EP2372260B1 - Method for heating water according to the circulation principle and water heating system - Google Patents

Method for heating water according to the circulation principle and water heating system Download PDF

Info

Publication number
EP2372260B1
EP2372260B1 EP11159320.8A EP11159320A EP2372260B1 EP 2372260 B1 EP2372260 B1 EP 2372260B1 EP 11159320 A EP11159320 A EP 11159320A EP 2372260 B1 EP2372260 B1 EP 2372260B1
Authority
EP
European Patent Office
Prior art keywords
heating fluid
water
outlet temperature
set point
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11159320.8A
Other languages
German (de)
French (fr)
Other versions
EP2372260A3 (en
EP2372260A2 (en
Inventor
Bernulf Goesling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2372260A2 publication Critical patent/EP2372260A2/en
Publication of EP2372260A3 publication Critical patent/EP2372260A3/en
Application granted granted Critical
Publication of EP2372260B1 publication Critical patent/EP2372260B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters

Definitions

  • the invention relates to a method for heating water of variable volume flow according to the flow principle according to the preamble of claim 1, wherein a heat generator heated by a pump in a circulating heating fluid, the heating fluid heated in a run water, at least one in a waterway arranged sensor measures an outlet temperature Tw and / or a volume flow Vw of the water, and at least one arranged in a Walkerfluidweg sensor measures at least one Walkerfluidtemperatur T H of the heating fluid.
  • the invention relates to a water heating system according to the flow principle according to the preamble of claim 7 with a heat generator, a heated by the heat generator heating fluid circuit, which is funded by a pump, heated by Schufluid Vietnamese water passage, at least one arranged in a waterway sensor for detecting an outlet temperature Tw , an inlet temperature T K and / or a volumetric flow Vw of the water, as well as at least one arranged in a Schufluidweg sensor for detecting at least one Schufluidtemperatur T H of the heating fluid.
  • Combination heaters can solve two heating tasks, such as hot water heating for room heating and domestic hot water for applications in the kitchen and sanitary area.
  • a heater arranged in the heater (heat source) via a primary heat exchanger heats a circulating heating fluid (heating water), which is conveyed in a space heating mode by a pump (circulation pump) from the heater via flow and return lines to the rooms to be heated and there emits the heat, for example via space heaters (consumers, heat sink) to the room.
  • a diverter valve directs the heating fluid to a secondary heat exchanger (eg, plate heat exchanger), often also located in the heater, where it transfers the heat to a flowing drinking water.
  • the drinking water usually flows under the pressure prevailing in the supply line through the secondary heat exchanger is heated here by heat release from the side of the heating fluid and exits with a volume flow corresponding to an opening cross section at a downstream tap fitting for use.
  • the heat generator may be a burner fueled with fuel oil or natural gas, but also a heat generator operating with electrical energy.
  • the heat generator can switch its heat output on and off and, as a rule, also modulate it between a minimum power different from zero and a maximum power (nominal power).
  • a minimum power different from zero and a maximum power nominal power
  • a maximum power nominal power
  • drinking water of different volume flows can be heated.
  • a set DHW temperature as well as minimum and maximum outflow temperatures can be set via a thermostat, a control unit and / or other components.
  • the amount of a request made to the heat source heat demand to achieve the target hot water temperature results from the drinking water volume flow, the temperature of the incoming into the secondary heat exchanger cold drinking water (inlet temperature), the set temperature of expiring from the secondary heat exchanger warm drinking water (hot water, outlet setpoint temperature) and the efficiency chain for the heat transfer between heat generator and domestic hot water.
  • a burner operated with fuel oil or natural gas heats a heating fluid via a corrosion-resistant primary heat exchanger.
  • the humidity of the fuel gas produced by the burner condenses in the primary heat exchanger, whereby the energy yield is increased by the condensation heat (condensing effect).
  • the primary heat exchanger must be well cooled, so it is a low Schufluid-return temperature required.
  • the Schuffluidvolumenstrom When the domestic hot water heating with modern combination heaters the Schufluidvolumenstrom is unregulated, so not dependent on the drinking water volume flow, but constantly high, and it is for example at small drinking water flow rates significantly higher than the drinking water volume flow itself EP 0226246 A1 a heater is known in which the drinking water preparation, a heat exchanger is acted upon by a constant heating volume flow, the burner is modulated in certain areas. This results in relatively high Schufluid-return temperatures, especially at low drinking water flow rates that reduce the gross calorific value by their height or completely destroyed. In the mode for domestic hot water preparation, the heater can also be used to charge a domestic hot water tank with warm drinking water.
  • the charging of a stratified charge accumulator is identical to the heating fluid circuit of a combination heater the Tnnkwarmwasser Anlagen.
  • the heat absorbed by the primary heat exchanger is released via the secondary heat exchanger to the drinking water to be heated.
  • the cold water located in the lower part of the storage tank is conveyed through the secondary heat exchanger with a storage loading pump and heated by the heating fluid. After a drinking hot water tap, the temperature in the lower part of the store is just as cold as the inlet temperature of the drinking water in the combi appliance.
  • the accumulator charge pump conveys the cold water from the lower part of the accumulator through the secondary heat exchanger into the upper part of the accumulator.
  • the temperatures are the same as in the combination heater during direct tapping.
  • a fixed set drinking water volume flow is conveyed by the storage loading pump through the secondary heat exchanger. This is usually set by a hydraulic throttle so that the heat generator is operated with a power just below the maximum power. This allows a quick recharge and a high degree of deployment.
  • the main advantage of the stratified storage tank is that until just before the end of the charge, the cold storage water allows a low return temperature in the heating fluid circuit. This increases the efficiency of the charging process for condensing appliances.
  • the setpoint temperature can be achieved in continuous operation and without cycles from the heat generator and the circulation pump.
  • the water inlet temperature or the setpoint temperature must to the same extent change the heat generation energy output.
  • sudden changes in the heat demand can not be fulfilled immediately, but only with a time delay. This is due to the thermal inertia of the heat transfer system consisting of heat generator, primary heat exchanger, heating fluid circuit and secondary heat exchanger. The time delay can lead to overshoots and undershoots in the outlet temperature and the DHW comfort is negatively affected.
  • Some heat generators have a predetermined, unchangeable rate of change (speed), with which the power modulation can be changed. Due to their mass and geometry as well as the specific heat capacity and the thermal conductivity of the material, the heat exchangers have a thermal inertia, which acts like a heat accumulator.
  • the Schufluid Vietnameselauf has its thermal inertia due to its water volume and the mass and the material of the pipe elements used. Only two flow states are known for the heating fluid circuit according to the current state of the art for domestic hot water preparation: circulation at a nominal circulation volume (heating fluid volume) or nominal pump speed and zero circulation when the pump is switched off.
  • Deviation of the outlet temperature from the outlet bottom temperature may result due to changed water volume flows or changed cold water inlet temperatures and affect as a changed heat demand to the heat generator.
  • An arranged in the outlet waterway temperature sensor detects the deviation, then a temperature controller causes an adjustment of the heat generator heat output to the new heat demand, which also changes the Schufluid-flow temperature.
  • the heat output transferred to the water is adjusted only with a time delay and the setpoint temperature is only reached with a time delay. For example, in the event of a sudden increase in the water volume flow, the heat generator heat output and the heating fluid flow temperature will increase and the heat transfer system will adjust to the new heat demand until the outlet temperature returns to the setpoint temperature after an initial undershooting of the setpoint temperature and / or minimum outlet temperature.
  • the outlet temperature becomes the setpoint temperature (and possibly even the maximum in the short term) permissible outlet temperature) initially exceed, until such time as the heat output and the Schufluidvorlauftemperatur correspondingly reduced and the heat transfer system have adapted to the new heat demand.
  • the thermal inertia of the heat transfer system parameters of the temperature control underlying control algorithm 'it may also come to several overshoot and undershoot the outlet temperature to the setpoint temperature.
  • the invention has for its object to provide a method for heating water by the flow principle and a water heating system, which provide the basis for a high utilization of the condensing effect in domestic hot water and react quickly and accurately to changing water flow rates.
  • the method according to the invention for heating water of variable volume flow according to the continuous flow principle in which a heat generator heats a heating fluid conveyed by a pump in a circulation, the heating fluid heats a flow-guided water, at least one sensor arranged in a water flow has an outlet temperature T W and / or measures a volume flow Vw of the water, and at least one arranged in a Walkerfluidweg sensor measures at least one Walkerfluidtemperatur T H of the heating fluid, aims to regulate the outlet temperature Tw of the water to a predetermined target outlet temperature Two.
  • the outlet temperature T W is regulated by means of a change of a modulatable volume flow V H of the heating fluid to the outlet setpoint temperature T W0 .
  • the heating fluid temperature T H is regulated by means of a change in a modulated heat output Q of the heat generator to target heating fluid temperature T H0 .
  • a suitable embodiment of the method is characterized in that if the outlet setpoint temperature T W0 is exceeded by the outlet temperature T W , as may result, for example, with a reduced tap water quantity Vw or at an increased inlet temperature T K , the heating fluid volume flow V H is reduced , And that when falling below the outlet target temperature Two, as may arise, for example, at an increased Wasserzapfmenge Vw or at a reduced inlet temperature T K , the Schufluidvolumenstrom V H is increased. With the reduced or increased Schufluidvolumenstrom V H is accompanied by a reduced or increased heat output to the tap water.
  • a further suitable embodiment of the method is characterized in that when the heating fluid target temperature T H0 is exceeded by the heating fluid temperature T H , as it results, for example, with reduced heat output to the tapping water, the heat source heat output Q is reduced, and if the temperature falls below the Heating fluid target temperature T H0, as it results, for example, with increased heat output to the tap water, the heat source heat output Q is increased.
  • An embodiment of the method is characterized in that a heating fluid target temperature T HV0 in the flow of Schufites by a constant difference amount is greater than the outlet target temperature Two of the water. This temperature increase ensures that even with finitely small secondary heat exchanger, the outlet setpoint temperature Two is safely reached.
  • a particularly suitable embodiment of the method is characterized in that a heating fluid target temperature T HV0 in the flow of Schufites by a difference is greater than the outlet setpoint temperature of the water, the difference being from a water volume flow V W and / or from an inlet temperature T K of the water yields.
  • This adapted temperature increase ensures that the heating fluid temperatures are as low as possible and thereby favor the condensation conditions for the utilization of the condensing effect in the primary heat exchanger.
  • a further embodiment of the method is characterized in that, in the case of a deviation of the outlet temperature Tw from the outlet setpoint temperature Two, in addition to the change in the heating fluid volume flow V H and before the heating fluid temperature T H deviates from the desired heating fluid temperature T H0 , then Heat generator heat output Q is changed.
  • This serves to adapt the thermally inert heat transfer system at an early stage to the changing tapping conditions and to further reduce temperature overshoots and temperature undershoots.
  • a module pump controller via a signal transmission path corresponding control signals to a module heat controller in a controller.
  • the inventive method can be realized for example by two control modules, wherein a first module (“pump controller”) for controlling the Schufluidvolumenstroms and a second module (“heat controller”) is used to control the heat generator heat output.
  • a first module for controlling the Schufluidvolumenstroms
  • a second module is used to control the heat generator heat output.
  • the heat controller to achieve the heating fluid target temperature changes the heat generator capacity and thus also the Schufluidvorlauftemperatur, this change also affects the drinking water outlet temperature.
  • the deviation is compensated by the pump controller by means of a change in the Schufluidvolumenstroms.
  • the pump regulator, the pump and the heating fluid circuit can react quickly and have no trouble balancing the slow change (thermal inertia) of the heating fluid flow temperature.
  • the heat controller reduces the heat generator output until the heating fluid setpoint temperature has been reached, then the pump regulator must inevitably adapt to this change.
  • the volume flow in the heating fluid circuit is automatically adjusted to the volume flow in the drinking water circuit. This results in a noticeable improvement in the heater efficiency, because with the decrease in the drinking water volume flow and the volume flow in the heating circuit decreases and thus the return temperature decreases.
  • the inventive method is similar to changes in the water outlet temperature, which arise when the heat generator in the clock mode, automatically from. If the heating fluid supply temperature exceeds a maximum value, the heat generator must switch off until it drops below a minimum value again. Resulting temperature deviations of the DHW outlet temperature are compensated by the pump controller by changing the Schufluidvolumenstroms.
  • the inventive method is particularly advantageous in heaters in which the primary heat exchanger has a large thermally inert mass, the secondary heat exchanger but a small mass. This is the case, for example, with primary heat exchangers made of cast materials for utilizing condensing technology. As a rule, these have a plate heat exchanger as a secondary heat exchanger with low mass.
  • the method solves or improves all fundamental problems that occur in domestic hot water.
  • the various states of the system heat generator clocks, repeated taps, tap start at very high heat fluid temperature, etc.
  • the failure of the interface to the pump controller does not lead to system failure, because the heat controller still regulates to a constant Schufluidvorlauftemperatur. This reduces the comfort for the customer, but the drinking water operation is still possible.
  • the modulating pump operation improves not only the increase in the heater efficiency because of the almost delay-free response pump and the control quality of the process.
  • the power consumption of the pump is lower because of the more frequent partial load operation.
  • there will be no cost disadvantage since the modulating high-efficiency pumps will presumably be prescribed in the foreseeable future in the important European countries.
  • the invention comprises a water heating system according to the continuous flow principle with a heat generator, a heated by the heat generator, pumped by a pump heating fluid, a heated by the heating fluid, conveyed in the flow, at least one arranged in a waterway sensor for detecting an outlet temperature T W , a Inlet temperature T K and / or a volume flow V W of the water, as well as at least one arranged in a Schufluidweg sensor for detecting at least one Schufluidtemperatur T H of the heating fluid, wherein for controlling the outlet temperature Tw to a predetermined outlet target temperature T W0, the flow rate V H of Schufluid Vietnameselaufs and the heat output Q of the heat generator can be modulated.
  • An embodiment of the water heating system is characterized by a control device connected to the heat generator, the pump and the sensors, which has an input device for setting desired values and / or constants, a control module for Control of the pump and a control module for controlling the heat generator comprises, wherein the control device influences the operation of the connected components and thus controls the outlet temperature T W.
  • Fig. 1 schematically shows a combination heater for room heating and domestic hot water.
  • the heater comprises a heat generator 1 (heat source), a heated by the heat generator 1 via a primary heat exchanger 2 Schufluid Vietnameselauf 3, which is promoted (circulated) by a pump 4, and a connected to the heater heat consumer 5, for example, a space heater 5.
  • the circulating heating fluid (Heat transfer medium) transports the heat from the heat source 1 to the heat consumer 5.
  • the heater For domestic hot water, the heater comprises a working according to the flow principle water heating system with a heated by Schufluid Vietnameselauf 3 via a secondary heat exchanger 6 water flow 7, at least one arranged in a waterway 7 sensor 8, 9 10 for detecting an outlet temperature T W and / or an inlet temperature T K and / or a volumetric flow V W of the water, and at least one arranged in a Schufluidweg 3 sensor 11, 12 for detecting a flow temperature T HV and / or a remindl temperature T HR of the heating fluid.
  • the heat output Q of the heat generator 1 and the volume flow V H of the heating fluid circuit 3 are modulated.
  • the two heating tasks room heating and DHW heating are usually not fulfilled simultaneously, but individually.
  • the heating fluid circuit 3 between the two heat consumers space heater 5 and secondary heat exchanger 6 is switched by means of a switching valve 13.
  • Fig. 2 shows the schematic signal flow plan of a control loop for domestic hot water preparation with the input variable (setpoint) T W0 , the output (outlet temperature) Tw, the controller R, the actuator (heat generator 1) and the manipulated variable Q.
  • the heat generator 1 is the Outlet temperature T W influenced.
  • Fig. 3 shows the schematic signal flow plan of a control circuit for domestic hot water generation according to the present invention with the input value (setpoint) Two, the output (outlet temperature) T W , the controller R with module W (heat controller), module P (pump controller) and signal transmission path S between the two controllers , the actuators (heat generator 1 and pump 4) and the manipulated variables Q and V H.
  • the outlet temperature Tw is influenced.

Description

Die Erfindung betrifft ein Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip nach dem Oberbegriff des Patentanspruches 1, bei dem ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf gefördertes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur Tw und/oder einen Volumenstrom Vw des Wassers misst, und mindestens ein in einem Heizfluidweg angeordneter Messfühler mindestens eine Heizfluidtemperatur TH des Heizfluides misst. Ferner betrifft die Erfindung ein Wassererwärmungssystem nach dem Durchlaufprinzip nach dem Oberbegriff des Patentanspruches 7 mit einem Wärmeerzeuger, einem vom Wärmeerzeuger beheizten Heizfluidkreislauf, der von einer Pumpe gefördert wird, einem vom Heizfluidkreislauf beheizten Wasserdurchlauf, mindestens einem in einem Wasserweg angeordneten Messfühler zum Erfassen einer Auslauftemperatur Tw, einer Einlauftemperatur TK und/oder eines Volumenstroms Vw des Wassers, sowie mindestens einem in einem Heizfluidweg angeordneten Messfühler zum Erfassen mindestens einer Heizfluidtemperatur TH des Heizfluides.The invention relates to a method for heating water of variable volume flow according to the flow principle according to the preamble of claim 1, wherein a heat generator heated by a pump in a circulating heating fluid, the heating fluid heated in a run water, at least one in a waterway arranged sensor measures an outlet temperature Tw and / or a volume flow Vw of the water, and at least one arranged in a Heizfluidweg sensor measures at least one Heizfluidtemperatur T H of the heating fluid. Furthermore, the invention relates to a water heating system according to the flow principle according to the preamble of claim 7 with a heat generator, a heated by the heat generator heating fluid circuit, which is funded by a pump, heated by Heizfluidkreislauf water passage, at least one arranged in a waterway sensor for detecting an outlet temperature Tw , an inlet temperature T K and / or a volumetric flow Vw of the water, as well as at least one arranged in a Heizfluidweg sensor for detecting at least one Heizfluidtemperatur T H of the heating fluid.

Diese Verfahren kommen zum Beispiel in sogenannten Kombinationsheizgeräten zur Anwendung. Kombinationsheizgeräte können zwei Heizaufgaben lösen, beispielsweise eine Warmwasserheizung für die Raumerwärmung sowie eine Trinkwarmwasserbereitung für Anwendungen in Küche und Sanitärbereich. In der Regel erwärmt ein im Heizgerät angeordneter Wärmeerzeuger (Wärmequelle) über einen Primärwärmetauscher ein im Kreislauf fließendes Heizfluid (Heizungswasser), das in einem Raumheizungsmodus von einer Pumpe (Umwälzpumpe) von dem Heizgerät über Vorlauf- und Rücklaufleitungen bis in die zu beheizenden Räume gefördert wird und dort die Wärme beispielsweise über Raumheizkörper (Verbraucher, Wärmesenke) an den Raum abgibt.These methods are used, for example, in so-called combination heaters. Combination heaters can solve two heating tasks, such as hot water heating for room heating and domestic hot water for applications in the kitchen and sanitary area. In general, a heater arranged in the heater (heat source) via a primary heat exchanger heats a circulating heating fluid (heating water), which is conveyed in a space heating mode by a pump (circulation pump) from the heater via flow and return lines to the rooms to be heated and there emits the heat, for example via space heaters (consumers, heat sink) to the room.

In einem Modus zur Trinkwarmwasserbereitung lenkt ein Umschaltventil das Heizfluid zu einem oft ebenfalls im Heizgerät angeordneten Sekundärwärmetauscher (zum Beispiel Plattenwärmetauscher), wo es die Wärme an ein durchfließendes Trinkwasser überträgt. Das Trinkwasser strömt in der Regel unter dem in der Versorgungsleitung herrschenden Vordruck durch den Sekundärwärmetauscher, wird hier durch Wärmeabgabe seitens des Heizfluides erwärmt und tritt mit einem Volumenstrom entsprechend eines Öffnungsquerschnitts an einer stromabwärtigen Zapfarmatur zur Nutzung aus.In a mode for domestic hot water preparation, a diverter valve directs the heating fluid to a secondary heat exchanger (eg, plate heat exchanger), often also located in the heater, where it transfers the heat to a flowing drinking water. The drinking water usually flows under the pressure prevailing in the supply line through the secondary heat exchanger is heated here by heat release from the side of the heating fluid and exits with a volume flow corresponding to an opening cross section at a downstream tap fitting for use.

Der Wärmeerzeuger kann ein mit Heizöl oder Erdgas befeuerter Brenner, aber auch ein mit elektrischer Energie arbeitender Wärmeerzeuger sein. Der Wärmeerzeuger kann seine Wärmeleistung einschalten und ausschalten sowie in der Regel auch zwischen einer von Null verschiedenen Minimalleistung und einer Maximalleistung (Nennleistung) modulieren. Im Trinkwarmwassermodus kann damit Trinkwasser unterschiedlicher Volumenströme erwärmt werden. Für die Trinkwarmwasserbereitung können über einen Thermostaten, ein Regelgerät und/oder andere Komponenten eine Trinkwarmwasser-Solltemperatur sowie minimal und maximal zulässige Auslauftemperaturen vorgegeben werden. Der Betrag einer an den Wärmeerzeuger gestellten Wärmeanforderung zur Erreichung der Trinkwarmwasser-Solltemperatur ergibt sich aus dem Trinkwasservolumenstrom, der Temperatur des in den Sekundärwärmetauscher einlaufenden kalten Trinkwassers (Einlauftemperatur), der Solltemperatur des aus dem Sekundärwärmetauscher auslaufenden warmen Trinkwassers (Trinkwarmwasser, Auslauf-Solltemperatur) und der Wirkungsgradkette für die Wärmeübertragung zwischen Wärmeerzeuger und Trinkwarmwasser.The heat generator may be a burner fueled with fuel oil or natural gas, but also a heat generator operating with electrical energy. The heat generator can switch its heat output on and off and, as a rule, also modulate it between a minimum power different from zero and a maximum power (nominal power). In DHW mode, drinking water of different volume flows can be heated. For DHW heating, a set DHW temperature as well as minimum and maximum outflow temperatures can be set via a thermostat, a control unit and / or other components. The amount of a request made to the heat source heat demand to achieve the target hot water temperature results from the drinking water volume flow, the temperature of the incoming into the secondary heat exchanger cold drinking water (inlet temperature), the set temperature of expiring from the secondary heat exchanger warm drinking water (hot water, outlet setpoint temperature) and the efficiency chain for the heat transfer between heat generator and domestic hot water.

In Brennwertheizgeräten erwärmt ein mit Heizöl oder Erdgas betriebener Brenner über einen korrosionsresistenten Primärwärmetauscher ein Heizfluid. Die Feuchte des vom Brenner erzeugten Heizgases kondensiert im Primärwärmetauscher, wodurch die Energieausbeute um die Kondensationswärme erhöht ist (Brennwerteffekt). Für gute Kondensationsbedingungen muss der Primärwärmetauscher gut gekühlt sein, es wird also eine niedrige Heizfluid-Rücklauftemperatur benötigt. Bei der Trinkwarmwasserbereitung mit heutigen Kombinationsheizgeräten ist der Heizfluidvolumenstrom ungeregelt, also nicht vom Trinkwasservolumenstrom abhängig, sondern konstant hoch, und er ist beispielsweise bei kleinen Trinkwasservolumenströmen deutlich höher als der Trinkwasservolumenstrom selbst. Aus der EP 0226246 A1 ist ein Heizgerät bekannt, bei dem zur Trinkwasserbereitung ein Wärmeübertrager mit einem konstanten Heizvolumenstrom beaufschlagt wird, wobei der Brenner in gewissen Bereichen modulierbar ist. Dadurch ergeben sich, insbesondere bei geringen Trinkwasservolumenströmen, relativ hohe Heizfluid-Rücklauftemperaturen, die durch ihre Höhe den Brennwertnutzen schmälern oder ganz zunichte machen.
In dem Modus zur Trinkwarmwasserbereitung kann das Heizgerät auch zur Aufladung eines Trinkwarmwasserspeichers mit warmem Trinkwasser genutzt werden. Die Aufladung eines Schichtladespeichers ist für den Heizfluidkreis eines Kombinationsheizgerätes identisch mit dem Tnnkwarmwasserbetrieb. Die vom Primärwärmetauscher aufgenommene Wärme wird über den Sekundärwärmetauscher an das zu erwärmende Trinkwasser abgegeben. Bei den heute bekannten Heizgeräten wird dabei die Wärmeerzeugerleistung so moduliert, dass der Speicher bei Solltemperatur beladen wird. Das im unteren Teil des Speichers befindliche kalte Wasser wird mit einer Speicherladepumpe durch den Sekundärwärmetauscher gefördert und dabei vom Heizfluid erwärmt. Nach einer Trinkwarmwasserzapfung ist die Temperatur im unteren Teil des Speichers genau so kalt wie die Einlauftemperatur des Trinkwassers beim Kombigerät. Wenn jetzt die Ladung des Speichers beginnt, fördert die Speicherladepumpe das kalte Wasser aus dem unteren Teil des Speichers durch den Sekundärwärmetauscher in den oberen Teil des Speichers. Die Temperaturen sind dabei die gleichen wie im Kombinationsheizgerät während der Direktzapfung. Allerdings wird von der Speicherladepumpe ein fest eingestellter Trinkwasservolumenstrom durch den Sekundärwärmetauscher gefördert. Dieser ist in der Regel durch eine hydraulische Drossel so eingestellt, dass der Wärmeerzeuger mit einer Leistung knapp unter der maximalen Leistung betrieben wird. Das ermöglicht eine schnelle Nachladung und einen hohen Bereitstellungsgrad. Neben dem hohen Bereitstellungsgrad ist der Hauptvorteil der Schichtladespeicher, dass bis kurz vor Aufladungsende das kalte Speicherwasser eine niedrige Rücklauftemperatur im Heizfluidkreis ermöglicht. Das erhöht den Wirkungsgrad des Ladevorgangs bei Brennwertgeräten.
In condensing boilers, a burner operated with fuel oil or natural gas heats a heating fluid via a corrosion-resistant primary heat exchanger. The humidity of the fuel gas produced by the burner condenses in the primary heat exchanger, whereby the energy yield is increased by the condensation heat (condensing effect). For good condensation conditions, the primary heat exchanger must be well cooled, so it is a low Heizfluid-return temperature required. When the domestic hot water heating with modern combination heaters the Heizfluidvolumenstrom is unregulated, so not dependent on the drinking water volume flow, but constantly high, and it is for example at small drinking water flow rates significantly higher than the drinking water volume flow itself EP 0226246 A1 a heater is known in which the drinking water preparation, a heat exchanger is acted upon by a constant heating volume flow, the burner is modulated in certain areas. This results in relatively high Heizfluid-return temperatures, especially at low drinking water flow rates that reduce the gross calorific value by their height or completely destroyed.
In the mode for domestic hot water preparation, the heater can also be used to charge a domestic hot water tank with warm drinking water. The charging of a stratified charge accumulator is identical to the heating fluid circuit of a combination heater the Tnnkwarmwasserbetrieb. The heat absorbed by the primary heat exchanger is released via the secondary heat exchanger to the drinking water to be heated. In the heaters known today while the heat generator power is modulated so that the memory is loaded at target temperature. The cold water located in the lower part of the storage tank is conveyed through the secondary heat exchanger with a storage loading pump and heated by the heating fluid. After a drinking hot water tap, the temperature in the lower part of the store is just as cold as the inlet temperature of the drinking water in the combi appliance. Now, when the charge of the accumulator begins, the accumulator charge pump conveys the cold water from the lower part of the accumulator through the secondary heat exchanger into the upper part of the accumulator. The temperatures are the same as in the combination heater during direct tapping. However, a fixed set drinking water volume flow is conveyed by the storage loading pump through the secondary heat exchanger. This is usually set by a hydraulic throttle so that the heat generator is operated with a power just below the maximum power. This allows a quick recharge and a high degree of deployment. In addition to the high degree of deployment, the main advantage of the stratified storage tank is that until just before the end of the charge, the cold storage water allows a low return temperature in the heating fluid circuit. This increases the efficiency of the charging process for condensing appliances.

Es können nur solche Wärmeanforderungen, die im Bereich zwischen Minimalleistung und Maximalleistung des Wärmeerzeugers liegen, kontinuierlich und zuverlässig erfüllt werden. Ist die Wärmeanforderung größer als die maximale Wärmeleistung, so wird entweder die Solltemperatur oder der Volumenstrom des Trinkwarmwassers nicht erreicht (unterschritten). Ist die Wärmeanforderung kleiner als die minimale Wärmeleistung, so bleiben der Wärmeerzeuger dauerhaft ausgeschaltet oder muss takten, damit die Solltemperatur beziehungsweise eine maximal zulässige Auslauftemperatur nicht überschritten werden. Takten bedeutet, dass der Wärmeerzeuger bei laufender Umwälzpumpe in kurzen Zeitabständen wiederholt einschaltet und ausschaltet und so im Durchschnitt gemittelte Wärmeleistungen bereitstellen, die kleiner als die minimale Wärmeleistung sind.Only those heat requirements that lie in the range between the minimum power and the maximum power of the heat generator can be fulfilled continuously and reliably. If the heat requirement is greater than the maximum heat output, then either the setpoint temperature or the volume flow of the domestic hot water is not reached (undershot). If the heat demand is less than the minimum heat output, the heat generator remain switched off permanently or must clock, so that the set temperature or a maximum allowable outlet temperature is not exceeded. Clocking means that the heat generator repeatedly switches on and off at short intervals with the circulating pump running, thus providing on average average heat outputs that are smaller than the minimum heat output.

Bei Wärmeanforderungen zur Erwärmung von Wasser, die zwischen einer minimalen und einer maximalen Wärmeerzeugerwärmeleistung liegen, kann die Solltemperatur im Dauerbetrieb und ohne Takten von Wärmeerzeuger und Umwälzpumpe erreicht werden. Bei Änderungen der Wärmeanforderung, wie sie sich beispielsweise aus einer Änderung des Wasservolumenstroms, der Wassereinlauftemperatur oder der Solltemperatur ergeben, muss sich in gleichem Maße auch die Wärmeerzeugenivärmeleistung ändern. Sprunghafte Änderungen der Wärmeanforderung können so in aller Regel jedoch nicht sofort, sondern nur zeitverzögert erfüllt werden. Das liegt an der thermischen Trägheit des aus Wärmeerzeuger, primärem Wärmetauscher, Heizfluidkreislauf und sekundärem Wärmetauscher bestehenden Wärmeübertragungssystems. Durch die Zeitverzögerung kann es zu Überschwingern und Unterschwingern in der Auslauftemperatur kommen und der Warmwasserkomfort wird negativ beeinflusst.In the case of heat requirements for heating water, which lie between a minimum and a maximum heat generator heat output, the setpoint temperature can be achieved in continuous operation and without cycles from the heat generator and the circulation pump. For changes in the heat demand, such as those resulting from a change in the water volume flow, the water inlet temperature or the setpoint temperature, must to the same extent change the heat generation energy output. As a rule, however, sudden changes in the heat demand can not be fulfilled immediately, but only with a time delay. This is due to the thermal inertia of the heat transfer system consisting of heat generator, primary heat exchanger, heating fluid circuit and secondary heat exchanger. The time delay can lead to overshoots and undershoots in the outlet temperature and the DHW comfort is negatively affected.

Manche Wärmeerzeuger haben eine vorgegebene, nicht überschreitbare Änderungsrate (Geschwindigkeit), mit der die Leistungsmodulation verändert werden kann. Die Wärmetauscher haben aufgrund ihrer Masse und Geometrie sowie der spezifischen Wärmekapazität und der Wärmeleitfähigkeit des Materials eine thermische Trägheit, die wie ein Wärmespeicher wirkt. Auch der Heizfluidkreislauf hat aufgrund seines Wasservolumens sowie der Masse und des Materials der verwendeten Rohrleitungselemente seine thermische Trägheit. Für den Heizfluidkreislauf sind nach heutigem Stand der Technik zur Trinkwarmwasserbereitung nur zwei Strömungszustände bekannt: Umwälzung bei nominellem Umwälzvolumen (Heizfluidvolumen) bzw. nomineller Pumpendrehzahl sowie Null-Umwälzung bei ausgeschalteter Pumpe.Some heat generators have a predetermined, unchangeable rate of change (speed), with which the power modulation can be changed. Due to their mass and geometry as well as the specific heat capacity and the thermal conductivity of the material, the heat exchangers have a thermal inertia, which acts like a heat accumulator. The Heizfluidkreislauf has its thermal inertia due to its water volume and the mass and the material of the pipe elements used. Only two flow states are known for the heating fluid circuit according to the current state of the art for domestic hot water preparation: circulation at a nominal circulation volume (heating fluid volume) or nominal pump speed and zero circulation when the pump is switched off.

Abweichungen der Auslauftemperatur von der Auslauf-Soiltemperatur können sich aufgrund von geänderten Wasservolumenströmen oder geänderten Kaltwasser-Einlauftemperaturen ergeben und wirken sich als veränderte Wärmeanforderung an den Wärmeerzeuger aus. Ein im Auslauf-Wasserweg angeordneter Temperaturfühler erkennt die Abweichung, ein Temperaturregler bewirkt daraufhin eine Anpassung der Wärmeerzeugerwärmeleistung an die neue Wärmeanforderung, womit sich auch die Heizfluid-Vorlauftemperatur ändert.Deviation of the outlet temperature from the outlet bottom temperature may result due to changed water volume flows or changed cold water inlet temperatures and affect as a changed heat demand to the heat generator. An arranged in the outlet waterway temperature sensor detects the deviation, then a temperature controller causes an adjustment of the heat generator heat output to the new heat demand, which also changes the Heizfluid-flow temperature.

Ändert sich eine Wärmeanforderung zur Trinkwarmwasserbereitung (z.B. sprunghaft), so wird die an das Wasser übertragene Wärmeleistung nur zeitverzögert angepasst und wird die Solltemperatur nur zeitverzögert erreicht. Beispielsweise wird sich bei einer sprunghaften Erhöhung des Wasservolumenstroms die Wärmeerzeugerwärmeleistung und die Heizfluidvorlauftemperatur solange erhöhen und das Wärmeübertragungssystem an die neue Wärmeanforderung anpassen, bis die Auslauftemperatur nach einer anfänglichen Unterschreitung von Solltemperatur und/oder minimal zulässiger Auslauftemperatur wieder die Solltemperatur erreicht. Bei einer sprunghaften Verringerung des Wasservolumenstroms wird dagegen die Auslauftemperatur die Solltemperatur (und kurzfristig eventuell auch die maximal zulässige Auslauftemperatur) anfänglich überschreiten, und zwar solange, bis sich die Wärmeleistung und die Heizfluidvorlauftemperatur entsprechend verringert und das Wärmeübertragungssystem an die neue Wärmeanforderung angepasst haben. Durch schlecht an die thermische Trägheit des Wärmeübertragungssystems angepasste Parameter eines der Temperaturregelung zugrundeliegenden Regelungsalgorithmus' kann es auch zu mehreren Über- und Unterschwingern der Auslauftemperatur gegenüber der Solltemperatur kommen.If a heat requirement for domestic hot water production changes (eg by leaps and bounds), the heat output transferred to the water is adjusted only with a time delay and the setpoint temperature is only reached with a time delay. For example, in the event of a sudden increase in the water volume flow, the heat generator heat output and the heating fluid flow temperature will increase and the heat transfer system will adjust to the new heat demand until the outlet temperature returns to the setpoint temperature after an initial undershooting of the setpoint temperature and / or minimum outlet temperature. In the event of a sudden decrease in the water volume flow, on the other hand, the outlet temperature becomes the setpoint temperature (and possibly even the maximum in the short term) permissible outlet temperature) initially exceed, until such time as the heat output and the Heizfluidvorlauftemperatur correspondingly reduced and the heat transfer system have adapted to the new heat demand. By poorly adapted to the thermal inertia of the heat transfer system parameters of the temperature control underlying control algorithm 'it may also come to several overshoot and undershoot the outlet temperature to the setpoint temperature.

Aufgrund verstärkter Umweltschutzbestimmungen ist eine Verschärfung der einschlägigen Normen und Vorschriften zur Stromaufnahme und zum thermischen Wirkungsgrad von Heizgeräten zu erwarten. Daher werden im Raumheizungsmodus neuerdings sogenannte Hocheffizienzpumpen angewendet. Sie zeichnen sich neben einer deutlich niedrigeren elektrischen Leistungsaufnahme durch einen wesentlich höheren Modutationsbereich hinsichtlich der Heizfluidförderleistung aus und können ganz verschieden große Heizfluidvolumenströme fördern. Aus der EP 0886110A2 ist ein Verfahren zur Brauchwasserbereitstellung in einem kombinierten System nach dem Oberbegriff des Anspruches 1 bekannt, bei dem die Drehzahl einer Umlaufpumpe in Abhängigkeit von der Temperatur des Heizung- oder des Brauchwassers geregelt wird.Increased environmental regulations mean that stricter standards and regulations regarding the current consumption and thermal efficiency of heating appliances can be expected. Therefore, in the space heating mode, so-called high-efficiency pumps have recently been applied. In addition to a significantly lower electrical power consumption, they are characterized by a considerably higher modutation range with regard to the heating fluid delivery capacity and can promote heating fluid volume flows of very different sizes. From the EP 0886110A2 a method for domestic hot water supply in a combined system according to the preamble of claim 1 is known, in which the rotational speed of a circulation pump is regulated as a function of the temperature of the heating or service water.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und ein Wassererwärmungssystem zu schaffen, die die Grundlage für eine hohe Ausnutzung des Brennwerteffekts bei der Trinkwarmwasserbereitung bieten und schnell und präzise auf sich ändernde Wasservolumenströme reagieren.The invention has for its object to provide a method for heating water by the flow principle and a water heating system, which provide the basis for a high utilization of the condensing effect in domestic hot water and react quickly and accurately to changing water flow rates.

Erfindungsgemäß wird dies durch die Gegenstände mit den Merkmalen der Patentansprüche 1 und 7 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.This is achieved by the objects with the features of claims 1 and 7 according to the invention. Advantageous developments can be found in the dependent claims.

Das erfindungsgemäße Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip, bei dem ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf gefördertes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur TW und/oder einen Volumenstrom Vw des Wassers misst, und mindestens ein in einem Heizfluidweg angeordneter Messfühler mindestens eine Heizfluidtemperatur TH des Heizfluides misst, zielt darauf ab, die Auslauftemperatur Tw des Wassers auf eine vorgebbare Auslauf-Solltemperatur Two zu regeln.The method according to the invention for heating water of variable volume flow according to the continuous flow principle in which a heat generator heats a heating fluid conveyed by a pump in a circulation, the heating fluid heats a flow-guided water, at least one sensor arranged in a water flow has an outlet temperature T W and / or measures a volume flow Vw of the water, and at least one arranged in a Heizfluidweg sensor measures at least one Heizfluidtemperatur T H of the heating fluid, aims to regulate the outlet temperature Tw of the water to a predetermined target outlet temperature Two.

Bei einer Abweichung der Auslauftemperatur TW von der Auslauf-Solltemperatur Two wird die Auslauftemperatur TW mittels einer Veränderung eines modulierbaren Volumenstroms VH des Heizfluides auf Auslauf-Solltemperatur TW0 geregelt.In the case of a deviation of the outlet temperature T W from the outlet setpoint temperature Two, the outlet temperature T W is regulated by means of a change of a modulatable volume flow V H of the heating fluid to the outlet setpoint temperature T W0 .

Bei einer Abweichung einer Heizfluidtemperatur TH von einer vorgebbaren Heizfluid-Solltemperatur TH0 wird die Heizfluidtemperatur TH mittels einer Veränderung einer modulierbaren Wärmeleistung Q des Wärmeerzeugers auf Heizfluid-Solltemperatur TH0 geregelt.In the case of a deviation of a heating fluid temperature T H from a predefinable heating fluid setpoint temperature T H0 , the heating fluid temperature T H is regulated by means of a change in a modulated heat output Q of the heat generator to target heating fluid temperature T H0 .

Damit ist einmal ein schnelles Reagieren beispielsweise auf veränderte Wasserzapfmengen Vw oder veränderte Einlauftemperaturen TK möglich, die nach dem Stand der Technik immer mit Temperaturüberschwingern und Temperaturunterschwingern einhergehen. Die Veränderung des Heizfluidvolumenstroms VH erfolgt mittels einer Anpassung der Pumpenförderleistung (Umwälzmenge), die sehr schnell und fast verzögerungsfrei erfolgt. Dadurch wird entsprechend den veränderten Zapfbedingungen mehr oder weniger Wärme in den Sekundärwärmetauscher geliefert und die Auslauftemperatur konstant gehalten. Sobald sich die veränderte Wärmeabnahme auf der Wasserseite in der Heizfluidtemperatur TH durch eine Abweichung von der Heizfluid-Solltemperatur TH0 bemerkbar macht, reagiert auch das vergleichsweise träge Wärmeübertragungssystem mit einer Anpassung der Wärmeerzeugerwärmeleitung Q.For a quick reaction, for example, to changes in water tapping volumes Vw or altered inlet temperatures is even possible T K, which always accompanied by the prior art with temperature overshoots and undershoots temperature. The change in the Heizfluidvolumenstroms V H by means of an adjustment of the pump delivery rate (circulation), which is very fast and almost instantaneous. As a result, more or less heat is supplied to the secondary heat exchanger and the outlet temperature is kept constant in accordance with the changed tap conditions. As soon as the changed heat loss on the water side in the heating fluid temperature T H becomes noticeable by a deviation from the desired heating fluid temperature T H0 , the comparatively slow heat transfer system also reacts with an adaptation of the heat generator heat conduction Q.

Andererseits ist mit dem erfindungsgemäßen Verfahren eine Anpassung des Heizfluidvolumenstroms VH an die Wasserzapfmenge VW gegeben. Eine Verminderung der Zapfmenge führt deshalb nicht zu einem Anstieg der Heizfluid-Rücklauftemperatur und verbessert so den Wirkungsgrad des Primärwärmetauschers im Brennwertbetrieb.On the other hand, an adjustment of the heating fluid volume flow V H is given to the Wasserzapfmenge V W with the inventive method. A reduction in the tap quantity therefore does not lead to an increase in the heating fluid return temperature and thus improves the efficiency of the primary heat exchanger in condensing operation.

Eine geeignete Verfahrensausgestaltung ist dadurch gekennzeichnet, dass bei einer Überschreitung der Auslauf-Solltemperatur TW0 durch die Auslauftemperatur TW, wie sie sich beispielsweise bei einer verringerten Wasserzapfmenge Vw oder bei einer erhöhten Einlauftemperatur TK ergeben kann, der Heizfluid-Volumenstrom VH reduziert wird, und dass bei einer Unterschreitung der Auslauf-Solltemperatur Two, wie sie sich beispielsweise bei einer erhöhten Wasserzapfmenge Vw oder bei einer reduzierten Einlauftemperatur TK ergeben kann, der Heizfluidvolumenstrom VH erhöht wird. Mit dem reduzierten beziehungsweise erhöhten Heizfluidvolumenstrom VH geht eine reduzierte beziehungsweise erhöhte Wärmeabgabe an das Zapfwasser einher.A suitable embodiment of the method is characterized in that if the outlet setpoint temperature T W0 is exceeded by the outlet temperature T W , as may result, for example, with a reduced tap water quantity Vw or at an increased inlet temperature T K , the heating fluid volume flow V H is reduced , And that when falling below the outlet target temperature Two, as may arise, for example, at an increased Wasserzapfmenge Vw or at a reduced inlet temperature T K , the Heizfluidvolumenstrom V H is increased. With the reduced or increased Heizfluidvolumenstrom V H is accompanied by a reduced or increased heat output to the tap water.

Eine weitere geeignete Verfahrensausgestaltung ist dadurch gekennzeichnet, dass bei einer Überschreitung der Heizfluid-Solltemperatur TH0 durch die Heizfluidtemperatur TH, wie sie sich beispielsweise bei reduzierter Wärmeabgabe an das Zapfwasser ergibt, die Wärmeerzeuger-Wärmeleistung Q reduziert wird, und dass bei einer Unterschreitung der Heizfluid-Solltemperatur TH0, wie sie sich beispielsweise bei erhöhter Wärmeabgabe an das Zapfwasser ergibt, die Wärmeerzeuger-Wärmeleistung Q erhöht wird.A further suitable embodiment of the method is characterized in that when the heating fluid target temperature T H0 is exceeded by the heating fluid temperature T H , as it results, for example, with reduced heat output to the tapping water, the heat source heat output Q is reduced, and if the temperature falls below the Heating fluid target temperature T H0, as it results, for example, with increased heat output to the tap water, the heat source heat output Q is increased.

Eine Ausführung des Verfahrens ist dadurch gekennzeichnet, dass eine Heizfluid-Solltemperatur THV0 im Vorlauf des Heizfluidkreislaufes um einen konstanten Differenzbetrag größer als die Auslauf-Solltemperatur Two des Wassers ist. Durch diese Temperaturüberhöhung ist gewährleistet, dass auch bei endlich kleinem Sekundärwärmetauscher die Auslauf-Solltemperatur Two sicher erreicht wird.An embodiment of the method is characterized in that a heating fluid target temperature T HV0 in the flow of Heizfluidkreislaufes by a constant difference amount is greater than the outlet target temperature Two of the water. This temperature increase ensures that even with finitely small secondary heat exchanger, the outlet setpoint temperature Two is safely reached.

Eine besonders geeignete Ausführung des Verfahrens ist dadurch gekennzeichnet, dass eine Heizfluid-Solltemperatur THV0 im Vorlauf des Heizfluidkreislaufes um einen Differenzbetrag größer als die Auslauf-Solltemperatur Two des Wassers ist, wobei sich der Differenzbetrag aus einem Wasservolumenstrom VW und/oder aus einer Einlauftemperatur TK des Wassers ergibt. Durch diese angepasste Temperaturüberhöhung ist gewährleistet, dass die Heizfluidtemperaturen so niedrig wie möglich liegen und dadurch die Kondensationsbedingungen für die Nutzung des Brennwerteffekts im Primärwärmetauscher begünstigen.A particularly suitable embodiment of the method is characterized in that a heating fluid target temperature T HV0 in the flow of Heizfluidkreislaufes by a difference is greater than the outlet setpoint temperature of the water, the difference being from a water volume flow V W and / or from an inlet temperature T K of the water yields. This adapted temperature increase ensures that the heating fluid temperatures are as low as possible and thereby favor the condensation conditions for the utilization of the condensing effect in the primary heat exchanger.

Eine weitere Ausführung des Verfahrens ist dadurch gekennzeichnet, dass bei einer Abweichung der Auslauftemperatur Tw von der Auslauf-Solltemperatur Two, zusätzlich zur Veränderung des Heizfluid-Volumenstroms VH und noch bevor die Heizfluidtemperatur TH von der Heizfluid-Solltemperatur TH0 abweicht, auch die Wärmeerzeuger-Wärmeleistung Q verändert wird. Dies dient dazu, das thermisch träge Wärmeübertragungssystem frühzeitig an die sich ändernden Zapfbedingungen anzupassen sowie Temperaturüberschwinger und Temperaturunterschwinger noch weiter zu reduzieren. Dazu gibt ein Modul Pumpenregler über eine Signalübertragungsstrecke entsprechende Stellsignale an ein Modul Wärmeregler in einem Regler.A further embodiment of the method is characterized in that, in the case of a deviation of the outlet temperature Tw from the outlet setpoint temperature Two, in addition to the change in the heating fluid volume flow V H and before the heating fluid temperature T H deviates from the desired heating fluid temperature T H0 , then Heat generator heat output Q is changed. This serves to adapt the thermally inert heat transfer system at an early stage to the changing tapping conditions and to further reduce temperature overshoots and temperature undershoots. For this purpose, a module pump controller via a signal transmission path corresponding control signals to a module heat controller in a controller.

Das erfindungsgemäße Verfahren kann beispielsweise durch zwei Regelmodule realisiert werden, wobei ein erstes Modul ("Pumpenregler") zur Regelung des Heizfluidvolumenstroms und ein zweites Modul ("Wärmeregler") zur Regelung der Wärmeerzeugerwärmeleistung dient. Beim Auftreten einer Abweichung der Auslauftemperatur von der Auslauf-Solltemperatur verändert zuerst der Pumpenregler den Heizfluidvolumenstrom, so dass die Temperaturabweichung ausgeglichen wird. Daraus resultiert eine Änderung der Heizfluidvorlauftemperatur, weil ja vom Wärmeerzeuger zunächst immer noch die gleiche Wärmeleistung eingebracht wird. Durch die Änderung des Heizfluidvolumenstroms ändert sich aber die Wärmeleistung, die an das Trinkwasser abgegeben wird. Die resultierende Änderung der Heizfluidvorlauftemperatur wird durch den Wärmeregler ausgeglichen und auf den Sollwert für die Heizfluidvorlauftemperatur geregelt. Wenn der Wärmeregler zur Erreichung der Heizfluid-Solltemperatur die Wärmeerzeugerleistung und damit auch die Heizfluidvorlauftemperatur ändert, wirkt diese Änderung auch auf die Trinkwasser-Auslauftemperatur. Die Abweichung wird aber durch den Pumpenregler mittels einer Änderung des Heizfluidvolumenstroms ausgeglichen. Der Pumpenregler, die Pumpe und der Heizfluidkreis können schnell reagieren und haben keine Mühe, die langsame Änderung (thermisch träge Masse) der Heizfluidvorlauftemperatur auszugleichen. Weil aber beispielsweise bei einer Verminderung des Trinkwasservolumenstroms der Wärmeregler die Wärmeerzeugerleistung solange vermindert, bis die Heizfluid-Solltemperatur erreicht ist, muss sich der Pumpenregler zwangsläufig an diese Änderung anpassen. Wenn mittels der beiden Regler beide Temperaturen ihren Sollwert erreicht haben, ergibt sich eine automatische Anpassung des Volumenstroms im Heizfluidkreis an den Volumenstrom im Trinkwasserkreis. Hieraus resultiert eine spürbare Verbesserung des Heizgerätewirkungsgrades, weil mit der Abnahme des Trinkwasservolumenstroms auch der Volumenstrom im Heizkreis abnimmt und somit die Rücklauftemperatur sinkt.The inventive method can be realized for example by two control modules, wherein a first module ("pump controller") for controlling the Heizfluidvolumenstroms and a second module ("heat controller") is used to control the heat generator heat output. When a deviation of the outlet temperature from the outlet setpoint temperature occurs First, the pump controller changes the Heizfluidvolumenstrom so that the temperature deviation is compensated. This results in a change in the Heizfluidvorlauftemperatur because yes from the heat source initially still the same heat output is introduced. However, the change in the heating fluid volume flow changes the heat output that is released to the drinking water. The resulting change in the heating fluid flow temperature is compensated by the heat controller and regulated to the setpoint for the Heizfluidvorlauftemperatur. If the heat controller to achieve the heating fluid target temperature changes the heat generator capacity and thus also the Heizfluidvorlauftemperatur, this change also affects the drinking water outlet temperature. However, the deviation is compensated by the pump controller by means of a change in the Heizfluidvolumenstroms. The pump regulator, the pump and the heating fluid circuit can react quickly and have no trouble balancing the slow change (thermal inertia) of the heating fluid flow temperature. However, because, for example, if the drinking water volume flow is reduced, the heat controller reduces the heat generator output until the heating fluid setpoint temperature has been reached, then the pump regulator must inevitably adapt to this change. If both temperatures have reached their setpoint by means of the two controllers, the volume flow in the heating fluid circuit is automatically adjusted to the volume flow in the drinking water circuit. This results in a noticeable improvement in the heater efficiency, because with the decrease in the drinking water volume flow and the volume flow in the heating circuit decreases and thus the return temperature decreases.

Wird ein großer Trinkwasservolumenstrom schlagartig abgebrochen, so wird der Wärmeerzeuger auch sofort abgeschaltet. Die im Primärwärmetauscher gespeicherte Wärme führt trotzdem zur Überhitzung des Heizfluidkreises. Erfolgt kurze Zeit danach eine erneute Zapfung, entsteht bei den herkömmlichen Verfahren eine starke Temperaturüberhöhung gegenüber der Auslauf-Solltemperatur. Dies wird mit dem erfindungsgemäßen Verfahren stark vermindert.If a large volume of drinking water is abruptly stopped, the heat generator will be switched off immediately. Nevertheless, the heat stored in the primary heat exchanger leads to overheating of the heating fluid circuit. If a short time thereafter a renewed tapping, arises in the conventional method, a strong temperature increase compared to the outlet set temperature. This is greatly reduced by the method according to the invention.

Das erfindungsgemäße Verfahren gleicht Änderungen der Trinkwasserauslauftemperatur, die entstehen wenn der Wärmeerzeuger in den Taktbetrieb übergeht, automatisch aus. Wenn die Heizfluidvorlauftemperatur einen Maximalwert überschreitet, muss der Wärmeerzeuger abschalten, bis diese wieder unter einen Minimalwert sinkt. Dabei entstehende Temperaturabweichungen der Trinkwasserauslauftemperatur werden durch den Pumpenregler durch Änderung des Heizfluidvolumenstroms ausgeglichen.The inventive method is similar to changes in the water outlet temperature, which arise when the heat generator in the clock mode, automatically from. If the heating fluid supply temperature exceeds a maximum value, the heat generator must switch off until it drops below a minimum value again. Resulting temperature deviations of the DHW outlet temperature are compensated by the pump controller by changing the Heizfluidvolumenstroms.

Das erfindungsgemäße Verfahren ist besonders vorteilhaft bei Heizgeräten, bei denen der Primärwärmetauscher eine große thermisch träge Masse, der Sekundärwärmetauscher aber eine kleine Masse hat. Das ist zum Beispiel bei Primärwärmetauschern aus Gusswerkstoffen zur Brennwertnutzung der Fall. In der Regel haben diese als Sekundärwärmetauscher einen Plattenwärmetauscher mit geringer Masse.The inventive method is particularly advantageous in heaters in which the primary heat exchanger has a large thermally inert mass, the secondary heat exchanger but a small mass. This is the case, for example, with primary heat exchangers made of cast materials for utilizing condensing technology. As a rule, these have a plate heat exchanger as a secondary heat exchanger with low mass.

Das Verfahren löst beziehungsweise verbessert alle grundsätzlichen Probleme, die bei der Trinkwarmwasserbereitung auftreten. Die verschiedenen Zustände des Systems (Wärmeerzeuger taktet, wiederholte Zapfungen, Zapfbeginn bei sehr hoher Heizfluidtemperatur usw.) werden gelöst, ohne dass der das Verfahren steuernde Regelalgorithmus in einen bestimmten Zustand versetzt oder Parameter geändert werden müssen. Auch der Ausfall der Schnittstelle zum Pumpenregler (die Pumpe geht dann auf maximale Förderleistung) führt nicht zum Sytemausfall, weil der Wärmeregler immer noch auf eine konstante Heizfluidvorlauftemperatur regelt. Das vermindert den Komfort für den Kunden, der Trinkwasserbetrieb ist aber immer noch möglich. Der modulierende Pumpenbetrieb verbessert neben der Erhöhung des Heizgeräte-Wirkungsgrads wegen der fast verzögerungsfrei reagierenden Pumpe auch die Regelgüte des Verfahrens. Ferner fällt die Stromaufnahme der Pumpe wegen des häufigeren Teillastbetriebs niedriger aus. Ein Kostennachteil entsteht erwartungsgemäß nicht, da die modulierenden Hocheffizienzpumpen in absehbarer Zeit voraussichtlich in den wichtigen europäischen Ländern vorgeschrieben werden.The method solves or improves all fundamental problems that occur in domestic hot water. The various states of the system (heat generator clocks, repeated taps, tap start at very high heat fluid temperature, etc.) are resolved without the need to set the control algorithm controlling the method to a particular state or to change parameters. Also, the failure of the interface to the pump controller (the pump then goes to maximum capacity) does not lead to system failure, because the heat controller still regulates to a constant Heizfluidvorlauftemperatur. This reduces the comfort for the customer, but the drinking water operation is still possible. The modulating pump operation improves not only the increase in the heater efficiency because of the almost delay-free response pump and the control quality of the process. Furthermore, the power consumption of the pump is lower because of the more frequent partial load operation. As expected, there will be no cost disadvantage, since the modulating high-efficiency pumps will presumably be prescribed in the foreseeable future in the important European countries.

Die Erfindung umfasst ein Wassererwärmungssystem nach dem Durchlaufprinzip mit einem Wärmeerzeuger, einem vom Wärmeerzeuger beheizten, von einer Pumpe im Kreislauf geförderten Heizfluid, einem vom Heizfluid beheizten, im Durchlauf geförderten Wasser, mindestens einem in einem Wasserweg angeordneten Messfühler zum Erfassen einer Auslauftemperatur TW, einer Einlauftemperatur TK und/oder eines Volumenstroms VW des Wassers, sowie mindestens einem in einem Heizfluidweg angeordneten Messfühler zum Erfassen mindestens einer Heizfluidtemperatur TH des Heizfluides, wobei zur Regelung der Auslauftemperatur Tw auf eine vorgebbare Auslauf-Solltemperatur TW0 der Volumenstrom VH des Heizfluidkreislaufs und die Wärmeleistung Q des Wärmeerzeugers modulierbar sind.The invention comprises a water heating system according to the continuous flow principle with a heat generator, a heated by the heat generator, pumped by a pump heating fluid, a heated by the heating fluid, conveyed in the flow, at least one arranged in a waterway sensor for detecting an outlet temperature T W , a Inlet temperature T K and / or a volume flow V W of the water, as well as at least one arranged in a Heizfluidweg sensor for detecting at least one Heizfluidtemperatur T H of the heating fluid, wherein for controlling the outlet temperature Tw to a predetermined outlet target temperature T W0, the flow rate V H of Heizfluidkreislaufs and the heat output Q of the heat generator can be modulated.

Eine Ausführung des Wassererwärmungssystems ist gekennzeichnet durch ein mit dem Wärmeerzeuger, der Pumpe und den Messfühlern verbundenes Regelgerät, das eine Eingabevorrichtung zur Einstellung von Sollwerten und/oder Konstanten, ein Regelmodul zur Regelung der Pumpe und ein Regelmodul zur Regelung des Wärmeerzeugers umfasst, wobei das Regelgerät den Betrieb der verbundenen Komponenten beeinflusst und somit die Auslauftemperatur TW regelt.An embodiment of the water heating system is characterized by a control device connected to the heat generator, the pump and the sensors, which has an input device for setting desired values and / or constants, a control module for Control of the pump and a control module for controlling the heat generator comprises, wherein the control device influences the operation of the connected components and thus controls the outlet temperature T W.

Die Zeichnungen stellen verschiedene Aspekte von Ausführungsbeispielen der Erfindung dar und zeigen in den Figuren:

Fig. 1
ein der Erfindung zugrundeliegendes Wassererwärmungssystem,
Fig. 2
einen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach dem Stand der Technik,
Fig. 3
einen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach der vorliegenden Erfindung,
The drawings illustrate various aspects of embodiments of the invention and show in the figures:
Fig. 1
a water heating system on which the invention is based,
Fig. 2
a signal flow plan of a control loop for domestic hot water preparation according to the prior art,
Fig. 3
a signal flow diagram of a loop for domestic hot water according to the present invention,

Fig. 1 zeigt schematisch ein Kombinationsheizgerät für die Raumerwärmung und Trinkwarmwasserbereitung. Das Heizgerät umfasst einen Wärmeerzeuger 1 (Wärmequelle), einen vom Wärmeerzeuger 1 über einen Primärwärmetauscher 2 beheizten Heizfluidkreislauf 3, der von einer Pumpe 4 gefördert (umgewälzt) wird, sowie einen an das Heizgerät angeschlossenen Wärmeverbraucher 5, beispielsweise ein Raumheizkörper 5. Das zirkulierende Heizfluid (Wärmeträgermedium) transportiert die Wärme von der Wärmequelle 1 zum Wärmeverbraucher 5. Für die Trinkwarmwasserbereitung umfasst das Heizgerät ein nach dem Durchlaufprinzip arbeitendes Wassererwärmungssystem mit einem vom Heizfluidkreislauf 3 über einen Sekundärwärmetauscher 6 beheizten Wasserdurchlauf 7, mindestens einem in einem Wasserweg 7 angeordneten Messfühler 8, 9, 10 zum Erfassen einer Auslauftemperatur TW und/oder einer Einlauftemperatur TK und/oder eines Volumenstroms VW des Wassers, sowie mindestens einem in einem Heizfluidweg 3 angeordneten Messfühler 11, 12 zum Erfassen einer Vorlauftemperatur THV und/oder einer Rücklauftemperatur THR des Heizfluides. Zur Regelung der Auslauftemperatur TW auf eine vorgebbare Solltemperatur TW0 sind die Wärmeleistung Q des Wärmeerzeugers 1 und der Volumenstrom VH des Heizfluidkreislaufs 3 modulierbar. Die beiden Heizaufgaben Raumerwärmung und Trinkwarmwasserbereitung werden in der Regel nicht gleichzeitig, sondern jeweils einzeln erfüllt. Dazu wird der Heizfluidkreislauf 3 zwischen den beiden Wärmeverbrauchern Raumheizkörper 5 und Sekundärwärmetauscher 6 mittels eines Umschaltventils 13 umgeschaltet. Fig. 1 schematically shows a combination heater for room heating and domestic hot water. The heater comprises a heat generator 1 (heat source), a heated by the heat generator 1 via a primary heat exchanger 2 Heizfluidkreislauf 3, which is promoted (circulated) by a pump 4, and a connected to the heater heat consumer 5, for example, a space heater 5. The circulating heating fluid (Heat transfer medium) transports the heat from the heat source 1 to the heat consumer 5. For domestic hot water, the heater comprises a working according to the flow principle water heating system with a heated by Heizfluidkreislauf 3 via a secondary heat exchanger 6 water flow 7, at least one arranged in a waterway 7 sensor 8, 9 10 for detecting an outlet temperature T W and / or an inlet temperature T K and / or a volumetric flow V W of the water, and at least one arranged in a Heizfluidweg 3 sensor 11, 12 for detecting a flow temperature T HV and / or a Rückl temperature T HR of the heating fluid. For regulating the outlet temperature T W to a predefinable setpoint temperature T W0 , the heat output Q of the heat generator 1 and the volume flow V H of the heating fluid circuit 3 are modulated. The two heating tasks room heating and DHW heating are usually not fulfilled simultaneously, but individually. For this purpose, the heating fluid circuit 3 between the two heat consumers space heater 5 and secondary heat exchanger 6 is switched by means of a switching valve 13.

Fig. 2 zeigt den schematischen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach dem Stand der Technik mit der Eingangsgröße (Sollwert) TW0, der Ausgangsgröße (Auslauftemperatur) Tw, dem Regler R, dem Stellglied (Wärmeerzeuger 1) und der Stellgröße Q. Mit dem Wärmeerzeuger 1 wird die Auslauftemperatur TW beeinflusst. Fig. 3 zeigt den schematischen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach der vorliegenden Erfindung mit der Eingangsgröße (Sollwert) Two, der Ausgangsgröße (Auslauftemperatur) TW, dem Regler R mit Modul W (Wärmeregler), Modul P (Pumpenregler) und Signalübertragungsstrecke S zwischen den beiden Reglern, den Stellgliedern (Wärmeerzeuger 1 und Pumpe 4) sowie den Stellgrößen Q und VH. Mit dem Wärmeerzeuger 1 und der Pumpe 4 wird die Auslauftemperatur Tw beeinflusst. Fig. 2 shows the schematic signal flow plan of a control loop for domestic hot water preparation with the input variable (setpoint) T W0 , the output (outlet temperature) Tw, the controller R, the actuator (heat generator 1) and the manipulated variable Q. The heat generator 1 is the Outlet temperature T W influenced. Fig. 3 shows the schematic signal flow plan of a control circuit for domestic hot water generation according to the present invention with the input value (setpoint) Two, the output (outlet temperature) T W , the controller R with module W (heat controller), module P (pump controller) and signal transmission path S between the two controllers , the actuators (heat generator 1 and pump 4) and the manipulated variables Q and V H. With the heat generator 1 and the pump 4, the outlet temperature Tw is influenced.

Claims (8)

  1. Method for heating water of variable volume flow according to the continuous flow principle, in which a heat generator (1) heats heating fluid conveyed by a pump (4) in a circuit, the heating fluid heats water carried in continuous flow, at least one measuring sensor (8, 9, 10) arranged in a water path (7) measures an outlet temperature TW and/or a volume flow VW of the water, and at least one measuring sensor (11, 12) arranged in a heating fluid path (3) measures at least one heating fluid temperature TH of the heating fluid, the outlet temperature Tw of the water being controlled to a predefinable outlet temperature set point Two, in the event of a deviation of the outlet temperature Tw from the outlet temperature set point Two the outlet temperature Tw being controlled to the outlet temperature set point Two by means of a change to a volume flow VH of the heating fluid that can be modulated,
    characterized in that
    - in the event of a deviation of a heating fluid temperature TH from a predefinable heating fluid temperature set point TH0, the heating fluid temperature TH is controlled to the heating fluid temperature set point TH0 by means of a change to a heat output Q from the heat generator that can be modulated.
  2. Method according to Claim 1, characterized in that if the outlet temperature set point is overshot, the heating fluid volume flow VH is reduced, and if the outlet temperature set point is undershot, the heating fluid volume flow VH is increased.
  3. Method according to Claim 1 or 2, characterized in that if the heating fluid temperature set point TH0 is overshot, the heat generator heat output Q is reduced, and in that if the heating fluid temperature set point TH0 is undershot, the heat generator heat output Q is increased.
  4. Method according to one of Claims 1 to 3, characterized in that a heating fluid temperature set point THV0 in the flow of the heating fluid circuit is greater by a constant differential amount than the outlet temperature set point Two of the water.
  5. Method according to one of Claims 1 to 3, characterized in that a heating fluid temperature set point THV0 in the flow of the heating fluid circuit is greater by a differential amount than the outlet temperature set point Two of the water, wherein the differential amount is given by a water volume flow Vw and/or an inlet temperature TK of the water.
  6. Method according to one of the preceding claims, characterized in that, in the event of a deviation of the outlet temperature Tw from the outlet temperature set point Two, in addition to changing the heating fluid volume flow VH and even before the heating fluid temperature TH deviates from the heating fluid temperature set point TH0, the heat generator heat output Q is also changed, by a pump controller module (P) outputting appropriate actuating signals via a signal transmission path (S) to a thermostat (W) module in a controller (R).
  7. Water heating system according to the continuous flow principle having a heat generator (1), a heating fluid heated by the heat generator (1) and conveyed by a pump (4) in circulation, water heated by the heating fluid and conveyed in continuous flow, at least one measuring sensor (8, 9, 10) arranged in a water path (7) to measure an outlet temperature Tw and/or an inlet temperature TK and/or a volume flow VW of the water, and at least one measuring sensor (11, 12) arranged in a heating fluid path (3) to measure at least one heating fluid temperature TH of the heating fluid, wherein, to control the outlet temperature Tw to a predefinable outlet temperature set point Two, the volume flow VH of the heating fluid circuit and the heat output Q from the heat generator (1) can be modulated.
  8. Water heating system according to Claim 7, characterized by a control device connected to the heat generator (1), the pump (4) and the measuring sensors (8, 9, 10, 11, 12), comprising an input device for setting set points and/or constants, a control module for controlling the pump and a control module for controlling the heat generator, wherein the control device influences the operation of the connected components and thus controls the outlet temperature Tw.
EP11159320.8A 2010-03-27 2011-03-23 Method for heating water according to the circulation principle and water heating system Active EP2372260B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010013140A DE102010013140A1 (en) 2010-03-27 2010-03-27 Process for heating water using the flow principle and water heating system

Publications (3)

Publication Number Publication Date
EP2372260A2 EP2372260A2 (en) 2011-10-05
EP2372260A3 EP2372260A3 (en) 2014-01-22
EP2372260B1 true EP2372260B1 (en) 2016-05-11

Family

ID=44310249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11159320.8A Active EP2372260B1 (en) 2010-03-27 2011-03-23 Method for heating water according to the circulation principle and water heating system

Country Status (2)

Country Link
EP (1) EP2372260B1 (en)
DE (1) DE102010013140A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612795B2 (en) * 2016-09-14 2020-04-07 Lochinvar, Llc Methods and system for demand-based control of a combination boiler
DE102018118432A1 (en) * 2018-07-31 2020-02-06 Oventrop Gmbh & Co. Kg Method for controlling a heating and / or cooling system in a building
DE102021206320A1 (en) 2021-06-21 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining and/or optimizing a heat output of a heater and heater and control device
CN115104922A (en) * 2022-07-19 2022-09-27 芜湖艾尔达科技有限责任公司 Water dispenser and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1988343U (en) * 1965-03-17 1968-06-27 Junkers & Co GAS-HEATED CIRCULATION WATER HEATER.
NL8503345A (en) * 1985-12-04 1987-07-01 Nefit Nv DEVICE FOR CONTROLLING A HOT WATER SUPPLY.
EP0556736B1 (en) * 1992-02-18 1997-05-21 Joh. Vaillant GmbH u. Co. Method of controlling a boiler
DE19725951A1 (en) * 1997-06-19 1999-01-21 Bosch Gmbh Robert Process for hot water supply in a combined system
DE19725952C2 (en) * 1997-06-19 2001-09-13 Bosch Gmbh Robert Process for hot water supply in a combined system

Also Published As

Publication number Publication date
EP2372260A3 (en) 2014-01-22
DE102010013140A1 (en) 2011-09-29
EP2372260A2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
DE102008038617B4 (en) Method and device for heat utilization
EP2372260B1 (en) Method for heating water according to the circulation principle and water heating system
EP2187136A2 (en) Method for operating a system for transporting thermal energy through a liquid medium
EP2416073A2 (en) Method and device for heating a fluid in a buffer store
EP1170554B1 (en) System and method for preparing hot sanitary water
DE19511369A1 (en) Domestic hot-water installation with secondary heat exchanger and reservoir
EP2372259B1 (en) Method for heating water according to the circulation principle and water heating system
EP2550487B1 (en) Method and system for providing hot water
EP0892223B1 (en) Control and command system for a heating system
DE102011001223A1 (en) Operating method of heating system used in e.g. homes, involves modulating heat generator, heating circuit pump and bypass valve of heating system, depending on the flow, return and outside temperatures and flow rate of water
DE19859364C2 (en) Heat supply system with peak load limitation
EP0807790B1 (en) Method and system for prepairing sanitary hot water
EP1792125A1 (en) Industrial water treatment device
DE102008009285B3 (en) A layered charge storage system and method of operating a stratified charge storage system
EP0880659A1 (en) Modulating solar-power regulator
AT400626B (en) HEATING SYSTEM
DE10329565B4 (en) Method and device for adjusting the amount of heat obtained from the district heating network to the actual needs of a domestic connection station
EP2492602B1 (en) Apparatus and method to optimize the functioning of a boiler to heat water
AT411632B (en) METHOD FOR REGULATING THE TAKE-OUT TEMPERATURE OF HOT WATER
EP1310736A2 (en) Controller and control method for a burner
DE10048912B4 (en) Fresh water cascade with heat exchangers
WO2011107464A2 (en) Heating system and method for operating a heating system
DE3410316A1 (en) Multi-boiler heating installation for liquid heat-transfer media
EP0452259B1 (en) Installation for producing sanitary hot water and method of working the installation
EP1691138A2 (en) Mixed boiler and method for operating the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/10 20060101AFI20131217BHEP

17P Request for examination filed

Effective date: 20140722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20141212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009692

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009692

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200319

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200325

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160911

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 798971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220525

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230322

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011009692

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003