EP2372843B1 - Zweiband-WLAN-MIMO-Antennenstruktur mit hoher Isolation - Google Patents

Zweiband-WLAN-MIMO-Antennenstruktur mit hoher Isolation Download PDF

Info

Publication number
EP2372843B1
EP2372843B1 EP11001827.2A EP11001827A EP2372843B1 EP 2372843 B1 EP2372843 B1 EP 2372843B1 EP 11001827 A EP11001827 A EP 11001827A EP 2372843 B1 EP2372843 B1 EP 2372843B1
Authority
EP
European Patent Office
Prior art keywords
frequency band
antenna
inbound
outbound
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11001827.2A
Other languages
English (en)
French (fr)
Other versions
EP2372843A3 (de
EP2372843A2 (de
Inventor
Nicolaos G. Alexopoulos
Seunghwan Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broadcom Corp
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/985,527 external-priority patent/US9166644B2/en
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of EP2372843A2 publication Critical patent/EP2372843A2/de
Publication of EP2372843A3 publication Critical patent/EP2372843A3/de
Application granted granted Critical
Publication of EP2372843B1 publication Critical patent/EP2372843B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/405Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with multiple discrete channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • This invention relates generally to wireless communication systems and more particularly to antennas used in such systems.
  • Radio frequency wireless communication systems may operate in accordance with one or more standards including, but not limited to, RFID, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), WCDMA, local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), LTE, WiMAX, and/or variations thereof.
  • RF wireless communication systems may operate in accordance with one or more standards including, but not limited to, RFID, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), WCDMA, local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), LTE, WiMAX, and/or variations thereof.
  • IR infrared
  • IrDA Infrared Data Association
  • a wireless communication device such as a cellular telephone, two-way radio, personal digital assistant (PDA), personal computer (PC), laptop computer, home entertainment equipment, RFID reader, RFID tag, et cetera communicates directly or indirectly with other wireless communication devices.
  • PDA personal digital assistant
  • PC personal computer
  • laptop computer home entertainment equipment
  • RFID reader RFID tag
  • et cetera communicates directly or indirectly with other wireless communication devices.
  • direct communications also known as point-to-point communications
  • the participating wireless communication devices tune their receivers and transmitters to the same channel or channels (e.g., one of the plurality of radio frequency (RF) carriers of the wireless communication system) and communicate over that channel(s).
  • RF radio frequency
  • each wireless communication device communicates directly with an associated base station (e.g., for cellular services) and/or an associated access point (e.g., for an in-home or in-building wireless network) via an assigned channel.
  • an associated base station e.g., for cellular services
  • an associated access point e.g., for an in-home or in-building wireless network
  • the associated base stations and/or associated access points communicate with each other directly, via a system controller, via the public switch telephone network, via the Internet, and/or via some other wide area network.
  • each RF wireless communication device For each RF wireless communication device to participate in wireless communications, it includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver (e.g., a station for in-home and/or in-building wireless communication networks, RF modem, etc.).
  • the receiver is coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage.
  • the low noise amplifier receives inbound RF signals via the antenna and amplifies then.
  • the one or more intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals.
  • the filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals.
  • the data recovery stage recovers raw data from the filtered signals in accordance with the particular wireless communication standard.
  • the transmitter includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier.
  • the data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard.
  • the one or more intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals.
  • the power amplifier amplifies the RF signals prior to transmission via an antenna.
  • the antenna structure is designed to have a desired impedance (e.g., 50 Ohms) at an operating frequency, a desired bandwidth centered at the desired operating frequency, and a desired length (e.g., 1 ⁇ 4 wavelength of the operating frequency for a monopole antenna).
  • the antenna structure may include a single monopole or dipole antenna, a diversity antenna structure, the same polarization, different polarization, and/or any number of other electro-magnetic properties.
  • the in-air helix antenna provides a magnetic omni-directional monopole antenna.
  • Other types of three-dimensional antennas include aperture antennas of a rectangular shape, horn shaped, etc.; three-dimensional dipole antennas having a conical shape, a cylinder shape, an elliptical shape, etc.; and reflector antennas having a plane reflector, a corner reflector, or a parabolic reflector.
  • An issue with such three-dimensional antennas is that they cannot be implemented in the substantially two-dimensional space of a substrate such as an integrated circuit (IC) and/or on the printed circuit board (PCB) supporting the IC.
  • IC integrated circuit
  • PCB printed circuit board
  • Two-dimensional antennas are known to include a meandering pattern or a micro strip configuration.
  • the present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Drawings, the Detailed Description of the Invention, and the claims.
  • the dual band high isolation antenna structure further comprises:
  • the dual band high isolation antenna structure further comprises:
  • the 4-port decoupling module comprises:
  • the radio module further comprises:
  • the dual band high isolation antenna structure further comprises:
  • Figure 1 is a diagram of a transceiver that includes a host interface 10, a baseband processing module 12, memory 14, a local oscillation (LO) module 26, a plurality of multiple band radio frequency (RF) transmitters 16, transmit/receive (T/R) isolation modules 18, a four port decoupling module 20, a plurality of antennas 22, a plurality of multiple band RF receivers 24, and a local oscillation module 26.
  • a radio module includes a receiver section (e.g., the plurality of multiple band RF receivers 24), a transmitter section (e.g., the plurality of multiple band RF transmitters 16), and a dual band high isolation antenna structure.
  • the dual band high isolation antenna structure includes a diplexer unit (e.g., the diplexers 34), the 4-port decoupling module 20, a first frequency band antenna assembly (e.g., antennas 22 of band 1), and a second frequency band antenna assembly (e.g., antennas 22 of band 2).
  • a diplexer unit e.g., the diplexers 34
  • the 4-port decoupling module 20 e.g., the 4-port decoupling module 20
  • a first frequency band antenna assembly e.g., antennas 22 of band 1
  • a second frequency band antenna assembly e.g., antennas 22 of band 2
  • the baseband processing module 12 executes digital receiver functions and digital transmitter functions, respectively.
  • the digital receiver functions include, but are not limited to, digital intermediate frequency to baseband conversion, demodulation, constellation demapping, decoding, de-interleaving, fast Fourier transform, cyclic prefix removal, space and time decoding, and/or descrambling to convert a plurality of inbound symbol streams 38 into inbound data 40.
  • the digital transmitter functions include, but are not limited to, scrambling, encoding, interleaving, constellation mapping, modulation, inverse fast Fourier transform, cyclic prefix addition, space and time encoding, and digital baseband to IF conversion to convert outbound data 28 into a plurality of outbound symbol streams 30.
  • the baseband processing modules 12 may be implemented using one or more processing devices.
  • a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions.
  • the memory 14 may be a single memory device or a plurality of memory devices.
  • Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, and/or any device that stores digital information.
  • the processing module 12 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry
  • the memory 14 storing the corresponding operational instructions is embedded with the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
  • the baseband processing module 12 receives outbound data 28 from a host device via the host interface 10 and converts it into one or more outbound symbol streams 30. This may be done in accordance with a particular mode of operation that is compliant with one or more specific modes of the various IEEE 802.11 standards.
  • the mode may indicate a frequency band of 2.4 and/or 5 GHz, a channel separation of 20 or 25 MHz and a bit rate of 54 megabits-per-second.
  • the mode may further indicate a particular rate ranging from I megabit-per-second to 54 megabits-per-second and beyond.
  • the mode selection signal will indicate a particular type of modulation, which includes, but is not limited to, direct sequence spread spectrum (DSSS) using Barker Code Modulation, BPSK, QPSK, complimentary code keying (CCK), 16 QAM and/or 64 QAM.
  • the mode may also include a code rate, a number of coded bits per subcarrier (NBPSC), coded bits per OFDM symbol (NCBPS), and/or data bits per OFDM symbol (NDBPS).
  • the mode may also indicate a particular channelization for the corresponding mode that provides a channel number and corresponding center frequency.
  • the mode may further indicate a power spectral density mask (e.g., bandwidth) value and a number of antennas to be initially used for a MIMO communication.
  • the baseband processing module 12 based on the mode, produces one or more outbound symbol streams 30 from the outbound data 28. For example, if the mode indicates that a single transmit antenna is being utilized for the particular mode that has been selected, the baseband processing module 12 will produce a single outbound symbol stream 104. Alternatively, if the mode indicates 2, 3 or 4 antennas (e.g., a MIMO transmission), the baseband processing module 12 produces 2, 3 or 4 outbound symbol streams 30 from the outbound data 28 as will be discussed with reference to Figure 2 .
  • each of the RF transmitters 16 includes a digital filter and upsampling module, a digital to analog conversion module, an analog filter module, a frequency up conversion module, a power amplifier, and/or a radio frequency bandpass filter to convert one of the outbound symbol streams 30 into one of outbound first radio frequency band signals 32 when in the first mode (e.g., first frequency band mode) and to convert one of the outbound symbol streams 30 into one of the outbound second radio frequency band signals 32 when in the second mode (e.g., second frequency band mode).
  • first mode e.g., first frequency band mode
  • second mode e.g., second frequency band mode
  • each transmitter 16 may include a first transmitter for operation in the first frequency band and a second transmitter for operation in the second frequency band.
  • the first transmitter is enabled to convert one of the outbound symbol streams 30 into one of the outbound first radio frequency band signals 32 when in the first mode.
  • the second transmitter is enabled to convert the one outbound symbol streams 30 into one of the outbound second radio frequency band signals 32.
  • each of the transmitters 16 is a wide band transmitter.
  • the wide band transmitter when the radio is in a first mode (e.g., operable in the first frequency band), the wide band transmitter is enabled to convert one of the outbound symbol streams 30 into one of the outbound first radio frequency band signals 32.
  • the radio when the radio is in the second mode (e.g., operable in the second frequency band), the wide band transmitter is enabled to convert the one plurality of outbound symbol streams 30 into one of the outbound second radio frequency band signals 32.
  • the RF transmitters 16 provide the outbound RF signals 32 to the transmit/receive isolation modules 18 (e.g., a TR switch, an isolator, a duplexer, a circulator, a transformer balun, etc.), which provides the outbound RF signals 32 to the diplexer 34, the four port decoupling module 20, and antennas 22.
  • a first transmit/receive isolation module 18 is operably coupled to a first diplexer 34 and is operable to isolate a first inbound RF signal 36 in the first or second frequency band from a first outbound RF signal 32 in the first or second frequency band.
  • a second transmit/receive isolation module 18 9s operably coupled to a second diplexer 34 and is operable to isolate a second one of the inbound RF signals 36 in the first or second frequency band from a second one of the outbound RF signals 32 in the first or second frequency band.
  • the diplexers 34 For first frequency band outbound RF signals, the diplexers 34 provide them to the first frequency band antennas 22 (band 1). For second frequency band outbound RF signals, the diplexers provide them to the 4-port decoupling module 20, which, in turn, provides them to the second frequency band antennas 22 (band 2).
  • the antennas 22 (band I and band 2 (e.g., 5 GHz and 2.4 GHz)) are of a small form factor to provide high isolation between the antennas 22 and may be fabricated to physically conform to a WLAN MIMO USB dongle.
  • the four port decoupling module 20 may provide isolation between ports of up to 30 dB, or more, with a 10 dB return loss to support a broad bandwidth (e.g., 2390 MHz - 2580 MHz for a monopole application and 2400 MHz - 2520 MHz for a dipole application). Still further, the four port decoupling module 20 may provide a peak gain of about -1.6 dBi for a monopole application and -2.5 dBi for a dipole application. Even further, the four port decoupling module 20 can be tuned to provide a desired input and/or output impedance within a given frequency range (e.g., 2.4 GHz, 5 GHz, etc.).
  • a desired input and/or output impedance within a given frequency range (e.g., 2.4 GHz, 5 GHz, etc.).
  • the antennas 22 When the transceiver is in a receive first frequency band mode, the antennas 22 (band 1) provide the inbound RF signals 36 to the diplexers 34, which, in turn, provide them to the transmit/receive isolation modules 18.
  • the transmit/receive isolation module 18 provides the inbound RF signals 36 to one or more RF receivers 24.
  • the antennas 22 When the transceiver is in a receive second frequency band mode, the antennas 22 (band 2) provide the inbound RF signals 36 to the 4-port decoupling module 20, which isolates the inbound RF signals 36 and provides them to the diplexers 34.
  • the diplexers provide the second frequency band inbound RF signals to the transmit/receive isolation modules 18, which, in turn, provide them to the RF receiver section.
  • the receiver section converts the inbound first radio frequency band signals 36 into a plurality of inbound symbol streams 38.
  • the receiver section includes a plurality of wide band receivers, wherein each of the wide band receiver is operable to convert one of inbound first radio frequency band signals into one of the inbound symbol streams.
  • the receiver section includes a plurality of first frequency band receivers and a plurality of second frequency band receivers, wherein each of the first frequency band receiver is operable to convert one of the inbound first radio frequency band signals into one of the inbound symbol streams.
  • the receiver section converts the inbound second radio frequency band signals into the inbound symbol streams.
  • the receiver section includes a plurality of wide band receivers, wherein each of the plurality of wide band receiver is operable to convert one of the inbound second radio frequency band signals into one of the inbound symbol streams.
  • the receiver section includes a plurality of first frequency band receivers and plurality of second frequency band receivers, wherein each of the plurality of second frequency band receiver is operable to convert one of the inbound second radio frequency band signals into the one of the inbound symbol streams.
  • the receive section provides the inbound symbol streams 38 to the baseband processing module 12.
  • the baseband processing module 12 converts, in accordance with the digital receiver functions, the inbound symbol streams 38 into inbound data 40.
  • the baseband received processing is discussed in greater detail with reference to Figure 3 .
  • FIG. 2 is a functional schematic block diagram of baseband transmit processing 100-TX within the baseband processing module 12, which includes an encoding module 42, a puncture module 44, a switch 46, an interleaving module, which may include a plurality of interleaver modules 48-50 or an interleaver and a switching module, a plurality of constellation encoding modules 52-54, a space-time and/or space-frequency block encoding module 56, and a plurality of inverse fast Fourier transform (IFFT) modules 58-60 for converting the outbound data 62 into the outbound symbol stream 64.
  • IFFT inverse fast Fourier transform
  • the baseband transmit processing may include two or more of each of the interleaver modules 48-50, the constellation mapping modules 52-54, and the IFFT modules 58-60 depending on the number of transmit paths.
  • the encoding module 42, puncture module 44, the interleaver modules 48-50, the constellation mapping modules 52-54, and the IFFT modules 58-60 may be function in accordance with one or more wireless communication standards including, but not limited to, IEEE 802.11a, b, g, n.
  • FIG. 3 is a schematic block diagram of baseband receive processing 100-RX that includes a plurality of fast Fourier transform (FFT) modules 66-68, a space-time and/or space-frequency block decoding module 70, a plurality of constellation demapping modules 72-74, a plurality of deinterleaving modules 76-78, a switch 80, a depuncture module 82, and a decoding module 84 for converting a plurality of inbound symbol streams 86 into inbound data 88.
  • the baseband receive processing 100-RX may include two or more of each of the deinterleaving modules 76-78, the constellation demapping modules 72-74, and the FFT modules 66-68.
  • the decoding module 84, depuncture module 82, the deinterleaving modules 76-78, the constellation demapping modules 72-74, and the FFT modules 66-68 may be function in accordance with one or more wireless communication standards including, but not limited to, IEEE 802.11a, b, g, n.
  • a plurality of FFT modules 66-68 is operably coupled to convert a plurality of inbound symbol streams 86 into a plurality of streams of space-time and/or space-frequency block encoded symbols.
  • the space-time and/or space-frequency block decoding module 70 is operably coupled to decode the plurality of streams of space-time and/or space-frequency block encoded symbols into a plurality of streams of data symbols.
  • the plurality of constellation demapping modules 72-74 is operably coupled to demap the plurality of streams of data symbols into a plurality of interleaved streams of data.
  • the plurality of deinterleaving modules 76-78 is operably coupled to deinterleave the plurality of interleaved streams of data into encoded data.
  • the decoding module 84 is operably coupled to convert the encoded data into inbound data 88.
  • the space-time and/or space-frequency block decoding module 70 performs an inverse function of the space-time and/or space-frequency block coding module 56 of Figure 2 .
  • the encoding module 42 is operably coupled to convert outbound data 62 into encoded data in accordance with one or more wireless communication standards.
  • the puncture module 44 punctures the encoded data to produce punctured encoded data.
  • the plurality of interleaver modules 48-50 is operably coupled to interleave the punctured encoded data into a plurality of interleaved streams of data.
  • the plurality of constellation mapping modules 52-54 is operably coupled to map the plurality of interleaved streams of data into a plurality of streams of data symbols, wherein each data symbol of the stream of data symbols includes one or more complex signal.
  • the space-time and/or space-frequency block encoding module 56 which will be described in greater detail with reference to Figures 4 - 8 , is operably coupled to encode a plurality of complex signals (e.g., at least two complex signals) into a plurality of space-time and/or space-frequency block encoded signals.
  • the plurality of IFFT modules 58-60 is operably coupled to convert the plurality of space-time and/or space-frequency block encoded signals into a plurality of outbound symbol streams 64.
  • FIG. 4 is a schematic block diagram of an embodiment of the diplexers 34 and the four port isolation module 20.
  • the 4-port decoupling module includes a first pair of ports (e.g., P1 and P3), a second pair of ports (e.g., P2 and P4), a first inductor-capacitor network (e.g., C1 and L1) coupled to the first, third, and fourth ports, and a second inductor-capacitor network (e.g., C2 and L2) coupled to the second, third, and fourth ports.
  • a first pair of ports e.g., P1 and P3
  • a second pair of ports e.g., P2 and P4
  • a first inductor-capacitor network e.g., C1 and L1
  • a second inductor-capacitor network e.g., C2 and L2 coupled to the second, third, and fourth ports.
  • the first inductor-capacitor networking may include at least one adjustable capacitor to facilitate tuning of the first inductor-capacitor network and the second inductor-capacitor networking may include at least another adjustable capacitor to facilitate tuning of the second inductor-capacitor network.
  • the capacitance of the capacitors and the inductance of the inductors are selected to provide a desired level of isolation between the ports and a desired impedance within a given frequency range.
  • capacitance and inductances are chosen such that at 2.45 GHz and at 5 Ghz an isolation of greater than 25 dBm is achievable.
  • Each of the diplexers 34 includes three connections (e.g., ports, wireless, terminals, etc.), a capacitor-inductor network, and an inductor-capacitor network.
  • the first connection is coupled to the T/R isolation module 18, the second connection is coupled to an antenna of the first frequency band antenna assembly, and the third connection is coupled to ports P1 and P2 of the 4-port decoupling network 20.
  • the capacitor-inductor network is coupled to the first connection and the second connection and includes two series capacitors and an inductor.
  • the inductor-capacitor network is coupled to the first connection and the third connection and includes two series inductors and a capacitor. Collectively, the inductors and capacitors provide frequency domain multiplexing between the two bands (e.g., 2.4 GHz and 5 GHz).
  • Figure 5 is a schematic block diagram of another embodiment of a four port decoupling module 20 that includes four ports (P1-P4) and current steering circuits 90.
  • the current steering circuits 90 may be uni-directional (e.g., for transmit signals or for receive signals) and/or may be bi-directional (e.g., both transmit and receive signals).
  • the current steering circuits 90 which may be capacitors, inductors, transistors, and/or other analog circuits, steers current in a desired direction at a desired level to effectively provide isolation between the ports.
  • Figure 6 is a diagram of an embodiment of an antenna structure that includes the diplexers 34, a four port decoupling module 20, first frequency band antenna assembly, and a second frequency band antenna assembly.
  • the second frequency band antenna assembly includes a first pair of antennas (e.g., antennas 1 and 2 of band 2) and the first frequency band antenna assembly including a second pair of antennas (e.g., antennas I and 2 of band 1).
  • a first antenna (e.g., antenna #1 of band 2) of the first frequency band antenna assembly includes a first antenna section on the opposite side of the substrate (e.g., the bottom) and a second antenna section on the edge of the substrate.
  • the first antenna section is coupled to the second antenna section and to the 4-port decoupling module and is substantially perpendicular to the second antenna section.
  • the second antenna of the first pair of antennas (e.g., antenna #2 of band 2) includes a third antenna section on the one side of the substrate and a fourth antenna section on the opposite edge of the substrate.
  • the third antenna section is coupled to the fourth antenna section and to the 4-port decoupling module and is substantially perpendicular to the fourth antenna section.
  • a first antenna (e.g., antenna #1 of band 1) of the second pair of antennas is on one side of the substrate and is within the first pair of antennas.
  • a second antenna (e.g., antenna #2 of band 2) of the second pair of antennas is on an opposite side of the substrate and is within the first pair of antennas.
  • the substrate may be an FR4 printed circuit board that has a size of 20mm x 68 mm with a thickness of 1mm and that the radiator portion of the lower band antenna structure may be 20 mm x 18 mm such that the distance between the antennas is about 20 mm.
  • Figure 7 is a diagram of an embodiment of an antenna structure that includes the 4 port decoupling module 20, the diplexers 34, the first band antenna pair, and the second band antenna pair.
  • the trace width of the antennas may be 0.5 mm and the entire antenna structure may have an overall dimension of 18 mm by 20 mm.
  • Figure 8 is a close-up diagram of an embodiment of a portion of the second band antenna.
  • the traces may have a length of 1.2mm and a width of 0.5 mm.
  • the distance between adjacent traces on a give side of the substrate is 0.2 mm.
  • the height of the vias is 1mm and the vias are spaced at 0.7 mm.
  • Each via may have a diameter of 0.25 mm.
  • Figure 9 is a diagram and mathematical representation of an embodiment of an antenna.
  • FIG 10 is a diagram and mathematical representation of an embodiment of a four port decoupling module.
  • Voltages e.g., v1-v4
  • currents e.g., i1-14, i13, i14, i23, ans i24
  • KCL Kirchhoff's current law
  • KVL Kirkhoff's voltage law
  • capacitor equations inductor equations, and/or matrix analysis.
  • the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
  • the term(s) "operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
  • inferred coupling i.e., where one element is coupled to another element by inference
  • the term "operable to” or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items.
  • the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
  • transistors in the above described figure(s) is/are shown as field effect transistors (FETs), as one of ordinary skill in the art will appreciate, the transistors may be implemented using any type of transistor structure including, but not limited to, bipolar, metal oxide semiconductor field effect transistors (MOSFET), N-well transistors, P-well transistors, enhancement mode, depletion mode, and zero voltage threshold (VT) transistors.
  • FETs field effect transistors
  • MOSFET metal oxide semiconductor field effect transistors
  • N-well transistors N-well transistors
  • P-well transistors P-well transistors
  • enhancement mode enhancement mode
  • depletion mode depletion mode
  • VT zero voltage threshold

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (14)

  1. Zweiband-Antennenstruktur mit hoher Isolation mit:
    einer Diplexereinheit (34) zum Multiplexen in der Frequenzdomäne zwischen einem ersten Frequenzband und einem zweiten Frequenzband;
    einem 4-Port-Enkopplungsmodul (20), das betriebsbereit an die Diplexereinheit (34) gekoppelt und dazu betreibbar ist, ein erstes Paar von Ports von einem zweiten Paar von Ports zu isolieren;
    einer Antennenanordnung des ersten Frequenzbands (22, Band 1), die betriebsbereit mit der Diplexereinheit (34) gekoppelt und dazu betreibbar ist, Drahtlossignale in dem ersten Frequenzband zu senden und zu empfangen; und
    einer Antennenanordnung des zweiten Frequenzbands (22, Band 2), die betriebsbereit an einen Port in jedem des ersten und zweiten Paars von Ports gekoppelt und dazu betreibbar ist, Drahtlossignale in dem zweiten Frequenzband zu senden und zu empfangen, wobei
    das 4-Port-Entkopplungsmodul (20) aufweist:
    das erste Paar von Ports, das einen ersten Port (P1) und einen dritten Port (P3) aufweist;
    das zweite Paar von Ports, das einen zweiten Port (P2) und einen vierten Port (P4) aufweist;
    ein erstes Induktor-Kondensator-Netzwerk (L1, C1), das an den ersten, dritten und vierten Port gekoppelt ist; und
    ein zweites Induktor-Kondensator-Netzwerk (L2, C2), das an den zweiten, dritten und vierten Port gekoppelt ist, wobei der erste und zweite Port an die Diplexereinheit (34) gekoppelt sind und der dritte und vierte Port an die Antennenanordnung des zweiten Frequenzbands (22, Band 2) gekoppelt sind.
  2. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 1, wobei die Diplexereinheit aufweist:
    einen ersten Diplexer, der dazu betreibbar ist, in der Frequenzdomäne zu multiplexen zwischen dem ersten Frequenzband und dem zweiten Frequenzband für einen ersten MIMO (Multiple Input Multiple Output) -Pfad; und
    einen zweiten Diplexer, der dazu betreibbar ist, in der Frequenzdomäne zu multiplexen zwischen dem ersten Frequenzband und dem zweiten Frequenzband für einen zweiten MIMO-Pfad.
  3. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 2, wobei jeder des ersten und des zweiten Diplexers aufweist:
    eine erste Verbindung;
    eine zweite Verbindung zum Verbinden mit einer Antenne der Antennenanordnung des ersten Frequenzbands;
    eine dritte Verbindung zum Verbinden mit einem anderen Port in jedem des ersten und zweiten Paars von Ports;
    ein Kondensator-Induktor-Netzwerk, das an die erste Verbindung und die zweite Verbindung gekoppelt ist; und
    ein Induktor-Kondensator-Netzwerk, das an die erste Verbindung und die dritte Verbindung gekoppelt ist.
  4. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 1, die des Weiteren aufweist:
    ein Substrat;
    wobei die Antennenanordnung des zweiten Frequenzbands ein erstes Paar von Antennen aufweist, wobei wenigstens ein Teil einer ersten Antenne des ersten Paars von Antennen an einer Kante des Substrats vorliegt und wenigstens ein Teil der zweiten Antenne des ersten Paars von Antennen an einer gegenüberliegenden Kante des Substrats vorliegt;
    wobei die Antennenanordnung des ersten Frequenzbands ein zweites Paar von Antennen aufweist, wobei eine erste Antenne des zweiten Paars von Antennen auf einer Seite des Substrats und innerhalb des ersten Paars von Antennen vorliegt, und eine zweite Antenne des zweiten Paars von Antennen auf einer gegenüberliegenden Seite des Substrats und innerhalb des ersten Paars von Antennen vorliegt.
  5. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 4, die des Weiteren aufweist:
    die erste Antenne des ersten Paars von Antennen, die aufweist:
    einen ersten Antennenabschnitt auf der gegenüberliegenden Seite des Substrats; und
    einen zweiten Antennenabschnitt an der Kante des Substrats, wobei der erste Antennenabschnitt an den zweiten Antennenabschnitt und an das 4-Port-Entkopplungsmodul gekoppelt ist, und wobei der erste Antennenabschnitt im Wesentlichen senkrecht zu dem zweiten Antennenabschnitt ist; und
    die zweite Antenne des ersten Paars von Antennen, die aufweist:
    einen dritten Antennenabschnitt auf der einen Seite des Substrats; und
    einen vierten Antennenabschnitt an der gegenüberliegenden Kante des Substrats, wobei der dritte Antennenabschnitt an den vierten Antennenabschnitt und an das 4-Port-Entkopplungsmodul gekoppelt ist, und wobei der dritte Antennenabschnitt im Wesentlichen senkrecht zu dem vierten Antennenabschnitt ist.
  6. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 1, die des Weiteren aufweist:
    dass das erste Induktor-Kondensator-Netzwerk wenigstens einen einstellbaren Kondensator aufweist, um das Einstellen des ersten Induktor-Kondensator-Netzwerks zu erleichtern; und
    dass das zweite Induktor-Kondensator-Netzwerk wenigstens einen weiteren einstellbaren Kondensator aufweist, um das Einstellen des zweiten Induktor-Kondensator-Netzwerks zu erleichtern.
  7. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 1, die des Weiteren aufweist:
    ein erstes Sende-/Empfangs-Isolationsmodul (18), das betriebsbereit an einen ersten Diplexer der Diplexereinheit gekoppelt ist, wobei das erste Sende-/Empfangs-Isolationsmodul dazu betreibbar ist, erste drahtlose Empfangssignale der Drahtlossignale in dem ersten oder zweiten Frequenzband von ersten drahtlosen Sendesignalen der Drahtlossignale in dem ersten oder zweiten Frequenzband zu isolieren; und
    ein zweites Sende-/Empfangs-Isolationsmodul (18), das betriebsbereit an einen zweiten Diplexer der Diplexereinheit gekoppelt ist, wobei das zweite Sende-/Empfangs-Isolationsmodul dazu betreibbar ist, zweite drahtlose Empfangssignale der Drahtlossignale in dem ersten oder zweiten Frequenzband von zweiten drahtlosen Sendesignalen der Drahtlossignale in dem ersten oder zweiten Frequenzband zu isolieren.
  8. Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 1, die des Weiteren aufweist:
    ein gemeinsames Substrat, das die Diplexereinheit, das 4-Port-Entkopplungsmodul, die Antennenanordnung des ersten Frequenzbands und die Antennenanordnung des zweiten Frequenzbands trägt.
  9. Funkmodul mit
    der Zweiband-Antennenstruktur mit hoher Isolation nach Anspruch 1; und
    einem Empfängerabschnitt, der betreibbar ist zum:
    Umwandeln einer Vielzahl ankommender erster Funkfrequenzbandsignale in eine Vielzahl ankommender Symbolströme in einem ersten Betriebsmodus; und
    Umwandeln einer Vielzahl ankommender zweiter Funkfrequenzbandsignale in die Vielzahl ankommender Symbolströme in einem zweiten Betriebsmodus; und
    einem Senderabschnitt, der betreibbar ist zum:
    Umwandeln einer Vielzahl abgehender Symbolströme in eine Vielzahl abgehender erster Funkfrequenzbandsignale im ersten Modus; und
    Umwandeln der Vielzahl abgehender Symbolströme in eine Vielzahl abgehender zweiter Funkfrequenzbandsignale im zweiten Modus, wobei
    die Drahtlossignale in dem ersten Frequenzband die Vielzahl ankommender und abgehender erster Frequenzbandsignale aufweisen und die Drahtlossignale in dem zweiten Frequenzband die Vielzahl ankommender und abgehender zweiter Frequenzbandsignale aufweisen, und wobei
    die Diplexereinheit zum Multiplexen in der Frequenzdomäne zwischen der Vielzahl ankommender und abgehender erster Frequenzbandsignale und der Vielzahl ankommender und abgehender zweiter Frequenzbandsignale konfiguriert ist.
  10. Funkmodul nach Anspruch 9, das des Weiteren aufweist:
    dass der Empfängerabschnitt eine Vielzahl von Breitbandempfängern (24) aufweist, wobei jeder der Vielzahl von Breitbandempfängern betreibbar ist zum:
    Umwandeln eines der Vielzahl ankommender erster Funkfrequenzbandsignale in einen der Vielzahl ankommender Symbolströme im ersten Betriebsmodus; und
    Umwandeln eines der Vielzahl ankommender zweiter Funkfrequenzbandsignale in einen der Vielzahl ankommender Symbolströme im zweiten Betriebsmodus; und
    dass der Senderabschnitt eine Vielzahl von Breitbandsendern (16) aufweist, wobei jeder der Vielzahl von Breitbandsendern betreibbar ist zum:
    Umwandeln eines der Vielzahl abgehender Symbolströme in eines der Vielzahl abgehender erster Funkfrequenzbandsignale im ersten Modus; und
    Umwandeln des einen der Vielzahl abgehender Symbolströme in eines der Vielzahl abgehender zweiter Funkfrequenzbandsignale im zweiten Modus.
  11. Funkmodul nach Anspruch 9, das des Weiteren aufweist:
    dass der Empfängerabschnitt eine Vielzahl erster Frequenzbandempfänger (24) und eine Vielzahl zweiter Frequenzbandempfänger (24) aufweist, wobei jeder der Vielzahl erster Frequenzbandempfänger betreibbar ist zum:
    Umwandeln eines der Vielzahl ankommender erster Funkfrequenzbandsignale in einen der Vielzahl ankommender Symbolströme im ersten Betriebsmodus; und
    wobei jeder der Vielzahl zweiter Frequenzbandempfänger betreibbar ist zum:
    Umwandeln eines der Vielzahl ankommender zweiter Funkfrequenzbandsignale in den einen der Vielzahl ankommender Symbolströme im zweiten Betriebsmodus; und
    dass der Senderabschnitt eine Vielzahl erster Frequenzbandsender (16) und eine Vielzahl zweiter Frequenzbandsender (16) aufweist, wobei jeder der Vielzahl erster Frequenzbandsender betreibbar ist zum:
    Umwandeln eines der abgehenden Symbolströme in eines der Vielzahl abgehender erster Funkfrequenzbandsignale im ersten Modus; und
    wobei jeder der Vielzahl zweiter Frequenzbandsender betreibbar ist zum:
    Umwandeln des einen der Vielzahl abgehender Symbolströme in eines der Vielzahl abgehender zweiter Funkfrequenzbandsignale im zweiten Modus.
  12. Funkmodul nach Anspruch 9, das des Weiteren aufweist:
    ein Basisbandverarbeitungsmodul (12), das betreibbar ist zum:
    Umwandeln abgehender Daten in die Vielzahl abgehender Symbolströme; und
    Umwandeln der Vielzahl ankommender Symbolströme in ankommende Daten.
  13. Funkmodul nach Anspruch 9, wobei die Diplexereinheit aufweist:
    einen ersten Diplexer, der dazu betreibbar ist, in der Frequenzdomäne zu multiplexen zwischen einem der Vielzahl ankommender und abgehender erster Frequenzbandsignale und einem der Vielzahl ankommender und abgehender zweiter Frequenzbandsignale für einen ersten MIMO (Multiple Input Multiple Output) -Pfad; und
    einen zweiten Diplexer, der dazu betreibbar ist, in der Frequenzdomäne zu multiplexen zwischen einem anderen der Vielzahl ankommender und abgehender erster Frequenzbandsignale und einem anderen der Vielzahl ankommender und abgehender zweiter Frequenzbandsignale für einen zweiten MIMO-Pfad.
  14. Funkmodul nach Anspruch 13, wobei jeder der ersten und zweiten Diplexer aufweist:
    eine erste Verbindung;
    eine zweite Verbindung zum Koppeln an eine Antenne der Antennenanordnung des ersten Frequenzbands;
    eine dritte Verbindung zum Koppeln an einen anderen Port in jedem der ersten und zweiten Paare von Ports;
    ein Kondensator-Induktor-Netzwerk, das an die erste Verbindung und die zweite Verbindung gekoppelt ist; und
    ein Induktor-Kondensator-Netzwerk, das an die erste Verbindung und die dritte Verbindung gekoppelt ist.
EP11001827.2A 2010-03-22 2011-03-04 Zweiband-WLAN-MIMO-Antennenstruktur mit hoher Isolation Active EP2372843B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31609410P 2010-03-22 2010-03-22
US12/985,527 US9166644B2 (en) 2010-02-01 2011-01-06 Transceiver and antenna assembly
US13/031,309 US8958845B2 (en) 2010-03-22 2011-02-21 Dual band WLAN MIMO high isolation antenna structure

Publications (3)

Publication Number Publication Date
EP2372843A2 EP2372843A2 (de) 2011-10-05
EP2372843A3 EP2372843A3 (de) 2013-05-01
EP2372843B1 true EP2372843B1 (de) 2014-12-31

Family

ID=44647195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11001827.2A Active EP2372843B1 (de) 2010-03-22 2011-03-04 Zweiband-WLAN-MIMO-Antennenstruktur mit hoher Isolation

Country Status (5)

Country Link
US (1) US8958845B2 (de)
EP (1) EP2372843B1 (de)
CN (1) CN102201614B (de)
HK (1) HK1161773A1 (de)
TW (1) TWI513108B (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201112839D0 (en) * 2011-07-26 2011-09-07 Univ Birmingham Multi-output antenna
CN102593581A (zh) * 2012-03-29 2012-07-18 福建星网锐捷网络有限公司 单元天线振子、mimo天线及无线局域网设备
EP2834881B1 (de) * 2012-04-04 2019-12-11 HRL Laboratories, LLC Antennenarray mit breitbandiger reaktanzreduktion
TWI528468B (zh) 2012-05-30 2016-04-01 國立中山大學 多輸入輸出天線、其天線單元及具有天線之系統封裝
US8774068B2 (en) 2012-10-11 2014-07-08 Sony Corporation Dual swapping switches to meet linearity demands of carrier aggregation
US9203144B2 (en) * 2012-12-06 2015-12-01 Microsoft Technology Licensing, Llc Reconfigurable multiband antenna decoupling networks
US20140194074A1 (en) * 2013-01-07 2014-07-10 Motorola Mobility Llc Method and apparatus for wireless communicationdevice multiband tunable radio architecture
JP5914746B2 (ja) * 2013-02-22 2016-05-11 株式会社日立製作所 無線通信システム、送信機、受信機、昇降機制御システム、及び、変電設備監視システム
US9543644B2 (en) * 2014-07-01 2017-01-10 The Chinese University Of Hong Kong Method and an apparatus for decoupling multiple antennas in a compact antenna array
TWI550954B (zh) * 2014-12-26 2016-09-21 瑞昱半導體股份有限公司 天線組與天線隔離度增強方法
WO2016145596A1 (zh) 2015-03-16 2016-09-22 华为技术有限公司 具有可调去耦结构的mimo天线
US10431891B2 (en) * 2015-12-24 2019-10-01 Intel IP Corporation Antenna arrangement
WO2017127062A1 (en) * 2016-01-20 2017-07-27 Hewlett Packard Development Company, L.P. Dual-band wireless lan antenna
CN108886352B (zh) * 2016-04-11 2022-07-22 株式会社村田制作所 复合滤波器装置、高频前端电路以及通信装置
DE102016014589B4 (de) * 2016-12-05 2018-10-04 KATHREIN Sachsen GmbH Antennenanordnung
CN106897765A (zh) * 2017-03-03 2017-06-27 上海巽晔计算机科技有限公司 一种安全性高的电子标签
US11075442B2 (en) 2017-05-31 2021-07-27 Huawei Technologies Co., Ltd. Broadband sub 6GHz massive MIMO antennas for electronic device
US10615486B2 (en) 2017-06-28 2020-04-07 Intel IP Corporation Antenna system
US10840596B2 (en) * 2018-05-22 2020-11-17 Plume Design, Inc. Tunable antenna system for Bluetooth and Wi-Fi bands with electronically-reconfigurable and mechanically-identical antennas
US11146306B2 (en) * 2019-01-15 2021-10-12 Qualcomm Incorporated Isolation among I/O ports
US10985799B1 (en) 2020-01-15 2021-04-20 Shure Acquisition Holdings, Inc. Bi-directional multi-band frequency manager for a wireless microphone system
US20240072455A1 (en) * 2022-08-23 2024-02-29 Intel Corporation Methods and devices for antenna sharing using a radiohead in a distributed radio system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW382833B (en) 1996-12-18 2000-02-21 Allen Telecom Inc Antenna with diversity transformation
DE19842706A1 (de) * 1998-09-17 2000-03-23 Siemens Ag Mehrband-Antennenschalter
WO2003030298A1 (en) * 2001-08-23 2003-04-10 Broadcom Corporation Apparatus for generating a magnetic interface and applications of the same
ATE434291T1 (de) * 2004-03-30 2009-07-15 Tdk Corp Diplexer- und anpass-schaltung
GB0426443D0 (en) * 2004-12-02 2005-01-05 Koninkl Philips Electronics Nv Distributed diplexer
JP2006166261A (ja) * 2004-12-09 2006-06-22 Matsushita Electric Ind Co Ltd 携帯無線機
US20070002722A1 (en) * 2005-06-30 2007-01-04 Georgios Palaskas Device, system and method of crosstalk cancellation
JP2007036315A (ja) * 2005-07-22 2007-02-08 Tdk Corp 高周波電子部品
WO2007039071A2 (en) * 2005-09-19 2007-04-12 Fractus, S.A. Antenna set, portable wireless device, and use of a conductive element for tuning the ground-plane of the antenna set
US20070123174A1 (en) * 2005-11-28 2007-05-31 Wiessner Randy A Device and method for single connector access to multiple transceivers
US8049676B2 (en) * 2006-06-12 2011-11-01 Broadcom Corporation Planer antenna structure
WO2008059509A2 (en) * 2006-11-16 2008-05-22 Galtronics Ltd Compact antenna
US9130267B2 (en) * 2007-03-30 2015-09-08 Fractus, S.A. Wireless device including a multiband antenna system
US7605760B2 (en) * 2007-04-20 2009-10-20 Samsung Electronics Co., Ltd. Concurrent mode antenna system
TWM330583U (en) * 2007-09-13 2008-04-11 Wistron Neweb Corp Wide-band antenna and related dual-band antenna
US7586460B2 (en) * 2007-10-15 2009-09-08 Sony Ericsson Mobile Communications Ab Dongle device with integrated antenna assembly
JP5073517B2 (ja) * 2008-01-29 2012-11-14 パナソニック株式会社 Mimoアンテナ装置及びそれを備えた無線通信装置
EP2319121B1 (de) * 2008-08-04 2023-09-06 Ignion, S.L. Antennenlose drahtlose einrichtung zum betrieb in mehreren frequenzregionen

Also Published As

Publication number Publication date
CN102201614A (zh) 2011-09-28
CN102201614B (zh) 2015-01-21
EP2372843A3 (de) 2013-05-01
TWI513108B (zh) 2015-12-11
EP2372843A2 (de) 2011-10-05
US20110228713A1 (en) 2011-09-22
HK1161773A1 (en) 2012-08-03
TW201205957A (en) 2012-02-01
US8958845B2 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
EP2372843B1 (de) Zweiband-WLAN-MIMO-Antennenstruktur mit hoher Isolation
US9166644B2 (en) Transceiver and antenna assembly
KR100981143B1 (ko) 집적회로 안테나 구조체
KR100975544B1 (ko) 조정가능 집적회로 안테나 구조체
KR101024047B1 (ko) 집적회로 mems 안테나 구조체
US9065177B2 (en) Three-dimensional antenna structure
US8014732B2 (en) Programmable antenna assembly and applications thereof
US7979033B2 (en) IC antenna structures and applications thereof
US7595766B2 (en) Low efficiency integrated circuit antenna
US7839334B2 (en) IC with a 55-64 GHz antenna
US7894777B1 (en) IC with a configurable antenna structure
US8570222B2 (en) Antenna structures and applications thereof
EP2642594B1 (de) Programmierbare Antenne mit einem programmierbaren Substrat
TWI487188B (zh) 三維天線結構
Ge et al. Antennas and Circuits for 5G Mobile Communications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110304

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/10 20060101ALI20130325BHEP

Ipc: H01Q 21/28 20060101AFI20130325BHEP

Ipc: H01Q 5/01 20060101ALI20130325BHEP

Ipc: H01Q 1/22 20060101ALI20130325BHEP

Ipc: H01Q 21/30 20060101ALI20130325BHEP

Ipc: H04B 1/00 20060101ALI20130325BHEP

17Q First examination report despatched

Effective date: 20130417

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011012624

Country of ref document: DE

Effective date: 20150226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141231

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 704873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011012624

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160322

Year of fee payment: 6

Ref country code: FR

Payment date: 20160322

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011012624

Country of ref document: DE

Representative=s name: BOSCH JEHLE PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011012624

Country of ref document: DE

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LT, SG

Free format text: FORMER OWNER: BROADCOM CORP., IRVINE, CALIF., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011012624

Country of ref document: DE

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE., SG

Free format text: FORMER OWNER: BROADCOM CORP., IRVINE, CALIF., US

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20171005 AND 20171011

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011012624

Country of ref document: DE

Representative=s name: BOSCH JEHLE PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011012624

Country of ref document: DE

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LT, SG

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE, SG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240311

Year of fee payment: 14