EP2370350A1 - Procédé de préparation d'un vecteur d'énergie - Google Patents

Procédé de préparation d'un vecteur d'énergie

Info

Publication number
EP2370350A1
EP2370350A1 EP08875485A EP08875485A EP2370350A1 EP 2370350 A1 EP2370350 A1 EP 2370350A1 EP 08875485 A EP08875485 A EP 08875485A EP 08875485 A EP08875485 A EP 08875485A EP 2370350 A1 EP2370350 A1 EP 2370350A1
Authority
EP
European Patent Office
Prior art keywords
silicon
energy
transformation
storable
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08875485A
Other languages
German (de)
English (en)
Inventor
Peter Grauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Fire AG
Original Assignee
Silicon Fire AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Fire AG filed Critical Silicon Fire AG
Publication of EP2370350A1 publication Critical patent/EP2370350A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present application relates to methods for providing storable and transportable energy carriers.
  • Carbon dioxide (usually called carbon dioxide) is a chemical compound of carbon and oxygen. Carbon dioxide is a colorless and odorless gas. It is a natural constituent of the air at a low concentration and occurs in living beings during cellular respiration, but also in the combustion of carbonaceous substances under sufficient oxygen. Since the beginning of industrialization, the CO 2 share in the atmosphere has increased significantly. The main reason for this is man-made - the so-called anthropogenic - CO 2 emissions. The carbon dioxide in the atmosphere absorbs part of the heat radiation. This property makes carbon dioxide a so-called greenhouse gas and is one of the contributors to the greenhouse effect.
  • a method for providing storable and transportable energy carriers is provided.
  • a transformation of siliceous starting material takes place in a reduction process to silicon, wherein at primary energy for this reduction process is provided from a renewable energy source.
  • Part of the reaction products of the reduction process is then used in a methanol production process, with synthesis gas of carbon monoxide and hydrogen being used in this methanol production process.
  • Fig. 1 is a diagram showing the basic steps of a first method according to the invention
  • Fig. 2 is a diagram showing the basic steps of a second method according to the invention
  • Fig. 3 is a diagram showing the basic steps of a third method according to the invention
  • Fig. 4 is a diagram showing the basic steps of a fourth method according to the invention
  • Fig. 5 is a diagram showing the basic steps of a fifth method according to the invention
  • Fig. 6 a scheme, the sub-steps of another invention
  • the method according to the invention is based on a novel concept which, using existing starting materials, provides so-called reaction products which can either be used directly as energy carriers or which can then be used as energy carriers after further intermediate steps.
  • energy carrier is used herein for substances that can be used either directly as fuel or fuel (such as methanol 104 or hydrogen 118), and also for substances (such as silicon 103) that have an energy content or an increased energy level and in Further steps under release of energy (see energy El and E2 in Figures 6 and 7) and / or under delivery of another energy carrier (such as hydrogen 118) can be implemented.
  • the transportability of the energy carrier is characterized here by the chemical reaction potential. For a safe transportability of the energy carrier, this reaction potential should be as low as possible.
  • silicon 103 as an energy source, certain conditions should be observed during storage and transport in order not to trigger any unwanted or uncontrolled reaction (oxidation) of the silicon.
  • the silicon 103 should preferably be stored and transported dry. In addition, the silicon 103 should not be heated, otherwise the likelihood of reaction with water vapor from the ambient air or with oxygen increases. Studies have shown that silicon has up to about 300 degrees Celsius only a very low tendency to react with water or oxygen.
  • a water getter i.e., a substance that is hydrophilic
  • an oxygen getter i.e., a substance that is oxygen-attracting
  • silicon dioxide-containing starting material 101 is used here for substances which contain a large proportion of silicon dioxide (SiO 2 ). Especially suitable is sand, shale (SiO 2 + [CO 3 ] 2 ). Sand is a naturally occurring, unconsolidated sedimentary rock and occurs in greater or lesser concentrations everywhere on the earth's surface. Much of the sand is quartz (silica, SiO2).
  • FIG. 1 shows the basic steps of a first method according to the invention for providing storable and transportable energy carriers 103, 104.
  • silicon 103 as a first storable and transportable energy carrier
  • methanol 104 as a second storable and transportable energy carrier
  • silicon dioxide-containing starting material 101 is converted into elemental silicon 103 by means of a reduction process 105.
  • the elemental silicon 103 is referred to here for the sake of simplicity as silicon.
  • the required primary energy (see primary energy Pl in Fig. 2, or primary energy P2 in Fig. 3) for this reduction process 105 is provided according to the invention from a renewable energy source.
  • a methanol production process 106 In this methanol production process 106, synthesis gas 110 is made from carbon monoxide (CO) and hydrogen (H 2 ).
  • synthesis gas 110 is made from carbon monoxide (CO) and hydrogen (H 2 ).
  • Fig. 1 is further indicated schematically that the silicon 103 can be removed as the first energy source from the process.
  • the removal of the silicon 103 is indicated in FIG. 1 as method step 107.
  • the silicon 103 may be stored or removed, for example.
  • the transformation 105 is preferably a thermochemical transformation 105.1 (involving heat energy), as indicated schematically in FIG. 2, or an electrochemical transformation 105.2 (involving electric current), as indicated schematically in FIG. 3.
  • thermochemical transformation 105.1 the primary energy Pl for the transformation by sunlight S is supplied.
  • a solar thermal plant 200th used, as indicated schematically in Fig. 2.
  • the solar thermal system 200 has a plurality of rotatable heliostats 201, which are preferably tracked the movement of the sun 202.
  • the heliostats 201 reflect the sunlight S in the direction of a solar tower 203.
  • At the focal point of the sunlight S extremely high temperatures are reached.
  • Fig. 2 is indicated schematically by a block arrow Pl, that the heat energy, which is provided by the solar thermal system 200, is used to initiate the endothermic reduction process 105.1 and feed.
  • the solar energy may act directly on the siliceous starting material 101, or a liquid transfer medium may be used as the energy transfer / transfer agent.
  • the primary energy P2 is provided for transformation by current generated from sunlight S.
  • a solar system 300 is used, as indicated schematically in FIG. 3.
  • the solar system 300 has a plurality of (rotatable) solar modules 301, which are preferably tracked the movement of the sun 202.
  • the solar modules 301 convert the sunlight S into electricity.
  • the electrochemical transformation 105.2 can be carried out, for example, by
  • Silicon dioxide is used as an electrode.
  • a metal is used as the second electrode.
  • the electrolyte used is, for example, calcium chloride (CaCl 2 ).
  • This electrochemical transformation process 105.2 works particularly well with a porous silicon dioxide electrode, which may be sintered, for example, of silicon dioxide. Details of this procedure can be found in the following publications:
  • the electrochemical transformation 105.2 significantly lower temperatures (preferably less than 500 degrees C) are needed.
  • the reduction processes 105, 105.1, 105.2 are carried out in an oxygen-poor or oxygen-free environment, since otherwise the elemental silicon 103 formed during the reduction would oxidize again immediately.
  • oxygen forms a silicon dioxide layer on the melt with the silicon, which can hinder the reduction process.
  • the reduction process 109 is performed here by supplying a hydrocarbon-containing gas 108.
  • a hydrocarbon-containing gas 108 Preferably, methane (CH 4 ), biogas or natural gas (natural gas: NG) is used as the hydrocarbon-containing gas 108.
  • NG natural gas
  • biogas is used here to describe gases that can be produced, for example, by fermentation processes in the absence of air.
  • examples of biogas are the gases from sewage treatment plants, livestock, but also gases that are provided in plants that convert biomass. Preference is given to using only biogases that come from renewable sources and that do not compete with food crops.
  • the mentioned methane should preferably also come from renewable sources that are not in competition with food crops.
  • the methane can be produced, for example, in a pyrolysis process, wherein the pyrolysis process is operated with biomass.
  • the hydrocarbon-containing gas 108 is used on the one hand to serve as a reducing agent for the reduction of the silicon dioxide.
  • the hydrocarbon-containing gas 108 serves as a "raw material" for providing the
  • the reaction equation (1) represents a process according to FIG. 4, in which methane is used as the hydrocarbon-containing gas 108.
  • the "decomposition" of CH 4 into synthesis gas 110 requires energy input, and the corresponding energy [ ⁇ R H about 160 kJ / mol] provides renewable energy sources, ie the CH 4 is not used as the energy source for this step 109.
  • the energy supply is indicated by a block arrow labeled Pl and / or P2, ie the energy can be, for example, from a solar thermal system 200 and / or from a solar system 300 come.
  • the silicon dioxide of the silicon dioxide-containing material 101 functions as an oxygen donor.
  • the synthesis gas 110 (here 2 CO + 4 H 2 (g)) is here in a
  • Methanol production process 112 further converted to methanol 104.
  • FIG. Shown is a scheme that corresponds in part to the method of FIG. 1. However, further method steps are added to the method according to FIG. 1 here.
  • reduction process 105 results in silicon 103 and oxygen 114 as reaction products 102.
  • the oxygen 114 is reacted with the supply of a hydrocarbon-containing gas 115 to a synthesis gas 110 of carbon monoxide and hydrogen.
  • the process step 120 is a gas oxidation process.
  • the gas oxidation process is slightly exothermic.
  • methane (CH 4 ) methane
  • NG natural gas
  • the synthesis gas 110 is then further converted into methanol 104 in a methanol production process 112.
  • silicon 103 can be used as an energy source.
  • the reduced silicon 103 is a high-energy substance. This silicon tends to re-oxidize to silica 117 with water in liquid or vapor form, as shown schematically in FIG.
  • hydrolysis 116 of the silicon 103 energy El is released, because it is an exothermic reaction.
  • hydrogen 118 is produced, which can be used, for example, as an energy carrier or fuel.
  • the hydrolysis 116 takes place at elevated temperatures. Preferred are temperatures that are well above 100 degrees Celsius.
  • the hydrolysis 116 is carried out at temperatures in the temperature range between 300 degrees Celsius and 600 degrees Celsius.
  • the silicon 103 is introduced into a reaction zone and mixed with water in liquid or vaporous form.
  • the silicon 103 has a minimum temperature.
  • the silicon 103 is heated for this purpose (eg with heating means, or by heat-generating or heat-emitting additives), or the silicon 103 is already at the introduction at a corresponding temperature level. Under these conditions, hydrogen is then released as gas in the reaction zone. The hydrogen is removed from the reaction area.
  • the silicon 103 also has a tendency to reoxidize with oxygen to silica 117, as shown in FIG. It releases energy E2 because it is an exothermic reaction.
  • the oxidation 119 takes place in the temperature range between 500 degrees Celsius and 1200 degrees at elevated temperatures. Preference is given to temperatures which are above 1000 degrees Celsius. The corresponding temperature may e.g. be provided by means of a solar thermal system 200 or 300 solar system.
  • the process according to FIG. 7 can be carried out, for example, in an oxidation furnace.
  • a thermal oxidation is carried out, in which the energy for triggering / operating the oxidation originates from renewable energy sources (preferably from solar energy).
  • the oxidation of silicon 103 should preferably be done with dry oxygen to preclude a concurrent competitive hydrolysis process.
  • the method according to FIG. 7 can also be carried out, for example, in a plasma oxidation furnace.
  • a plasma oxidation furnace Here only temperatures in the temperature range between 300 degrees Celsius and 600 degrees are necessary, because a part of the required energy is provided by the plasma.
  • the methanol production can be carried out according to one of the known and industrially used methods. Preference is given to a process in which a catalyst (for example a CuO-ZnO-Cr 2 O 3 or a Cu-Zn-Al 2 O 3 catalyst) is used.
  • a catalyst for example a CuO-ZnO-Cr 2 O 3 or a Cu-Zn-Al 2 O 3 catalyst
  • the invention has the advantage that in the reduction of the silicon dioxide no CO 2 is released.
  • the required energy is provided from renewable energy sources, preferably solar panels 200 or 300.
  • the elemental silicon 103 is preferably used in powdered or granular or granular form to provide the largest possible surface area upon oxidation (see step 119 in FIG. 7) or during hydrolysis (see step 116 in FIG. 6).
  • Silicon plays an essential role in electronic components such as solar cells and semiconductor chips as well as in the production of silicones.
  • the elementary silicon 103 can therefore also be further processed or refined in a corresponding process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention concerne un procédé de préparation de vecteurs d'énergie (103, 104) entreposables et transportables. Dans une étape a lieu une transformation en silicium (103) d'un matériau initial (101) contenant du dioxyde de silicium par une opération de réduction (105), l'énergie primaire de cette opération de réduction (105) étant obtenue à partir d'une source d'énergie renouvelable. Une partie des produits de réaction (102) de l'opération de réduction (105) est alors utilisée dans un processus (106) de préparation de méthanol, ce processus (106) de préparation de méthanol utilisant un gaz de synthèse (110) constitué de monoxyde de carbone et d'hydrogène.
EP08875485A 2008-12-18 2008-12-18 Procédé de préparation d'un vecteur d'énergie Withdrawn EP2370350A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/067895 WO2010069385A1 (fr) 2008-12-18 2008-12-18 Procédé de préparation d'un vecteur d'énergie

Publications (1)

Publication Number Publication Date
EP2370350A1 true EP2370350A1 (fr) 2011-10-05

Family

ID=41017185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08875485A Withdrawn EP2370350A1 (fr) 2008-12-18 2008-12-18 Procédé de préparation d'un vecteur d'énergie

Country Status (4)

Country Link
US (1) US20120022172A1 (fr)
EP (1) EP2370350A1 (fr)
CA (1) CA2747083A1 (fr)
WO (1) WO2010069385A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647596A3 (fr) 2008-12-18 2014-08-27 Silicon Fire AG Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique
EP2426236B1 (fr) 2010-09-03 2013-01-02 Carbon-Clean Technologies AG Procédé et installation de production de support d'énergie pour l'équilibrage neutre en dioxyde de carbone de pointes de production et de creux de production lors de la production d'énergie électrique et/ou pour la production d'un support d'énergie contenant de l'hydrocarbure
DE202010012734U1 (de) 2010-09-03 2011-12-05 Carbon-Clean Technologies Ag Energieträger-Erzeugungsanlage zum kohlendioxidneutralen Ausgleich von Erzeugungsspitzen und Erzeugungstälern bei der Erzeugung von elektrischer Energie und/oder zur Erzeugung eines kohlenwasserstoffhaltigen Energieträgers
ES2584532T3 (es) 2010-10-06 2016-09-28 Silicon Fire Ag Procedimiento e instalación para la síntesis de hidrocarburo
SG11201504619SA (en) 2013-01-04 2015-07-30 Saudi Arabian Oil Co Carbon dioxide conversion to hydrocarbon fuel via syngas production cell harnessed from solar radiation
EP3016924A1 (fr) 2013-04-26 2016-05-11 Silicon Fire AG Procédé et système de réacteur de synthèse de méthanol avec recyclage du gaz circulant et du gaz de purge
DE102022102326A1 (de) 2022-02-01 2023-08-03 Stefan Henschen Verfahren zur Reduzierung des globalen Treibhauseffekts

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215522A (en) * 1960-11-22 1965-11-02 Union Carbide Corp Silicon metal production
DE2924584A1 (de) * 1979-06-19 1981-01-15 Straemke Siegfried Verfahren zur herstellung von silicium fuer solarzellen
US4457902A (en) * 1980-10-24 1984-07-03 Watson Keith R High efficiency hydrocarbon reduction of silica
US4897852A (en) * 1988-08-31 1990-01-30 Dow Corning Corporation Silicon smelting process
NO310142B1 (no) * 1999-03-29 2001-05-28 Elkem Materials Fremgangsmåte for fremstilling av amorft silica fra silisium og fra silisiumholdige materialer
DE10048472A1 (de) * 2000-09-29 2002-04-11 Peter Plichta Neuartiges Konzept zur Energieerzeugung über einen anorganischen Stickstoff-Zyklus, ausgehend vom Grundstoff Sand unter Erzeugung Höherer Silane
DE10291940D2 (de) * 2001-05-03 2004-11-11 Wacker Chemie Gmbh Verfahren zur Energieerzeugung
DE10258072A1 (de) * 2002-12-11 2004-07-01 Wacker-Chemie Gmbh Verfahren zur Erzeugung von Wasserstoff
GB0422129D0 (en) * 2004-10-06 2004-11-03 Qinetiq Ltd Electro-reduction process
WO2007116326A2 (fr) * 2006-02-20 2007-10-18 Hyattville Company Ltd. Production de silicium de qualité solaire et électronique à partir d'une matière contenant un aluminosilicate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010069385A1 *

Also Published As

Publication number Publication date
WO2010069385A1 (fr) 2010-06-24
US20120022172A1 (en) 2012-01-26
CA2747083A1 (fr) 2010-06-24

Similar Documents

Publication Publication Date Title
DE102016219990B4 (de) Verfahren zur Abscheidung und Lagerung von Kohlendioxid und/oder Kohlenmonoxid aus einem Abgas
WO2010069385A1 (fr) Procédé de préparation d'un vecteur d'énergie
US7829051B2 (en) Production and uses of carbon suboxides
EP2816284B1 (fr) Recyclage de matière avec du métal électropositif
DE102012103458B4 (de) Anlage und Verfahren zur ökologischen Erzeugung und Speicherung von Strom
DE102013219681B4 (de) Verfahren und System zur Speicherung von elektrischer Energie
EP0564796B1 (fr) Procédé pour la génération d'énergie électrique à partir de biomasses
DE112005000402T5 (de) Verfahren und Vorrichtung zur Wasserstoffproduktion
EP2367752A1 (fr) Silicium ou métaux élémentaires comme sources d'énergie
EP3390693A1 (fr) Procédé de production de supports d'énergie secondaire à base de carbone ou de produits chimiques de base
EP2892983A2 (fr) Séquestration écologique de dioxyde de carbone/augmentation de la quantité de bioénergie pouvant être obtenue à partir d'une biomasse
DE102015005940A1 (de) Verfahren zur verbesserten Integration regenerativer Energiequellen in das existierende Energiesystem durch Umwandlung elektrischer Energie in chemische Energie mit Zwischenspeicherung des verflüssigten CO, wodurch eine Reduzierung der CO2 Emission erziel
EP3757193A1 (fr) Procédé et système de traitement des boues d'épuration, des résidus de fermentation et/ou du lisier permettant d'obtenir de l'hydrogène
DE4328379C2 (de) Modulkraftwerk für die Erzeugung von elektrischer Energie aus Sonnenenergie
EP3526315B1 (fr) Procédé pour la production de méthane
EP4146845A1 (fr) Procédé pour générer de l'énergie thermique et des produits chimiques de base par réaction aluminothermique
EP2650257B1 (fr) Dispositif de synthèse de méthanol régénératif à partir de gaz méthane contenant du co2
EP2438980A1 (fr) Procédé et dispositif de préparation et d'installation de méthanol à base d'hydrogène à des fins de dénitrification
WO2014079921A1 (fr) Production microbiologique de biométhane avec de l'hydrogène obtenu par gazéification de substances de départ carbonées
DE102014213987A1 (de) Solare Ammoniakproduktion
WO2001018151A1 (fr) Procede d'accumulation d'energie solaire
EP3686154A1 (fr) Procédé de fonctionnement d'une installation de synthèse d'un produit chimique
EP3426764A1 (fr) Synthèse renouvelable de réservoirs d'énergie chimiques et de produits de chimie fine
WO2023161404A1 (fr) Méthode d'élimination et d'immobilisation de dioxyde de carbone de l'atmosphère et/ou d'un gaz résiduaire
EP3002325B1 (fr) Centrale électrique et procédé pour produire du pouvoir électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701