EP2372236A1 - Lens element for assembly in a headlamp of a vehicle - Google Patents

Lens element for assembly in a headlamp of a vehicle Download PDF

Info

Publication number
EP2372236A1
EP2372236A1 EP10157338A EP10157338A EP2372236A1 EP 2372236 A1 EP2372236 A1 EP 2372236A1 EP 10157338 A EP10157338 A EP 10157338A EP 10157338 A EP10157338 A EP 10157338A EP 2372236 A1 EP2372236 A1 EP 2372236A1
Authority
EP
European Patent Office
Prior art keywords
optical element
light
diffractive structure
cut
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10157338A
Other languages
German (de)
French (fr)
Inventor
Tilman Maucher
Martin Seipel
Andreas Stockfisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella GmbH and Co KGaA
Original Assignee
Hella KGaA Huek and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella KGaA Huek and Co filed Critical Hella KGaA Huek and Co
Priority to EP10157338A priority Critical patent/EP2372236A1/en
Publication of EP2372236A1 publication Critical patent/EP2372236A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/16Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having blurred cut-off lines

Definitions

  • the present invention relates to an optical element for arrangement in a headlight of a vehicle, wherein the optical element is Maschinenstrahlbar with light, which is generated by at least one light source arranged in the headlight, wherein the optical element for beam shaping of the optical element radiating light is used and wherein the optical element to at least a surface has a diffractive structure.
  • optical elements are used for beam shaping in vehicle headlights, wherein the optical elements are provided with diffractive structures in order to meet legal and technical requirements of a corresponding light function. It may be the main light functions of a vehicle headlamp, such as low beam and high beam or additional light functions, such as cornering and daytime running lights.
  • the requirements for optical elements for placement in a headlight of a vehicle are numerous and very specific in order to ensure a particular light field and a corresponding light intensity for one of the different lighting functions. Therefore, optical elements often have a complicated geometry or are provided with stochastic structures that are not mathematically writable.
  • the lane in front of the vehicle shall be illuminated without dazzling the drivers of oncoming vehicles or other road users.
  • the transition between the light and dark areas must have a high contrast in order to avoid dazzling oncoming traffic, but at the same time be relatively soft in the transition to the right side of the road To make drivers clearly recognizable and to perceive pedestrians and cyclists at the edge of the road earlier.
  • the degree of hardness of a light-dark boundary is thus an essential quality feature of a low-beam function.
  • U1 is an optical element for arrangement in a headlight of a vehicle known, which is used for beam shaping of a light emitted from a light source.
  • the optical element is made of glass and has a flat surface and a convex surface.
  • a diffractive structure is introduced, which has a greater surface roughness than the planar surface of the optical element, whereby an effect on the cut-off line is achieved.
  • the diffractive structure is introduced in the mold by an erosion or blasting process and molded onto the convex surface of the optical element by a compression molding process.
  • an optical element for a headlight of a vehicle, which overcomes the disadvantages described above.
  • an optical element is to be provided which has such a diffractive structure, which makes it possible to set a degree of softening of a light-dark boundary of a low-beam light.
  • the invention includes the technical teaching that the diffractive structure, which is introduced into at least one surface of the optical element, is numerically describable and serves to influence a bright-dark boundary of a low beam of the headlight.
  • the mathematical describability of the diffractive structure advantageously leads to the computer-aided simulability of the light formed by the optical element. Furthermore, compared to a stochastic structure, a lighting design and an objective quality inspection of the diffractive structure become possible.
  • the diffractive structure according to the invention can thus influence the light which can be transmitted through the optical element in such a way that it is imaged with soft transitions above the light-dark boundary, which leads to a softened and disarmed, easily present light-dark boundary to the desired extent.
  • the optical element is made of a plastic material, in particular of a polycarbonate or a polymethylmethacrylate.
  • Polycarbonate and polymethyl methacrylate are synthetic, transparent thermoplastics that substitute for glass.
  • Such plastics are elastic and plastically deformable from 100 ° C, with rapid cooling, the new form of Kunsstoffe is maintained and can be cut or engraved, so that the inventive diffractive structure advantageously can be introduced therein.
  • such plastics are weather-resistant, aging-resistant and relatively scratch-resistant, so that an optical element made from them is suitable for arrangement in a vehicle headlight.
  • the optical element can be produced by a plastic injection molding process, wherein the diffractive structure is introduced in the mold of the plastic injection molding process and is molded on the surface of the optical element.
  • the shape tool determines the geometric shape and the surface structure of the finished optical element.
  • the inventive diffractive structure can be produced by injection molding with high accuracy and in a short time.
  • the diffractive structure may be introduced into the surface of the optical element by a molding process.
  • the diffractive structure according to the invention can just as well be introduced into the mold of a compression molding process, so that the optical element can also be produced from glass.
  • the structure according to the invention is thus material-independent and applicable to glass as well as to plastics.
  • the optical element is designed as a plano-convex lens, wherein the diffractive structure can be introduced into the planar surface of the optical element.
  • the optical element is installed in a headlight such that the flat surface is not visible from the outside of the headlight. Therefore, the flat surface can be provided with a diffractive structure without affecting the appearance of the headlamp.
  • the coupling of the light into the optical element takes place via the planar surface of the optical element.
  • a Light source disposed adjacent to the planar surface of the optical element in the headlight.
  • the light emitted by the light source is already refracted at the planar surface by the diffractive structure in order to advantageously form the light radiating through the optical element.
  • the optical element has a convex surface, wherein the coupling of the light out of the optical element takes place via the convex surface.
  • the light which can be transmitted through the optical element is refracted once more at the convex surface, which can serve for advantageous light beam shaping of the light emerging from the optical element.
  • the diffractive structure forms a spatially sequential pattern, preferably a spatially sequential prism-like pattern, wherein the area ratio of the pattern on the planar surface is up to 50% and preferably up to 30%.
  • This area fraction is decisive for the light ratio of the light which is imaged below or above the light-dark boundary, and thus can serve for the advantageous softening of the cut-off line.
  • the spatially sequential pattern can be formed evenly distributed over the planar surface of the optical element.
  • a sequential segment of the pattern may be defined by a raised or recessed shape, which in cross-section may correspond to a triangle, a groove or any other geometric shape.
  • the diffractive structure can be formed by segments raised from the planar surface of the optical element, wherein the width of a segment can be up to 1 mm and preferably up to 0.6 mm.
  • the segment width determines the photometrically effective prismatic structure, which is provided for advantageous light beam shaping.
  • the diffractive structure serves to influence a light intensity of the light adjacent to the light-dark boundary, preferably for influencing the light intensity of the light, which adjoins the light barrier above the light-dark boundary.
  • the segments extend in a direction transverse to the optical axis of the light above the surface of the optical element and have a triangular cross section with a light entrance surface, wherein the angle between the light entry surface and the planar surface is less than 5 ° , preferably less than 0.5 °.
  • the angle between the light entry surface and the planar surface of the optical element determines the width of the light field, which is imaged above the cut-off line. The angle can be chosen such that an advantageous softening of the cut-off line is achieved.
  • the segments of the diffractive structure deflect segments of light from the region below the light-dark boundary into the region above the light-dark boundary, wherein the light segments above the light-dark boundary preferably overlap, such that the contrast of the light Angle limit is reduced.
  • Coupling of the light by different segments and coupling of the light through the convex surface of the optical element occur at different angles, which leads to the superimposition of the light segments imaged by the optical element. Consequently, immediately above the cut-off line, a high light intensity is produced by multiple superimpositions, which gradually decreases with increasing distance from the cut-off line with decreasing superimpositions. For an observer, this results in an upward soft-running cut-off.
  • One way of mathematically describing the diffractive structure allows an accurate determination of the low beam field.
  • an advantageous light intensity and a desired light distribution of the low beam field can be achieved.
  • Parameters of the structure according to the invention which can be adjusted to an advantageous light beam shaping, are geometric shape, number and orientation of the segments, as well as the distance between the segments. Consequently, the optical element according to the invention is used for advantageous light beam shaping Dipped beam function with a softened, yet clear cut-off.
  • FIG. 1 shows an inventive optical element 10 in a sectional view.
  • the optical element 10 can be irradiated with light 11, which can be generated by a light source 12.
  • the light source 12 is on the side of the plane surface 13 of the optical element 10 in the optical axis 19 of the optical element 10 is arranged.
  • the optical element 10 also has a convex surface 16, wherein the extraction of the light 11 from the optical element 10 via the convex surface 16 takes place.
  • the optical element 10 is provided on the planar surface 13 with a diffractive structure 14 according to the invention.
  • the light 11 emitted by the light source 12 is first refracted at the planar surface 13 by the diffractive structure 14 and then at the convex surface 16.
  • the optical element 10 shapes the light 11 in such a way that the light rays near a light-dark boundary 15 run approximately parallel.
  • Refracted light beams 21, 22 at the diffractive structure 14 are deflected mainly from the area below the cut-off line 15 into the area above the cut-off line 15.
  • the upwardly deflected light beams 21 produce a light intensity 21 which expires soft upward in the region above the cut-off line, as shown in FIG FIG. 2 you can see.
  • FIG. 2 shows a light distribution near the cut-off line 15 of a low-beam field at a 10m away from the headlight wall 24.
  • the light distribution of refracted by the optical element 10 light 11 is asymmetrical, the light-dark boundary 15 is deflected to the right side upwards ,
  • the diffractive structure 14 from the FIG. 1 has the light beams 21, 22 deflected into the area above and below the cut-off line 15.
  • a light intensity 21, 22 of the light 11 has arisen above and below the cut-off line 15.
  • the light-dark boundary 15 has no abrupt transition between a lit and a dark area.
  • the light-dark boundary is softened to the width between the light beams 21 and 22.
  • the transition between the high intensity 22 below the cut-off line 15 and the low intensity 21 is above the light-dark boundary 15 slidingly sloping, considering the light distribution as a function of the height H in front of the headlights in Section S of the light distribution considered.
  • FIG. 3 shows an intensity 1 of the light distribution of the low beam as a function of the height H in front of the headlamp as a graph of a function of the light intensity I of the height H.
  • the light intensity I is shown in the section S of the light distribution, as indicated by the dashed line S in the FIG. 2 is shown.
  • the first section I of the graph is almost vertical and corresponds to the intensity I of the light field illuminated by the headlight below the cut-off line 15 up to a certain height H.
  • the second section II of the graph corresponds to the transition between the illuminated area and the dark area above the low beam field. The transition has a high contrast because the section II in the view is almost horizontal.
  • the section III in the view has light sections 23 and runs stepwise.
  • the light sections 23 correspond to the superposition of the light beams 21, 22, which are deflected by the diffractive structure 14.
  • the segments 18 thus form the light sections 23 in the area above the cut-off line 15, which overlap in such a way that the light intensity I above the light-angle boundary 15 slidably decreases, and thus the contrast of the transition between illuminated and dark area is reduced.
  • Sections II and III correspond, considered together, the light-dark boundary 15 of the low beam distribution softened by the optical element 10 according to the invention.
  • the intensity I of the cut-off line 15 is thus also a function of the height H in front of the headlight.
  • Section IV of graph I corresponds to the dark area outside the low beam field.
  • FIG. 4 shows a plan view of the planar surface 13 of the optical element 10 and a sectional view of the optical element according to the invention 10.
  • the planar surface 13 of the optical element 10 according to the invention is left in the FIG. 4 shown.
  • the diffractive structure 14 is introduced, which has a spatially sequential pattern 17.
  • the pattern 17 has a sequential character formed of a plurality of prismatic segments 18.
  • the segments 18 extend in a direction transverse to the optical axis 19 of the light 11 above the surface 13 of the optical element 10 and have a triangular cross-section with a light entry surface 20, as described below in the FIG. 6 is clarified.
  • the area ratio of the pattern 17 on the planar surface 13, which is determined by the width of the segments 18, is preferably 30%.
  • the optical element 10 according to the invention is shown in a sectional view. In the sectional view it can be seen that the segments 18 of the diffractive structure 14 project from the plane surface 13 and correspond in cross-section to the shape of a triangle.
  • FIG. 5 shows an enlarged view of the diffractive structure 14 on the planar surface 13 of the optical element 10 according to the invention in a sectional view.
  • the depicted section of the diffractive structure 14 is selected approximately around the optical axis 19 of the optical element 10.
  • the diffractive structure 14 forms a sequential prismatic pattern 17, which is mirror-symmetrical with respect to the optical axis 19 on the surface 13 in the vertical direction.
  • the pattern 17 is formed from the raised prismatic segments 18 having a triangular cross-section, as in FIG FIG. 6 is shown.
  • FIG. 6 shows an enlarged view of a segment 18 of the diffractive structure 14 on the planar surface 13 of the optical element 10 according to the invention in a sectional view.
  • the segment 18 has a width s, which determines the actual width of the photometrically active structure 14.
  • the width s is complemented by s', one side of the segment 18 serving as a light entry surface 20 of the light 11 incident on the segment 18.
  • the width s of the segment 18 is decisive for the light intensity I of the light 11, which is imaged below or above the sharp cut-off line 15, as shown in FIG FIG. 2 is shown. Consequently, the width s is also decisive for the degree of softening of the light-dark boundary 15.
  • an angle ⁇ is created, which can be chosen to be of any size greater than zero. In the illustrated embodiment, the angle is 90 ° for manufacturing reasons.
  • Another characteristic parameter of the segment 18 is an angle ⁇ , the between the planar surface 13 and the light entry surface 20 is formed.
  • the angle ⁇ determines the width of the light section 23, which is imaged above the cut-off line 15, as shown in FIG FIG. 3 is shown.
  • the coupling of the light 11 in the optical element 10 by different segments 18 and the coupling of the light 11 from the optical element 10 done at different angles. Consequently, each such segment 18 of the diffractive structure 14 produces a light section 23 above or below the cut-off line 15, which is imaged at a different height to the cut-off line 15.
  • the effect of the segments 18 leads to the superimposition of the light sections 23 and to the emergence of the light intensity above the cut-off line 15, which decreases with increasing height. This results in an upward soft-running light-dark boundary 15, as shown in the FIG. 3 is shown.
  • the geometric shape, number and orientation of the segments 18, and the distance between the segments 18 determine the lighting properties of the optical element 10 and thus influence the cut-off line 15 of the low beam field.
  • the segments 18 may in particular be designed differently depending on the distance to the optical axis 19. In particular, the angles ⁇ and ⁇ may vary from segment 18 to segment 18.
  • One way to determine the diffractive structure 14, allows an advantageous light beam shaping of the low beam, wherein the light distribution of the low beam light can be objectively calculated. Rather, by adapting the geometric characteristics of the diffractive structure 14, a desired light intensity I and an advantageous form of the light distribution can be achieved.
  • the geometric shape of the segments 18 and the pattern 17 can be selected advantageously.
  • the distance between the segments 18 can be varied in order to influence the degree of hardness of the light-dark boundary 15 advantageously, wherein the orientation of the individual segments 18 can be varied to adjust the width of the cut-off line 15.
  • a pattern can be selected that exemplifies Recesses in the form of grooves is formed.
  • the shape of the segments 18 can be advantageously chosen so that they form, for example, in cross-section a semicircle or any other mathematically describable geometric figure.
  • the geometry of the diffractive structure 14 can not only serve to favorably influence the light distribution, but also be adapted to the requirements of the manufacturer's technology.
  • a further advantage of the optical element 10 according to the invention is a possibility of an objective quality inspection of the surface 13 provided with the diffractive structure 14. It has also proven to be particularly advantageous that the surface gradient, like other characteristic parameters of the optical element according to the invention, are clearly determinable mathematical quantities. Furthermore, the lighting design of the optical element and the numerical simulability of the light distribution can also be performed clearly and objectively, with an inaccurate and expensive empirical estimation of the low beam field is no longer necessary. It is particularly advantageous that the diffractive structures 14 are formed protruding from the surface 13, which reduces the tool-side effort for the production of the optical element 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The optical element (10) is penetrable with light (11) which is generated by a light source (12) arranged in headlight. The optical element has a diffractive structure (14) at an upper surface (13). The diffractive structure serves for influencing a bright-dark-boundary of a low beam of headlight. The optical element is manufactured from plastic material, particularly polycarbonate or polymethyl methacrylate. The diffractive structure forms a spatially sequential prism-like pattern. The surface portion of the pattern on the upper surface amounts up to 50 percent.

Description

Die vorliegende Erfindung betrifft ein Optikelement zur Anordnung in einem Scheinwerfer eines Fahrzeugs, wobei das Optikelement mit Licht durchstrahlbar ist, das von wenigstens einer im Scheinwerfer angeordneten Lichtquelle erzeugbar ist, wobei das Optikelement zur Strahlformung des das Optikelement durchstrahlenden Lichtes dient und wobei das Optikelement an wenigstens einer Oberfläche eine diffraktive Struktur aufweist.The present invention relates to an optical element for arrangement in a headlight of a vehicle, wherein the optical element is durchstrahlbar with light, which is generated by at least one light source arranged in the headlight, wherein the optical element for beam shaping of the optical element radiating light is used and wherein the optical element to at least a surface has a diffractive structure.

Es ist bekannt, dass Optikelemente zur Lichtstrahlformung in Fahrzeugscheinwerfer eingesetzt werden, wobei die Optikelemente mit diffraktiven Strukturen versehen werden, um gesetzliche und technische Erfordernisse einer entsprechenden Lichtfunktion zu erfüllen. Es kann sich dabei um Hauptlichtfunktionen eines Fahrzeugscheinwerfers, wie Abblendlicht und Fernlicht oder Zusatzlichtfunktionen, wie Abbiegelicht und Tagfahrlicht handeln. Die Erfordernisse an Optikelemente zur Anordnung in einem Scheinwerfer eines Fahrzeugs sind zahlreich und sehr spezifisch, um ein bestimmtes Lichtfeld und eine entsprechende Lichtintensität für eine der verschiedenen Lichtfunktionen sicherzustellen. Deswegen weisen Optikelemente oft eine komplizierte Geometrie auf oder werden mit stochastischen Strukturen versehen, die mathematisch nicht beschreibbar sind.It is known that optical elements are used for beam shaping in vehicle headlights, wherein the optical elements are provided with diffractive structures in order to meet legal and technical requirements of a corresponding light function. It may be the main light functions of a vehicle headlamp, such as low beam and high beam or additional light functions, such as cornering and daytime running lights. The requirements for optical elements for placement in a headlight of a vehicle are numerous and very specific in order to ensure a particular light field and a corresponding light intensity for one of the different lighting functions. Therefore, optical elements often have a complicated geometry or are provided with stochastic structures that are not mathematically writable.

Bei Abblendlicht muss die Fahrbahn vor dem Fahrzeug ausgeleuchtet werden, ohne die Fahrer entgegenkommender Fahrzeuge oder andere Verkehrsteilnehmer zu blenden. Dabei entsteht eine Grenze zwischen einem beleuchteten und einem unbeleuchteten vertikal unterteilten Bereich, welche Grenze bei einer Abblendlichtfunktion als Hell-Dunkel-Grenze bezeichnet wird. Hierbei muss beachtet werden, dass der Übergang zwischen hellem und dunklem Bereich einerseits einen hohen Kontrast aufweisen muss, um den Gegenverkehr nicht zu blenden, aber gleichzeitig im Übergang relativ weich sein muss, um den rechten Straßenrand für den Fahrer klar erkennbar zu machen und um Fußgänger und Radfahrer am Fahrbahnrand früher wahrzunehmen. Der Härtegrad einer Hell-Dunkel-Grenze ist somit ein wesentliches Qualitätsmerkmal einer Abblendlichtfunktion.In the case of low beam, the lane in front of the vehicle shall be illuminated without dazzling the drivers of oncoming vehicles or other road users. This creates a boundary between an illuminated and a non-illuminated vertically divided area, which limit is called a cut-off light function as a light-dark boundary. It should be noted that on the one hand, the transition between the light and dark areas must have a high contrast in order to avoid dazzling oncoming traffic, but at the same time be relatively soft in the transition to the right side of the road To make drivers clearly recognizable and to perceive pedestrians and cyclists at the edge of the road earlier. The degree of hardness of a light-dark boundary is thus an essential quality feature of a low-beam function.

Herkömmliche Optikelemente ohne diffraktive Struktur weisen einen hohen Kontrast an der Grenze zwischen hellem und dunklem Bereich auf. Strukturen zur Aufweichung der Hell-Dunkel-Grenze sind hauptsächlich für Glaslinsen bekannt. Bekannte stochastische Strukturen werden per Glaskugel-Strahlen in das Presswerkzeug eingebracht und im Urformverfahren in die Oberfläche einer Glaslinse übertragen, was eine zusätzliche manuelle Nacharbeit wie Polieren der Werkzeugoberfläche erfordert, um eine gewünschte Oberflächenrauigkeit zu erreichen.Conventional optical elements without diffractive structure have a high contrast at the boundary between the light and dark areas. Structures for softening the cut-off line are mainly known for glass lenses. Known stochastic structures are introduced by glass ball blasting in the pressing tool and transferred in the primary molding process in the surface of a glass lens, which requires additional manual reworking such as polishing the tool surface to achieve a desired surface roughness.

Aus der DE 20 2004 005 936 U1 ist ein Optikelement zur Anordnung in einem Scheinwerfer eines Fahrzeugs bekannt, das zur Strahlformung eines von einer Lichtquelle ausgesandten Lichtes dient. Das Optikelement besteht aus Glas und weist eine plane Oberfläche und eine konvexe Oberfläche auf. In die konvexe Oberfläche des Optikelements ist eine diffraktive Struktur eingebracht, die eine größere Oberflächenrauigkeit als die plane Oberfläche des Optikelements aufweist, wodurch eine Beeinflussung der Hell-Dunkel-Grenze erreicht wird. Die diffraktive Struktur wird im Formwerkzeug durch einen Erodier- oder Strahlvorgang eingebracht und auf die konvexe Oberfläche des Optikelements durch ein Formpressverfahren abgeformt.From the DE 20 2004 005 936 U1 is an optical element for arrangement in a headlight of a vehicle known, which is used for beam shaping of a light emitted from a light source. The optical element is made of glass and has a flat surface and a convex surface. In the convex surface of the optical element, a diffractive structure is introduced, which has a greater surface roughness than the planar surface of the optical element, whereby an effect on the cut-off line is achieved. The diffractive structure is introduced in the mold by an erosion or blasting process and molded onto the convex surface of the optical element by a compression molding process.

Als nachteilig hat sich dabei erwiesen, dass der werkzeugtechnische Aufwand zu hoch und die technische Umsetzung zu aufwendig sind. Des Weiteren ist die stochastische Struktur, die dabei entsteht, im Hinblick auf lichttechnische Auslegung der Struktur nicht befriedigend.A disadvantage has proven to be that the tooling effort is too high and the technical implementation is too expensive. Furthermore, the stochastic structure that results is unsatisfactory in terms of lighting design of the structure.

Ferner ist die Übertragbarkeit des Verfahrens von Glaslinsen auf Kunststofflinsen aufgrund des unterschiedlichen Urformverfahrens und der unterschiedlichen Materialien nicht möglich. Die aus dem Stand der Technik bekannten stochastischen Strukturen, die per Glaskugel-Strahlen, Erodieren, Printstruktur oder gelaserter Feinstruktur in die Oberfläche des Spritzgusswerkzeugs eingebracht werden, führen am Kunststoffteil zu einer zu starken Beeinflussung der Lichtverteilung, sodass die Hell-Dunkel-Grenze nicht eindeutig ist und oft doppelt erscheint.Furthermore, the transferability of the method of glass lenses to plastic lenses is not possible due to the different original molding method and the different materials. The known from the prior art stochastic structures, which are introduced by glass ball blasting, eroding, print structure or lasered fine structure in the surface of the injection mold lead on the plastic part to an excessive influence on the light distribution, so that the cut-off line is not unique and often appears twice.

Es ist daher die Aufgabe der vorliegenden Erfindung, ein Optikelement für einen Scheinwerfer eines Fahrzeugs zu schaffen, das die oben beschriebenen Nachteile überwindet. Insbesondere ist ein Optikelement zu schaffen, das eine derartige diffraktive Struktur aufweist, die ein Einstellen eines Aufweichungsgrades einer Hell-Dunkel-Grenze eines Abblendlichtes ermöglicht.It is therefore the object of the present invention to provide an optical element for a headlight of a vehicle, which overcomes the disadvantages described above. In particular, an optical element is to be provided which has such a diffractive structure, which makes it possible to set a degree of softening of a light-dark boundary of a low-beam light.

Diese Aufgabe wird ausgehend von einem Optikelement gemäß dem Oberbegriff des Anspruches 1 in Verbindung mit den kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved on the basis of an optical element according to the preamble of claim 1 in conjunction with the characterizing features. Advantageous developments of the invention are specified in the dependent claims.

Die Erfindung schließt die technische Lehre ein, dass die diffraktive Struktur, die in wenigstens eine Oberfläche des Optikelements eingebracht wird, numerisch beschreibbar ist und zur Beeinflussung einer Hell-Dunkel-Grenze eines Abblendlichtes des Scheinwerfers dient. Die mathematische Beschreibbarkeit der diffraktiven Struktur führt auf vorteilhafte Weise zur computergestützten Simulierbarkeit des durch das Optikelement geformten Lichtes. Weiterhin werden im Vergleich zu einer stochastischen Struktur eine lichttechnische Auslegung und eine objektive Qualitätsprüfung der diffraktiven Struktur möglich. Die erfindungsgemäße diffraktive Struktur kann somit das das Optikelement durchstrahlbare Licht derart beeinflussen, dass es mit weichen Übergängen oberhalb der Hell-Dunkel-Grenze abgebildet wird, was zu einer im gewünschten Umfang aufgeweichten und entschärften, einfach vorhandenen Hell-Dunkel-Grenze führt.The invention includes the technical teaching that the diffractive structure, which is introduced into at least one surface of the optical element, is numerically describable and serves to influence a bright-dark boundary of a low beam of the headlight. The mathematical describability of the diffractive structure advantageously leads to the computer-aided simulability of the light formed by the optical element. Furthermore, compared to a stochastic structure, a lighting design and an objective quality inspection of the diffractive structure become possible. The diffractive structure according to the invention can thus influence the light which can be transmitted through the optical element in such a way that it is imaged with soft transitions above the light-dark boundary, which leads to a softened and disarmed, easily present light-dark boundary to the desired extent.

Eine mögliche bevorzugte Ausgestaltung der Erfindung ergibt sich, wenn das Optikelement aus einem Kunststoffmaterial, insbesondere aus einem Polycarbonat oder einem Polymethylmethacrylat, hergestellt wird. Polycarbonat und Polymethylmethacrylat sind synthetische, transparente thermoplastische Kunststoffe, die einen Ersatz für Glas darstellen. Derartige Kunststoffe sind elastisch und ab 100°C plastisch verformbar, wobei bei schneller Abkühlung die neue Form der Kunsstoffe erhalten bleibt und sich schneiden oder gravieren lässt, so dass die erfindungsgemäße diffraktive Struktur vorteilhafterweise darin einbringbar ist. Zudem sind derartige Kunstoffe witterungs-, alterungsbeständig und vergleichsweise kratzunempfindlich, sodass ein daraus hergestelltes Optikelement zur Anordnung in einem Fahrzeugscheinwerfer geeignet ist.A possible preferred embodiment of the invention results when the optical element is made of a plastic material, in particular of a polycarbonate or a polymethylmethacrylate. Polycarbonate and polymethyl methacrylate are synthetic, transparent thermoplastics that substitute for glass. Such plastics are elastic and plastically deformable from 100 ° C, with rapid cooling, the new form of Kunsstoffe is maintained and can be cut or engraved, so that the inventive diffractive structure advantageously can be introduced therein. In addition, such plastics are weather-resistant, aging-resistant and relatively scratch-resistant, so that an optical element made from them is suitable for arrangement in a vehicle headlight.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung kann das Optikelement durch einen Kunststoff-Spritzguss-Prozess hergestellt werden, wobei die diffraktive Struktur im Formwerkzeug des Kunststoff-Spritzguss-Prozesses eingebracht wird und auf der Oberfläche des Optikelementes abgeformt wird. Durch das Formwerkzeug werden die geometrische Form und die Oberflächenstruktur des fertigen Optikelementes bestimmt. Vorteilhafterweise lässt sich die erfindungsgemäße diffraktive Struktur durch Spritzgießen mit hoher Genauigkeit und in kurzer Zeit herstellen.In a preferred embodiment of the present invention, the optical element can be produced by a plastic injection molding process, wherein the diffractive structure is introduced in the mold of the plastic injection molding process and is molded on the surface of the optical element. The shape tool determines the geometric shape and the surface structure of the finished optical element. Advantageously, the inventive diffractive structure can be produced by injection molding with high accuracy and in a short time.

In einer alternativen Ausführungsform der vorliegenden Erfindung kann die diffraktive Struktur durch ein Formpressverfahren in die Oberfläche des Optikelementes eingebracht werden. Die erfindungsgemäße diffraktive Struktur lässt sich ebenso gut im Formwerkzeug eines Formpressverfahrens einbringen, sodass das Optikelement auch aus Glas hergestellt werden kann. Die erfindungsgemäße Struktur ist somit werkstoffunabhängig und für Glas ebenso gut wie für Kunststoffe anwendbar.In an alternative embodiment of the present invention, the diffractive structure may be introduced into the surface of the optical element by a molding process. The diffractive structure according to the invention can just as well be introduced into the mold of a compression molding process, so that the optical element can also be produced from glass. The structure according to the invention is thus material-independent and applicable to glass as well as to plastics.

In einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist das Optikelement als Plankonvexlinse ausgebildet, wobei die diffraktive Struktur in die plane Oberfläche des Optikelements eingebracht werden kann. Das Optikelement wird derart in einem Scheinwerfer eingebaut, dass die plane Oberfläche von der Außenseite des Scheinwerfers nicht sichtbar ist. Deswegen kann die plane Oberfläche mit einer diffraktiven Struktur versehen werden, ohne das Erscheinungsbild des Scheinwerfers zu beeinträchtigen.In a preferred embodiment of the present invention, the optical element is designed as a plano-convex lens, wherein the diffractive structure can be introduced into the planar surface of the optical element. The optical element is installed in a headlight such that the flat surface is not visible from the outside of the headlight. Therefore, the flat surface can be provided with a diffractive structure without affecting the appearance of the headlamp.

Nach einem besonderen Vorteil erfolgt die Einkopplung des Lichtes in das Optikelement über die plane Oberfläche des Optikelements. Hierbei wird eine Lichtquelle angrenzend an die plane Oberfläche des Optikelements im Scheinwerfer angeordnet. Das durch die Lichtquelle emittierte Licht wird bereits an der planen Oberfläche durch die diffraktive Struktur gebrochen, um das das Optikelement durchstrahlende Licht vorteilhaft zu formen.According to a particular advantage, the coupling of the light into the optical element takes place via the planar surface of the optical element. Here is a Light source disposed adjacent to the planar surface of the optical element in the headlight. The light emitted by the light source is already refracted at the planar surface by the diffractive structure in order to advantageously form the light radiating through the optical element.

In einer weiteren vorteilhaften Ausführungsform der vorliegenden Erfindung weist das Optikelement eine konvexe Oberfläche auf, wobei die Auskopplung des Lichtes aus dem Optikelement über die konvexe Oberfläche erfolgt. Hierbei wird das das Optikelement durchstrahlbare Licht an der konvexen Oberfläche ein weiteres Mal gebrochen, was zu einer vorteilhaften Lichtstrahlformung des aus dem Optikelement austretenden Lichtes dienen kann.In a further advantageous embodiment of the present invention, the optical element has a convex surface, wherein the coupling of the light out of the optical element takes place via the convex surface. In this case, the light which can be transmitted through the optical element is refracted once more at the convex surface, which can serve for advantageous light beam shaping of the light emerging from the optical element.

Nach einem besonderen Vorteil der vorliegenden Erfindung bildet die diffraktive Struktur ein räumlich sequenzielles Muster, vorzugsweise ein räumlich sequenzielles prismenartiges Muster, wobei der Flächenanteil des Musters auf der planen Oberfläche bis zu 50% und vorzugsweise bis zu 30% beträgt. Dieser Flächenanteil ist maßgeblich für das Lichtverhältnis des Lichtes, das unterhalb bzw. oberhalb der Hell-Dunkel-Grenze abgebildet wird, und kann somit zur vorteilhaften Aufweichung der Hell-Dunkel-Grenze dienen. Hierbei kann das räumlich sequenzielle Muster gleich verteilt über die plane Oberfläche des Optikelements ausgebildet sein. Des Weiteren kann ein sequentielles Segment des Musters durch eine erhabene oder vertiefte Form bestimmt sein, die im Querschnitt einem Dreieck, einer Rille oder einer anderen beliebeigen geometrischen Figur entsprechen kann.According to a particular advantage of the present invention, the diffractive structure forms a spatially sequential pattern, preferably a spatially sequential prism-like pattern, wherein the area ratio of the pattern on the planar surface is up to 50% and preferably up to 30%. This area fraction is decisive for the light ratio of the light which is imaged below or above the light-dark boundary, and thus can serve for the advantageous softening of the cut-off line. In this case, the spatially sequential pattern can be formed evenly distributed over the planar surface of the optical element. Further, a sequential segment of the pattern may be defined by a raised or recessed shape, which in cross-section may correspond to a triangle, a groove or any other geometric shape.

Vorzugsweise kann die diffraktive Struktur durch aus der planen Oberfläche des Optikelements erhabene Segmente gebildet sein, wobei die Breite eines Segmentes bis zu 1 mm und vorzugsweise bis zu 0,6 mm betragen kann. Hierbei bestimmt die Segmentbreite die lichttechnisch wirksame prismatische Struktur, die zur vorteilhaften Lichtstrahlformung vorgesehen ist. Die diffraktive Struktur dient dabei zur Beeinflussung einer Lichtintensität des Lichtes angrenzend an die Hell-Dunkel-Grenze, vorzugsweise zur Beeinflussung der Lichtintensität des Lichtes, das oberhalb der Hell-Dunkel-Grenze an diese angrenzt.Preferably, the diffractive structure can be formed by segments raised from the planar surface of the optical element, wherein the width of a segment can be up to 1 mm and preferably up to 0.6 mm. Here, the segment width determines the photometrically effective prismatic structure, which is provided for advantageous light beam shaping. The diffractive structure serves to influence a light intensity of the light adjacent to the light-dark boundary, preferably for influencing the light intensity of the light, which adjoins the light barrier above the light-dark boundary.

In einer vorteilhaften Ausgestaltung der vorliegenden Erfindung erstrecken sich die Segmente in einer Richtung quer zur optischen Achse des Lichtes über der Oberfläche des Optikelementes und weisen dabei einen dreieckförmigen Querschnitt mit einer Lichteintrittsfläche auf, wobei der Winkel zwischen der Lichteintrittsfläche und der planen Oberfläche kleiner als 5°, vorzugsweise kleiner als 0,5° beträgt. Vorteilhafterweise bestimmt der Winkel zwischen der Lichteintrittsfläche und der planen Oberfläche des Optikelements die Breite des Lichtfeldes, die oberhalb der Hell-Dunkel-Grenze abgebildet wird. Der Winkel kann hierbei derart gewählt werden, dass eine vorteilhafte Aufweichung der Hell-Dunkel-Grenze erreicht wird.In an advantageous embodiment of the present invention, the segments extend in a direction transverse to the optical axis of the light above the surface of the optical element and have a triangular cross section with a light entrance surface, wherein the angle between the light entry surface and the planar surface is less than 5 ° , preferably less than 0.5 °. Advantageously, the angle between the light entry surface and the planar surface of the optical element determines the width of the light field, which is imaged above the cut-off line. The angle can be chosen such that an advantageous softening of the cut-off line is achieved.

Die Segmente der diffraktiven Struktur lenken Lichtabschnitte segmentweise vom Bereich unterhalb der Hell-Dunkel-Grenze in den Bereich oberhalb der Hell-Dunkel-Grenze ab, wobei sich die Lichtabschnitte oberhalb der Hell-Dunkel-Grenze vorzugsweise überlagern, derart, dass der Kontrast der Hell-Dinkel-Grenze verringert wird. Einkopplung des Lichtes durch verschiedene Segmente und Auskopplung des Lichtes durch die konvexe Oberfläche des Optikelements geschehen unter verschiedenen Winkeln, was zur Überlagerung der durch das Optikelement abgebildeten Lichtabschnitte führt. Folglich wird unmittelbar oberhalb der Hell-Dunkel-Grenze eine hohe Lichtintensität durch vielfache Überlagerungen erzeugt, die mit zunehmendem Abstand von der Hell-Dunkel-Grenze mit abnehmenden Überlagerungen gleitend abnimmt. Für einen Beobachter ergibt sich somit eine nach oben weich auslaufende Hell-Dunkel-Grenze.The segments of the diffractive structure deflect segments of light from the region below the light-dark boundary into the region above the light-dark boundary, wherein the light segments above the light-dark boundary preferably overlap, such that the contrast of the light Angle limit is reduced. Coupling of the light by different segments and coupling of the light through the convex surface of the optical element occur at different angles, which leads to the superimposition of the light segments imaged by the optical element. Consequently, immediately above the cut-off line, a high light intensity is produced by multiple superimpositions, which gradually decreases with increasing distance from the cut-off line with decreasing superimpositions. For an observer, this results in an upward soft-running cut-off.

Eine Möglichkeit, die diffraktive Struktur mathematisch zu beschreiben, ermöglicht eine genaue Bestimmung des Abblendlichtfeldes. Vorteilhafterweise können durch eine Anpassung der geometrischen Charakteristiken der diffraktiven Struktur eine vorteilhafte Lichtintensität und eine gewünschte Lichtverteilung des Abblendlichtfeldes erreicht werden. Parameter der erfindungsgemäßen Struktur, die zu einer vorteilhaften Lichtstrahlformung eingestellt werden können, sind geometrische Form, Anzahl und Ausrichtung der Segmente, sowie der Abstand zwischen den Segmenten. Folglich dient das erfindungsgemäße Optikelement zur vorteilhaften Lichtstrahlformung einer Abblendlichtfunktion mit einer aufgeweichten, dennoch eindeutigen Hell-Dunkel-Grenze.One way of mathematically describing the diffractive structure allows an accurate determination of the low beam field. Advantageously, by adapting the geometric characteristics of the diffractive structure, an advantageous light intensity and a desired light distribution of the low beam field can be achieved. Parameters of the structure according to the invention, which can be adjusted to an advantageous light beam shaping, are geometric shape, number and orientation of the segments, as well as the distance between the segments. Consequently, the optical element according to the invention is used for advantageous light beam shaping Dipped beam function with a softened, yet clear cut-off.

Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt:

Fig. 1
eine Schnittansicht eines erfindungsgemäßen Optikelements,
Fig. 2
eine Lichtverteilung nahe einer Hell-Dunkel-Grenze eines Abblendlichtfeldes an einer 10m vom Scheinwerfer entfernten Wand,
Fig. 3
eine Intensität der Lichtverteilung des Abblendlichts in Abhängigkeit von der Höhe vor dem Scheinwerfer,
Fig. 4
eine Draufsicht einer planen Oberfläche und eine Schnittansicht des erfindungsgemäßen Optikelements,
Fig. 5
eine vergrößerte Ansicht einer diffraktiven Struktur auf der planen Oberfläche des erfindungsgemäßen Optikelements in einer Schnittdarstellung und
Fig. 6
eine vergrößerte Ansicht eines Segments der diffraktiven Struktur auf der planen Oberfläche des erfindungsgemäßen Optikelements in einer Schnittdarstellung.
Further, measures improving the invention will be described in more detail below together with the description of a preferred embodiment of the invention with reference to FIGS. It shows:
Fig. 1
a sectional view of an optical element according to the invention,
Fig. 2
a light distribution near a cut-off line of a low-beam field at a wall 10m away from the headlamp,
Fig. 3
an intensity of the light distribution of the dipped beam as a function of the height in front of the headlamp,
Fig. 4
a plan view of a planar surface and a sectional view of the optical element according to the invention,
Fig. 5
an enlarged view of a diffractive structure on the planar surface of the optical element according to the invention in a sectional view and
Fig. 6
an enlarged view of a segment of the diffractive structure on the planar surface of the optical element according to the invention in a sectional view.

Figur 1 zeigt ein erfindungsgemäßes Optikelement 10 in einer Schnittansicht. Das Optikelement 10 ist mit Licht 11 durchstrahlbar, das von einer Lichtquelle 12 erzeugbar ist. Die Einkopplung des Lichtes 11 in das Optikelement 10 erfolgt über eine plane Oberfläche 13 des Optikelements 10. Hierbei ist die Lichtquelle 12 auf der Seite der planen Oberfläche 13 des Optikelements 10 in der optischen Achse 19 des Optikelements 10 angeordnet. Das Optikelement 10 weist außerdem eine konvexe Oberfläche 16 auf, wobei die Auskopplung des Lichtes 11 aus dem Optikelement 10 über die konvexe Oberfläche 16 erfolgt. Das Optikelement 10 ist auf der planen Oberfläche 13 mit einer erfindungsgemäßen diffraktiven Struktur 14 versehen. Das durch die Lichtquelle 12 emittierte Licht 11 wird zunächst an der planen Oberfläche 13 durch die diffraktive Struktur 14 und anschließend an der konvexen Oberfläche 16 gebrochen. Das Optikelement 10 formt das Licht 11 derart, dass die Lichtstrahlen nahe einer Hell-Dunkel-Grenze 15 annähernd parallel verlaufen. An der diffraktiven Struktur 14 gebrochene Lichtstrahlen 21, 22 werden hauptsächlich aus dem Bereich unterhalb der Hell-Dunkel-Grenze 15 in den Bereich oberhalb der Hell-Dunkel-Grenze 15 abgelenkt. Die nach oben abgelenkten Lichtstrahlen 21 erzeugen eine nach oben weich auslaufende Lichtintensität 21 im Bereich oberhalb der Hell-Dunkel-Grenze, wie es in der Figur 2 zu sehen ist. FIG. 1 shows an inventive optical element 10 in a sectional view. The optical element 10 can be irradiated with light 11, which can be generated by a light source 12. The coupling of the light 11 in the optical element 10 via a planar surface 13 of the optical element 10. Here, the light source 12 is on the side of the plane surface 13 of the optical element 10 in the optical axis 19 of the optical element 10 is arranged. The optical element 10 also has a convex surface 16, wherein the extraction of the light 11 from the optical element 10 via the convex surface 16 takes place. The optical element 10 is provided on the planar surface 13 with a diffractive structure 14 according to the invention. The light 11 emitted by the light source 12 is first refracted at the planar surface 13 by the diffractive structure 14 and then at the convex surface 16. The optical element 10 shapes the light 11 in such a way that the light rays near a light-dark boundary 15 run approximately parallel. Refracted light beams 21, 22 at the diffractive structure 14 are deflected mainly from the area below the cut-off line 15 into the area above the cut-off line 15. The upwardly deflected light beams 21 produce a light intensity 21 which expires soft upward in the region above the cut-off line, as shown in FIG FIG. 2 you can see.

Figur 2 zeigt eine Lichtverteilung nahe der Hell-Dunkel-Grenze 15 eines Abblendlichtfeldes an einer 10m vom Scheinwerfer entfernten Wand 24. Die Lichtverteilung des durch das Optikelement 10 gebrochenen Lichtes 11 ist asymmetrisch, wobei die Hell-Dunkel-Grenze 15 zur rechten Seite nach oben abgelenkt ist. Die diffraktive Struktur 14 aus der Figur 1 hat die Lichtstrahlen 21, 22 in den Bereich oberhalb und unterhalb der Hell-Dunkel-Grenze 15 abgelenkt. Hierbei ist eine Lichtintensität 21, 22 des Lichtes 11 oberhalb und unterhalb der Hell-Dunkel-Grenze 15 entstanden. Wie es in der Figur 2 zu erkennen ist, weist die Hell-Dunkel-Grenze 15 keinen abrupten Übergang zwischen einem ausgeleuchteten und einem dunklen Bereich auf. Die Hell-Dunkel-Grenze ist auf die Breite zwischen den Lichtstrahlen 21 und 22 aufgeweicht. Wie es nachkommend in der Figur 3 gezeigt ist, ist der Übergang zwischen der hohen Intensität 22 unterhalb der Hell-Dunkel-Grenze 15 und der niedrigen Intensität 21 oberhalb der der Hell-Dunkel-Grenze 15 gleitend abfallend, wenn man die Lichtverteilung in Abhängigkeit von der Höhe H vor dem Scheinwerfer im Schnitt S der Lichtverteilung betrachtet. FIG. 2 shows a light distribution near the cut-off line 15 of a low-beam field at a 10m away from the headlight wall 24. The light distribution of refracted by the optical element 10 light 11 is asymmetrical, the light-dark boundary 15 is deflected to the right side upwards , The diffractive structure 14 from the FIG. 1 has the light beams 21, 22 deflected into the area above and below the cut-off line 15. In this case, a light intensity 21, 22 of the light 11 has arisen above and below the cut-off line 15. As it is in the FIG. 2 can be seen, the light-dark boundary 15 has no abrupt transition between a lit and a dark area. The light-dark boundary is softened to the width between the light beams 21 and 22. As it is coming in the FIG. 3 is shown, the transition between the high intensity 22 below the cut-off line 15 and the low intensity 21 is above the light-dark boundary 15 slidingly sloping, considering the light distribution as a function of the height H in front of the headlights in Section S of the light distribution considered.

Figur 3 zeigt eine Intensität 1 der Lichtverteilung des Abblendlichts in Abhängigkeit von der Höhe H vor dem Scheinwerfer als Grafik einer Funktion der Lichtintensität I von der Höhe H. Die Lichtintensität I ist im Schnitt S der Lichtverteilung dargestellt, wie es durch die gestrichelte Linie S in der Figur 2 gezeigt ist. Der erste Abschnitt I der Grafik verläuft beinahe vertikal und entspricht der Intensität I des durch den Scheinwerfer ausgeleuchteten Lichtfeldes unterhalb der Hell-Dunkel-Grenze 15 bis zu einer bestimmten Höhe H. Der zweite Abschnitt II der Grafik entspricht dem Übergang zwischen dem ausgeleuchteten Bereich und dem dunklen Bereich oberhalb des Abblendlichtfeldes. Der Übergang weist einen hohen Kontrast auf, da der Abschnitt II in der Ansicht beinahe horizontal verläuft. Der Abschnitt III in der Ansicht weist Lichtabschnitte 23 auf und verläuft stufenartig. FIG. 3 shows an intensity 1 of the light distribution of the low beam as a function of the height H in front of the headlamp as a graph of a function of the light intensity I of the height H. The light intensity I is shown in the section S of the light distribution, as indicated by the dashed line S in the FIG. 2 is shown. The first section I of the graph is almost vertical and corresponds to the intensity I of the light field illuminated by the headlight below the cut-off line 15 up to a certain height H. The second section II of the graph corresponds to the transition between the illuminated area and the dark area above the low beam field. The transition has a high contrast because the section II in the view is almost horizontal. The section III in the view has light sections 23 and runs stepwise.

Die Lichtabschnitte 23 entsprechen der Überlagerung der Lichtstrahlen 21, 22, die durch die diffraktive Struktur 14 abgelenkt sind. Die Segmente 18 bilden somit die Lichtabschnitte 23 in den Bereich oberhalb der Hell-Dunkel-Grenze 15 ab, die sich derart überlagern, sodass die Lichtintensität I oberhalb der Hell-Dinkel-Grenze 15 gleitend abfällt, und sodass der Kontrast des Überganges zwischen ausgeleuchtetem und dunklem Bereich verringert ist. Die Abschnitte II und III entsprechen, zusammen betrachtet, der durch das erfindungsgemäße Optikelement 10 aufgeweichten Hell-Dunkel-Grenze 15 der Abblendlichtverteilung. Die Intensität I der Hell-Dunkel-Grenze 15 ist somit ebenfalls eine Funktion von der Höhe H vor dem Scheinwerfer. Der Abschnitt IV der Grafik I entspricht dem dunklen Bereich außerhalb des Abblendlichtfeldes.The light sections 23 correspond to the superposition of the light beams 21, 22, which are deflected by the diffractive structure 14. The segments 18 thus form the light sections 23 in the area above the cut-off line 15, which overlap in such a way that the light intensity I above the light-angle boundary 15 slidably decreases, and thus the contrast of the transition between illuminated and dark area is reduced. Sections II and III correspond, considered together, the light-dark boundary 15 of the low beam distribution softened by the optical element 10 according to the invention. The intensity I of the cut-off line 15 is thus also a function of the height H in front of the headlight. Section IV of graph I corresponds to the dark area outside the low beam field.

Figur 4 zeigt eine Draufsicht der planen Oberfläche 13 des Optikelements 10 und eine Schnittansicht des erfindungsgemäßen Optikelements 10. Die plane Oberfläche 13 des erfindungsgemäßen Optikelements 10 ist links in der Figur 4 gezeigt. In der Oberfläche 13 ist die diffraktive Struktur 14 eingebracht, die ein räumlich sequenzielles Muster 17 aufweist. In dem dargestellten Ausführungsbeispiel weist das Muster 17 einen sequentiellen Charakter auf, das aus mehreren prismatischen Segmenten 18 gebildet ist. Die Segmente 18 erstrecken sich in einer Richtung quer zur optischen Achse 19 des Lichtes 11 über der Oberfläche 13 des Optikelements 10 und weisen einen dreieckförmigen Querschnitt mit einer Lichteintrittsfläche 20 auf, wie es nachfolgend in der Figur 6 verdeutlicht ist. Der Flächenanteil des Musters 17 auf der planen Oberfläche 13, der durch die Breite der Segmente 18 bestimmt ist, beträgt vorzugsweise 30%. Rechts in der Figur 4 ist das erfindungsgemäße Optikelement 10 in einer Schnittansicht gezeigt. In der Schnittansicht ist es zu sehen, dass die Segmente 18 der diffraktiven Struktur 14 aus der planen Oberfläche 13 hervorstehen und im Querschnitt der Form eines Dreiecks entsprechen. FIG. 4 shows a plan view of the planar surface 13 of the optical element 10 and a sectional view of the optical element according to the invention 10. The planar surface 13 of the optical element 10 according to the invention is left in the FIG. 4 shown. In the surface 13, the diffractive structure 14 is introduced, which has a spatially sequential pattern 17. In the illustrated embodiment, the pattern 17 has a sequential character formed of a plurality of prismatic segments 18. The segments 18 extend in a direction transverse to the optical axis 19 of the light 11 above the surface 13 of the optical element 10 and have a triangular cross-section with a light entry surface 20, as described below in the FIG. 6 is clarified. The area ratio of the pattern 17 on the planar surface 13, which is determined by the width of the segments 18, is preferably 30%. Right in the FIG. 4 the optical element 10 according to the invention is shown in a sectional view. In the sectional view it can be seen that the segments 18 of the diffractive structure 14 project from the plane surface 13 and correspond in cross-section to the shape of a triangle.

Figur 5 zeigt eine vergrößerte Ansicht der diffraktiven Struktur 14 auf der planen Oberfläche 13 des erfindungsgemäßen Optikelements 10 in einer Schnittdarstellung. Der abgebildete Ausschnitt der diffraktiven Struktur 14 ist etwa um die optische Achse 19 des Optikelements 10 ausgewählt. Die diffraktive Struktur 14 bildet ein sequentielles prismatisches Muster 17, das in vertikaler Richtung spiegelsymmetrisch bezüglich der optischen Achse 19 auf der Oberfläche 13 abgebildet ist. Das Muster 17 ist aus den erhabenen prismatischen Segmenten 18 gebildet, die einen dreieckförmigen Querschnitt aufweisen, wie in Figur 6 gezeigt ist. FIG. 5 shows an enlarged view of the diffractive structure 14 on the planar surface 13 of the optical element 10 according to the invention in a sectional view. The depicted section of the diffractive structure 14 is selected approximately around the optical axis 19 of the optical element 10. The diffractive structure 14 forms a sequential prismatic pattern 17, which is mirror-symmetrical with respect to the optical axis 19 on the surface 13 in the vertical direction. The pattern 17 is formed from the raised prismatic segments 18 having a triangular cross-section, as in FIG FIG. 6 is shown.

Figur 6 zeigt eine vergrößerte Ansicht eines Segments 18 der diffraktiven Struktur 14 auf der planen Oberfläche 13 des erfindungsgemäßen Optikelements 10 in einer Schnittdarstellung. Das Segment 18 weist eine Breite s auf, die die eigentliche Breite der lichttechnisch wirksamen Struktur 14 bestimmt. Geometrisch ergänzt sich die Breite s durch s', wobei eine Seite des Segments 18 als Lichteintrittsfläche 20 des auf das Segment 18 einfallenden Lichtes 11 dient. Somit ist die Breite s des Segments 18 maßgeblich für die Lichtintensität I des Lichtes 11, das unterhalb oder oberhalb der scharfen Hell-Dunkel-Grenze 15 abgebildet wird, wie es in der Figur 2 gezeigt ist. Folglich ist die Breite s ebenfalls maßgeblich für den Grad der Aufweichung der Hell-Dunkel-Grenze 15. Am oberen Scheitelpunkt des Segments 18 entsteht ein Winkel β, der von beliebiger Größe größer Null gewählt werden kann. Im dargelegten Ausführungsbeispiel beträgt der Winkel aus Herstellungsgründen 90°. FIG. 6 shows an enlarged view of a segment 18 of the diffractive structure 14 on the planar surface 13 of the optical element 10 according to the invention in a sectional view. The segment 18 has a width s, which determines the actual width of the photometrically active structure 14. Geometrically, the width s is complemented by s', one side of the segment 18 serving as a light entry surface 20 of the light 11 incident on the segment 18. Thus, the width s of the segment 18 is decisive for the light intensity I of the light 11, which is imaged below or above the sharp cut-off line 15, as shown in FIG FIG. 2 is shown. Consequently, the width s is also decisive for the degree of softening of the light-dark boundary 15. At the upper vertex of the segment 18, an angle β is created, which can be chosen to be of any size greater than zero. In the illustrated embodiment, the angle is 90 ° for manufacturing reasons.

Ein weiterer charakteristischer Parameter des Segments 18 ist ein Winkel α, der zwischen der planen Oberfläche 13 und der Lichteintrittsfläche 20 entsteht. Der Winkel α bestimmt dabei die Breite des Lichtabschnitts 23, das oberhalb der Hell-Dunkel-Grenze 15 abgebildet wird, wie es in der Figur 3 gezeigt ist. Die Einkopplung des Lichtes 11 in das Optikelement 10 durch unterschiedliche Segmente 18 und die Auskopplung des Lichtes 11 aus dem Optikelement 10 geschehen unter verschiedenen Winkeln. Folglich erzeugt jedes derartige Segment 18 der diffraktiven Struktur 14 einen Lichtabschnitt 23 oberhalb oder unterhalb der Hell-Dunkel-Grenze 15, der auf einer unterschiedlichen Höhe zur Hell-Dunkel-Grenze 15 abgebildet wird. Die Wirkung der Segmente 18 führt zur Überlagerung der Lichtabschnitte 23 und zur Entstehung der Lichtintensität oberhalb der Hell-Dunkel-Grenze 15, die mit zunehmender Höhe gleitend abnimmt. Somit ergibt sich eine nach oben weich auslaufende Hell-Dunkel-Grenze 15, wie es in der Figur 3 gezeigt ist.Another characteristic parameter of the segment 18 is an angle α, the between the planar surface 13 and the light entry surface 20 is formed. The angle α determines the width of the light section 23, which is imaged above the cut-off line 15, as shown in FIG FIG. 3 is shown. The coupling of the light 11 in the optical element 10 by different segments 18 and the coupling of the light 11 from the optical element 10 done at different angles. Consequently, each such segment 18 of the diffractive structure 14 produces a light section 23 above or below the cut-off line 15, which is imaged at a different height to the cut-off line 15. The effect of the segments 18 leads to the superimposition of the light sections 23 and to the emergence of the light intensity above the cut-off line 15, which decreases with increasing height. This results in an upward soft-running light-dark boundary 15, as shown in the FIG. 3 is shown.

Die geometrische Form, Anzahl und Ausrichtung der Segmente 18, sowie der Abstand zwischen den Segmenten 18 bestimmen die lichttechnischen Eigenschaften des Optikelements 10 und beeinflussen somit die Hell-Dunkel-Grenze 15 des Abblendlichtfeldes. Die Segmente 18 können insbesondere abhängig vom Abstand zur optischen Achse 19 unterschiedlich ausgeführt sein. Insbesondere können die Winkel α und β von Segment 18 zu Segment 18 variieren. Eine Möglichkeit, die diffraktive Struktur 14 zu bestimmen, ermöglicht eine vorteilhafte Lichtstrahlformung des Abblendlichtes, wobei die Lichtverteilung des Abblendlichtes objektiv berechnet werden kann. Vielmehr können durch eine Anpassung der geometrischen Charakteristiken der diffraktiven Struktur 14 eine gewünschte Lichtintensität I und eine vorteilhafte Form der Lichtverteilung erreicht werden.The geometric shape, number and orientation of the segments 18, and the distance between the segments 18 determine the lighting properties of the optical element 10 and thus influence the cut-off line 15 of the low beam field. The segments 18 may in particular be designed differently depending on the distance to the optical axis 19. In particular, the angles α and β may vary from segment 18 to segment 18. One way to determine the diffractive structure 14, allows an advantageous light beam shaping of the low beam, wherein the light distribution of the low beam light can be objectively calculated. Rather, by adapting the geometric characteristics of the diffractive structure 14, a desired light intensity I and an advantageous form of the light distribution can be achieved.

Des Weiteren kann die geometrische Form der Segmente 18 sowie des Musters 17 vorteilhaft gewählt werden. Der Abstand zwischen den Segmenten 18 kann dabei variiert werden, um den Härtegrad der Hell-Dunkel-Grenze 15 vorteilhaft zu beeinflussen, wobei auch die Ausrichtung der einzelnen Segmente 18 variiert werden kann, um die Breite der Hell-Dunkel-Grenze 15 einzustellen. Anstelle des prismatischen Musters 17 kann ein Muster gewählt werden, das beispielhaft aus Vertiefungen in Form von Rillen gebildet wird. Außerdem kann die Form der Segmente 18 vorteilhaft gewählt werden, sodass sie zum Beispiel im Querschnitt einen Halbkreis oder eine andere beliebige mathematisch beschreibbare geometrische Figur bilden. Die Geometrie der diffraktiven Struktur 14 kann nicht nur zur vorteilhaften Beeinflussung der Lichtverteilung dienen, sondern auch den Erfordernissen der Herstellertechnik angepasst werden. Ein weiterer Vorteil des erfindungsgemäßen Optikelements 10 ist eine Möglichkeit einer objektiven Qualitätsprüfung der mit der diffraktiven Struktur 14 versehenen Oberfläche 13. Als besonders vorteilhaft hat sich ebenfall erwiesen, dass der Oberflächengradient wie andere charakteristische Parameter des erfindungsgemäßen Optikelements eindeutig bestimmbare mathematische Größen sind. Des Weiteren können die lichttechnische Auslegung des Optikelements und die numerische Simulierbarkeit der Lichtverteilung ebenfalls eindeutig und objektiv ausgeführt werden, wobei eine ungenaue und aufwendige empirische Abschätzung des Abblendlichtfeldes nicht mehr nötig ist. Insbesondere vorteilhaft ist, dass die diffraktiven Strukturen 14 aus der Oberfläche 13 hervorstehend ausgebildet sind, was den werkzeugseitigen Aufwand zur Herstellung des Optikelements 10 verringert.Furthermore, the geometric shape of the segments 18 and the pattern 17 can be selected advantageously. The distance between the segments 18 can be varied in order to influence the degree of hardness of the light-dark boundary 15 advantageously, wherein the orientation of the individual segments 18 can be varied to adjust the width of the cut-off line 15. Instead of the prismatic pattern 17, a pattern can be selected that exemplifies Recesses in the form of grooves is formed. In addition, the shape of the segments 18 can be advantageously chosen so that they form, for example, in cross-section a semicircle or any other mathematically describable geometric figure. The geometry of the diffractive structure 14 can not only serve to favorably influence the light distribution, but also be adapted to the requirements of the manufacturer's technology. A further advantage of the optical element 10 according to the invention is a possibility of an objective quality inspection of the surface 13 provided with the diffractive structure 14. It has also proven to be particularly advantageous that the surface gradient, like other characteristic parameters of the optical element according to the invention, are clearly determinable mathematical quantities. Furthermore, the lighting design of the optical element and the numerical simulability of the light distribution can also be performed clearly and objectively, with an inaccurate and expensive empirical estimation of the low beam field is no longer necessary. It is particularly advantageous that the diffractive structures 14 are formed protruding from the surface 13, which reduces the tool-side effort for the production of the optical element 10.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Optikelement, PlankonvexlinseOptic element, plano-convex lens
1111
Lichtlight
1212
Lichtquellelight source
1313
Oberflächesurface
1414
diffraktive Strukturdiffractive structure
1515
Hell-Dunkel-GrenzeLight-off
1616
konvexe Oberflächeconvex surface
1717
Mustertemplate
1818
Segmentsegment
1919
optische Achseoptical axis
2020
LichteintrittsflächeLight entry surface
2121
Lichtintensität oberhalb der Hell-Dunkel-GrenzeLight intensity above the cut-off line
2222
Lichtintensität unterhalb der Hell-Dunkel-GrenzeLight intensity below the cut-off line
2323
Lichtabschnittlight section
2424
10m- Wand10m wall
HH
Höhenrichtung vor dem ScheinwerferHeight direction in front of the headlight
II
Intensität des LichtesIntensity of light
SS
Schnittfläche einer LichtverteilungCut surface of a light distribution
s, s's, s'
Breite eines SegmentsWidth of a segment
I, II, III, IVI, II, III, IV
Grafikabschnittegraphic sections
αα
Winkelcorner
ββ
Winkelcorner

Claims (13)

Optikelement (10) zur Anordnung in einem Scheinwerfer eines Fahrzeugs, wobei das Optikelement (10) mit Licht (11) durchstrahlbar ist, das von wenigstens einer im Scheinwerfer angeordneten Lichtquelle (12) erzeugbar ist, wobei das Optikelement (10) zur Strahlformung des das Optikelement (10) durchstrahlenden Lichtes (11) dient und wobei das Optikelement (10) an wenigstens einer Oberfläche (13) eine diffraktive Struktur (14) aufweist,
dadurch gekennzeichnet, dass die diffraktive Struktur (14) numerisch beschreibbar ist und zur Beeinflussung einer Hell-Dunkel-Grenze (15) eines Abblendlichtes des Scheinwerfers dient.
Optical element (10) for arrangement in a headlight of a vehicle, wherein the optical element (10) with light (11) is durchstrahlbar, which is generated by at least one headlight arranged in the light source (12), wherein the optical element (10) for beam shaping of the Optical element (10) radiating light (11) is used and wherein the optical element (10) on at least one surface (13) has a diffractive structure (14),
characterized in that the diffractive structure (14) is numerically describable and serves to influence a light-dark boundary (15) of a low beam of the headlamp.
Optikelement (10) nach Anspruch 1,
dadurch gekennzeichnet, dass das Optikelement (10) aus einem Kunststoffmaterial, insbesondere aus einem Polycarbonat oder einem Polymethylmethacrylat, hergestellt ist.
Optical element (10) according to claim 1,
characterized in that the optical element (10) is made of a plastic material, in particular of a polycarbonate or a polymethylmethacrylate.
Optikelement (10) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass das Optikelement (10) als Plankonvexlinse (10) ausgebildet ist, wobei die Oberfläche (13) des Optikelementes (10) die plane Oberfläche (13) ist, in wenigstens der die diffraktive Struktur (14) eingebracht ist.
Optical element (10) according to claim 1 or 2,
characterized in that the optical element (10) as a plano-convex lens (10) is formed, wherein the surface (13) of the optical element (10) is the planar surface (13), in at least the diffractive structure (14) is introduced.
Optikelement (10) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass die Einkopplung des Lichtes (11) in das Optikelement (10) über die plane Oberfläche (13) erfolgt.
Optical element (10) according to one of claims 1 to 3,
characterized in that the coupling of the light (11) into the optical element (10) via the planar surface (13).
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass das Optikelement (10) eine konvexe Oberfläche (16) aufweist, wobei die Auskopplung des Lichtes (11) aus dem Optikelement (10) über die konvexe Oberfläche (16) erfolgt.
Optical element (10) according to one of the preceding claims,
characterized in that the optical element (10) has a convex surface (16), wherein the coupling of the light (11) from the optical element (10) via the convex surface (16).
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet,
dass das Optikelement (10) durch einen Kunststoff-Spritzguss-Prozess hergestellt ist, wobei die diffraktive Struktur (14) im Formwerkzeug des KunststofF-Spritzguss-Prozesses eingebracht ist und auf der Oberfläche (13) des Optikelementes (10) abformbar ist.
Optical element (10) according to one of the preceding claims,
characterized,
in that the optical element (10) is produced by a plastic injection molding process, wherein the diffractive structure (14) is introduced into the mold of the plastic injection molding process and can be shaped on the surface (13) of the optical element (10).
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die diffraktive Struktur (14) durch ein Formpressverfahren in die Oberfläche (13) des Optikelementes (10) einbringbar ist.
Optical element (10) according to one of the preceding claims,
characterized in that the diffractive structure (14) by a molding process in the surface (13) of the optical element (10) can be introduced.
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die diffraktive Struktur (14) ein räumlich sequenzielles Muster (17), vorzugsweise ein räumlich sequenzielles prismenartiges Muster (17) bildet, wobei der Flächenanteil des Musters (17) auf der planen Oberfläche (13) bis zu 50%, vorzugsweise 30% beträgt.
Optical element (10) according to one of the preceding claims,
characterized in that the diffractive structure (14) forms a spatially sequential pattern (17), preferably a spatially sequential prismatic pattern (17), the area fraction of the pattern (17) on the planar surface (13) being up to 50%, preferably 30%.
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die diffraktive Struktur (14) durch aus der Oberfläche (13) erhabene Segmente (18) gebildet ist, wobei die Breite eines Segmentes (18) bis zu 1 mm und vorzugsweise bis zu 0,6 mm beträgt.
Optical element (10) according to one of the preceding claims,
characterized in that the diffractive structure (14) is formed by segments (18) raised from the surface (13), the width of a segment (18) being up to 1 mm and preferably up to 0.6 mm.
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass sich die Segmente (18) in einer Richtung quer zur optischen Achse (19) des Lichtes (11) über der Oberfläche (13) des Optikelementes (10) erstrecken und einen dreieckförmigen Querschnitt mit einer Lichteintrittsfläche (20) aufweisen, wobei der Winkel (α) zwischen der Lichteintrittsfläche (20) und der planen Oberfläche (13) kleiner als 5°, vorzugsweise kleiner als 0,5° beträgt.
Optical element (10) according to one of the preceding claims,
characterized in that the segments (18) in one Extending transversely to the optical axis (19) of the light (11) above the surface (13) of the optical element (10) and having a triangular cross section with a light entry surface (20), wherein the angle (α) between the light entry surface (20) and the plane surface (13) is less than 5 °, preferably less than 0.5 °.
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die diffraktive Struktur (14) zur Beeinflussung einer Lichtintensität (21, 22) des Lichtes (11) angrenzend an die Hell-Dunkel-Grenze (15) dient, vorzugsweise zur Beeinflussung der Lichtintensität (21) des Lichtes (11), das oberhalb der Hell-Dunkel-Grenze (15) an diese angrenzt.
Optical element (10) according to one of the preceding claims,
characterized in that the diffractive structure (14) serves for influencing a light intensity (21, 22) of the light (11) adjacent to the cut-off line (15), preferably for influencing the light intensity (21) of the light (11). , which adjoins the light-dark border (15) to this.
Optikelement (10) nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die Segmente (18) der diffraktiven Struktur (14) Lichtabschnitte (23) segmentweise vom Bereich unterhalb der Hell-Dunkel-Grenze (15) in den Bereich oberhalb der Hell-Dunkel-Grenze (15) ablenken, wobei sich die Lichtabschnitte (23) oberhalb der Hell-Dunkel-Grenze (15) vorzugsweise überlagern, derart, dass der Kontrast der Hell-Dinkel-Grenze (15) verringert ist.
Optical element (10) according to one of the preceding claims,
characterized in that the segments (18) of the diffractive structure (14) deflect segments of light (23) segment by segment from the area below the cut-off line (15) in the area above the cut-off line (15), wherein the Preferably overlie light sections (23) above the cut-off line (15), such that the contrast of the bright-spelled boundary (15) is reduced.
Scheinwerfer für ein Fahrzeug mit wenigstens einem Optikelement (10) nach einem der vorgenannten Ansprüche.Headlight for a vehicle with at least one optical element (10) according to one of the preceding claims.
EP10157338A 2010-03-23 2010-03-23 Lens element for assembly in a headlamp of a vehicle Withdrawn EP2372236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10157338A EP2372236A1 (en) 2010-03-23 2010-03-23 Lens element for assembly in a headlamp of a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10157338A EP2372236A1 (en) 2010-03-23 2010-03-23 Lens element for assembly in a headlamp of a vehicle

Publications (1)

Publication Number Publication Date
EP2372236A1 true EP2372236A1 (en) 2011-10-05

Family

ID=42272696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10157338A Withdrawn EP2372236A1 (en) 2010-03-23 2010-03-23 Lens element for assembly in a headlamp of a vehicle

Country Status (1)

Country Link
EP (1) EP2372236A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130840A3 (en) * 2015-08-10 2017-03-29 Taiwan Network Computer & Electronic Co., Ltd. Light module with incorporated lens
DE102015122670A1 (en) 2015-12-23 2017-06-29 Hella Kgaa Hueck & Co. Method for producing an optical unit for vehicles and lighting device
EP3616994A1 (en) 2018-08-31 2020-03-04 ZKW Group GmbH Motor vehicle headlamp with diffractive optical elements
WO2024061674A1 (en) * 2022-09-20 2024-03-28 HELLA GmbH & Co. KGaA Headlight for a motor vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB111041A (en) * 1916-12-06 1917-11-15 Adelbert Ames Improvements in or relating to Light Projection Apparatus.
US1471668A (en) * 1923-10-23 lyndon
DE1273455B (en) * 1964-07-17 1968-07-25 Westfaelische Metall Ind K G H Headlight washer for motor vehicles
EP0221416A2 (en) * 1985-11-07 1987-05-13 Robert Bosch Gmbh Dipped-beam head light or fog light for motor vehicles
DE19846797A1 (en) * 1997-11-04 1999-05-06 Valeo Vision Headlamp for automobile
DE202004005936U1 (en) 2004-04-08 2005-03-10 Schott Ag Lens for a motor vehicle head lamp, maps light from source reflected by reflector so as to create preset lighting pattern
FR2871550A1 (en) * 2004-06-11 2005-12-16 Valeo Vision Sa Motor vehicle lighting and signaling device e.g. headlight or side marker light, has optical light guide with output side including profile with ridges, and reflecting side with indented profile forming light rays reflecting side
DE102004062913A1 (en) * 2004-12-22 2006-07-06 Schott Ag Lens for e.g. poly ellipsoid headlight, of motor vehicle, has upper and lower regions with different focal lengths and different curvatures, where focal length of lower region is larger than focal length of upper region at specific factor
EP1980787A1 (en) 2007-04-10 2008-10-15 Koito Manufacturing Co., Ltd. Lamp unit for vehicle
DE102009021354A1 (en) * 2009-05-14 2009-12-31 Daimler Ag Illumination unit for vehicle, comprises light source and optical element, where light is emitted through optical element by light source, and light is partially focused, where optical element comprises diffractive optical structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1471668A (en) * 1923-10-23 lyndon
GB111041A (en) * 1916-12-06 1917-11-15 Adelbert Ames Improvements in or relating to Light Projection Apparatus.
DE1273455B (en) * 1964-07-17 1968-07-25 Westfaelische Metall Ind K G H Headlight washer for motor vehicles
EP0221416A2 (en) * 1985-11-07 1987-05-13 Robert Bosch Gmbh Dipped-beam head light or fog light for motor vehicles
EP0221416B1 (en) 1985-11-07 1995-09-27 Robert Bosch Gmbh Dipped-beam head light or fog light for motor vehicles
DE19846797A1 (en) * 1997-11-04 1999-05-06 Valeo Vision Headlamp for automobile
DE202004005936U1 (en) 2004-04-08 2005-03-10 Schott Ag Lens for a motor vehicle head lamp, maps light from source reflected by reflector so as to create preset lighting pattern
FR2871550A1 (en) * 2004-06-11 2005-12-16 Valeo Vision Sa Motor vehicle lighting and signaling device e.g. headlight or side marker light, has optical light guide with output side including profile with ridges, and reflecting side with indented profile forming light rays reflecting side
DE102004062913A1 (en) * 2004-12-22 2006-07-06 Schott Ag Lens for e.g. poly ellipsoid headlight, of motor vehicle, has upper and lower regions with different focal lengths and different curvatures, where focal length of lower region is larger than focal length of upper region at specific factor
EP1980787A1 (en) 2007-04-10 2008-10-15 Koito Manufacturing Co., Ltd. Lamp unit for vehicle
DE102009021354A1 (en) * 2009-05-14 2009-12-31 Daimler Ag Illumination unit for vehicle, comprises light source and optical element, where light is emitted through optical element by light source, and light is partially focused, where optical element comprises diffractive optical structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130840A3 (en) * 2015-08-10 2017-03-29 Taiwan Network Computer & Electronic Co., Ltd. Light module with incorporated lens
DE102015122670A1 (en) 2015-12-23 2017-06-29 Hella Kgaa Hueck & Co. Method for producing an optical unit for vehicles and lighting device
EP3616994A1 (en) 2018-08-31 2020-03-04 ZKW Group GmbH Motor vehicle headlamp with diffractive optical elements
WO2020043391A1 (en) 2018-08-31 2020-03-05 Zkw Group Gmbh Motor vehicle headlamp having diffractive optical elements
WO2024061674A1 (en) * 2022-09-20 2024-03-28 HELLA GmbH & Co. KGaA Headlight for a motor vehicle

Similar Documents

Publication Publication Date Title
DE102004018424B4 (en) Process for producing a lens
AT518109B1 (en) Lighting unit for a motor vehicle headlight for generating a light beam with cut-off line
DE202009009763U1 (en) Optical LED lens and lighting device thereof
DE102005009556A1 (en) Electrical headlight for an automobile has a transparent lens with a plane surface having regions with a surface roughness of at least 0.5 micrometer
EP3833904B1 (en) Projection device, light module and motor vehicle headlamp made from micro optics
EP3274216B1 (en) Lighting device for vehicle headlight
EP2372236A1 (en) Lens element for assembly in a headlamp of a vehicle
EP3571437B1 (en) Lighting device for a motor vehicle headlight
DE4429683C1 (en) Strip formed triple optical reflector and machining process
EP3721134B1 (en) Projection device for a motor vehicle headlight
DE202004005936U1 (en) Lens for a motor vehicle head lamp, maps light from source reflected by reflector so as to create preset lighting pattern
DE2923316C2 (en) Motor vehicle headlights with a ribbed lens and process for their manufacture
WO2020120258A1 (en) Method for producing an optical component, optical component and illuminating device for a motor vehicle
DE102004026585B4 (en) Light distributor with a light-distributing structure consisting of micro and macrostructures
EP3765780A1 (en) Lighting device for a motor vehicle headlight
EP3271757A1 (en) Optical element for influencing the light emission of illuminants
DE2236167C2 (en) Diffuser and method for producing a casting mold for the manufacture of the diffuser
DE102017115564A1 (en) VEHICLE LIGHTING ASSEMBLIES WITH INVISIBLE GRILLED AREAS AND METHOD FOR MANUFACTURING THE SAME
EP3808576A1 (en) Vehicle tyre comprising a hatched surface and method of manufacturing a mould
AT516555B1 (en) Headlights for vehicles
EP3808549A1 (en) Vehicle tyre with a contrasting structure surface and method of making a mould
DE102018132620A1 (en) Method for producing a negative of an optical surface of an optical element of a motor vehicle lighting device
DE102006051058A1 (en) vehicle headlights
DE102014202851A1 (en) Lighting device for a vehicle and vehicle with a lighting device
WO2023198442A1 (en) Lighting device for vehicles and production method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

17P Request for examination filed

Effective date: 20120404

17Q First examination report despatched

Effective date: 20130227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130710