EP2367752A1 - Silicium ou métaux élémentaires comme sources d'énergie - Google Patents

Silicium ou métaux élémentaires comme sources d'énergie

Info

Publication number
EP2367752A1
EP2367752A1 EP09748818A EP09748818A EP2367752A1 EP 2367752 A1 EP2367752 A1 EP 2367752A1 EP 09748818 A EP09748818 A EP 09748818A EP 09748818 A EP09748818 A EP 09748818A EP 2367752 A1 EP2367752 A1 EP 2367752A1
Authority
EP
European Patent Office
Prior art keywords
silicon
energy
hydrogen
transformation
storable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09748818A
Other languages
German (de)
English (en)
Inventor
Peter Grauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Fire AG
Original Assignee
Silicon Fire AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2008/067895 external-priority patent/WO2010069385A1/fr
Priority claimed from PCT/EP2009/061707 external-priority patent/WO2011018124A1/fr
Application filed by Silicon Fire AG filed Critical Silicon Fire AG
Priority to EP09748818A priority Critical patent/EP2367752A1/fr
Publication of EP2367752A1 publication Critical patent/EP2367752A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present application relates to methods for providing storable and transportable energy carriers.
  • Carbon dioxide (usually called carbon dioxide) is a chemical compound of carbon and oxygen. Carbon dioxide is a colorless and odorless gas. It is a natural constituent of the air at a low concentration and occurs in living beings during cellular respiration, but also in the combustion of carbonaceous substances under sufficient oxygen. Since the beginning of industrialization, the CO 2 share in the atmosphere has increased significantly.
  • the main reason for this is man-made - the so-called anthropogenic - C0 2 emissions.
  • the carbon dioxide in the atmosphere absorbs part of the heat radiation. This property makes carbon dioxide to a so-called greenhouse gas and is one of the contributors to the greenhouse effect.
  • a method for providing storable and transportable energy carriers is provided.
  • one step there is a transformation of siliceous or metal oxide containing
  • Fig. 1 is a diagram showing the basic steps of a first method according to the invention
  • Fig. 2 is a diagram showing the basic steps of a second method according to the invention.
  • the method according to the invention is based on a novel concept which, using existing starting materials, provides so-called reaction products which can either be used directly as energy carriers or which can then be used as energy carriers after further intermediate steps.
  • the term energy carrier is used here for substances that can be used either directly as fuel or fuel (such as methanol 104 or hydrogen 118), and also for substances (such as silicon 103 or elemental metals) that have an energy content or an increased energy level and can be reacted in further steps with release of energy (see energy El and E2 in Figures 6 and 7) and / or under delivery of another energy carrier (such as hydrogen 118).
  • the transportability of the energy carrier is characterized here by the chemical reaction potential. For a safe transportability of the energy carrier, this reaction potential should be as low as possible.
  • silicon 103 as an energy carrier, certain conditions should be observed during storage and transport in order not to trigger any unwanted or uncontrolled reaction (oxidation) of the silicon or of the metal.
  • the silicon 103 or metal should preferably be stored and transported dry. In addition, the silicon 103 or the metal should not be heated, otherwise the likelihood of reaction with water vapor from the ambient air or with oxygen increases.
  • Silicon up to about 300 degrees Celsius has only a very low tendency to react with water or oxygen.
  • Ideal is storing and transporting the silicon 103 or metal together with a water getter (i.e., a substance that is hydrophilic) and / or an oxygen getter (i.e., a substance that is oxygen-attracting).
  • Sand is a naturally occurring, unconsolidated sedimentary rock and occurs in greater or lesser concentrations throughout the earth's surface. Much of the sand is quartz (silicon dioxide, SiO 2 ).
  • FIG. 1 shows the basic steps of a first method according to the invention for providing storable and transportable energy carriers 103, 104.
  • silicon 103 as a first storable and transportable energy carrier
  • methanol 104 as a second storable and transportable energy carrier
  • the silicon 103 can be removed as the first energy source from the process.
  • the removal of the silicon 103 is indicated in FIG. 1 as method step 107.
  • the silicon 103 may be stored or removed, for example. The more silicon 103 is removed, the less silicon 103 can be used as the energy supplier for the methanol production process 106.
  • the transformation 105 is preferably a thermochemical transformation 105.1 (involving heat energy), as indicated schematically in FIG. 2, or an electrochemical transformation 105.2 (involving electric current), as indicated schematically in FIG. 3.
  • the process 105.1 in FIG. 2 is also referred to as thermal dissociation, which can be described by the following equation (1) (M here stands for metal or silicon and M x O y for the metal oxide or silicon dioxide):
  • thermochemical transformation 105.1 the primary energy Pl for the transformation by sunlight S is supplied.
  • a solar thermal plant 200th used, as indicated schematically in Fig. 2.
  • the solar thermal system 200 has a plurality of rotatable heliostats 201, which are preferably tracked the movement of the sun 202.
  • the heliostats 201 reflect the sunlight S in the direction of a solar tower 203.
  • At the focal point of the sunlight S extremely high temperatures are reached.
  • Fig. 2 is indicated schematically by a block arrow Pl, that the heat energy, which is provided by the solar thermal system 200, is used to initiate the endothermic reduction process 105.1 and feed.
  • the solar energy may act directly on the siliceous starting material 101, or it may be a liquid transfer medium
  • the primary energy P2 is provided for transformation by current generated from sunlight S.
  • a solar system 300 is used, as indicated schematically in FIG. 3.
  • the solar system 300 has a plurality of (rotatable) solar modules 301, which are preferably tracked the movement of the sun 202.
  • the solar modules 301 convert the sunlight S into electricity.
  • the electrochemical transformation 105.2 can be carried out, for example, by using silicon dioxide as the electrode.
  • a metal is used.
  • the electrolyte used is, for example, calcium chloride (CaCl 2 ) or another electrolyte, preferably an electrolyte containing chloride. Also suitable is, for example, NH 4 Cl.
  • This electrochemical transformation process 105.2 works particularly well with a porous silicon dioxide electrode, which may be sintered, for example, of silicon dioxide. Details of this procedure can be found in the following publications:
  • an electrochemical transformation 105.2 which is supported in addition to the provision of heat energy with electricity, so as to be able to set the temperature required for the endothermic reduction lower.
  • a reducing agent and / or a catalyst it is also possible to use a reducing agent and / or a catalyst.
  • One disadvantage is that, depending on the process control and the reducing agent, CO 2 may occur under certain circumstances.
  • Ideal is therefore a method in which the starting material (eg sand) is introduced over a drop distance to the largest possible surface for the Reduction method 105, 105.1, 105.2 offer.
  • the starting material eg sand
  • the starting material can also be fluidized, thoroughly mixed, inflated or foamed in order to offer a large surface area for the reduction processes 105, 105.1, 105.2.
  • the reduction process 109 is performed here by supplying a hydrocarbon-containing gas 108.
  • a hydrocarbon-containing gas 108 Preferably, methane (CH 4 ), biogas or natural gas (natural gas: NG) is used as the hydrocarbon-containing gas 108.
  • methane (CH 4 ) is used as the hydrocarbon-containing gas 108.
  • NG natural gas
  • reaction products 102 are formed:
  • This reduction method 109 can be described by the following equation:
  • the hydrocarbonaceous gas 108 is metered in the process so that it does not form an excess of carbon (C) silicon carbide (SiC) instead of silicon.
  • biogas is used herein to describe gases which are e.g. can arise through fermentation processes under exclusion of air.
  • examples of biogas are the gases from sewage treatment plants, livestock, but also gases that are provided in plants that convert biomass. Preference is given to using only biogases that come from renewable sources and that do not compete with food crops.
  • the mentioned methane should preferably also come from renewable sources that are not in competition with food crops.
  • the methane For example, it can be produced in a pyrolysis process, where the pyrolysis process is operated with biomass.
  • the hydrocarbon-containing gas 108 is used on the one hand to serve as a reducing agent for the reduction of the silicon dioxide or another starting material.
  • the hydrocarbonaceous gas 108 serves as a "raw material” for providing the synthesis gas of carbon monoxide and / or carbon dioxide and hydrogen,
  • the following reaction (3) proceeds as shown in FIG.
  • the reaction equation (3) represents a method according to FIG. 4, in which
  • Methane is used as the hydrocarbonaceous gas 108.
  • the "decomposition" of CH 4 into synthesis gas 110 requires energy supply.
  • the synthesis gas 110 has a mixture of H 2 and CO, which is particularly suitable for synthesizing methanol from it.
  • the reduction of a metal here silicon dioxide
  • the energy must be supplied from the outside In Fig.
  • the energy supply is indicated by a block arrow labeled Pl and / or P2, ie the energy can for example come from a solar thermal system 200 and / or come from a solar system 300. However, the energy can also come from other sources (eg hydro, wind power or fossil energy forms).
  • the silicon dioxide of the silicon dioxide-containing material 101 functions as an oxygen donor.
  • FIG. Shown is a scheme that corresponds in part to the method of FIG. 1. However, further method steps are added to the method according to FIG. 1 here.
  • silicon 103 and oxygen 114 are formed here as reaction products 102.
  • the oxygen 114 is converted to a synthesis gas 110 of carbon monoxide (and / or carbon dioxide) and hydrogen with the supply of a hydrocarbon-containing gas 115.
  • the process step 120 is a gas oxidation process.
  • the gas oxidation process is slightly exothermic.
  • methane (CH 4 ) methane (CH 4 ), biogas or natural gas (NG) is used as the hydrocarbonaceous gas 115.
  • the synthesis gas 110 is then further converted into methanol 104 in a methanol production process 112.
  • silicon 103 can be used as an energy carrier.
  • the reduced silicon 103 is a high-energy substance. This silicon tends to re-oxidize to silica 117 with water in liquid or vapor form, as shown schematically in FIG. This
  • the hydrolysis 116 takes place at elevated temperatures. Preferred are temperatures that are well above 100 degrees Celsius. In the temperature range between 100 degrees Celsius and 300 degrees Celsius, a conversion in useful amounts is achieved when the silicon is brought in very fine-grained or powdery consistency with water vapor in connection andteurmengt. Since silicon up to about 300 degrees Celcius otherwise has only a very low tendency to react with water, preferably the hydrolysis 116 is carried out at temperatures in the temperature range between 300 degrees Celsius and 600 degrees Celsius.
  • the silicon 103 is introduced into a reaction zone and mixed with water in liquid or vaporous form.
  • the silicon 103 has a minimum temperature. Either the silicon 103 is heated for this purpose (e.g., with heating means, or by heat-generating or heat-emitting additives), or the silicon 103 is already at a corresponding temperature level upon introduction.
  • the silicon 103 also has a tendency to reoxidize with oxygen to silica 117, as shown in FIG. It releases energy E2 because it is an exothermic reaction.
  • the Oxidation 119 occurred in the temperature range between 500 degrees Celsius and 1200 degrees at elevated temperatures. Preference is given to temperatures which are above 1000 degrees Celsius. The corresponding temperature can be provided, for example, by means of a solar thermal system 200 or a solar system 300.
  • the process according to FIG. 7 can be carried out, for example, in an oxidation furnace.
  • a thermal oxidation is carried out, in which the energy for triggering / operating the oxidation originates from renewable energy sources (preferably from solar energy).
  • the oxidation of silicon 103 should preferably be done with dry oxygen to preclude a concurrent competitive hydrolysis process.
  • the method according to FIG. 7 can also be carried out, for example, in a plasma oxidation furnace.
  • a plasma oxidation furnace Here only temperatures in the temperature range between 300 degrees Celsius and 600 degrees are necessary, because a part of the required energy is provided by the plasma.
  • Another aspect of the invention is the conversion of CO 2 to CO.
  • a direct conversion needs temperatures in the range of well over 2000 degrees Celcius and therefore may not be economical.
  • water gas shift reaction which proceeds according to the following equation (5):
  • the ⁇ H in this reaction (5) is + 41.19 kJ.
  • the CO 2 can then be returned to this reaction (5), for example.
  • the required temperature may be generated by, for example, a mirror assembly (eg, a parabolic mirror) become. Synthesis gas can be produced from the CO and then methanol can be produced from the synthesis gas.
  • Methanol are reacted as described.
  • a siliceous or metal oxide-containing feedstock 101 can be reduced to the corresponding metal in a reduction process.
  • the metal can be used at another location (eg near an industrial plant or power plant) to convert the resulting CO 2 into CO.
  • the CO 2 can be easily separated by dissolving in water, methanol or other alcohols of CO, since the CO does not or hardly dissolves.
  • Hydrolysis 116 of silicon 103 or metal produces hydrogen as described.
  • This hydrogen can be converted to CO as shown in equation (4) with CO 2 (for example CO 2 from flue gases). From CO plus a portion of hydrogen (synthesis gas) then methanol can be produced.
  • the methanol production can be carried out according to one of the known and industrially used methods.
  • Preferred is a method in which a catalyst (eg, a CuO-ZnO-Cr 2 O 3 or a Cu-Zn-Al 2 O 3 catalyst) is used.
  • the invention has the advantage that in the reduction of the silicon dioxide or one of the other metal oxides no CO 2 or less CO 2 is released.
  • the required energy is provided from renewable energy sources, preferably solar panels 200 or 300.
  • the elemental silicon 103 is preferably used in powdered or granular or granular form to provide the largest possible surface area upon oxidation (see step 119 in FIG. 7) or during hydrolysis (see step 116 in FIG. 6).
  • Silicon 103 can therefore also be further processed or refined in a corresponding process.
  • the processes according to the invention are not necessarily cyclic processes in which the products (eg the silicon dioxide or a metal oxide) are returned to the exit of the process, and then again (eg to silicon or a metal ) to be reduced. Due to the fact that silica is a good starting material, the cycle can be made open. In this case, the final silicon dioxide, or the resulting metal oxide, is removed from the process to be used, for example, for glassmaking.
  • the products eg the silicon dioxide or a metal oxide
  • the cycle can be made open.
  • the final silicon dioxide, or the resulting metal oxide is removed from the process to be used, for example, for glassmaking.
  • Catalyst and / or a reducing agent used can also serve as reducing agents.
  • metals can also serve as reducing agents.
  • magnesium (Mg) or zinc (Zn) can be used.
  • the magnesium (Mg) can by means of electrothermal reduction (analogous to FIG. 2) of MgO and the zinc (Zn) are prepared from ZnO.
  • the thermal dissociation according to equation (1) can be advantageously linked to an oxidation process for the production of methanol.
  • a hydrocarbon e.g., methane gas
  • the methanol can be generated by direct oxidation or by partial oxidation or reforming. Details can be found in the parallel application PCT / EP2009 / 061707, which was filed on 9.9.2009.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention concerne un procédé de préparation de sources d'énergie accumulables et transportables (103, 104). Dans une étape, une transformation d'un matériau de départ (101) contenant de l'oxyde de silicium ou de l'oxyde de métal en silicium (103) ou en métal se produit dans un procédé de réduction (105) où l'énergie primaire de ce procédé de réduction (105) est préparée à partir d'une source d'énergie renouvelable. Une partie des produits de réaction (102) du procédé de réduction (105) est alors utilisée dans un processus (106) de fabrication de méthanol. Du gaz de synthèse (110) à partir de monoxyde de carbone et d'hydrogène est utilisée dans ce processus (106) de fabrication de méthanol.
EP09748818A 2008-12-18 2009-11-13 Silicium ou métaux élémentaires comme sources d'énergie Withdrawn EP2367752A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09748818A EP2367752A1 (fr) 2008-12-18 2009-11-13 Silicium ou métaux élémentaires comme sources d'énergie

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/EP2008/067895 WO2010069385A1 (fr) 2008-12-18 2008-12-18 Procédé de préparation d'un vecteur d'énergie
EP09152292 2009-02-06
PCT/EP2009/061707 WO2011018124A1 (fr) 2009-08-13 2009-09-09 Procédé et installation de production d'une ressource énergétique à base d'hydrocarbure en utilisant une fraction de méthanol produit par régénération et une fraction de méthanol qui est produit par oxydation directe ou par oxydation partielle ou par reformage
EP09748818A EP2367752A1 (fr) 2008-12-18 2009-11-13 Silicium ou métaux élémentaires comme sources d'énergie
PCT/EP2009/065165 WO2010069685A1 (fr) 2008-12-18 2009-11-13 Silicium ou métaux élémentaires comme sources d'énergie

Publications (1)

Publication Number Publication Date
EP2367752A1 true EP2367752A1 (fr) 2011-09-28

Family

ID=44366957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09748818A Withdrawn EP2367752A1 (fr) 2008-12-18 2009-11-13 Silicium ou métaux élémentaires comme sources d'énergie

Country Status (4)

Country Link
US (1) US20120041083A1 (fr)
EP (1) EP2367752A1 (fr)
CA (1) CA2747099A1 (fr)
WO (1) WO2010069685A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010012734U1 (de) 2010-09-03 2011-12-05 Carbon-Clean Technologies Ag Energieträger-Erzeugungsanlage zum kohlendioxidneutralen Ausgleich von Erzeugungsspitzen und Erzeugungstälern bei der Erzeugung von elektrischer Energie und/oder zur Erzeugung eines kohlenwasserstoffhaltigen Energieträgers
ES2402398T3 (es) 2010-09-03 2013-05-03 Carbon-Clean Technologies Ag Procedimiento e instalación de generación de portador de energía para la compensación neutra en dióxido de carbono de picos de generación y valles de generación en la generación de energía eléctrica y/o para la generación de un portador de energía que contiene hidrocarburo
EP2650257B1 (fr) 2012-04-12 2018-10-17 Silicon Fire AG Dispositif de synthèse de méthanol régénératif à partir de gaz méthane contenant du co2
DE102014111781B4 (de) * 2013-08-19 2022-08-11 Korea Atomic Energy Research Institute Verfahren zur elektrochemischen Herstellung einer Silizium-Schicht
DE102015224139A1 (de) * 2015-12-03 2017-06-08 Siemens Aktiengesellschaft Verfahren zur Herstellung von Methanol aus einem Gärrest und einem Biogas einer Fermentationsanlage und Vorrichtung zur Herstellung von Methanol aus dem Gärrest und dem Biogas einer Fermentationsanlage
GB2545474A (en) * 2015-12-17 2017-06-21 Avocet Infinite Plc Integrated system and method for producing methanol product

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215522A (en) * 1960-11-22 1965-11-02 Union Carbide Corp Silicon metal production
DE2924584A1 (de) * 1979-06-19 1981-01-15 Straemke Siegfried Verfahren zur herstellung von silicium fuer solarzellen
US4457902A (en) * 1980-10-24 1984-07-03 Watson Keith R High efficiency hydrocarbon reduction of silica
US4897852A (en) * 1988-08-31 1990-01-30 Dow Corning Corporation Silicon smelting process
NO310142B1 (no) * 1999-03-29 2001-05-28 Elkem Materials Fremgangsmåte for fremstilling av amorft silica fra silisium og fra silisiumholdige materialer
DE10048472A1 (de) * 2000-09-29 2002-04-11 Peter Plichta Neuartiges Konzept zur Energieerzeugung über einen anorganischen Stickstoff-Zyklus, ausgehend vom Grundstoff Sand unter Erzeugung Höherer Silane
EP1385784A1 (fr) * 2001-05-03 2004-02-04 Wacker-Chemie GmbH Procede de production d'energie
DE10258072A1 (de) * 2002-12-11 2004-07-01 Wacker-Chemie Gmbh Verfahren zur Erzeugung von Wasserstoff
GB0422129D0 (en) * 2004-10-06 2004-11-03 Qinetiq Ltd Electro-reduction process
GB0504444D0 (en) * 2005-03-03 2005-04-06 Univ Cambridge Tech Method and apparatus for removing oxygen from a solid compound or metal
EP1991500A2 (fr) * 2006-02-20 2008-11-19 Hyattville Company Ltd. Préparation de silicium de qualité solaire et éléctronique à partir de matériaux contenant des aluminosilicates
EP1918248A3 (fr) * 2006-10-29 2010-06-09 Silicon Fire AG Préparation d'H2O2 à partir d'acide sulfurique, obtenu par combustion de matières combustibles fossiles contenant de résidus de soufre, et utilisation de H2O2 en tant que source d'énergie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010069685A1 *

Also Published As

Publication number Publication date
CA2747099A1 (fr) 2010-06-24
WO2010069685A1 (fr) 2010-06-24
US20120041083A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
DE102016219990B4 (de) Verfahren zur Abscheidung und Lagerung von Kohlendioxid und/oder Kohlenmonoxid aus einem Abgas
EP2816284B1 (fr) Recyclage de matière avec du métal électropositif
US7569203B2 (en) Production and uses of carbon suboxides
EP2367752A1 (fr) Silicium ou métaux élémentaires comme sources d'énergie
DE102012103458B4 (de) Anlage und Verfahren zur ökologischen Erzeugung und Speicherung von Strom
EP2370350A1 (fr) Procédé de préparation d'un vecteur d'énergie
EP3052435B1 (fr) Procédé de stockage d'énergie électrique
EP2818227A1 (fr) Procédé d'opération d'un four droit produisant de la chaux, du dolomite, de la magnésie ou du ciment brûlés et installation de four droit destinée à la production de la chaux, du dolomite, de la magnésie ou du ciment brûlés
WO2013034130A2 (fr) Séquestration écologique de dioxyde de carbone/augmentation de la quantité de bioénergie pouvant être obtenue à partir d'une biomasse
WO2008074659A2 (fr) Processus de centrale électrique en cascade d'un genre nouveau et procédé pour produire des transporteurs d'hydrogène utilisables de manière réversible dans un tel processus de centrale électrique
EP3526315B1 (fr) Procédé pour la production de méthane
WO2021228429A1 (fr) Procédé pour générer de l'énergie thermique et des produits chimiques de base par réaction aluminothermique
EP2650257B1 (fr) Dispositif de synthèse de méthanol régénératif à partir de gaz méthane contenant du co2
DE102014213987B4 (de) Solare Ammoniakproduktion
EP1918248A2 (fr) Préparation d'H2O2 à partir d'acide sulfurique, obtenu par combustion de matières combustibles fossiles contenant de résidus de soufre, et utilisation de H2O2 en tant que source d'énergie
EP2438980A1 (fr) Procédé et dispositif de préparation et d'installation de méthanol à base d'hydrogène à des fins de dénitrification
WO2014079921A1 (fr) Production microbiologique de biométhane avec de l'hydrogène obtenu par gazéification de substances de départ carbonées
WO2001018151A1 (fr) Procede d'accumulation d'energie solaire
EP2040323A2 (fr) Procédé de préparation d'accumulateurs d'énergie à l'hydrogène à base d'azote
WO2014173991A1 (fr) Procédé de production d'énergie thermique et de monoxyde de carbone par réduction aluminothermique de dioxyde de carbone
EP4328287A1 (fr) Procédé de production de combustible synthétique
DE102016208938A1 (de) Verfahren und Anlage zur Erzeugung eines Kohlenwasserstoffs
WO2023161404A1 (fr) Méthode d'élimination et d'immobilisation de dioxyde de carbone de l'atmosphère et/ou d'un gaz résiduaire
DE102019005672A1 (de) Verfahren zur emissionsfreien Erzeugung von Nutzenergie (el. Strom, Heizwärme) durch Verbrennung von Erdgas (Methan) mittels eines geschlossenen Kohlenstoffkreislaufs.
CN102712019A (zh) 通过可再生能、材料资源和养分的一体化生产实现可持续经济发展

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602