wird anhand der
Die Entkopplung des Brennstoffeinspritzventils 1 vom Zylinderkopf 9 mit Hilfe einer geringen Federsteifigkeit c des Zwischenelements 24, das im Folgenden als Entkopplungselement 240 bezeichnet wird, wird neben dem geringen Bauraum durch eine EinschrƤnkung der zulƤssigen Maximalbewegung des Brennstoffeinspritzventils 1 wƤhrend des Motorbetriebs erschwert.The decoupling of the
Im Betrieb von Brennstoffeinspritzventilen zur Kraftstoffeinspritzung in Verbrennungsmotoren entstehen an der Schnittstelle zur Einbauumgebung dieser Einspritzventile prinzipbedingt WechselkrƤfte Ć¼ber einen breiten Frequenzbereich. Diese WechselkrƤfte regen die Umgebung zu Schwingungen an, die wiederum als GerƤusch abgestrahlt und wahrgenommen werden kƶnnen. Zur Vermeidung dieser oftmals als stƶrend wahrgenommenen GerƤusche werden heute DƤmpfungselemente zur SchwingungsdƤmpfung (Energiedissipation) beschrieben (siehe Abschnitt "Stand der Technik") und auch eingesetzt. Diese DƤmpfungselemente sind dabei darĆ¼ber hinaus hƤufig aus verschiedenen Materialen und Einzelteilen zusammengesetzt.In the operation of fuel injection valves for fuel injection in internal combustion engines arise at the interface to the installation environment of these injectors inherently alternating forces over a wide frequency range. These alternating forces stimulate the environment to vibrate, which in turn can be emitted as a sound and perceived. To avoid these often perceived as disturbing noises today damping elements for vibration damping (energy dissipation) are described (see section "state of the art") and also used. Moreover, these damping elements are often composed of different materials and individual parts.
DƤmpfungselemente der bekannten Art zielen jedoch auf eine Reduktion des Krafteintrags durch breitbandige Energiedissipation z.B. durch Mikroschlupf oder MaterialdƤmpfung im Inneren des DƤmpfungselementes. Der Kraftschluss zwischen dem Brennstoffeinspritzventil und der Umgebung kann dabei aber nur begrenzt reduziert werden. DƤmpfungsmechanismen sind proportional der Verschiebung bzw. Geschwindigkeit Ć¼ber dem DƤmpfungselement, fĆ¼r deren Entstehung eine Kraft vorhanden sein muss, die damit Ć¼ber das DƤmpfungselement in die Struktur eingeleitet wird.Damping elements of the known type, however, aim at a reduction of the force input by broadband energy dissipation, e.g. by micro-slip or material damping in the interior of the damping element. However, the adhesion between the fuel injection valve and the environment can be reduced only limited. Damping mechanisms are proportional to the displacement or speed over the damping element, for the formation of which a force must be present, which is thus introduced into the structure via the damping element.
Mithilfe eines erfindungsgemƤĆen Entkopplungselementes 240 kann dagegen Ć¼ber einen groĆen Frequenzbereich oberhalb der Entkoppelresonanz fR der Kraftfluss vom Brennstoffeinspritzventil 1 weitgehend unterbunden werden. Die Entkoppelresonanz fR kann dabei in einen Frequenzbereich verschoben werden, in der die resonante VerstƤrkung durch andere MotorgerƤuschanteile weitgehend maskiert wird (
ErfindungsgemĆ¤Ć zeichnet sich das Entkopplungselement 240 dadurch aus, dass es zur Reduzierung des Kraftflusses zwischen dem Brennstoffeinspritzventil 1 und seiner Einbauumgebung mit dem Ziel der Reduktion unerwĆ¼nschter GerƤuschanregung in der umgebenden Struktur dient. Bei den im Folgenden beschriebenen AusfĆ¼hrungsformen der Entkopplungselemente 240 sind die jeweils vorteilhafte AusprƤgung der Federcharakteristik bei der Geometriegestaltung und Materialwahl des Entkopplungselementes 240 einbezogen, d.h. progressives Verhalten bei Konstantdrucksystemen und degressives Verhalten bei Wechseldrucksystemen.According to the invention, the
Das Entkopplungselement 240 in seiner Ausbildung und Einbausituation zielt dabei also primƤr auf den Effekt der Schwingungsentkopplung und nicht den der SchwingungsdƤmpfung. Das Entkopplungselement 240 wird hinsichtlich seiner Steifigkeitseigenschaften ausgelegt und nicht wie bei bekannten DƤmpfungsscheiben hinsichtlich des DƤmpfungsverhaltens. DƤmpfung, z.B. in Form von Kunststoff- oder Elastomerschichten, kann jedoch ergƤnzend zur Beherrschung der Entkoppelresonanz fR eingesetzt werden.The
In der
Die Federsteifigkeit des Entkopplungselementes 240 ist im VerhƤltnis zur Masse des Brennstoffeinspritzventils 1, die bei ca. 250g liegt, niedrig gewƤhlt (20 - 40 kN/mm). Damit kƶnnen bei der Benzindirekteinspritzung dieses Typs auftretende stƶrende GerƤusche, die typischerweise in einem Frequenzbereich von 2,5 - 14 kHz liegen, gezielt breitbandig entkoppelt werden. Die Entkoppelresonanz fR liegt dabei im Frequenzbereich unter 2,5 kHz, wo sie von Verbrennungs- und MotorgerƤuschen maskiert und nicht stƶrend wahrgenommen wird.The spring stiffness of the
Die geringe Federsteifigkeit des Entkopplungselementes 240 wird durch mehrere gezielte MaĆnahmen erreicht. Das Entkopplungselement 240 besitzt im eingebauten Zustand zwei Auflagebereiche 30, 31, einen radial ƤuĆeren Auflagebereich 30 und einen radial inneren Auflagebereich 31. Mit dem ƤuĆeren Auflagebereich 30 liegt das Entkopplungselement 240 ringfƶrmig auf der z.B. senkrecht zur VentillƤngsachse verlaufenden Schulter 23 der Aufnahmebohrung 20 im Zylinderkopf 9 auf. Mit dem inneren Auflagebereich 31 untergreift das Entkopplungselement 240 das Brennstoffeinspritzventil 1 ringfƶrmig in einem Bereich, in dem das VentilgehƤuse 22 z.B. auch eine zur VentillƤngsachse senkrecht verlaufende AuĆenkontur besitzt, so dass das Brennstoffeinspritzventil 1 an dem inneren Randbereich des Entkopplungselements 240 anliegt. Die Anordnung der beiden Auflagebereiche 30, 31 des Entkopplungselements 240 ist so gewƤhlt, dass der maximal mƶgliche Hebelarm entsteht. Im gezeigten AusfĆ¼hrungsbeispiel sind diese Auflagebereiche 30, 31 insofern in die jeweils weitestmƶglichen Randbereiche am AuĆendurchmesser und am Innendurchmesser des Entkopplungselements 240 gelegt.The low spring stiffness of the
Der Querschnitt des Entkopplungselements 240 hat eine S-fƶrmige Kontur mit zwei groĆen Radien R1, R2 zum ƤuĆeren und inneren Auflagebereich 30, 31 hin, deren gemeinsamer Schenkel tangential ineinander Ć¼bergeht. Insgesamt weist das Entkopplungselement 240 damit eine napf- bzw. tellerfƶrmige Gestalt auf. Mit dieser Ausgestaltung wird der in der Aufnahmebohrung 20 des Zylinderkopfes 9 typischerweise nur geringe Bauraum ebenfalls zugunsten eines mƶglichst langen Hebelarmes optimal genutzt. Die beiden Radien R1, R2 dieser Kontur sind in ihrer GrƶĆe und ihrem VerhƤltnis zueinander so gewƤhlt, dass eine mƶglichst gĆ¼nstige Spannungsverteilung im Material entsteht und die vorgegebene Steifigkeitscharakteristik optimal erfĆ¼llt wird. Im vorliegenden Fall sind dies z.B. ein oberer Radius R1 von 2 mm und ein unterer Radius R2 von 2,5 mm.The cross-section of the
Mit der napffƶrmigen Ausgestaltung des Entkopplungselements 240 ist es ermƶglicht, fĆ¼r die Festigkeit des Entkopplungselements 240 ausreichende MaterialstƤrken verwenden zu kƶnnen, und dies bei einer zugleich geringen Gesamt-Federsteifigkeit des Entkopplungselements 240. Bei einem metallischen Werkstoff kann dabei eine MaterialstƤrke in der GrƶĆenordnung von 0,5 mm geeignet sein. Die Dicke des Materials kann aber auch an einem Entkopplungselement 240 zugunsten einer optimierten Steifigkeitscharakteristik Ć¼ber seine radiale Erstreckung variiert werden.With the cup-shaped design of the
In der
Eine dritte AusfĆ¼hrung eines erfindungsgemƤĆen Entkopplungselements 240 ist in einer Draufsicht in
Eine vierte AusfĆ¼hrung eines erfindungsgemƤĆen Entkopplungselements 240 ist in einer Draufsicht in
In den
Das nicht erfindungsgemƤĆe AusfĆ¼hrungsbeispiel der
Anhand der Diagramme der
Der Kraftstoffdruck wirkt als statische hydraulische Kraft auf das Brennstoffeinspritzventil und beansprucht das Entkopplungselement 240 mit einer konstanten Vorlast und damit Verschiebung. Im linearen Fall ist diese der Kraft proportional. Im Hinblick auf Dichtheit und VerschleiĆ der InjektoranschlĆ¼sse an Kraftstoffsystem und Zylinderkopf gibt es maximale Grenzen fĆ¼r den zulƤssigen Federweg. Deshalb wird hier erfindungsgemĆ¤Ć ein nichtlinearer Zusammenhang zwischen Kraft und Federweg fĆ¼r das Entkopplungselement 240 gewƤhlt.The fuel pressure acts as a static hydraulic force on the fuel injector and claims the
Im Falle des Wechseldrucksystems (
Im Falle eines Konstantdrucksystems (
Claims (9)
- Decoupling element arrangement for a fuel injection device for fuel injection systems of internal combustion engines, in particular for the direct injection of fuel into a combustion chamber, wherein the fuel injection device comprises at least one fuel injection valve (1) and a receiving bore (20) for the fuel injection valve (1), and a decoupling element (240) is inserted between a valve housing (22) of the fuel injection valve (1) and a wall of the receiving bore (20),
characterized
in that the spring stiffness of the decoupling element (240) formed from a metallic material is so low, the decoupling element (240) is located between the valve housing (22) of the fuel injection valve (1) and the wall of the receiving bore (20) in such a way, and the geometry of the decoupling element (240) is such, that the decoupling resonance fR lies in the frequency range below 2.5 kHz, wherein the decoupling element (240) has a radially outer support region (30) and a radially inner support region (31), by means of which the decoupling element (240), radially at the outside, can be supported annularly on a shoulder (23) of the receiving bore (20) and, radially at the inside, engages under the fuel injection valve (1), wherein the abutment regions for the decoupling element (240) on the shoulder (23) on the receiving bore (20) and on the fuel injection valve (1) each run perpendicular to the valve longitudinal axis, and the decoupling element (240) is contoured such that the cross section of the decoupling element (240) has an S-shaped contour with two radii (R1, R2) toward the outer and inner support regions (30, 31), wherein the outer and inner support regions (30, 31) of the decoupling element (240) are designed to be supported or bear annularly against the abutment regions of the shoulder (23) of the receiving bore (20) and against the fuel injection valve (1). - Decoupling element arrangement according to Claim 1,
characterized
in that the spring stiffness of the decoupling element (240) lies in the range from 20 - 40 kN/mm. - Decoupling element arrangement according to Claim 1,
characterized
in that the two support regions (30, 31) of the decoupling element (240) are selected so as to be spaced apart from one another to such an extent that a maximum possible lever arm is realized. - Decoupling element arrangement according to Claim 1 or 3,
characterized
in that the radially inner support region (31) is either annularly encircling, interrupted by radially running slots (37) or other stiffness-reducing openings, or formed by multiple spaced-apart support points (31a, 31b, 31c). - Decoupling element arrangement according to one of the preceding claims,
characterized
in that the decoupling element (240) is of annular disc-shaped and altogether cup-shaped or dish-shaped form. - Decoupling element arrangement according to one of the preceding claims,
characterized
in that the material thickness of the disc-shaped decoupling element (240) is either constant or varies over its radial extent in order to realize an optimized stiffness characteristic. - Decoupling element arrangement according to one of the preceding claims,
characterized
in that the decoupling element (240) is, for use in a system with fluctuating pressure, configured with a non-linear progressive spring characteristic curve. - Decoupling element arrangement according to one of Claims 1 to 6,
characterized
in that the decoupling element (240), for use in a system with constant pressure, is configured with a non-linear degressive characteristic curve. - Decoupling element arrangement according to one of the preceding claims,
characterized
in that the receiving bore (20) for the fuel injection valve (1) is formed in a cylinder head (9), and the receiving bore (20) has a shoulder (23) which runs perpendicular to the extent of the receiving bore (20) and on which the decoupling element (240) is partially supported by way of its radially outer support region (30), and the fuel injection valve (1) in turn bears by way of an outer contour, running perpendicular to the valve longitudinal axis, of the valve housing (22) against the radially inner support region (31) of the decoupling element (240).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008054591A DE102008054591A1 (en) | 2008-12-12 | 2008-12-12 | Decoupling element for a fuel injection device |
PCT/EP2009/065889 WO2010066586A1 (en) | 2008-12-12 | 2009-11-26 | Decoupling element for a fuel injection device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2376765A1 EP2376765A1 (en) | 2011-10-19 |
EP2376765B1 true EP2376765B1 (en) | 2015-08-05 |
Family
ID=41729999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09771734.2A Active EP2376765B1 (en) | 2008-12-12 | 2009-11-26 | Decoupling element for a fuel injection device |
Country Status (5)
Country | Link |
---|---|
US (1) | US9057349B2 (en) |
EP (1) | EP2376765B1 (en) |
CN (1) | CN102245890B (en) |
DE (1) | DE102008054591A1 (en) |
WO (1) | WO2010066586A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011163110A1 (en) * | 2010-06-21 | 2011-12-29 | Illinois Tool Works Inc. | Two phase flex spring fuel injector spacer |
EP2469069A1 (en) * | 2010-12-27 | 2012-06-27 | Continental Automotive GmbH | Dampening Element for an Injection Valve |
DE102011089274A1 (en) * | 2011-12-20 | 2013-06-20 | Robert Bosch Gmbh | Decoupling element for a fuel injection device |
DE102012206194A1 (en) | 2012-04-16 | 2013-10-17 | Robert Bosch Gmbh | Multi-part insulation element, in particular for a fuel injection device |
DE102012206890A1 (en) * | 2012-04-26 | 2013-10-31 | Robert Bosch Gmbh | Arrangement with a fuel distributor and a plurality of fuel injection valves |
DE102012221134A1 (en) | 2012-11-20 | 2014-05-22 | Robert Bosch Gmbh | Arrangement for a fuel injection system with a fuel injection valve and a decoupling element |
DE102012222591A1 (en) | 2012-12-10 | 2014-06-12 | Robert Bosch Gmbh | Arrangement for a fuel injection system with a component and an elastically deformable decoupling element |
DE102013200781A1 (en) * | 2013-01-18 | 2014-07-24 | Robert Bosch Gmbh | Fuel injection system with a fuel-carrying component, a fuel injection valve and a connection arrangement |
DE102013200993A1 (en) | 2013-01-22 | 2014-07-24 | Robert Bosch Gmbh | Fuel injection system with a fuel-carrying component, a fuel injection valve and a suspension |
DE102013200909A1 (en) * | 2013-01-22 | 2014-07-24 | Robert Bosch Gmbh | Fuel injection system with a fuel-carrying component, a fuel injection valve and a connecting element |
DE102014225988A1 (en) | 2014-12-16 | 2016-06-16 | Robert Bosch Gmbh | Decoupling element for a fuel injection device |
DE102015217500A1 (en) * | 2015-09-14 | 2017-03-16 | Robert Bosch Gmbh | Decoupling element for a fuel injection device |
JP7156772B2 (en) * | 2016-01-29 | 2022-10-19 | ććć«ćć»ććć·ć„ć»ć²ć¼ć«ć·ć£ććć»ććć»ćć·ć„ć¬ć³ćÆćć«ć»ćććć³ć° | Fuel injection valve and fuel injector |
DE102016225957A1 (en) * | 2016-12-22 | 2018-06-28 | Robert Bosch Gmbh | Injector with improved safety |
DE102017218002A1 (en) * | 2017-10-10 | 2019-04-11 | Robert Bosch Gmbh | Decoupling element for a fuel injection device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009856A (en) | 1998-05-27 | 2000-01-04 | Caterpillar Inc. | Fuel injector isolation |
DE10027662A1 (en) | 2000-06-03 | 2001-12-06 | Bosch Gmbh Robert | Sealing unit for a fuel injection valve in a cylider head bore comprises a main body with an axial bore with an enlarged section which accommodates a sealing element |
DE10038763A1 (en) | 2000-08-09 | 2002-02-21 | Bosch Gmbh Robert | Compensation element for a fuel injector |
EP1223337B1 (en) | 2001-01-12 | 2006-06-14 | Ford Global Technologies, LLC | Noise-reducing arrangement of washers under an injection nozzle |
EP1223377A1 (en) | 2001-01-15 | 2002-07-17 | Michl, Oliver | Light with a double reflector that is adjustable by an elastic ring |
DE10108466A1 (en) | 2001-02-22 | 2002-09-05 | Bosch Gmbh Robert | Compensation element for a fuel injector |
DE10338715B4 (en) * | 2003-08-22 | 2014-07-17 | Robert Bosch Gmbh | Compensation element for a fuel injection valve |
DE102004049277A1 (en) | 2004-10-09 | 2006-04-13 | Robert Bosch Gmbh | Damping element for a fuel injection valve |
DE502006006106D1 (en) * | 2005-03-03 | 2010-03-25 | Bosch Gmbh Robert | FUEL INJECTION EQUIPMENT |
DE102005011574A1 (en) * | 2005-03-14 | 2006-09-21 | Robert Bosch Gmbh | Intermediate element for a fuel injection valve |
FR2889257B1 (en) * | 2005-08-01 | 2007-11-02 | Renault Sas | FUEL INJECTION DEVICE AND METHOD FOR CONTROLLING SUCH A DEVICE |
EP1764501A1 (en) | 2005-09-15 | 2007-03-21 | Delphi Technologies, Inc. | Injector mounting arrangement |
DE102005057313A1 (en) | 2005-12-01 | 2007-06-14 | Daimlerchrysler Ag | Internal combustion engine, has absorber with outer ring surface resting against support surface of cylinder head, where absorber with molded beaded rim rests against support surface of injector, and rim is turned towards injector surface |
US7293550B2 (en) | 2006-01-31 | 2007-11-13 | Gm Global Technology Operations, Inc. | Fuel injector isolation seat |
DE102006009094A1 (en) * | 2006-02-28 | 2007-08-30 | Bayerische Motoren Werke Ag | Damper for use between cylinder head and injector in region of injector foot, has sub-functional section e.g. inner ring and outer ring, for fixing injector with respect to cylinder head, where damper is formed as multipart structure |
EP1837517B1 (en) * | 2006-03-23 | 2008-12-03 | Delphi Technologies, Inc. | Injector mounting arrangement |
DE102007019006B4 (en) * | 2007-04-21 | 2009-06-18 | Ab Skf | sealing element |
-
2008
- 2008-12-12 DE DE102008054591A patent/DE102008054591A1/en not_active Withdrawn
-
2009
- 2009-11-26 US US13/139,215 patent/US9057349B2/en active Active
- 2009-11-26 CN CN200980149911.8A patent/CN102245890B/en not_active Expired - Fee Related
- 2009-11-26 EP EP09771734.2A patent/EP2376765B1/en active Active
- 2009-11-26 WO PCT/EP2009/065889 patent/WO2010066586A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US9057349B2 (en) | 2015-06-16 |
EP2376765A1 (en) | 2011-10-19 |
US20120031375A1 (en) | 2012-02-09 |
CN102245890B (en) | 2016-01-20 |
CN102245890A (en) | 2011-11-16 |
WO2010066586A1 (en) | 2010-06-17 |
DE102008054591A1 (en) | 2010-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2376765B1 (en) | Decoupling element for a fuel injection device | |
EP3234346B1 (en) | Fuel injection device | |
EP2795093A1 (en) | Decoupling element for a fuel injection device | |
WO2009156219A1 (en) | Decoupling element for a fuel injection device | |
EP3234345B1 (en) | Decoupling element for a fuel injection device | |
WO2006040227A1 (en) | Damping element for a fuel injection valve | |
EP1717501A1 (en) | Valve | |
EP2850312B1 (en) | Arrangement having a fuel distributor and having multiple fuel injection valves | |
EP2839142B1 (en) | Multipart insulating element, in particular for a fuel injection device | |
DE102005057313A1 (en) | Internal combustion engine, has absorber with outer ring surface resting against support surface of cylinder head, where absorber with molded beaded rim rests against support surface of injector, and rim is turned towards injector surface | |
EP2841760A1 (en) | Arrangement with a fuel distributer and multiple fuel injection valves | |
WO2013091998A1 (en) | Decoupling element for a fuel injection device | |
EP2948673B1 (en) | Fuel injection system comprising a fuel-guiding component, a fuel injection valve and a connecting element | |
EP1336045B1 (en) | Injector housing with an actuator and intermediate damping disc | |
DE102017218007A1 (en) | Decoupling element for a fuel injection device | |
DE102017218002A1 (en) | Decoupling element for a fuel injection device | |
DE102017218008A1 (en) | Decoupling element for a fuel injection device | |
DE102014217555A1 (en) | Decoupling element for a fuel injection device | |
DE102016225956A1 (en) | Decoupling element for a fuel injection device | |
DE102015217500A1 (en) | Decoupling element for a fuel injection device | |
DE102017220248A1 (en) | Fuel injection device | |
DE102021214902A1 (en) | Decoupling element for a fuel injection device | |
DE102020214151A1 (en) | fuel injector | |
WO2014090475A1 (en) | Assembly for a fuel injection system having a component and an elastically malleable decoupling element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121023 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150513 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 740864 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009011375 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151105 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151106 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151207 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151205 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009011375 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151126 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20160509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 740864 Country of ref document: AT Kind code of ref document: T Effective date: 20151126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091126 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20171124 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171124 Year of fee payment: 9 Ref country code: IT Payment date: 20171122 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150805 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240123 Year of fee payment: 15 |