EP2368041B1 - Metering pump with device for degassing the pumping chamber - Google Patents

Metering pump with device for degassing the pumping chamber Download PDF

Info

Publication number
EP2368041B1
EP2368041B1 EP09793469.9A EP09793469A EP2368041B1 EP 2368041 B1 EP2368041 B1 EP 2368041B1 EP 09793469 A EP09793469 A EP 09793469A EP 2368041 B1 EP2368041 B1 EP 2368041B1
Authority
EP
European Patent Office
Prior art keywords
stroke
pressure
pump
metering pump
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09793469.9A
Other languages
German (de)
French (fr)
Other versions
EP2368041A1 (en
Inventor
Klaus Müller
Sergei Gerz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Publication of EP2368041A1 publication Critical patent/EP2368041A1/en
Application granted granted Critical
Publication of EP2368041B1 publication Critical patent/EP2368041B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/50Presence of foreign matter in the fluid
    • F04B2205/503Presence of foreign matter in the fluid of gas in a liquid flow, e.g. gas bubbles

Definitions

  • the invention relates to a metering pump
  • the problem of gas formation in the delivery chambers of metering pumps, especially when dosing liquids is known.
  • the gas formation occurs not only during the dosing but also during the metering pauses of the pump.
  • outgassing substances such as hydrogen peroxide H 2 O 2 gas
  • the number and size of the gas bubbles in the pumping chamber over the duration of metering breaks or during a service life increase.
  • the pressure in the dosing of the metering pump increases. If the pressure in the dosing chamber of the pump exceeds the pressure in the pressure line, the pressure-side pump valve opens, followed by a transfer of liquid from the metering chamber of the dosing pump into the pressure line, whereby pressure equalization takes place.
  • the ratio of the gas volume to liquid volume in the metering chamber of the pump increases, with the result that when starting the metering not directly metering volumes are output. The dosing thus stops.
  • the publication DE-3827489-C1 describes a metering pump with a venting device, which is formed by a diaphragm valve on the pressure line.
  • a venting device which is formed by a diaphragm valve on the pressure line.
  • the vent valve formed by the diaphragm valve opens so that the gas present during the dosing stroke exits via a return line.
  • the present invention is based on the object to improve a metering pump to the effect that a better degassing of the delivery chamber of the metering pump is possible.
  • This object is achieved by a metering pump having the features specified in claim 1. further developments This object is disclosed in the corresponding subclaims.
  • the invention relates to a metering pump for metering fluids, which is suitable to carry out a method according to the following description in order to degas the pumping chamber of the metering pump.
  • the delivery chamber of the pump is in fluid communication with at least one suction line which can be opened via a suction valve and at least one pressure line which can be opened via a pressure valve.
  • a displacement body for displacing the fluid in the delivery chamber is provided in a known manner, or the delivery chamber is bounded on at least one side by this displacement body, in the form of a membrane.
  • a device for carrying out a pulse is arranged in the delivery chamber. As a device for carrying out a pulse, the drive of the displacement body itself serves.
  • the drive and / or its control or regulation are preferably designed so that the drive can control the displacement body so that it can perform small suction and / or pressure strokes, which exert only a pulse on the fluid in the delivery chamber, which is required To dissolve and accumulate gas bubbles in the pump room.
  • the stroke is preferably so small that substantially no fluid is conveyed.
  • the drive of the displacement body is then configured such that it can express a collecting gas bubble, as described below, from the delivery chamber.
  • a drive of the displacement body can be done mechanically, hydraulically, pneumatically and / or magnetically.
  • a stepper motor can drive the displacement body via a corresponding transmission.
  • a first embodiment of the method for degassing a gas-forming fluid in a delivery chamber of a metering pump refers to the pump with a delivery chamber into which the delivery chamber delimiting displacement body extends, wherein the delivery chamber has two openings, one of which via a suction valve in a Suction line and a second opens via a pressure valve in a pressure line. Since the pressure in the pumping chamber increases continuously during pump downtimes because of the formation of gas from the fluid, the pressure valve opens when a certain value is exceeded, so that undefined quantities of gas and fluid pass into the pressure line.
  • a collecting gas bubble pending on the delivery chamber side is advantageously provided by the method according to the invention, so that when the opening pressure of the pressure valve is exceeded, only gas preferably escapes into the pressure line.
  • the method comprises carrying out a pulse, wherein the pulse causes gas bubbles, which have formed in the pumping chamber by the gas-forming fluid and adhere to the inner surfaces of the pumping chamber, to be detached from these surfaces.
  • a pulse is exerted during the pulsing at least on a part of the conveying space bounding surfaces or walls and / or the fluid located in the delivery chamber.
  • the gas bubbles After the gas bubbles have been detached from the inner surfaces, they float in the delivery chamber, can accumulate to larger gas bubbles, which then preferably rise in the direction of the pressure valve, preferably there on the delivery chamber side a collecting gas bubble to build. If the pressure in the delivery chamber now increases, the collecting gas bubble, which is preferably present at the pressure valve, escapes from the delivery chamber into the delivery line in the form of exit gas bubbles.
  • This increase in pressure can be a consequence of the fact that even more gas is formed from the fluid during continuous pump shutdown, alternatively, a partial pressure stroke of the displacement body can be performed to increase the pressure, so that the collecting gas bubble escapes into the pressure line.
  • no or only small amounts of fluid are discharged into the pressure line. Through this execution of the pulse is advantageously ensured that the gas content in the delivery chamber of the metering pump does not exceed the level that leads to a pump failure.
  • the pulse formation for releasing the gas bubbles is effected by generating vibration vibrations by means of a vibration generator, which is arranged in the delivery chamber. It is possible to put the displacement body and / or other parts of the delivery chamber in vibration. Alternatively, at least a partial pressure and / or Operaaughub the displacement body can be carried out as a pulse, the z. B. advantageous only such a small, possibly infinitesimal volume sucks that z. B. a Clausaughub can be considered rather than suction pulse. As a result, the gas bubbles adhering to the inner surfaces of the delivery chamber are released and can accumulate with further gas bubbles present in the delivery chamber.
  • This Sectionhub may be a Generalhub vinyl of suction strokes and / or pressure strokes.
  • successive partial pressure strokes can be performed alternately with partial strokes.
  • the stroke length with which the displacement body is moved into the delivery chamber grow, so that each following partial pressure and sectionaughubkombination a greater stroke length has as the previously executed.
  • the collecting gas bubble which is present at the pressure valve, transferred to the pressure line, and still adhering to the inner surfaces adhering gas bubbles in response to the growing stroke length, which in turn again form a collecting gas bubble, which is transferred to the subsequent partial pressure stroke back into the pressure line.
  • the gas bubbles produced in the suction line can also be transferred into the delivery chamber as a result of the increase in the stroke length in a suction stroke, where they then accumulate to the collecting gas bubble and transferred by means of a next pressure stroke in the pressure line.
  • the partial stroke sequence can be defined with increasing stroke lengths over a desired degree of degassing, which can be determined by detecting a pressure gradient in the delivery chamber when a pressure or suction stroke is being carried out. This determined pressure gradient is compared with a pressure gradient value, which was determined for a degassed delivery chamber as Kalibrierdruckgradient. In this case, the desired degree of degassing of the Kalibrierbuchgradient corresponding pressure gradient minus a tolerance of z. B. 5% of Kalibriertikste whyswerts.
  • a parting stroke as described above preferably has a content of from 0.1% to 99%, preferably from 1% to 50%, most preferably from 1% to 25% of a full suction stroke. Accordingly, a partial pressure stroke according to the foregoing description preferably has a proportion of 0.1% to 99%, preferably 1% to 50%, most preferably 1% to 25% of a full pressure stroke of the metering pump.
  • the pressure stroke is preferably carried out in a known manner by movement of the displacement body, for example a piston or a membrane.
  • time intervals or times can be preset by means of a timing device that is in operative communication with the pump, so that an automatic degassing operation is carried out before the pump is put back into operation.
  • the pulse for degassing the pumping chamber is preferably carried out during a service life or during a pump stop.
  • the execution of a sectionhub shadow with increasing stroke lengths is preferably carried out for starting the pump after a service life of the pump.
  • a pressure sensor arranged on the delivery chamber, which receives the pressure in the delivery chamber, record the pressure variation over a stroke. If the determined over the duration of a stroke pressure curve is set to the stroke, or to a limited in the pumping chamber by the traveled stroke length of the displacement body volume and optionally as a p / V diagram plotted, it shows a curve for the pressure curve during a pressure stroke, from which the pressure gradient behavior can be seen. When the pump is in a vented state, the slope of the near-linear pressure rise or pressure drop reaches a maximum value, which is taken as the set value of the pressure ramping behavior.
  • the pressure diagram shows an increase or decrease with a smaller gradient, which corresponds to an actual value of the pressure gradient, when a pressure or suction stroke is carried out.
  • the process for pump venting can be carried out until the best possible venting of the pumping chamber has been achieved.
  • Such a comparison is carried out in an evaluation device and the determined result is provided in a control device for actuating the pump as a control parameter. This can be targeted depending on the resulting gas volume degassing initiated or the length of the degassing or the efficiency of the degassing can be determined.
  • the comparison results are preferably supplied to a control device for actuating the pump as control parameters for starting the pump during a service life of the pump, during a pump stop, after a pump stop or for starting the pump after a service life of the pump.
  • the actually delivered volume flow into the pressure line during a stroke of the displacement body depends on the size of the total gas volume.
  • the actual, ie the actual delivery behavior of the pump is determined and can be compared with a desired delivery behavior of the pump, so that, taking into account certain tolerance limits can be judged whether the pump for the metering operation is still functional.
  • An embodiment of the pump according to the invention refers to the fact that the displacement body, which displaces the fluid from the delivery space, is actuated via a travel-controlled drive device, in particular a step motor or a linear motor to make that the required Ambiaughübe or partial pressure strokes are correspondingly small suction or Druckhübe and thus can produce a correspondingly small negative or positive pressure.
  • a travel-controlled drive device in particular a step motor or a linear motor to make that the required Ambiaughübe or partial pressure strokes are correspondingly small suction or Druckhübe and thus can produce a correspondingly small negative or positive pressure.
  • the displacement body which may be a diaphragm or a piston, optionally executes stroke distances of tenths of millimeters.
  • the finest pressure pulses are possible, which allow the detachment of the gas bubbles, which adhere to the inner surfaces of the pumping chamber and a membrane.
  • the membrane performs a vibratory motion that corresponds to a "ventricular fibrillation", i. there is no or very little pumping action for the fluid, but the gas bubbles are set in motion, detach from the walls and combine to form larger gas bubbles, which then experience buoyancy in the fluid and rise.
  • Fig. 1.1 to 1.8 show representations of the time sequence of the degassing processes and conditions in the delivery chamber of the diaphragm pump in the event of an interruption in operation
  • Fig. 2.1 to 2.10 show representations of the time sequence of the degassing processes and conditions in the delivery chamber of the diaphragm pump in the method for bringing about a ready state of the metering pump after a stoppage
  • Fig. 3 shows a flowchart of the process and the processes during a business interruption and to bring about a Ready state of the dosing pump.
  • a linear motor is understood to mean an electric drive machine which does not place the objects connected to it in a rotating, but in a translatory movement. If a linear motor is coupled to actuate a piston in a displacement pump, the piston can travel a very short distance. This makes it possible to meter the piston stroke very finely. The same applies to a stepper motor whose rotor moves forward with only a tiny angular offset for each step specified from the outside. This allows the highest physical positioning accuracy and thus the finest Dosierhübe achieve if such a stepper motor z. B. is coupled via an eccentric with a connecting rod or a plunger.
  • a delivery room or dosing the space in the metering pump which contains the fluid to be pumped; a displacement device is guided into it for the purpose of fluid displacement.
  • Gas-forming fluids are understood as meaning, in particular, liquid chemicals which tend to equilibrate with their decomposition products and which therefore split off gaseous products.
  • An example of this is hydrogen peroxide.
  • the formed gases increase the pressure in the delivery chamber, thereby causing a delivery chamber of a metering pump, which is closed by pressure valves against suction and discharge line, to be pressurized by the formation of the gases. As soon as the through the pressure generated by the resulting gases exceeds the holding pressure of the pressure valves, opens the pressure valve and gases and fluid can pass into the pressure line.
  • partial lift or “partial pressure lift” means a fraction of a full intake stroke / compression stroke, a full lift being achieved when the displacement device is actuated over the entire stroke length.
  • a displacement piston under 100 percent load displace a volume of 100 ml, so a sectionaughub, which has only a proportion of 0.1%, displace only 0.1 ml volume.
  • a sectionaughub may be so low that even a swinging of the piston, or in a membrane pump of the membrane, preferably in the range of 1 to 20 Hz, for example, 2 to 10 Hz, more preferably from 3 to 4 Hz, is carried out essentially no fluid is conveyed.
  • stroke length is used here in an equivalent manner to the terms partial stroke, or partial pressure stroke; because the proportion of a partial stroke length with respect to a total stroke length corresponds to the proportion of Operahubvolumens in relation to the total stroke volume, so that, for example, at a partial stroke corresponding to a share of 25% of a full stroke, the Generalhubin corresponds to 25% of the total stroke length.
  • a term "desired degree of degassing” is used below, which means that, depending on the fluid to be metered, an experimentally determined minimum degassing can be achieved. This minimum degassing would correspond to a degree of degassing of 1. With chemicals that permanently release gases, even during the dosing process, gases will be generated, so that an ideal degree of degassing of such a chemical will correspond to another ideal degree of degassing than exists for a fluid that only very gradually releases gases and actually does so Degassing near 1 achieved wasbei actually a degree of degassing close to 1 can be achieved.
  • the method according to the invention is based on the fact that the execution of a pulse during a service life or after a pump stop can be done, whereas the execution of a Generalhub blur with increasing stroke lengths of the displacement body for commissioning, or to start the pump after a service life of the pump can be used.
  • a service life of the pump is understood below to mean a time period which is sufficient to provide a corresponding gas volume. Basically, a life will be at least 30 minutes, as a service life is also a non-operation of the pump overnight of over 12 hours or a multi-day non-operation of the pump stored in the pump fluid storage.
  • a pump stop can take anywhere from a few seconds to 30 minutes.
  • the pump For the pump to carry out the degassing process according to the invention during a service life or a pump stop, the pump must be "active", ie. H. it must be powered and a degassing mode, ie a corresponding program in the pump software, must be activated.
  • the metering pump which produces a gas-forming fluid and whose delivery chamber is to be freed from the gas formed, has a suction valve which opens into the delivery chamber and extends into a suction line. Furthermore, the delivery chamber opens via a pressure valve in a pressure line. The same applies if there are several pressure or suction lines.
  • a displacement body for displacing the fluid limits the delivery space, usually on one side, and is arranged such that it can perform the pressure strokes required for displacement alternately in combination with the corresponding suction strokes.
  • a pulse is initially carried out, the pulse can be done by vibration vibration by means arranged in or on the pumping chamber vibration generator or alternatively z.
  • B. can be performed as a first Generalaughub the displacement body. This sub-stroke corresponds to a proportion of 0.1 to 99% of a full suction stroke and may also be a swing in a range of 1 to 20 Hz. If the gas bubbles by the vibration oscillations or z. B.
  • a collecting gas bubble to be discharged via the pressure valve in the valve chamber. This is done by a pressure increase in the delivery chamber, which is caused by further gas formed from the fluid and / or by a partial pressure stroke, which may correspond to a proportion of 0.1 to 99% of a full pressure stroke.
  • the collecting gas bubble is compressed and in turn exerts pressure on the pressure valve.
  • the opening pressure is exceeded, this opens and the gas forming the collecting gas bubble is transferred as discharge gas bubbles into the pressure line.
  • no fluid is transferred into the pressure line.
  • a partial lift stroke may correspond to a level of from 0.1% to 99%, preferably from 1% to 50%, most preferably from 1% to 25% of a full suction stroke.
  • a sectionaughub can also be divided into a plurality of vibration strokes, which make up a total of 0.1 to 10% of a full intake stroke.
  • a partial pressure stroke may correspond to a level of from 0.1% to 99%, preferably from 1% to 50%, most preferably from 1% to 25% of a full pressure stroke.
  • a sectionhub vinyl with increasing stroke lengths of the displacer is carried out, wherein the partial strokes are between 0.1 to 99% of a full stroke. Due to the increasing pressure in the delivery chamber as a result of the growing pressure strokes escapes at the partial pressure strokes a collecting gas bubble from the pressure valve, while the increasing suction strokes in the suction line can transfer existing gas bubbles in the delivery chamber, where they perform a movement in the direction of the pressure valve, and form a collecting gas bubble , which is transferred with a next pressure stroke in the pressure line.
  • the Section vinyl with increasing stroke lengths is carried out until an optimal degree of degassing is achieved, which is either determined by the number of partial strokes, or controlled by determining the degassing.
  • the determination of the degree of degassing comprises detecting a pressure gradient in the delivery chamber when executing a pressure or suction stroke, and comparing the determined pressure gradient with a pressure gradient serving as Kalibriertikgradient, which was determined for a degassed fluid, wherein the desired degassing thereby a the Kalibrierdruckgradient corresponding pressure gradient less a tolerance of about 5% of the calibration pressure gradient value.
  • the values from the determination of an actual pressure gradient during a stroke of the displacement body and the comparison values of the - actual pressure gradient behavior of the pump with a desired pressure gradient behavior of the pump can be fed to an evaluation device for evaluating the comparison results and further transmitted to a control device for actuating the pump as a control parameter.
  • the method may further include presetting time intervals and times of a timing device operatively connected to the pump such that actuation of the pump to start, during a life, after a pump stop, or to start the pump after a life of the pump, timed can be.
  • a timing device operatively connected to the pump such that actuation of the pump to start, during a life, after a pump stop, or to start the pump after a life of the pump, timed can be.
  • the method also provides that further control parameters are provided for starting the pump during a service life of the pump, after a pump stop or for starting the pump after a service life: This is the determination of an actually conveyed volume flow into the pressure line during a defined stroke of the displacement body and the comparison of the defined by this stroke defined actual delivery behavior of the pump with a delivery behavior of the pump at identical defined stroke, the comparison of the actual delivery behavior and the desired delivery behavior of the pump show whether gas is present in the conveyor system or not. Knowing the misfed volume, the controller may initiate a corresponding degassing operation, which may be the execution of the partial lift sequence with increasing stroke lengths.
  • the metering pump of the method according to the invention will be a diaphragm pump.
  • the invention is Method also executable with a piston pump. It can be used any displacement body, provided he z. B: can be caused by coupling with a lifting rod, compressed air or other suitable device for performing smallest strokes.
  • a path-controlled drive device such as a linear motor or a stepper motor can be in operative connection with the displacement body. A coupling via a compressed air generator is possible.
  • the sequence of figures 1.1 to 1.8 is based on the following starting situation: During a pump stop or a service life of the pump, different gas bubbles 4, 7, 8 emerge from the outgassing fluid in the delivery chamber 1. Above all, the gas bubbles 4,8 are formed on the inner walls of the delivery chamber and on the piston surface 3 'of the delivery chamber 1 bounding piston 3. By this gas bubble growth, a pressure p 2 in the delivery chamber 1 increases. If the pressure p 2 greater than the pressure in the pressure line p 3 , then opens the pressure valve 6. By the migration of the fluid or the collecting gas bubble 7 (depending on what is pending on the pressure valve) from the pumping chamber 1 in the pressure line finds Pressure equalization instead.
  • Figures 1.1 to 1.8 is the operational holding the pump, which in the present case is a diaphragm pump, although the membrane itself is not shown separately figurative shown.
  • the gas bubbles can be caused by the decomposition of unstable fluids such as hydrogen peroxide (H 2 O 2 ).
  • a pulse is carried out as Sectionaughub b and partial pressure stroke a, alternatively, the pulse can also be generated by a swing of the membrane.
  • Fig. 1.3 is sketched, as by a continued suction stroke b of the piston 3, the gas bubbles 4 ', 7,8' are still larger, accumulate and rise in the direction of pressure valve 6.
  • the suction valve 5 can continue to remain closed.
  • Fig. 1.4 shows a large collecting gas bubble 7 after the suction stroke of the piston 3 is completed.
  • a subsequent pressure stroke a of the piston 3, shown in FIG Fig. 1.5 can the pressure p 2 in the pumping chamber 1 rise again, whereby the volume enclosed in the pumping chamber 1 decreases.
  • equation (I) the volume of the gas bubbles 4 'and the collecting gas bubble 7 located in the delivery chamber 1 decreases accordingly.
  • the pressure level p 2 in the delivery chamber 1 also corresponds to the pressure level Fig. 1.1 .
  • Fig. 1.6 only a few gas bubbles 4 'on the inner walls of the delivery chamber 1 and the collecting gas bubble 7, which is present at the pressure valve 6.
  • Fig. 1.7 is shown how by further outgassing of the fluid, the volume of the gas bubbles 4,8 and the collecting gas bubble 7 increases and the pressure p 2 in the pumping chamber 1 further increases.
  • This increase in pressure causes the pressure p 2 in the delivery chamber 1 is higher than in the pressure line (p 2 > p 3 ).
  • the pressure valve 6 opens and the collecting gas bubble 7 attached thereto begins to escape as a result of the pressure equalization in the pressure line as exit gas bubbles 7 '.
  • the fine suction strokes and pressure strokes can be performed well with a metering pump for metering fluids when the displacer of the device is operated by a stepper motor or a linear motor and acts on the diaphragm or piston as a displacer, or when a vibrator is installed to pulse ,
  • the displacement body which may be a piston or a flexible membrane 3, may be driven mechanically via a lifting rod 2 or hydraulically or pneumatically or magnetically.
  • This process of conveyor degassing can be performed several times during a service life, for example, by a device for timing (not shown) at predetermined time intervals or at predetermined times outputs a signal that sets the process for degassing the pump room in motion.
  • a device for timing not shown
  • predetermined time intervals or at predetermined times outputs a signal that sets the process for degassing the pump room in motion.
  • empirical values can be used, so that the person skilled in the art can set the time intervals in such a way that the conveyor-belt degassing takes place if a correspondingly strong formation of gas bubbles occurs is to be expected.
  • a step for determining an actual pressure gradient in the delivery chamber during a pressure or suction stroke and comparing the actual pressure gradient behavior of the pump with a desired pressure gradient of the pump with an evaluation device for evaluating the comparison results are performed, the comparison results of a control device for actuating the Pump as a control parameter for starting the pump after a service life of the pump, alternatively after a pump stop.
  • the steps of setting a time control or a pressure gradient based on the determination of the pressure increase in the delivery chamber in a pressure or suction stroke can be performed at any desired times and also alternately, if necessary. Alternating with manual execution of the method.
  • the determination of the pressure gradient can be carried out with a pressure measuring device provided in the delivery chamber, which receives the pressure curve p 2 in the delivery chamber via a pressure or suction stroke, with increasing gas bubble formation, the slope of the pressure increase or pressure drop in a recorded pressure-stroke length.
  • Diagram decreases, since the gas bubbles are compressible, and when falls below a certain threshold and feedback of the data to a control device, the winningumumentlliteung is automatically triggered.
  • the inventive method further relates to the bringing about a ready state of the pump by the delivery chamber and supply lines such as the suction line with the simplest means as quickly as possible to be freed of gas bubbles, so that the pump can fulfill their task of accurate dosing, without a variety of Inaccurate Dosierh Weg GmbH when resuming the dosing takes place after a break.
  • the sequence of figures 2.1 to 2.10 is based on the following starting position:
  • the pump should start to dose again after an interruption in operation.
  • a complete pressure stroke must not be carried out immediately, that is, no full stroke volume may be passed through the displacement body.
  • gas bubbles have formed in the delivery chamber 1, both a collecting gas bubble 7 and gas bubbles 4, 8 on the inner surfaces of the delivery chamber 1.
  • the area surrounded by dashed lines symbolizes the size of the displacement volume V H 20.
  • Fig. 2.6 shows that after completion of the second partial pressure stroke, a further second Partaughub b is executed. Due to the Detailaughub b of the piston 3, the pressure p 2 decreases in the delivery chamber 1, while analogously enclosed in the pumping chamber 1 volume according to equation (I) and thus the volumes of the gas bubbles 4 'increase. As a result, the gas bubbles 4 'rise in the direction of the pressure valve 6. There or during the upgrade they accumulate to a new large collecting gas bubble 7, which is then present at the pressure valve 6. When doing the necessary pressure to open the suction valve 5 is achieved, a volume is sucked from the suction line. This may consist partly of fluid volume and partly of gas volume. The thus tracked by the suction valve 5 from the suction line Gas bubbles 7 "rise in the delivery chamber 1 in the direction of the pressure valve 6 (arrow c).
  • Fig. 2.7 is the second Operaaughub of the piston 3 is completed and the displacement body 3 again assumes the starting position. Meanwhile, only the pending on the pressure valve 6 collecting gas bubble 7 is present.
  • a third pressure stroke a With a third pressure stroke a, whose stroke length is in turn greater than that of the preceding stroke and here corresponds to a full pressure stroke, the piston 3 compresses the volume enclosed in the delivery chamber 1 by the piston 3, shown in FIG Fig. 2.8 , Likewise, the previously formed collecting gas bubble 7 is compressed, which is present at the pressure valve 6 and includes the entire gas content in the delivery chamber 1, so that it can be transferred with the displacement V H 20 in the pressure line, as in the following Fig. 2.9 is shown.
  • the collecting gas bubble 7 leaves the conveying chamber 1 in the form of outlet gas bubbles 7 'through the pressure valve 6 into the pressure line (shown in FIG Fig. 2.9 ).
  • the delivery chamber 1 is now free from adhering to the inner surfaces of the delivery chamber 1 gas bubbles.
  • the pump was thus advantageously degassed with a small number of strokes, without significant amounts of metering fluid would have been pumped into the pressure line and would be there undesirable spent on the first Dosierhub.
  • the sectionaughübe disclosed in the method according to the invention optionally perform such a small stroke that can be spoken of a vibration, as well as the associated partial pressure strokes are sufficient to degas the pumping chamber and a part of the suction line.
  • the method for degassing the pumping chamber of the pump to reach a ready state can be triggered manually, but it is also a controlled control possible, so that the inventive method can be initiated when a control unit a dose requirement is reported when a time control the degassing provides.
  • the parameters determined above can be transmitted in a manner known to the person skilled in the art to a corresponding control and regulating unit operatively connected to the pump in order to initiate the method according to the invention starting with the desired steps.
  • Fig. 3 shows in a flow chart a possible temporal or logical sequence of the method according to the invention.
  • the processes in the delivery chamber of the pump are described.
  • the pulse is carried out, in a first step by a Generalaughub the pressure p 2 inside the pumping chamber decreases, whereby the volumes of gas bubbles grow, accumulate the gas bubbles and ascend to the collecting gas bubble (corresponds Fig. 1.2 and 1.3 ).
  • the second sub-step of the pulse is carried out by performing a partial pressure stroke, whereby the pressure p 2 increases in the delivery chamber, thereby further accumulating the gas bubbles and ascending to the collecting gas bubble is effected (corresponds Fig. 1.5 ).
  • the gas bubble volumes grow by the continued outgassing of the fluid, whereby the pressure p 2 in the pumping chamber continues to increase, so that when the opening pressure of the pressure valve is exceeded, when the pressure p 2 in the pumping chamber is greater than the pressure p 3 in the pressure line, the collecting gas bubble escapes (corresponds Fig. 1.6 and 1.7 ).
  • the execution of the pulse by Operaaughub and partial pressure stroke in the interval of the preset time interval t interval is continued until the metering break is completed.
  • the partial lifting sequence is now carried out with increasing stroke lengths of the displacement body, the partial lifting sequence consisting of n partial lifting combinations of partial pressure strokes and partial lifting strokes.
  • the number n can be preset or controlled depending on the degassing state of the pumping chamber.
  • Each partial pressure stroke partial lift combination is made with a stroke length corresponding to a proportion of x n % of full stroke length, with each subsequent partial pressure stroke partial lift combination having a longer stroke length (x n + 1 > x n ).
  • the execution of the second partial pressure stroke corresponds to the state in Fig. 2.5
  • carrying out a second Operaaughubs with the second stroke length causes moreover still that gas bubbles from the suction line can be tracked in the delivery chamber when the pressure p 2 in the delivery chamber is smaller than the pressure p 1 in the suction line, so that the suction valve opens.
  • the pump can deliver an entire stroke volume V H (corresponds to Fig. 2.10 ).
  • the method was after Fig. 3 with reference to the figure sequence 2.1-2.10 by executing the Operahub vinyl with increasing stroke lengths with a number of three partial strokes.
  • the number of partial strokes of Operahub vinyl with increasing stroke lengths is not limited and can be adjusted according to the given operations in relation to the pumping chamber and the fluid to be dosed.
  • the number of partial strokes in the sectionhub vinyl can also be controlled by means of a suitable measurement technique, depending on the presence of the gas bubbles in the pumping chamber.
  • This device may be for example an optical sensor or a pressure sensor. If there are no more gas bubbles, the pump is already in an operational state Status; the device determines whether there are still gas bubbles, there are still gas bubbles, the partial stroke sequence with increasing stroke lengths is initiated, accumulated by Ambiaughübe Randgasblasen from the pumping chamber and rise to a collecting gas bubble, which by a partial pressure stroke in the Pressure line is transferred. This loop is carried out until there are no more gas bubbles, so that the pump is in an operational state and can dose with it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

Die Erfindung betrifft eine DosierpumpeThe invention relates to a metering pump

Das Problem der Gasbildung in Förderräumen von Dosierpumpen, besonders beim Dosieren von Flüssigkeiten ist bekannt. Die Gasbildung erfolgt nicht nur während der Dosiervorgänge sondern auch während der Dosierpausen der Pumpe. Bei ausgasenden Substanzen wie etwa Wasserstoffperoxid H2O2 wird Gas freigesetzt, wobei die Anzahl und die Größe der Gasblasen im Förderraum über die Dauer der Dosierpausen oder während einer Standzeit anwachsen. Hierdurch steigt der Druck im Dosierraum der Dosierpumpe an. Übersteigt der Druck im Dosierraum der Pumpe den Druck in der Druckleitung, dann öffnet das druckseitige Pumpenventil, gefolgt von einer Überführung von Flüssigkeit aus dem Dosierraum der Dosierpumpe in die Druckleitung, wodurch Druckausgleich stattfindet. Somit steigt das Verhältnis des Gasvolumens zu Flüssigkeitsvolumen im Dosierraum der Pumpe an, mit der Folge, dass beim Anfahren der Dosierpumpe nicht unmittelbar Dosiervolumina ausgegeben werden. Der Dosiervorgang setzt somit aus.The problem of gas formation in the delivery chambers of metering pumps, especially when dosing liquids is known. The gas formation occurs not only during the dosing but also during the metering pauses of the pump. In outgassing substances such as hydrogen peroxide H 2 O 2 gas is released, the number and size of the gas bubbles in the pumping chamber over the duration of metering breaks or during a service life increase. As a result, the pressure in the dosing of the metering pump increases. If the pressure in the dosing chamber of the pump exceeds the pressure in the pressure line, the pressure-side pump valve opens, followed by a transfer of liquid from the metering chamber of the dosing pump into the pressure line, whereby pressure equalization takes place. Thus, the ratio of the gas volume to liquid volume in the metering chamber of the pump increases, with the result that when starting the metering not directly metering volumes are output. The dosing thus stops.

Die Druckschrift DE-3827489-C1 beschreibt eine Dosierpumpe mit einer Entlüftungseinrichtung, welche durch ein Membranventil an der Druckleitung gebildet ist. Mit Beendigung des Dosierhubes öffnet sich das durch das Membranventil gebildete Entlüftungsventil, so dass das beim Dosierhub vorhandene Gas über eine Rücklaufleitung austritt.The publication DE-3827489-C1 describes a metering pump with a venting device, which is formed by a diaphragm valve on the pressure line. When the dosing stroke ends, the vent valve formed by the diaphragm valve opens so that the gas present during the dosing stroke exits via a return line.

Es ist daher wünschenswert, ein Verfahren zur Betätigung von Dosierpumpen unter Verbesserung des Anfahrverhaltens und entsprechende, dazu geeignete Dosierpumpen bereitzustellen.It is therefore desirable to provide a method for actuating metering pumps to improve the starting behavior and corresponding, suitable metering pumps.

Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine Dosierpumpe dahingehend zu verbessern, dass eine bessere Entgasung des Förderraumes der Dosierpumpe möglich wird. Diese Aufgabe wird durch eine Dosierpumpe mit den in Anspruch 1 angegebenen Merkmalen gelöst. Weiterbildungen dieses Gegenstandes sind in den entsprechenden Unteransprüchen offenbart.Based on this prior art, the present invention is based on the object to improve a metering pump to the effect that a better degassing of the delivery chamber of the metering pump is possible. This object is achieved by a metering pump having the features specified in claim 1. further developments This object is disclosed in the corresponding subclaims.

Die Erfindung betrifft eine Dosierpumpe zum Dosieren von Fluiden, die geeignet ist, ein Verfahren gemäß der nachfolgenden Beschreibung auszuführen, um den Förderraum der Dosierpumpe zu entgasen. Der Förderraum der Pumpe ist mit zumindest einer über ein Saugventil öffenbaren Saugleitung und zumindest einer über ein Druckventil öffenbaren Druckleitung in fluidischer Verbindung. Ferner ist in bekannter Weise ein Verdrängungskörper zur Verdrängung des Fluids in dem Förderraum vorgesehen, bzw. wird der Förderraum an zumindest einer Seite durch diesen Verdrängungskörper, in Form einer Membran begrenzt. Darüber hinaus ist in dem Förderraum eine Vorrichtung zum Ausführen einer Impulsgebung angeordnet. Als Vorrichtung zum Ausführen einer Impulsgebung dient der Antrieb des Verdrängungskörpers selber. Dazu sind Antrieb und/oder dessen Steuerung bzw. Regelung bevorzugt so ausgestaltet, dass der Antrieb den Verdrängungskörper so steuern kann, dass er kleine Saug- und/oder Druckhübe ausführen kann, welche lediglich einen Impuls auf das Fluid im Förderraum ausüben, welcher erforderlich ist, Gasblasen im Förderraum zu lösen und zu akkumulieren. Der Hub ist dabei bevorzugt so klein, dass im Wesentlichen kein Fluid gefördert wird. Weiter bevorzugt ist der Antrieb des Verdrängungskörpers dann derart ausgestaltet, dass er eine Sammelgasblase, wie sie nachfolgend beschrieben wird, aus dem Förderraum ausdrücken kann. Ein solcher Antrieb des Verdrängungskörpers kann mechanisch, hydraulisch, pneumatisch und/oder magnetisch erfolgen. Beispielsweise kann ein Schrittmotor über ein entsprechendes Getriebe den Verdrängungskörper antreiben.The invention relates to a metering pump for metering fluids, which is suitable to carry out a method according to the following description in order to degas the pumping chamber of the metering pump. The delivery chamber of the pump is in fluid communication with at least one suction line which can be opened via a suction valve and at least one pressure line which can be opened via a pressure valve. Furthermore, a displacement body for displacing the fluid in the delivery chamber is provided in a known manner, or the delivery chamber is bounded on at least one side by this displacement body, in the form of a membrane. In addition, a device for carrying out a pulse is arranged in the delivery chamber. As a device for carrying out a pulse, the drive of the displacement body itself serves. To this end, the drive and / or its control or regulation are preferably designed so that the drive can control the displacement body so that it can perform small suction and / or pressure strokes, which exert only a pulse on the fluid in the delivery chamber, which is required To dissolve and accumulate gas bubbles in the pump room. The stroke is preferably so small that substantially no fluid is conveyed. More preferably, the drive of the displacement body is then configured such that it can express a collecting gas bubble, as described below, from the delivery chamber. Such a drive of the displacement body can be done mechanically, hydraulically, pneumatically and / or magnetically. For example, a stepper motor can drive the displacement body via a corresponding transmission.

Eine erste Ausführungsform des Verfahrens zur Entgasung eines gasbildenden Fluids in einem Förderraum einer Dosierpumpe bezieht sich auf die Pumpe mit einem Förderraum, in den sich der den Förderraum abgrenzender Verdrängungskörper hinein erstreckt, wobei der Förderraum zwei Öffnungen aufweist, von denen eine über ein Saugventil in eine Saugleitung und eine zweite über ein Druckventil in eine Druckleitung mündet. Da bei Pumpenstillstandzeiten wegen der Gasbildung aus dem Fluid der Druck im Förderraum kontinuierlich steigt, öffnet das Druckventil bei Überschreiten eines bestimmten Wertes, so dass undefinierte Gas- und Fluidmengen in die Druckleitung übergehen. Um zu verhindern, dass gleichzeitig beim Entweichen des entstandenen Gases Fluidanteile in die Druckleitung übergehen, wird durch das erfindungsgemäße Verfahren vorteilhaft eine förderraumseitig am Druckventil anstehende Sammelgasblase bereitgestellt, so dass bei Überschreiten des Öffnungsdrucks des Druckventils vorzugsweise lediglich Gas in die Druckleitung entweicht. Dazu umfasst das Verfahren das Ausführen einer Impulsgebung, wobei der Impuls bewirkt, dass Gasblasen, die in dem Förderraum durch das gasbildende Fluid entstanden sind und an den inneren Flächen des Förderraums anhaften, von diesen Flächen abgelöst werden. Dazu wird bei der Impulsgebung zumindest auf einen Teil der den Förderraum begrenzenden Flächen bzw. Wandungen und/oder das in dem Förderraum befindliche Fluid ein Impuls ausgeübt. Nachdem die Gasblasen von den Innenflächen abgelöst wurden, schweben sie im Förderraum, können zu größeren Gasblasen akkumulieren, die dann vorzugsweise in Richtung des Druckventils aufsteigen, bevorzugt um dort förderraumseitig eine Sammelgasblase zu bilden. Erhöht sich nun der Druck im Förderraum, so entweicht die bevorzugt an dem Druckventil anstehende Sammelgasblase aus dem Förderraum in die Druckleitung in Form von Austrittsgasblasen. Diese Druckerhöhung kann eine Folge davon sein, dass bei andauerndem Pumpenstillstand noch mehr Gas aus dem Fluid gebildet wird, alternativ kann zur Druckerhöhung auch ein Teildruckhub des Verdrängungskörpers durchgeführt werden, so dass die Sammelgasblase in die Druckleitung entweicht. Dabei wird vorteilhaft keine oder nur geringe Mengen an Fluid in die Druckleitung entlassen. Durch dieses Ausführen der Impulsgebung ist vorteilhaft sichergestellt, dass der Gasanteil im Förderraum der Dosierpumpe nicht das Maß überschreitet, das zu einem Pumpenausfall führt.A first embodiment of the method for degassing a gas-forming fluid in a delivery chamber of a metering pump refers to the pump with a delivery chamber into which the delivery chamber delimiting displacement body extends, wherein the delivery chamber has two openings, one of which via a suction valve in a Suction line and a second opens via a pressure valve in a pressure line. Since the pressure in the pumping chamber increases continuously during pump downtimes because of the formation of gas from the fluid, the pressure valve opens when a certain value is exceeded, so that undefined quantities of gas and fluid pass into the pressure line. In order to prevent fluid components from simultaneously passing into the pressure line when the gas evolved, a collecting gas bubble pending on the delivery chamber side is advantageously provided by the method according to the invention, so that when the opening pressure of the pressure valve is exceeded, only gas preferably escapes into the pressure line. For this purpose, the method comprises carrying out a pulse, wherein the pulse causes gas bubbles, which have formed in the pumping chamber by the gas-forming fluid and adhere to the inner surfaces of the pumping chamber, to be detached from these surfaces. For this purpose, a pulse is exerted during the pulsing at least on a part of the conveying space bounding surfaces or walls and / or the fluid located in the delivery chamber. After the gas bubbles have been detached from the inner surfaces, they float in the delivery chamber, can accumulate to larger gas bubbles, which then preferably rise in the direction of the pressure valve, preferably there on the delivery chamber side a collecting gas bubble to build. If the pressure in the delivery chamber now increases, the collecting gas bubble, which is preferably present at the pressure valve, escapes from the delivery chamber into the delivery line in the form of exit gas bubbles. This increase in pressure can be a consequence of the fact that even more gas is formed from the fluid during continuous pump shutdown, alternatively, a partial pressure stroke of the displacement body can be performed to increase the pressure, so that the collecting gas bubble escapes into the pressure line. Advantageously, no or only small amounts of fluid are discharged into the pressure line. Through this execution of the pulse is advantageously ensured that the gas content in the delivery chamber of the metering pump does not exceed the level that leads to a pump failure.

In einer weiteren Ausführungsform wird die Impulsgebung zur Loslösung der Gasblasen durch ein Erzeugen von Vibrationsschwingungen mittels eines Vibrationserzeugers, der in dem Förderraum angeordnet ist, bewirkt. Dabei ist es möglich, den Verdrängungskörper und/oder andere Teile des Förderraumes in Vibration zu versetzen. Alternativ kann als Impulsgebung zumindest ein Teildruck und/oder Teilsaughub des Verdrängungskörpers durchgeführt werden, der z. B. vorteilhaft nur ein derart kleines, gegebenenfalls infinitesimales Volumen ansaugt, dass z. B. ein Teilsaughub eher als Saugimpuls angesehen werden kann. Dadurch werden die an den Innenflächen des Förderraums anhaftenden Gasblasen gelöst und können mit weiteren, im Förderraum vorhandenen Gasblasen akkumulieren.In a further embodiment, the pulse formation for releasing the gas bubbles is effected by generating vibration vibrations by means of a vibration generator, which is arranged in the delivery chamber. It is possible to put the displacement body and / or other parts of the delivery chamber in vibration. Alternatively, at least a partial pressure and / or Teilaughub the displacement body can be carried out as a pulse, the z. B. advantageous only such a small, possibly infinitesimal volume sucks that z. B. a Teilaughub can be considered rather than suction pulse. As a result, the gas bubbles adhering to the inner surfaces of the delivery chamber are released and can accumulate with further gas bubbles present in the delivery chamber.

Noch eine Ausführungsform des Verfahrens umfasst das Ausführen einer Teilhubfolge. Diese Teilhubfolge kann eine Teilhubfolge von Saughüben und/oder Druckhüben sein. Bevorzugt können sukzessive Teildruckhübe alternierend mit Teilsaughüben ausgeführt werden. Dabei kann bevorzugt jeweils die Hublänge, mit der der Verdrängungskörper in den Förderraum bewegt wird, anwachsen, so dass jede folgende Teildruck- und Teilsaughubkombination eine größere Hublänge aufweist als die zuvor ausgeführte. Damit wird die Sammelgasblase, die am Druckventil ansteht, in die Druckleitung überführt, und noch an den Innenflächen anhaftende Gasblasen in Abhängigkeit der wachsenden Hublänge nachgeführt, die ihrerseits wieder erneut eine Sammelgasblase bilden, die mit dem nachfolgenden Teildruckhub wieder in die Druckleitung überführt wird. Vorteilhaft können hierbei auch infolge der Zunahme der Hublänge bei einem Saughub die in der Saugleitung entstandenen Gasblasen in den Förderraum überführt werden, wo sie dann zur Sammelgasblase akkumulieren und mittels eines nächsten Druckhubs in die Druckleitung überführt werden. Mithilfe dieses Ausführens der Teilhubfolge mit wachsenden Hublängen kann der Förderraum der Dosierpumpe nahezu vollständig entgast werden, so dass bei einem ersten vollen Hub, der einen Dosierhub darstellt, vorteilhaft nur Flüssigkeit in die Druckleitung überführt wird, so dass ein kontrolliertes Dosieren erfolgt. Die Anzahl an Teilhüben kann dabei vorbestimmt sein, so dass die Teilhubfolge mit den wachsenden Hublängen zuvor festgelegt ist.Yet another embodiment of the method includes performing a partial lift sequence. This Teilhubfolge may be a Teilhubfolge of suction strokes and / or pressure strokes. Preferably, successive partial pressure strokes can be performed alternately with partial strokes. In each case, preferably the stroke length with which the displacement body is moved into the delivery chamber, grow, so that each following partial pressure and Teilaughubkombination a greater stroke length has as the previously executed. Thus, the collecting gas bubble, which is present at the pressure valve, transferred to the pressure line, and still adhering to the inner surfaces adhering gas bubbles in response to the growing stroke length, which in turn again form a collecting gas bubble, which is transferred to the subsequent partial pressure stroke back into the pressure line. Advantageously, the gas bubbles produced in the suction line can also be transferred into the delivery chamber as a result of the increase in the stroke length in a suction stroke, where they then accumulate to the collecting gas bubble and transferred by means of a next pressure stroke in the pressure line. With the help of this execution of Teilhubfolge with increasing stroke lengths of the delivery chamber of the metering pump can be almost completely degassed, so that at a first full stroke, which represents a Dosierhub, advantageously only liquid is transferred into the pressure line, so that a controlled dosing takes place. The number of partial strokes can be predetermined, so that the Teilhubfolge is previously determined with the growing stroke lengths.

Alternativ kann die Teilhubfolge mit wachsenden Hublängen über einen gewünschten Entgasungsgrad definiert werden, der ermittelt werden kann, indem ein Druckgradient im Förderraum bei Ausführen eines Druck- oder Saughubs detektiert wird. Dieser ermittelte Druckgradient wird mit einem Drucksteigungswert verglichen, der für einen entgasten Förderraum als Kalibrierdruckgradient bestimmt wurde. Dabei kann der gewünschte Entgasungsgrad einer dem Kalibrierdruckgradient entsprechenden Drucksteigung abzüglich einer Toleranz von z. B. 5 % des Kalibrierdrucksteigungswerts entsprechen.Alternatively, the partial stroke sequence can be defined with increasing stroke lengths over a desired degree of degassing, which can be determined by detecting a pressure gradient in the delivery chamber when a pressure or suction stroke is being carried out. This determined pressure gradient is compared with a pressure gradient value, which was determined for a degassed delivery chamber as Kalibrierdruckgradient. In this case, the desired degree of degassing of the Kalibrierdruckgradient corresponding pressure gradient minus a tolerance of z. B. 5% of Kalibrierdrucksteigungswerts.

Auf diese Weise kann durch das Ausführen der Teilhubfolge mit wachsenden Hublängen ein gezieltes und sukzessives Entgasen des Förderraums der Pumpe - und damit auch zum Teil der Saugleitung(en) - erreicht werden, wenn sich in Betriebspausen oder Standzeiten Gas gebildet hat. Bereits vor Ausführen eines ersten vollen Dosierhubs kann dadurch sichergestellt werden, dass im Extremfall die Pumpe in Folge der Kompressibilität der entstandenen Gasblasen nicht ausfällt oder dass bestenfalls keine das Fördervolumen beeinträchtigenden und verfälschenden Gasblasen im Fördersystem der Pumpe enthalten sind.In this way, by executing the Teilhubfolge with increasing stroke lengths targeted and successive degassing of the delivery chamber of the pump - and thus also part of the suction line (s) - can be achieved if gas has formed during breaks or service life. Already before a first full dosing stroke can be carried out be ensured that in extreme cases, the pump does not fail due to the compressibility of the resulting gas bubbles or that at best no flow volume impairing and distorting gas bubbles in the delivery system of the pump are included.

Ein Teilsaughub gemäß der vorangehenden Beschreibung hat vorzugsweise einen Anteil von 0,1 % bis 99 %, bevorzugt von 1 % bis 50 %, am meisten bevorzugt von 1 % bis 25 % eines vollen Saughubes. Entsprechend hat ein Teildruckhub gemäß der vorangehenden Beschreibung bevorzugt einen Anteil von 0,1 % bis 99 %, bevorzugt von 1 % bis 50 %, am meisten bevorzugt von 1 % bis 25 % eines vollen Druckhubes der Dosierpumpe. Der Druckhub wird dabei in bekannter Weise bevorzugt durch Bewegung des Verdrängungskörpers, beispielsweise eines Kolbens oder einer Membran durchgeführt.A parting stroke as described above preferably has a content of from 0.1% to 99%, preferably from 1% to 50%, most preferably from 1% to 25% of a full suction stroke. Accordingly, a partial pressure stroke according to the foregoing description preferably has a proportion of 0.1% to 99%, preferably 1% to 50%, most preferably 1% to 25% of a full pressure stroke of the metering pump. The pressure stroke is preferably carried out in a known manner by movement of the displacement body, for example a piston or a membrane.

Weitere Ausführungsformen des Verfahrens beziehen sich darauf, dass beispielsweise bei bekannten Pumpenstillstandzeiten Zeitintervalle oder Zeitpunkte mittels einer Zeitsteuerungsvorrichtung, die mit der Pumpe in operativer Verbindung steht, voreingestellt werden können, so dass ein automatischer Entgasungsvorgang ausgeführt wird, ehe die Pumpe wieder in Betrieb genommen wird. Die Impulsgebung zum Entgasen des Förderraumes wird bevorzugt während einer Standzeit oder während eines Pumpenstopps durchgeführt. Das Ausführen einer Teilhubfolge mit wachsenden Hublängen wird bevorzugt zum Anfahren der Pumpe nach einer Standzeit der Pumpe ausgeführt.Further embodiments of the method relate to the fact that, for example, with known pump downtime, time intervals or times can be preset by means of a timing device that is in operative communication with the pump, so that an automatic degassing operation is carried out before the pump is put back into operation. The pulse for degassing the pumping chamber is preferably carried out during a service life or during a pump stop. The execution of a Teilhubfolge with increasing stroke lengths is preferably carried out for starting the pump after a service life of the pump.

Um zu überprüfen, ob sich Gas gebildet hat, oder um die gebildete Menge an Gas im System zu überprüfen, kann in einem weiteren Verfahrensschritt ein am Förderraum angeordneter Drucksensor, der den Druck im Förderraum aufnimmt, den Druckverlauf über einen Hub aufzeichnen. Wird der über die Dauer eines Hubes ermittelte Druckverlauf zu dem Hubweg, beziehungsweise zu einem im Förderraum durch die zurückgelegte Hublänge des Verdrängungskörpers begrenzten Volumen ins Verhältnis gesetzt und gegebenenfalls als p/V-Diagramm aufgetragen, so zeigt sich für die Druckkurve bei einem Druckhub ein Verlauf, aus dem das Drucksteigungsverhalten ersehen werden kann. Ist die Pumpe in einem entlüfteten Zustand, erreicht die Steigung des nahezu linearen Druckanstiegs bzw. Druckabfalls einen maximalen Wert, der als Sollwert des Drucksteigungsverhaltens genommen wird. Liegen im Förderraum Gasblasen vor, so zeigt sich im Druckdiagramm bei Durchführen eines Druck- oder Saughubes ein Anstieg bzw. Abfall mit geringerer Steigung, die einem Istwert des Druckgradienten entspricht. Damit kann durch Vergleich des Istwerts mit dem Sollwert das Verfahren zur Pumpenentlüftung so lange durchgeführt werden, bis die bestmögliche Entlüftung des Förderraums erreicht wurde. Ein derartiger Vergleich wird in einer Auswertevorrichtung ausgeführt und das ermittelte Ergebnis in einer Steuervorrichtung zur Betätigung der Pumpe als Steuerparameter bereitgestellt. Damit kann zielgerichtet abhängig vom entstandenen Gasvolumen eine Entgasung initiiert werden oder die Länge der Entgasungsdauer bzw. die Effizienz der Entgasung kann determiniert werden. Die Vergleichsergebnisse werden einer Steuerungsvorrichtung zur Betätigung der Pumpe vorzugsweise als Steuerungsparameter zum Anfahren der Pumpe während einer Standzeit der Pumpe, während eines Pumpenstopps, nach einem Pumpenstopp oder zum Anfahren der Pumpe nach einer Standzeit der Pumpe zugeführt.In order to check whether gas has formed, or to check the amount of gas formed in the system, in a further method step, a pressure sensor arranged on the delivery chamber, which receives the pressure in the delivery chamber, record the pressure variation over a stroke. If the determined over the duration of a stroke pressure curve is set to the stroke, or to a limited in the pumping chamber by the traveled stroke length of the displacement body volume and optionally as a p / V diagram plotted, it shows a curve for the pressure curve during a pressure stroke, from which the pressure gradient behavior can be seen. When the pump is in a vented state, the slope of the near-linear pressure rise or pressure drop reaches a maximum value, which is taken as the set value of the pressure ramping behavior. If there are gas bubbles in the delivery chamber, the pressure diagram shows an increase or decrease with a smaller gradient, which corresponds to an actual value of the pressure gradient, when a pressure or suction stroke is carried out. In this way, by comparing the actual value with the setpoint value, the process for pump venting can be carried out until the best possible venting of the pumping chamber has been achieved. Such a comparison is carried out in an evaluation device and the determined result is provided in a control device for actuating the pump as a control parameter. This can be targeted depending on the resulting gas volume degassing initiated or the length of the degassing or the efficiency of the degassing can be determined. The comparison results are preferably supplied to a control device for actuating the pump as control parameters for starting the pump during a service life of the pump, during a pump stop, after a pump stop or for starting the pump after a service life of the pump.

Der tatsächlich geförderte Volumenstrom in die Druckleitung während eines Hubes des Verdrängungskörpers hängt von der Größe des Gesamtgasvolumens ab. Das tatsächliche, also das Ist-Förderverhalten der Pumpe, wird bestimmt und kann mit einem Soll-Förderverhalten der Pumpe verglichen werden, so dass unter Berücksichtigung gewisser Toleranzgrenzen beurteilt werden kann, ob die Pumpe für den Dosierbetrieb noch funktionsfähig ist.The actually delivered volume flow into the pressure line during a stroke of the displacement body depends on the size of the total gas volume. The actual, ie the actual delivery behavior of the pump is determined and can be compared with a desired delivery behavior of the pump, so that, taking into account certain tolerance limits can be judged whether the pump for the metering operation is still functional.

Eine Ausführungsform der erfindungsgemäßen Pumpe, mittels der das offenbarte Verfahren ausgeführt werden kann, bezieht sich darauf, dass der Verdrängungskörper, der das Fluid aus dem Förderraum verdrängt, über eine weggesteuerte Antriebsvorrichtung, insbesondere einen Schritt- oder einen Linearmotor, betätigt wird, um sicher zu stellen, dass die erforderlichen Teilsaughübe bzw. Teildruckhübe entsprechend kleine Saug- oder Druckhübe sind und damit einen entsprechend kleinen Unter- oder Überdruck erzeugen können. Vorteilhaft wird somit erzielt, dass der Verdrängungskörper, der eine Membran oder ein Kolben sein kann, gegebenenfalls Hubwege von Zehntelmillimetern ausführt. Damit sind feinste Druckimpulse möglich, die das Ablösen der Gasblasen, die an den Innenflächen des Förderraums sowie der einer Membran anhaften, ermöglichen.An embodiment of the pump according to the invention, by means of which the disclosed method can be carried out, refers to the fact that the displacement body, which displaces the fluid from the delivery space, is actuated via a travel-controlled drive device, in particular a step motor or a linear motor to make that the required Teilaughübe or partial pressure strokes are correspondingly small suction or Druckhübe and thus can produce a correspondingly small negative or positive pressure. Advantageously, it is thus achieved that the displacement body, which may be a diaphragm or a piston, optionally executes stroke distances of tenths of millimeters. Thus, the finest pressure pulses are possible, which allow the detachment of the gas bubbles, which adhere to the inner surfaces of the pumping chamber and a membrane.

Dabei führt die Membran eine vibrierende Bewegung aus, die einem "Kammerflimmern" entspricht, d.h. es besteht keine oder eine sehr geringe Pumpwirkung für das Fluid, die Gasblasen jedoch werden in Bewegung gesetzt, lösen sich von den Wänden und vereinigen sich zu größeren Gasblasen, die dann in dem Fluid eine Auftriebskraft erfahren und aufsteigen.In doing so, the membrane performs a vibratory motion that corresponds to a "ventricular fibrillation", i. there is no or very little pumping action for the fluid, but the gas bubbles are set in motion, detach from the walls and combine to form larger gas bubbles, which then experience buoyancy in the fluid and rise.

Diese und weitere Vorteile werden aus der nachfolgenden Beschreibung und den begleitenden Figuren ersichtlich.These and other advantages will become apparent from the following description and the accompanying drawings.

Nachfolgend wir die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben.The invention will now be described by way of example with reference to the accompanying drawings.

Fig. 1.1 bis 1.8. zeigen Darstellungen der zeitlichen Abfolge der Entgasungsvorgänge und Zustände im Förderraum der Membranpumpe bei Betriebsunterbrechung,
Fig. 2.1 bis 2.10 zeigen Darstellungen der zeitlichen Abfolge der Entgasungsvorgänge und Zustände im Förderraum der Membranpumpe beim Verfahren zur Herbeiführung eines betriebsbereiten Zustands der Dosierpumpe nach einer Betriebsunterbrechung, und
Fig. 3 zeigt ein Fließschema des Verfahrens und der Vorgänge während einer Betriebsunterbrechung und zur Herbeiführung eines betriebsbereiten Zustands der Dosierpumpe.
Fig. 1.1 to 1.8 , show representations of the time sequence of the degassing processes and conditions in the delivery chamber of the diaphragm pump in the event of an interruption in operation,
Fig. 2.1 to 2.10 show representations of the time sequence of the degassing processes and conditions in the delivery chamber of the diaphragm pump in the method for bringing about a ready state of the metering pump after a stoppage, and
Fig. 3 shows a flowchart of the process and the processes during a business interruption and to bring about a Ready state of the dosing pump.

Zum besseren Verständnis des Gegenstands werden einige der in der Beschreibung verwendeten Begriffe nachfolgend definiert.For a better understanding of the subject matter, some of the terms used in the description are defined below.

So wird unter einem Linearmotor eine elektrische Antriebsmaschine verstanden, die die mit ihm verbundenen Objekte nicht in eine drehende, sondern in eine translatorische Bewegung versetzt. Ist ein Linearmotor zur Betätigung eines Kolbens in einer Verdrängungspumpe gekoppelt, so kann der Kolben einen sehr kurzen Weg zurücklegen. Damit ist es möglich, den Kolbenhub sehr fein zu dosieren. Selbiges gilt für einen Schrittmotor, dessen Rotor sich bei jedem von außen vorgegebenen Schritt nur mit einem winzigen Winkelversatz vorwärts bewegt. Damit lassen sich höchste physikalische Positioniergenauigkeiten und damit feinste Dosierhübe erreichen, wenn ein solcher Schrittmotor z. B. über einen Exzenter mit einer Pleuelstange oder einem Stößel gekoppelt ist.Thus, a linear motor is understood to mean an electric drive machine which does not place the objects connected to it in a rotating, but in a translatory movement. If a linear motor is coupled to actuate a piston in a displacement pump, the piston can travel a very short distance. This makes it possible to meter the piston stroke very finely. The same applies to a stepper motor whose rotor moves forward with only a tiny angular offset for each step specified from the outside. This allows the highest physical positioning accuracy and thus the finest Dosierhübe achieve if such a stepper motor z. B. is coupled via an eccentric with a connecting rod or a plunger.

Als Förderraum oder Dosierraum wird der Raum in der Dosierpumpe bezeichnet, der das zu fördernde Fluid enthält; eine Verdrängungsvorrichtung wird zum Zweck der Fluidverdrängung in ihn hinein geführt.As a delivery room or dosing the space in the metering pump is called, which contains the fluid to be pumped; a displacement device is guided into it for the purpose of fluid displacement.

Unter gasbildenden Fluiden werden insbesondere flüssige Chemikalien verstanden, die dazu neigen, mit ihren Zerfallsprodukten ins Gleichgewicht gelangen zu wollen und die daher gasförmige Produkte abspalten. Ein Beispiel hierfür ist Wasserstoffperoxid. Eine Vielzahl anderer Chemikalien, beispielsweise Chlorbleichlauge, neigt ebenfalls zur Gasabspaltung.Gas-forming fluids are understood as meaning, in particular, liquid chemicals which tend to equilibrate with their decomposition products and which therefore split off gaseous products. An example of this is hydrogen peroxide. A variety of other chemicals, such as sodium hypochlorite, also tends to gas release.

Die gebildeten Gase erhöhen den Druck im Förderraum, wodurch bewirkt wird, dass ein Förderraum einer Dosierpumpe, der durch Druckventile gegen Saug- und Druckleitung abgeschlossen ist, durch die Bildung der Gase unter Druck gesetzt wird. Sobald der durch die entstehenden Gase bereitgestellte Druck den Haltedruck der Druckventile übersteigt, öffnet das Druckventil und Gase sowie Fluid können in die Druckleitung übertreten.The formed gases increase the pressure in the delivery chamber, thereby causing a delivery chamber of a metering pump, which is closed by pressure valves against suction and discharge line, to be pressurized by the formation of the gases. As soon as the through the pressure generated by the resulting gases exceeds the holding pressure of the pressure valves, opens the pressure valve and gases and fluid can pass into the pressure line.

Der Begriff des "Teilsaughubs" bzw. "Teildruckhubs" meint einen Anteil eines vollen Saughubs/Druckhubs, wobei ein voller Hub erreicht wird, wenn die Verdrängungsvorrichtung über die gesamte Hublänge betätigt wird. Soll beispielsweise ein Verdrängungskolben unter hundertprozentiger Last ein Volumen von 100 ml verdrängen, so würde ein Teilsaughub, der lediglich einen Anteil von 0,1 % aufweist, lediglich 0,1 ml Volumen verdrängen. Ein Teilsaughub kann so gering sein, dass auch lediglich ein Schwingen des Kolbens, oder bei einer Membranpumpe der Membran, bevorzugt im Bereich von 1 bis 20 Hz, beispielsweise 2 bis 10 Hz, weiter bevorzugt von 3 bis 4 Hz, ausgeführt wird, wobei dabei im Wesentlichen kein Fluid gefördert wird.The term "partial lift" or "partial pressure lift" means a fraction of a full intake stroke / compression stroke, a full lift being achieved when the displacement device is actuated over the entire stroke length. For example, if a displacement piston under 100 percent load displace a volume of 100 ml, so a Teilaughub, which has only a proportion of 0.1%, displace only 0.1 ml volume. A Teilaughub may be so low that even a swinging of the piston, or in a membrane pump of the membrane, preferably in the range of 1 to 20 Hz, for example, 2 to 10 Hz, more preferably from 3 to 4 Hz, is carried out essentially no fluid is conveyed.

In Bezug auf das verdrängte Volumen wird vorliegend auch der Begriff "Hublänge" in äquivalenter Weise zu den Begriffen Teilsaughub, beziehungsweise Teildruckhub verwendet; denn der Anteil einer Teilhublänge in Bezug auf eine gesamte Hublänge entspricht dem Anteil eines Teilhubvolumens in Bezug auf das Gesamthubvolumen, so dass beispielsweise bei einem Teilhub, der einem Anteil von 25 % eines vollen Hubs entspricht, gleichzeitig die Teilhublänge 25 % der Gesamthublänge entspricht.With regard to the displaced volume, the term "stroke length" is used here in an equivalent manner to the terms partial stroke, or partial pressure stroke; because the proportion of a partial stroke length with respect to a total stroke length corresponds to the proportion of Teilhubvolumens in relation to the total stroke volume, so that, for example, at a partial stroke corresponding to a share of 25% of a full stroke, the Teilhublänge corresponds to 25% of the total stroke length.

Ferner wird nachfolgend ein Begriff "gewünschter Entgasungsgrad" verwendet, worunter zu verstehen ist, dass, abhängig von dem zu dosierenden Fluid, eine experimentell zu ermittelnde Mindestentgasung erreicht werden kann. Diese Mindestentgasung würde einem Entgasungsgrad von 1 entsprechen. Bei Chemikalien, die permanent Gase freisetzen, werden auch während des Dosiervorgangs selbst Gase entstehen, so dass ein idealer Entgasungsgrad einer solchen Chemikalie einem anderen idealen Entgasungsgrad entsprechen wird, als er bei einem Fluid vorliegt, das nur sehr allmählich Gase freisetzt und bei dem tatsächlich ein Entgasungsgrad nahe 1 erreicht werbei dem tatsächlich ein Entgasungsgrad nahe 1 erreicht werden kann. Um den Entgasungsgrad zu bestimmen, kann das in der Offenlegungsschrift DE 3546189 A1 beschriebene Verfahren zur Durchflussmessung herangezogen werden, oder er kann, wie oben ausgeführt, über einen im Förderraum angeordneten Drucksensor den Druckgradienten bei einem Hub des Verdrängungskörpers aufgezeichnet werden und dieser Istwert mit dem Sollwert verglichen werden.Furthermore, a term "desired degree of degassing" is used below, which means that, depending on the fluid to be metered, an experimentally determined minimum degassing can be achieved. This minimum degassing would correspond to a degree of degassing of 1. With chemicals that permanently release gases, even during the dosing process, gases will be generated, so that an ideal degree of degassing of such a chemical will correspond to another ideal degree of degassing than exists for a fluid that only very gradually releases gases and actually does so Degassing near 1 achieved werbei actually a degree of degassing close to 1 can be achieved. In order to determine the degree of degassing, in the published patent application DE 3546189 A1 As described above, it can be used to record the pressure gradient at a stroke of the displacement body via a pressure sensor arranged in the delivery chamber, and this actual value can be compared with the desired value.

Grundsätzlich bezieht sich das erfindungsgemäße Verfahren darauf, dass das Ausführen einer Impulsgebung während einer Standzeit oder nach einem Pumpenstopp erfolgen kann, wohingegen das Ausführen einer Teilhubfolge mit wachsenden Hublängen des Verdrängungskörpers zur Inbetriebnahme, beziehungsweise zum Anfahren der Pumpe nach einer Standzeit der Pumpe verwendet werden kann.Basically, the method according to the invention is based on the fact that the execution of a pulse during a service life or after a pump stop can be done, whereas the execution of a Teilhubfolge with increasing stroke lengths of the displacement body for commissioning, or to start the pump after a service life of the pump can be used.

Unter einer Standzeit der Pumpe wird nachfolgend eine Zeitdauer verstanden, die hinreichend ist, um ein entsprechendes Gasvolumen bereitzustellen. Grundsätzlich wird eine Standzeit zumindest 30 Minuten betragen, als Standzeit wird auch ein Nichtbetrieb der Pumpe über Nacht von über 12 Stunden oder auch ein mehrtägiges Nichtbetreiben der Pumpe bei in der Pumpe lagerndem Fluid verstanden. Ein Pumpenstopp kann im Bereich von wenigen Sekunden bis hin zu 30 Minuten dauern. Damit die Pumpe während einer Standzeit oder einem Pumpenstopp das erfindungsgemäße Verfahren zur Entgasung durchführt, muss die Pumpe "aktiv" sein, d. h. sie muss mit Strom versorgt sein und ein Entgasungsmodus, also ein entsprechendes in der Pumpensoftware vorliegendes Programm, muss aktiviert sein.A service life of the pump is understood below to mean a time period which is sufficient to provide a corresponding gas volume. Basically, a life will be at least 30 minutes, as a service life is also a non-operation of the pump overnight of over 12 hours or a multi-day non-operation of the pump stored in the pump fluid storage. A pump stop can take anywhere from a few seconds to 30 minutes. For the pump to carry out the degassing process according to the invention during a service life or a pump stop, the pump must be "active", ie. H. it must be powered and a degassing mode, ie a corresponding program in the pump software, must be activated.

Die ein Gas bildendes Fluid fördernde Dosierpumpe, deren Förderraum von dem gebildeten Gas befreit werden soll, weist ein in den Förderraum mündendes Saugventil auf, das sich in eine Saugleitung erstreckt. Ferner mündet der Förderraum über ein Druckventil in eine Druckleitung. Analoges gilt, wenn mehrere Druck- oder Saugleitungen vorliegen. Ein Verdrängungskörper zum Verdrängen des Fluids begrenzt den Förderraum, üblicherweise an einer Seite, und ist derart angeordnet, dass er die zur Verdrängung erforderlichen Druckhübe in Kombination mit den entsprechenden Saughüben alternierend ausführen kann.The metering pump, which produces a gas-forming fluid and whose delivery chamber is to be freed from the gas formed, has a suction valve which opens into the delivery chamber and extends into a suction line. Furthermore, the delivery chamber opens via a pressure valve in a pressure line. The same applies if there are several pressure or suction lines. A displacement body for displacing the fluid limits the delivery space, usually on one side, and is arranged such that it can perform the pressure strokes required for displacement alternately in combination with the corresponding suction strokes.

Um die durch das gasbildende Fluid entstandenen und an den den Förderraum begrenzenden inneren Flächen anhaftenden Gasblasen von diesen Flächen abzulösen, wird zunächst eine Impulsgebung ausgeführt, wobei die Impulsgebung durch Vibrationsschwingungen mittels eines im oder am Förderraum angeordneten Vibrationserzeugers erfolgen kann oder alternativ z. B. als ein erster Teilsaughub des Verdrängungskörpers ausgeführt werden kann. Dieser Teilsaughub entspricht einem Anteil von 0,1 bis 99 % eines vollen Saughubs und kann auch ein Schwingen in einem Bereich von 1 bis 20 Hz sein. Wenn sich die Gasblasen durch die Vibrationsschwingungen oder durch z. B. den bereitgestellten Saugimpuls von den Förderraum begrenzenden inneren Flächen abgelöst haben, werden sie in dem Förderraum akkumulieren und, da ihr Volumen angewachsen ist, und sie dadurch einen größeren Auftrieb erfahren, eine Bewegung in Richtung des Druckventils ausführen, vorausgesetzt, dass das Druckventil in den Raum nach oben weisend entgegen der Schwerkraftrichtung angeordnet ist.In order to replace the gas bubbles formed by the gas-forming fluid and adhering to the delivery chamber bounding inner surfaces of these surfaces, a pulse is initially carried out, the pulse can be done by vibration vibration by means arranged in or on the pumping chamber vibration generator or alternatively z. B. can be performed as a first Teilaughub the displacement body. This sub-stroke corresponds to a proportion of 0.1 to 99% of a full suction stroke and may also be a swing in a range of 1 to 20 Hz. If the gas bubbles by the vibration oscillations or z. B. have replaced the provided suction pulse from the delivery chamber bounding inner surfaces, they will accumulate in the delivery chamber and, since their volume has increased, and they thus experience greater buoyancy, perform a movement in the direction of the pressure valve, provided that the pressure valve in the space facing upwards is arranged against the direction of gravity.

Es bildet sich nunmehr förderraumseitig des Druckventils eine Sammelgasblase, die über das Druckventil in den Ventilraum entlassen werden soll. Dies erfolgt durch einen Druckanstieg im Förderraum, der durch weiteres aus dem Fluid gebildetes Gas und/oder durch einen Teildruckhub bewirkt wird, der einem Anteil von 0,1 bis 99 % eines vollen Druckhubs entsprechen kann. Dadurch wird die Sammelgasblase komprimiert und übt ihrerseits Druck auf das Druckventil aus. Bei Überschreiten des Öffnungsdrucks öffnet sich dieses und das die Sammelgasblase bildende Gas wird als Austrittsgasblasen in die Druckleitung übertreten. Vorteilhaft wird hierbei kein Fluid mit in die Druckleitung überführt.It now forms the delivery chamber side of the pressure valve, a collecting gas bubble to be discharged via the pressure valve in the valve chamber. This is done by a pressure increase in the delivery chamber, which is caused by further gas formed from the fluid and / or by a partial pressure stroke, which may correspond to a proportion of 0.1 to 99% of a full pressure stroke. As a result, the collecting gas bubble is compressed and in turn exerts pressure on the pressure valve. When the opening pressure is exceeded, this opens and the gas forming the collecting gas bubble is transferred as discharge gas bubbles into the pressure line. Advantageously, no fluid is transferred into the pressure line.

Ein Teilsaughub kann einem Anteil von 0,1 % bis 99 %, bevorzugt von 1 % bis 50 %, am meisten bevorzugt von 1 % bis 25 % eines vollen Saughubs entsprechen. Ein Teilsaughub kann auch in eine Vielzahl von Schwingungshüben unterteilt sein, die insgesamt einen Anteil von 0,1 bis 10 % eines vollen Saughubs ausmachen. Ein Teildruckhub kann einem Anteil von 0,1 % bis 99 %, bevorzugt von 1 % bis 50 %, am meisten bevorzugt von 1 % bis 25 % eines vollen Druckhubs entsprechen.A partial lift stroke may correspond to a level of from 0.1% to 99%, preferably from 1% to 50%, most preferably from 1% to 25% of a full suction stroke. A Teilaughub can also be divided into a plurality of vibration strokes, which make up a total of 0.1 to 10% of a full intake stroke. A partial pressure stroke may correspond to a level of from 0.1% to 99%, preferably from 1% to 50%, most preferably from 1% to 25% of a full pressure stroke.

Um die Dosierpumpe in einen betriebsbereiten Zustand zu versetzen, wird nach dem vorstehend beschriebenen Ausführen einer Impulsgebung während einer Betriebsunterbrechung, eine Teilhubfolge mit wachsenden Hublängen des Verdrängungskörpers ausgeführt, wobei die Teilhübe zwischen 0,1 bis 99 % eines vollen Hubs liegen. Durch den zunehmenden Druck im Förderraum infolge der wachsenden Druckhübe entweicht bei den Teildruckhüben eine Sammelgasblase aus dem Druckventil, während die zunehmenden Saughübe auch in der Saugleitung vorhandene Gasblasen in den Förderraum überführen können, wo sie eine Bewegung in Richtung des Druckventils ausführen, und eine Sammelgasblase bilden, die mit einem nächsten Druckhub in die Druckleitung überführt wird. Die Teilhubfolge mit wachsenden Hublängen wird so lange durchgeführt, bis ein optimaler Entgasungsgrad erreicht ist, der entweder durch die Anzahl der Teilhübe vorbestimmt wird, oder durch Ermitteln des Entgasungsgrades gesteuert wird.In order to put the metering pump in a ready state, after the above-described execution of a pulse during an operation interruption, a Teilhubfolge with increasing stroke lengths of the displacer is carried out, wherein the partial strokes are between 0.1 to 99% of a full stroke. Due to the increasing pressure in the delivery chamber as a result of the growing pressure strokes escapes at the partial pressure strokes a collecting gas bubble from the pressure valve, while the increasing suction strokes in the suction line can transfer existing gas bubbles in the delivery chamber, where they perform a movement in the direction of the pressure valve, and form a collecting gas bubble , which is transferred with a next pressure stroke in the pressure line. The Teilhubfolge with increasing stroke lengths is carried out until an optimal degree of degassing is achieved, which is either determined by the number of partial strokes, or controlled by determining the degassing.

Das Ermitteln des Entgasungsgrades umfasst das Detektieren eines Druckgradienten im Förderraum bei Ausführen eines Druck- oder Saughubs, und das Vergleichen des ermittelten Druckgradienten mit einem als Kalibrierdruckgradient dienenden Druckgradienten, der für ein entgastes Fluid bestimmt wurde, wobei der gewünschte Entgasungsgrad dabei einem dem Kalibrierdruckgradient entsprechenden Druckgradienten abzüglich einer Toleranz von etwa 5 % des Kalibrierdrucksteigungswerts entspricht.The determination of the degree of degassing comprises detecting a pressure gradient in the delivery chamber when executing a pressure or suction stroke, and comparing the determined pressure gradient with a pressure gradient serving as Kalibrierdruckgradient, which was determined for a degassed fluid, wherein the desired degassing thereby a the Kalibrierdruckgradient corresponding pressure gradient less a tolerance of about 5% of the calibration pressure gradient value.

Die Werte aus der Ermittlung eines tatsächlichen Druckgradienten während eines Hubes des Verdrängungskörpers und der Vergleichswerte des - Ist-Drucksteigungsverhaltens der Pumpe mit einem Soll-Drucksteigungsverhaltens der Pumpe können einer Auswertevorrichtung zur Auswertung der Vergleichsergebnisse zugeführt werden und weiter an eine Steuerungsvorrichtung zur Betätigung der Pumpe als Steuerungsparameter übermittelt werden.The values from the determination of an actual pressure gradient during a stroke of the displacement body and the comparison values of the - actual pressure gradient behavior of the pump with a desired pressure gradient behavior of the pump can be fed to an evaluation device for evaluating the comparison results and further transmitted to a control device for actuating the pump as a control parameter.

Das Verfahren kann weiterhin das Voreinstellen von Zeitintervallen und Zeitpunkten einer mit der Pumpe in operativer Verbindung stehenden Zeitsteuervorrichtung umfassen, so dass die Betätigung der Pumpe zum Anfahren, während einer Standzeit, nach einem Pumpenstopp oder zum Anfahren der Pumpe nach einer Standzeit der Pumpe, zeitgesteuert ausgeführt werden kann. Damit kann vorteilhaft eine bereits betriebsbereite Pumpe zur Verfügung gestellt werden, wenn nach einer Arbeitspause oder einer Nachtruhezeit die Dosierarbeit wieder aufgenommen wird.The method may further include presetting time intervals and times of a timing device operatively connected to the pump such that actuation of the pump to start, during a life, after a pump stop, or to start the pump after a life of the pump, timed can be. Thus, an already operational pump can advantageously be made available if the dosing work is resumed after a work break or a night's sleep.

Schließlich sieht das Verfahren auch vor, dass weitere Steuerungsparameter zum Anfahren der Pumpe während einer Standzeit der Pumpe, nach einem Pumpenstopp oder zum Anfahren der Pumpe nach einer Standzeit, bereitgestellt werden: Es handelt sich hierbei um die Ermittlung eines tatsächlich geförderten Volumenstroms in die Druckleitung während eines definierten Hubs des Verdrängungskörpers und dem Vergleichen des durch diesen definierten Hub erhaltenen Ist-Förderverhaltens der Pumpe mit einem Förderverhalten der Pumpe bei identischem definiertem Hub, wobei die Gegenüberstellung des Ist-Förderverhaltens und des Soll-Förderverhaltens der Pumpe zeigen ob Gas im Fördersystem vorhanden ist oder nicht. Durch Kenntnis des Fehlfördervolumens kann die Steuerungsvorrichtung einen entsprechenden Entgasungsvorgang, der das Ausführen der Teilhubfolge mit wachsenden Hublängen sein kann, in Gang setzen.Finally, the method also provides that further control parameters are provided for starting the pump during a service life of the pump, after a pump stop or for starting the pump after a service life: This is the determination of an actually conveyed volume flow into the pressure line during a defined stroke of the displacement body and the comparison of the defined by this stroke defined actual delivery behavior of the pump with a delivery behavior of the pump at identical defined stroke, the comparison of the actual delivery behavior and the desired delivery behavior of the pump show whether gas is present in the conveyor system or not. Knowing the misfed volume, the controller may initiate a corresponding degassing operation, which may be the execution of the partial lift sequence with increasing stroke lengths.

Vorteilhaft wird die Dosierpumpe des erfindungsgemäßen Verfahrens eine Membranpumpe sein. Selbstverständlich ist das erfindungsgemäße Verfahren auch mit einer Kolbenpumpe ausführbar. Es kann jeder Verdrängungskörper eingesetzt werden, sofern er z. B: durch Kopplung mit einer Hubstange, Druckluft oder einer anderen geeigneten Vorrichtung zur Ausführung kleinster Hubbewegungen veranlasst werden kann. Um kleine Hubbewegungen vorteilhaft mit einer Membranpumpe auszuführen, kann eine weggesteuerte Antriebsvorrichtung wie ein Linearmotor oder ein Schrittmotor mit dem Verdrängungskörper in operativer Verbindung stehen. Auch eine Koppelung über einen Druckluftgeber ist möglich.Advantageously, the metering pump of the method according to the invention will be a diaphragm pump. Of course, the invention is Method also executable with a piston pump. It can be used any displacement body, provided he z. B: can be caused by coupling with a lifting rod, compressed air or other suitable device for performing smallest strokes. In order to advantageously carry out small strokes with a diaphragm pump, a path-controlled drive device such as a linear motor or a stepper motor can be in operative connection with the displacement body. A coupling via a compressed air generator is possible.

Der Figurenfolge 1.1 bis 1.8 liegt die folgende Ausgangssituation zugrunde: Während eines Pumpenstopps oder einer Standzeit der Pumpe entstehen im Förderraum 1 verschiedene Gasblasen 4,7,8 aus dem ausgasenden Fluid heraus. Vor allem entstehen die Gasblasen 4,8 an den Innenwänden des Förderraums sowie an der Kolbenfläche 3' des den Förderraum 1 begrenzenden Kolbens 3. Durch dieses Gasblasenwachstum steigt ein Druck p2 im Förderraum 1 an. Wird der Druck p2 größer als der Druck in der Druckleitung p3, dann öffnet das Druckventil 6. Durch das Wandern des Fluids oder der Sammelgasblase 7 (je nach dem, was an dem Druckventil ansteht) aus dem Förderraum 1 in die Druckleitung findet ein Druckausgleich statt.The sequence of figures 1.1 to 1.8 is based on the following starting situation: During a pump stop or a service life of the pump, different gas bubbles 4, 7, 8 emerge from the outgassing fluid in the delivery chamber 1. Above all, the gas bubbles 4,8 are formed on the inner walls of the delivery chamber and on the piston surface 3 'of the delivery chamber 1 bounding piston 3. By this gas bubble growth, a pressure p 2 in the delivery chamber 1 increases. If the pressure p 2 greater than the pressure in the pressure line p 3 , then opens the pressure valve 6. By the migration of the fluid or the collecting gas bubble 7 (depending on what is pending on the pressure valve) from the pumping chamber 1 in the pressure line finds Pressure equalization instead.

Hierbei ist nachteilig, wenn das Fluid in die Druckleitung wandert. Denn dabei nimmt das Verhältnis von Gasblasenanteil zu Fluidanteil im Förderraum 1 zu. Wird das Produkt aus Gasblasenvolumen und dem Druck im Förderraum 1 so groß, dass sogar durch einen vollständigen Saughub der notwendige Druck p2 zum Öffnen des Saugventils 5, der kleiner als der Druck p1 in der Saugleitung sein muss, nicht erreicht werden kann, dann fließt kein Fluidvolumen aus der Saugleitung in den Förderraum 1 nach. Dies bedeutet wiederum, dass durch einen vollständigen Druckhub der Druck p2 des Fluidvolumens im Förderraum 1 höchstens bis zu einem Druck, der dem Druck p3 in der Druckleitung entspricht, ansteigt, so dass das Druckventil 6 auch nicht öffnet. Es werden lediglich die eingeschlossenen Gasblasen 4,7,8 im Förderraum 1 komprimiert und wieder expandiert, ohne dass die Pumpe Volumina aus der Saugleitung in die Druckleitung befördert. Ein Dosiervorgang ist somit nicht möglich.This is disadvantageous if the fluid migrates into the pressure line. Because while the ratio of gas bubbles proportion to fluid content in the delivery chamber 1 increases. If the product of gas bubble volume and the pressure in the delivery chamber 1 is so great that even through a complete suction stroke the necessary pressure p 2 for opening the suction valve 5, which must be smaller than the pressure p 1 in the suction line, can not be achieved no fluid volume from the suction line flows into the pumping chamber 1. This in turn means that by a complete pressure stroke of the pressure p 2 of the fluid volume in the delivery chamber 1 at most up to a pressure corresponding to the pressure p 3 in the pressure line increases, so that the pressure valve 6 does not open. It will only the trapped gas bubbles compressed 4,7,8 in the delivery chamber 1 and expanded again, without the pump conveys volumes from the suction line into the pressure line. A dosing process is therefore not possible.

Um dies zu verhindern, soll während der Pumpenstopps, beziehungsweise während einer Standzeit beim Wachsen der Gasblasen im Förderraum 1 nur ein geringer Anteil des Fluids aus dem Förderraum 1 in die Druckleitung übergehen, und der Gasblasenanteil nicht bis zum Ausfall des Dosiervorgangs zunehmen. Dazu werden während einer Betriebsunterbrechung der Pumpe Impulse zum Ablösen der Gasblasen 4,8 von den Innenwänden des Förderraums 1 ausgeführt. Dadurch akkumulieren die kleinen Gasblasen zu einer großen Sammelgasblase 7, die durch die Auftriebskraft bis an das Druckventil 6 aufsteigt. Dieser Impuls kann durch die Bewegung des Kolbens 3 erreicht werden, wie es in der Figurenfolge 1.1 bis 1.8 schematisch dargestellt ist.To prevent this, during the pump stops, or during a service life when growing the gas bubbles in the delivery chamber 1, only a small proportion of the fluid from the delivery chamber 1 in the pressure line, and the gas bubble fraction does not increase until the loss of dosing. For this purpose, during a service interruption of the pump, pulses for detaching the gas bubbles 4, 8 from the inner walls of the delivery chamber 1 are carried out. As a result, the small gas bubbles accumulate to a large collecting gas bubble 7, which rises by the buoyancy force to the pressure valve 6. This pulse can be achieved by the movement of the piston 3, as shown schematically in the figure sequence 1.1 to 1.8.

In Figuren 1.1 bis 1.8 ist das betriebsbereite Halten der Pumpe, die vorliegend eine Membranpumpe ist, obgleich die Membran selbst nicht gesondert figurativ dargestellt ist, dargestellt. Die Gasblasen können durch den Zerfall instabiler Fluiden wie beispielsweise Wasserstoffperoxid (H2O2) entstehen. Eine Impulsgebung wird als Teilsaughub b und Teildruckhub a ausgeführt, alternativ kann der Impuls auch durch ein Schwingen der Membran erzeugt werden.In Figures 1.1 to 1.8 is the operational holding the pump, which in the present case is a diaphragm pump, although the membrane itself is not shown separately figurative shown. The gas bubbles can be caused by the decomposition of unstable fluids such as hydrogen peroxide (H 2 O 2 ). A pulse is carried out as Teilaughub b and partial pressure stroke a, alternatively, the pulse can also be generated by a swing of the membrane.

In Figur 1.1 wachsen die Gasblasen 4,7,8 während einer Betriebsunterbrechung der Pumpe im Förderraum 1, und der Druck p2 steigt mit zunehmendem Gasblasenanteil an.In Figure 1.1 grow the gas bubbles 4,7,8 during a stoppage of the pump in the delivery chamber 1, and the pressure p 2 increases with increasing proportion of gas bubbles.

Durch einen Saughub b des Kolbens 3, wie in Fig. 1.2 dargestellt, wodurch das im Förderraum 1 eingeschlossene Volumen zunimmt, verringert sich der Druck p2 im Förderraum 1, wodurch die Gasblasen 4', 7, 8' entsprechend der Gleichung (I) größere Volumina einnehmen. p vorher × V vorher n = p nachher × V nachher n

Figure imgb0001
By a suction stroke b of the piston 3, as in Fig. 1.2 shown, whereby the trapped volume in the delivery chamber 1 increases, the pressure p 2 in the delivery chamber 1, whereby the gas bubbles 4 ', 7, 8' according to the equation (I) occupy larger volumes decreases. p previously × V previously n = p later × V later n
Figure imgb0001

In Fig. 1.3 ist skizziert, wie durch einen fortgesetzten Saughub b des Kolbens 3 die Gasblasen 4',7,8' noch größer werden, akkumulieren und in Richtung Druckventil 6 aufsteigen. Das Saugventil 5 kann dabei weiterhin geschlossen bleiben.In Fig. 1.3 is sketched, as by a continued suction stroke b of the piston 3, the gas bubbles 4 ', 7,8' are still larger, accumulate and rise in the direction of pressure valve 6. The suction valve 5 can continue to remain closed.

Fig. 1.4 zeigt eine große Sammelgasblase 7, nachdem der Saughub des Kolbens 3 beendet ist. Die, wie in Fig. 1.3 gezeigt, zuvor vergrößerten und von der Innenwand des Förderraums 1 gelösten Gasblasen 8' haben sich zu dieser Sammelgasblase 7 vereinigt, die nun am Druckventil 6 ansteht; einige Gasblasen 4' blieben weiterhin an den Innenwänden des Förderraums 1 hängen. Fig. 1.4 shows a large collecting gas bubble 7 after the suction stroke of the piston 3 is completed. The, as in Fig. 1.3 shown, previously enlarged and dissolved from the inner wall of the pumping chamber 1 gas bubbles 8 'have united to this collecting gas bubble 7, which is now present at the pressure valve 6; some gas bubbles 4 'remained hanging on the inner walls of the pumping chamber 1 continue.

Ein daraufhin anschließender Druckhub a des Kolbens 3, dargestellt in Fig. 1.5, lässt den Druck p2 im Förderraum 1 wieder ansteigen, wodurch das im Förderraum 1 eingeschlossene Volumen abnimmt. Damit verkleinert sich gemäß Gleichung (I) entsprechend das Volumen der im Förderraum 1 befindlichen Gasblasen 4' und der Sammelgasblase 7.A subsequent pressure stroke a of the piston 3, shown in FIG Fig. 1.5 , can the pressure p 2 in the pumping chamber 1 rise again, whereby the volume enclosed in the pumping chamber 1 decreases. As a result, according to equation (I), the volume of the gas bubbles 4 'and the collecting gas bubble 7 located in the delivery chamber 1 decreases accordingly.

Nachdem der Druckhub a des Kolbens 3 beendet ist, wie in Fig. 1.6 dargestellt, ist eine Position des Kolbens 3 entsprechend der aus Fig. 1.1 erreicht. Dabei entspricht auch das Druckniveau p2 im Förderraum 1 dem Druckniveau aus Fig. 1.1. Im Gegensatz zur Situation in Fig. 1.1 liegen in Fig. 1.6 nur noch wenige Gasblasen 4' an den Innenwänden des Förderraums 1 und die Sammelgasblase 7 vor, die am Druckventil 6 ansteht.After the pressure stroke a of the piston 3 is completed, as in Fig. 1.6 is shown, a position of the piston 3 in accordance with the Fig. 1.1 reached. In this case, the pressure level p 2 in the delivery chamber 1 also corresponds to the pressure level Fig. 1.1 , Unlike the situation in Fig. 1.1 lie in Fig. 1.6 only a few gas bubbles 4 'on the inner walls of the delivery chamber 1 and the collecting gas bubble 7, which is present at the pressure valve 6.

In Fig. 1.7 ist dargestellt, wie durch weiteres Ausgasen des Fluids das Volumen der Gasbläschen 4,8 und der Sammelgasblase 7 anwächst und der Druck p2 im Förderraum 1 weiter ansteigt. Dieser Druckanstieg führt dazu, dass der Druck p2 im Förderraum 1 höher wird als in der Druckleitung (p2 > p3) . Dadurch öffnet sich das Druckventil 6 und die daran anliegende Sammelgasblase 7 beginnt in Folge des Druckausgleichs in die Druckleitung als Austrittsgasblasen 7' zu entweichen.In Fig. 1.7 is shown how by further outgassing of the fluid, the volume of the gas bubbles 4,8 and the collecting gas bubble 7 increases and the pressure p 2 in the pumping chamber 1 further increases. This increase in pressure causes the pressure p 2 in the delivery chamber 1 is higher than in the pressure line (p 2 > p 3 ). As a result, the pressure valve 6 opens and the collecting gas bubble 7 attached thereto begins to escape as a result of the pressure equalization in the pressure line as exit gas bubbles 7 '.

Ein weiteres Ausgasen des Fluids im Förderraum 1 befördert weitere Austrittsgasblasen 7' der Sammelgasblase 7 in die Druckleitung, wie in Fig. 1.8 dargestellt ist. Das heißt, dass das ausgasende Fluid im Förderraum 1 solange die Sammelgasblase 7 als Austrittsgasblasen 7' aus dem Förderraum 1 in die Druckleitung verdrängt wie der Druck p2 im Förderraum 1 größer ist als der Druck p3 in der Druckleitung. Um zu verhindern, dass die anwachsenden Gasblasen 4,8 nicht Fluid aus dem Förderraum 1 in die Druckleitung verdrängen, wird erneut ein Saughub b zur Bildung einer Sammelgasblase 7 am Druckventil 6 entsprechend der Darstellung in Fig. 1.2 eingeleitet.Further outgassing of the fluid in the conveying chamber 1 conveys further outlet gas bubbles 7 'of the collecting gas bubble 7 into the pressure line, as in FIG Fig. 1.8 is shown. This means that the outgassing fluid in the pumping chamber 1 as long as the collecting gas bubble 7 as discharge gas bubbles 7 'from the pumping chamber 1 displaced in the pressure line as the pressure p 2 in the delivery chamber 1 is greater than the pressure p 3 in the pressure line. To prevent the growing gas bubbles 4.8 do not displace fluid from the pumping chamber 1 in the pressure line, again a suction stroke b to form a collecting gas bubble 7 at the pressure valve 6 as shown in FIG Fig. 1.2 initiated.

Die feinen Saughübe und Druckhübe können mit einer Dosierpumpe zum Dosieren von Fluiden gut ausgeführt werden, wenn der Verdrängungskörper der Vorrichtung über einen Schritt- oder einen Linearmotor betrieben wird und auf die Membran oder den Kolben als Verdrängungskörper einwirkt, oder wenn ein Vibrationserzeuger zur Impulsgebung installiert ist.The fine suction strokes and pressure strokes can be performed well with a metering pump for metering fluids when the displacer of the device is operated by a stepper motor or a linear motor and acts on the diaphragm or piston as a displacer, or when a vibrator is installed to pulse ,

Der Verdrängungskörper, der ein Kolben oder eine flexible Membran 3 sein kann, kann mechanisch über eine Hubstange 2 oder hydraulisch oder pneumatisch oder magnetisch angetrieben sein.The displacement body, which may be a piston or a flexible membrane 3, may be driven mechanically via a lifting rod 2 or hydraulically or pneumatically or magnetically.

Dieser Vorgang der Förderraumentgasung kann während einer Standzeit mehrfach durchgeführt werden, beispielsweise, indem eine Vorrichtung zur Zeitsteuerung (nicht dargestellt) in vorbestimmten Zeitintervallen oder zu vorbestimmten Zeitpunkten ein Signal ausgibt, welches das Verfahren zur Entgasung des Förderraumes in Gang setzt. Dabei kann auf Erfahrungswerte zurückgegriffen werden, so dass der Fachmann die Zeitintervalle derart einstellen kann, dass die Förderraumentgasung stattfindet, wenn eine entsprechend starke Gasblasenbildung zu erwarten ist.This process of conveyor degassing can be performed several times during a service life, for example, by a device for timing (not shown) at predetermined time intervals or at predetermined times outputs a signal that sets the process for degassing the pump room in motion. In this case, empirical values can be used, so that the person skilled in the art can set the time intervals in such a way that the conveyor-belt degassing takes place if a correspondingly strong formation of gas bubbles occurs is to be expected.

Andererseits kann ein Schritt zur Ermittlung eines tatsächlichen Druckgradienten im Förderraum während eines Druck- oder Saughubes und Vergleich des Ist-Drucksteigungsverhaltens der Pumpe mit einem Soll-Drucksteigungsverhalten der Pumpe mit einer Auswertevorrichtung zur Auswertung der Vergleichsergebnisse ausgeführt werden, wobei die Vergleichsergebnisse einer Steuerungsvorrichtung zur Betätigung der Pumpe als Steuerungsparameter zum Anfahren der Pumpe nach einer Standzeit der Pumpe, alternativ nach einem Pumpenstopp ausgeführt werden. Die Schritte des Einstellens einer Zeitsteuerung oder einer auf der Ermittlung des Druckanstiegs Druckgradienten im Förderraum bei einem Druck- oder Saughub basierten Steuerung, können zu beliebigen, gewünschten Zeitpunkten ausgeführt werden und auch wechselweise, ggfs. im Wechsel mit manueller Ausführung des Verfahrens getätigt werden.On the other hand, a step for determining an actual pressure gradient in the delivery chamber during a pressure or suction stroke and comparing the actual pressure gradient behavior of the pump with a desired pressure gradient of the pump with an evaluation device for evaluating the comparison results are performed, the comparison results of a control device for actuating the Pump as a control parameter for starting the pump after a service life of the pump, alternatively after a pump stop. The steps of setting a time control or a pressure gradient based on the determination of the pressure increase in the delivery chamber in a pressure or suction stroke, can be performed at any desired times and also alternately, if necessary. Alternating with manual execution of the method.

Die Bestimmung des Druckgradienten kann mit einer in dem Förderraum vorliegenden Vorrichtung zur Druckmessung durchgeführt werden, die den Druckverlauf p2 im Förderraum über einen Druck- oder Saughub aufnimmt, wobei bei zunehmender Gasblasenbildung die Steigung des Druckanstiegs bzw. Druckabfalls in einem aufgenommenen Druck-Hublänge-Diagramm abnimmt, da die Gasblasen kompressibel sind, und bei Unterschreiten eines bestimmten Schwellenwertes und über Rückkoppelung der Daten an eine Steuerungsvorrichtung die Förderraumentlüftung automatisch ausgelöst wird.The determination of the pressure gradient can be carried out with a pressure measuring device provided in the delivery chamber, which receives the pressure curve p 2 in the delivery chamber via a pressure or suction stroke, with increasing gas bubble formation, the slope of the pressure increase or pressure drop in a recorded pressure-stroke length. Diagram decreases, since the gas bubbles are compressible, and when falls below a certain threshold and feedback of the data to a control device, the Förderumumentlüftung is automatically triggered.

Das erfindungsgemäße Verfahren bezieht sich weiterhin auf das Herbeiführen eines betriebsbereiten Zustands der Pumpe, indem der Förderraum und auch Zuführleitungen wie die Saugleitung mit einfachsten Mitteln schnellstmöglich von Gasblasen befreit werden, so dass die Pumpe ihre Aufgabe zum genauen Dosieren erfüllen kann, ohne dass eine Vielzahl von ungenauen Dosierhüben beim erneuten Aufnehmen des Dosierens nach einer Pause erfolgt.The inventive method further relates to the bringing about a ready state of the pump by the delivery chamber and supply lines such as the suction line with the simplest means as quickly as possible to be freed of gas bubbles, so that the pump can fulfill their task of accurate dosing, without a variety of Inaccurate Dosierhüben when resuming the dosing takes place after a break.

So liegt der Figurenfolge 2.1 bis 2.10 die folgende Ausgangslage zugrunde: Die Pumpe soll nach einer Betriebsunterbrechung erneut beginnen zu dosieren. Dabei darf bei ausgasenden Dosierfluiden nicht sofort ein vollständiger Druckhub ausgeführt werden, das heißt, es darf kein volles Hubvolumen durch den Verdrängungskörper vollzogen werden.Thus, the sequence of figures 2.1 to 2.10 is based on the following starting position: The pump should start to dose again after an interruption in operation. In the case of outgassing dosing fluids, a complete pressure stroke must not be carried out immediately, that is, no full stroke volume may be passed through the displacement body.

Im Folgenden werden unter Bezug auf die Figurenfolge 2.1 bis 2.10 die Vorgänge beschrieben, wie Gasblasen 4,4',7,8,8' durch anwachsende Teilhübe a und b aus dem Förderraum 1 in die Druckleitung überführt werden, so dass nur ein geringer Anteil des Fluids aus dem Förderraum 1 in die Druckleitung übergeht, bevor die Gasblasen 4,4',7,8,8' aus dem Förderraum 1 entfernt werden. Dazu wird der Gasblasenanteil im Förderraum 1 durch Teilhübe mit wachsender Hublänge derart reduziert, dass der Dosiervorgang stattfinden kann.In the following, the processes are described with reference to the sequence of figures 2.1 to 2.10, as gas bubbles 4,4 ', 7,8,8' are transferred by increasing partial strokes a and b from the delivery chamber 1 in the pressure line, so that only a small proportion of the fluid from the pumping chamber 1 passes into the pressure line before the gas bubbles 4, 4 ', 7, 8, 8' are removed from the pumping chamber 1. For this purpose, the proportion of gas bubbles in the delivery chamber 1 is reduced by partial strokes with increasing stroke length such that the metering process can take place.

Wie in Fig. 2.1 dargestellt, sind im Förderraum 1 Gasblasen entstanden, sowohl eine Sammelgasblase 7 als auch Gasbläschen 4,8 an den Innenflächen des Förderraumes 1. Der gestrichelt umrandete Bereich symbolisiert die Größe des Hubvolumens VH 20.As in Fig. 2.1 1, gas bubbles have formed in the delivery chamber 1, both a collecting gas bubble 7 and gas bubbles 4, 8 on the inner surfaces of the delivery chamber 1. The area surrounded by dashed lines symbolizes the size of the displacement volume V H 20.

Durch die Druckhubbewegung a des Kolbens 3 steigt der Druck p2 im Förderraum 1 an (Fig. 2.2), wobei das durch den Kolben 3 begrenzte Volumen im Förderraum 1 abnimmt. Bei Erreichen des Öffnungsdruck des Druckventils 6 (p2 > p3) wird ein Teilhubvolumen VH 20, vor allem aber die am Druckventil 6 anstehende Sammelgasblase 7 in die Druckleitung verdrängt.As a result of the pressure stroke movement a of the piston 3, the pressure p 2 in the delivery chamber 1 increases ( Fig. 2.2 ), wherein the volume limited by the piston 3 in the delivery chamber 1 decreases. Upon reaching the opening pressure of the pressure valve 6 (p 2 > p 3 ) a Teilhubvolumen V H 20, but above all the pending on the pressure valve 6 collecting gas bubble 7 is displaced into the pressure line.

Nach Beendigung des Teildruckhubs a, entsprechend Fig. 2.2, wird ein Teilsaughub b, wie in Fig. 2.3 dargestellt, durchgeführt. Dabei sinkt durch die Saugbewegung des Kolbens 3 der Druck p2 im Förderraum 1. Gleichzeitig nimmt das durch den Kolben 3 begrenzte Volumen im Förderraum 1 zu. Entsprechend der obigen Gleichung (I) nehmen die Gasblasen 4',8' größere Volumina ein. Einige davon akkumulieren zu einer großen Sammelgasblase 7, wie in der nachfolgenden Fig. 2.4 dargestellt, die am Druckventil 6 ansteht.After completion of the partial pressure stroke a, accordingly Fig. 2.2 , a Teilaughub b, as in Fig. 2.3 shown performed. In this case, the pressure p 2 in the pumping chamber 1 drops due to the suction movement of the piston 3. At the same time, the volume bounded by the piston 3 in the pumping chamber 1 increases. According to the above equation (I), the gas bubbles 4 ', 8' occupy larger volumes. Some of them accumulate to a large collecting gas bubble 7, as in the following Fig. 2.4 shown, which is present at the pressure valve 6.

In Fig. 2.4 ist der Teilsaughub b des Verdrängungskörpers 3 beendet und der Kolben 3 hat seine Ausgangslage eingenommen. Es sind wieder sowohl eine Sammelgasblase 7 als auch die Gasbläschen 4' an den Innenflächen des Förderraumes 1 vorhanden. Allerdings ist nun der Volumenanteil der Gasbläschen 4', die an den Innenflächen des Förderraumes 1 vorhanden sind, reduziert. Das Hubvolumen VH 20 bezieht sich auf den folgenden, in Fig. 2.5 dargestellten Teildruckhub.In Fig. 2.4 the Teilaughub b of the displacement body 3 is completed and the piston 3 has assumed its initial position. There are again both a collecting gas bubble 7 and the gas bubbles 4 'on the inner surfaces of the pumping chamber 1 available. However, now the volume fraction of the gas bubbles 4 ', which are present on the inner surfaces of the delivery chamber 1, reduced. The stroke volume V H 20 refers to the following, in Fig. 2.5 shown partial pressure stroke.

Durch diesen weiteren, zweiten Teildruckhub a des Kolbens 3 in Fig. 2.5, wobei die Hublänge des zweiten Druckhubs a größer ist als die des vorausgegangenen Druckhubs in Fig. 2.2, steigt der Druck p2 im Förderraum 1 wieder an und das im Förderraum 1 eingeschlossene Volumen nimmt ab. Spätestens nach Überschreiten der Hublänge des Vorgängerhubes wird der Öffnungsdruck des Druckventils 6 erreicht (p2 > p3), so dass ein Teilhubvolumen 20 des Fluids, vor allem aber die am Druckventil 6 anstehende Sammelgasblase 7 in die Druckleitung überführt wird. Das Teilhubvolumen 20 ist zumindest so groß wie die Hubdifferenz zwischen dem Vorgängerhub und dem aktuellen größeren Teilhub.Through this further, second partial pressure stroke a of the piston 3 in Fig. 2.5 , wherein the stroke length of the second pressure stroke a is greater than that of the previous pressure stroke in Fig. 2.2 , the pressure p 2 in the pumping chamber 1 rises again and the volume enclosed in the pumping chamber 1 decreases. At the latest after exceeding the stroke length of the predecessor stroke, the opening pressure of the pressure valve 6 is reached (p 2 > p 3 ), so that a Teilhubvolumen 20 of the fluid, but especially the pending on the pressure valve 6 collecting gas bubble 7 is transferred to the pressure line. The partial stroke volume 20 is at least as great as the stroke difference between the predecessor stroke and the current larger partial stroke.

Fig. 2.6 zeigt, dass nach Beendigung des zweiten Teildruckhubs ein weiterer zweiter Teilsaughub b ausgeführt wird. Durch den Teilsaughub b des Kolbens 3 sinkt der Druck p2 im Förderraum 1, während analog das im Förderraum 1 eingeschlossene Volumen gemäß Gleichung (I) und damit auch die Volumina der Gasblasen 4' zunehmen. Dadurch steigen die Gasblasen 4' in Richtung Druckventil 6 auf. Dort oder während des Aufsteigens akkumulieren sie zu einer neuen großen Sammelgasblase 7, die dann am Druckventil 6 ansteht. Wenn dabei der notwendige Druck zum Öffnen des Saugventils 5 erreicht wird, wird auch ein Volumen aus der Saugleitung angesaugt. Dieses kann zum Teil aus Fluidvolumen und zum Teil aus Gasvolumen bestehen. Die damit durch das Saugventil 5 aus der Saugleitung nachgeführten Gasblasen 7" steigen im Förderraum 1 in Richtung des Druckventils 6 auf (Pfeil c). Fig. 2.6 shows that after completion of the second partial pressure stroke, a further second Teilaughub b is executed. Due to the Teilaughub b of the piston 3, the pressure p 2 decreases in the delivery chamber 1, while analogously enclosed in the pumping chamber 1 volume according to equation (I) and thus the volumes of the gas bubbles 4 'increase. As a result, the gas bubbles 4 'rise in the direction of the pressure valve 6. There or during the upgrade they accumulate to a new large collecting gas bubble 7, which is then present at the pressure valve 6. When doing the necessary pressure to open the suction valve 5 is achieved, a volume is sucked from the suction line. This may consist partly of fluid volume and partly of gas volume. The thus tracked by the suction valve 5 from the suction line Gas bubbles 7 "rise in the delivery chamber 1 in the direction of the pressure valve 6 (arrow c).

In Fig. 2.7 ist der zweite Teilsaughub des Kolbens 3 beendet und der Verdrängungskörper 3 nimmt wieder die Ausgangslage ein. Inzwischen ist nur noch die am Druckventil 6 anstehende Sammelgasblase 7 vorhanden.In Fig. 2.7 is the second Teilaughub of the piston 3 is completed and the displacement body 3 again assumes the starting position. Meanwhile, only the pending on the pressure valve 6 collecting gas bubble 7 is present.

Mit einem dritten Druckhub a, dessen Hublänge wiederum größer ist als die des Vorgängerhubs und hier einem vollen Druckhub entspricht, komprimiert der Kolben 3 das in dem Förderraum 1 durch den Kolben 3 eingeschlossene Volumen, dargestellt in Fig. 2.8. Ebenso wird die zuvor gebildete Sammelgasblase 7 komprimiert, die am Druckventil 6 ansteht und die den gesamten Gasanteil im Förderraum 1 umfasst, so dass sie mit dem Hubvolumen VH 20 in die Druckleitung überführt werden kann, wie in der nachfolgenden Fig. 2.9 dargestellt ist.With a third pressure stroke a, whose stroke length is in turn greater than that of the preceding stroke and here corresponds to a full pressure stroke, the piston 3 compresses the volume enclosed in the delivery chamber 1 by the piston 3, shown in FIG Fig. 2.8 , Likewise, the previously formed collecting gas bubble 7 is compressed, which is present at the pressure valve 6 and includes the entire gas content in the delivery chamber 1, so that it can be transferred with the displacement V H 20 in the pressure line, as in the following Fig. 2.9 is shown.

Wurde nun ein voller Druckhub a ausgeführt, verlässt die Sammelgasblase 7 in Form von Austrittsgasbläschen 7' den Förderraum 1 durch das Druckventil 6 in die Druckleitung (dargestellt in Fig. 2.9). Im Idealfall ist der Förderraum 1 nun frei von an den Innenflächen des Förderraumes 1 haftenden Gasbläschen.If a full pressure stroke a has now been carried out, the collecting gas bubble 7 leaves the conveying chamber 1 in the form of outlet gas bubbles 7 'through the pressure valve 6 into the pressure line (shown in FIG Fig. 2.9 ). Ideally, the delivery chamber 1 is now free from adhering to the inner surfaces of the delivery chamber 1 gas bubbles.

In Fig. 2.10 ist schließlich dargestellt, dass nach diesem vollen Druckhub a, durch den der Förderraum 1 vollständig entgast wurde, der erste volle Saughub b folgt. Dabei wird ein vollständiges Hubvolumen VH 20 von der Saugleitung durch das Saugventil 5 in den Förderraum 1 eingesaugt.In Fig. 2.10 Finally, it is shown that after this full pressure stroke a, through which the delivery chamber 1 has been completely degassed, the first full intake stroke b follows. In this case, a complete stroke volume V H 20 is sucked by the suction line through the suction valve 5 in the delivery chamber 1.

Die Pumpe wurde somit vorteilhaft mit einer geringen Anzahl von Hubbewegungen entgast, ohne dass maßgebliche Mengen an Dosierfluid bereits in die Druckleitung gepumpt worden wären und dort beim ersten Dosierhub unerwünscht mit ausgegeben würden. Die im erfindungsgemäßen Verfahren offenbarten Teilsaughübe, die gegebenenfalls einen so geringen Hub ausführen, dass von einer Vibration gesprochen werden kann, so wie die dazugehörigen Teildruckhübe reichen aus, um den Förderraum sowie einen Teil der Saugleitung zu entgasen.The pump was thus advantageously degassed with a small number of strokes, without significant amounts of metering fluid would have been pumped into the pressure line and would be there undesirable spent on the first Dosierhub. The Teilaughübe disclosed in the method according to the invention, optionally perform such a small stroke that can be spoken of a vibration, as well as the associated partial pressure strokes are sufficient to degas the pumping chamber and a part of the suction line.

Das Verfahren zur Entgasung des Förderraums der Pumpe zum Erreichen eines betriebsbereiten Zustandes kann manuell ausgelöst werden, es ist jedoch auch eine gesteuerte Regelung möglich, so dass das erfindungsgemäße Verfahren eingeleitet werden kann, wenn über eine Steuerungseinheit ein Dosierungsbedarf gemeldet wird, wenn eine Zeitsteuerung die Entgasung vorsieht. Die vorstehend ermittelten Parameter können auf eine dem Fachmann bekannte Weise an eine entsprechende mit der Pumpe in operativer Verbindung stehende Steuerungs- und Regelungseinheit übermittelt werden, um das erfindungsgemäße Verfahren mit den gewünschten Schritten beginnend auszulösen.The method for degassing the pumping chamber of the pump to reach a ready state can be triggered manually, but it is also a controlled control possible, so that the inventive method can be initiated when a control unit a dose requirement is reported when a time control the degassing provides. The parameters determined above can be transmitted in a manner known to the person skilled in the art to a corresponding control and regulating unit operatively connected to the pump in order to initiate the method according to the invention starting with the desired steps.

Fig. 3 zeigt in einem Fließschema eine mögliche zeitliche, beziehungsweise logische Abfolge des erfindungsgemäßen Verfahrens. Dabei sind neben den Verfahrensschritten auch die Vorgänge in dem Förderraum der Pumpe beschrieben. Ausgehend von einer Dosierpause der Dosierpumpe, wobei sich im Förderraum durch das ausgasende Fluid Gasblasen im Inneren des Förderraums gebildet haben, die an den Innenflächen des Förderraums anhaften (entspricht Fig. 1.1 und 1.8), wird nach einem vorbestimmten Zeitintervall tIntervall die Impulsgebung ausgeführt, bei der in einem ersten Teilschritt durch einen Teilsaughub der Druck p2 im Inneren des Förderraums sinkt, wodurch die Volumina der Gasblasen wachsen, die Gasblasen akkumulieren und zur Sammelgasblase aufsteigen (entspricht Fig. 1.2 und 1.3). Im Förderraum liegen noch Gasblasen an den Innenflächen vor, sowie die Sammelgasblase am Druckventil (entspricht Fig. 1.4). Der zweite Teilschritt der Impulsgebung erfolgt durch das Ausführen eines Teildruckhubs, wodurch der Druck p2 im Förderraum ansteigt, wodurch ein weiteres Akkumulieren der Gasblasen und Aufsteigen zur Sammelgasblase bewirkt wird (entspricht Fig. 1.5). Mit andauernder Stillstandszeit wachsen die Gasblasenvolumina durch das fortgesetzte Ausgasen des Fluids, wodurch der Druck p2 im Förderraum weiter ansteigt, so dass bei Überschreiten des Öffnungsdrucks des Druckventils, wenn der Druck p2 im Förderraum größer wird als der Druck p3 in der Druckleitung, die Sammelgasblase entweicht (entspricht Fig. 1.6 und 1.7). Dauert nun die Dosierpause der Pumpe an, wird das Ausführen der Impulsgebung durch Teilsaughub und Teildruckhub im Abstand des voreingestellten Zeitintervalls tIntervall fortgesetzt, bis die Dosierpause beendet ist. Fig. 3 shows in a flow chart a possible temporal or logical sequence of the method according to the invention. In addition to the method steps, the processes in the delivery chamber of the pump are described. Starting from a metering break of the metering pump, which have formed gas bubbles in the interior of the pumping chamber in the pumping chamber through the outgassing fluid, which adhere to the inner surfaces of the pumping chamber (corresponds Fig. 1.1 and 1.8 ), after a predetermined time interval t interval, the pulse is carried out, in a first step by a Teilaughub the pressure p 2 inside the pumping chamber decreases, whereby the volumes of gas bubbles grow, accumulate the gas bubbles and ascend to the collecting gas bubble (corresponds Fig. 1.2 and 1.3 ). In the delivery chamber there are still gas bubbles on the inner surfaces, as well as the collecting gas bubble at the pressure valve (corresponds Fig. 1.4 ). The second sub-step of the pulse is carried out by performing a partial pressure stroke, whereby the pressure p 2 increases in the delivery chamber, thereby further accumulating the gas bubbles and ascending to the collecting gas bubble is effected (corresponds Fig. 1.5 ). With continuous downtime, the gas bubble volumes grow by the continued outgassing of the fluid, whereby the pressure p 2 in the pumping chamber continues to increase, so that when the opening pressure of the pressure valve is exceeded, when the pressure p 2 in the pumping chamber is greater than the pressure p 3 in the pressure line, the collecting gas bubble escapes (corresponds Fig. 1.6 and 1.7 ). Now takes the dosing of the pump, the execution of the pulse by Teilaughub and partial pressure stroke in the interval of the preset time interval t interval is continued until the metering break is completed.

Nach Beendigung der Dosierpause liegen damit im Förderraum noch Gasblasen an den Innenflächen des Förderraums und eine Sammelgasblase am Druckventil vor (entspricht Fig. 2.1). Zur Herbeiführung eines dosierbereiten Zustands der Dosierpumpe wird nun die Teilhubfolge mit wachsenden Hublängen des Verdrängungskörpers ausgeführt, wobei die Teilhubfolge aus n Teilhubkombinationen von Teildruckhüben und Teilsaughüben besteht. Die Anzahl n Teilhubkombinationen kann voreingestellt oder abhängig vom Entgasungszustand des Förderraums gesteuert werden. Jede Teildruckhub-Teilsaughubkombination wird mit einer Hublänge ausgeführt, die einem Anteil von xn % einer vollen Hublänge entspricht, wobei jede nachfolgende Teildruckhub-Teilsaughubkombination eine größere Hublänge aufweist (xn+1 > xn). Nach dem Ausführen eines ersten Teildruckhubs mit einer ersten Hublänge von x1 % einer vollen Hublänge, wobei das Druckventil öffnet und die Sammelgasblase entweicht (entspricht Fig. 2.2), wird ein erster Teilsaughub mit der ersten Hublänge ausgeführt, wodurch Gasblasen akkumulieren und aufsteigen (entspricht Fig. 2.3). Nach der ersten Teildruckhub-Teilsaughubkombination liegen noch die Sammelgasblase am Druckventil und Restgasblasen im Förderraum vor (entspricht Fig. 2.4).After completion of Dosierpause are so in the pumping chamber still gas bubbles on the inner surfaces of the delivery chamber and a collecting gas bubble at the pressure valve before (corresponds Fig. 2.1 ). In order to bring about a dosing-ready state of the metering pump, the partial lifting sequence is now carried out with increasing stroke lengths of the displacement body, the partial lifting sequence consisting of n partial lifting combinations of partial pressure strokes and partial lifting strokes. The number n Teilhubkombinationen can be preset or controlled depending on the degassing state of the pumping chamber. Each partial pressure stroke partial lift combination is made with a stroke length corresponding to a proportion of x n % of full stroke length, with each subsequent partial pressure stroke partial lift combination having a longer stroke length (x n + 1 > x n ). After performing a first partial pressure stroke with a first stroke length of x 1 % of a full stroke length, the pressure valve opens and the collecting gas bubble escapes (corresponds Fig. 2.2 ), a first Teilaughub is carried out with the first stroke length, whereby gas bubbles accumulate and ascend (corresponds Fig. 2.3 ). After the first partial-pressure stroke Teilaughubkombination are still the collecting gas bubble at the pressure valve and residual gas bubbles in the delivery chamber before (corresponds Fig. 2.4 ).

Bei einer zweiten Teilhubkombination mit einer zweiten Hublänge von x2 % einer vollen Hublänge, die größer ist als die erste Hublänge, entspricht das Ausführen des zweiten Teildruckhubs dem Zustand in Fig. 2.5, und das Ausführen eines zweiten Teilsaughubs mit der zweiten Hublänge (entsprechend Fig. 2.6) bewirkt überdies noch, dass Gasblasen aus der Saugleitung in den Förderraum nachgeführt werden können, wenn der Druck p2 im Förderraum kleiner wird als der Druck p1 in der Saugleitung, so dass das Saugventil öffnet.For a second partial stroke combination with a second stroke length from x 2 % of a full stroke length, which is greater than the first stroke length, the execution of the second partial pressure stroke corresponds to the state in Fig. 2.5 , and carrying out a second Teilaughubs with the second stroke length (corresponding to Fig. 2.6 ) causes moreover still that gas bubbles from the suction line can be tracked in the delivery chamber when the pressure p 2 in the delivery chamber is smaller than the pressure p 1 in the suction line, so that the suction valve opens.

Nach der Ausführung der zweiten Teilhubkombination liegt schließlich noch eine Sammelgasblase am Druckventil an (entspricht Fig. 2.7), die dann durch Ausführen eines dritten Druckhubs, der hier ein voller Druckhub mit x3 = 100 % Hublänge ist. Dabei öffnet das Druckventil und die Sammelgasblase entweicht (entspricht Fig. 2.8), der Förderraum liegt nun in einem entgasten Zustand vor (Fig. 2.9) und die Pumpe ist somit betriebsbereit.After the execution of the second Teilhubkombination is finally still a collecting gas bubble on the pressure valve (corresponds Fig. 2.7 ), which is then carried out by performing a third pressure stroke, here a full pressure stroke with x 3 = 100% stroke length. The pressure valve opens and the collecting gas bubble escapes (corresponds Fig. 2.8 ), the delivery room is now in a degassed state ( Fig. 2.9 ) and the pump is ready for use.

Jetzt kann die Pumpe durch Ausführen eines vollen Saughubs ein ganzes Hubvolumen VH fördern (entspricht Fig. 2.10).Now, by performing a full suction stroke, the pump can deliver an entire stroke volume V H (corresponds to Fig. 2.10 ).

Vorliegend wurde das Verfahren nach Fig. 3 unter Bezug auf die Figurenfolge 2.1-2.10 durch Ausführen der Teilhubfolge mit wachsenden Hublängen mit einer Anzahl von drei Teilhüben beschrieben. Die Anzahl der Teilhübe der Teilhubfolge mit wachsenden Hublängen ist allerdings nicht beschränkt und kann entsprechend den gegebenen Bedienungen in Bezug auf den Förderraum und das zu dosierende Fluid angepasst werden. Wie oben erwähnt, kann die Anzahl der Teilhübe in der Teilhubfolge auch mit Hilfe einer geeigneten Messtechnik, abhängig vom Vorhandensein der Gasblasen im Förderraum gesteuert werden.In the present case, the method was after Fig. 3 with reference to the figure sequence 2.1-2.10 by executing the Teilhubfolge with increasing stroke lengths with a number of three partial strokes. However, the number of partial strokes of Teilhubfolge with increasing stroke lengths is not limited and can be adjusted according to the given operations in relation to the pumping chamber and the fluid to be dosed. As mentioned above, the number of partial strokes in the Teilhubfolge can also be controlled by means of a suitable measurement technique, depending on the presence of the gas bubbles in the pumping chamber.

Mittels dieser Messtechnik kann festgestellt werden, ob noch Gasblasen vorhanden sind oder nicht. Diese Vorrichtung kann beispielsweise ein optischer Sensor oder ein Drucksensor sein. Sind keine Gasblasen mehr vorhanden, ist die Pumpe bereits in einem betriebsbereiten Zustand; stellt die Vorrichtung zur Ermittlung, ob noch Gasblasen vorhanden sind, fest, dass noch Gasblasen vorhanden sind, wird das Ausführen der Teilhubfolge mit wachsenden Hublängen veranlasst, wobei durch Teilsaughübe Randgasblasen aus dem Förderraum akkumuliert und zu einer Sammelgasblase aufsteigen, die durch einen Teildruckhub in die Druckleitung überführt wird. Diese Schleife wird so lange durchgeführt, bis keine Gasblasen mehr vorhanden sind, so dass die Pumpe in einem betriebsbereiten Zustand ist und damit dosieren kann.By means of this measurement technique can be determined whether there are still gas bubbles or not. This device may be for example an optical sensor or a pressure sensor. If there are no more gas bubbles, the pump is already in an operational state Status; the device determines whether there are still gas bubbles, there are still gas bubbles, the partial stroke sequence with increasing stroke lengths is initiated, accumulated by Teilaughübe Randgasblasen from the pumping chamber and rise to a collecting gas bubble, which by a partial pressure stroke in the Pressure line is transferred. This loop is carried out until there are no more gas bubbles, so that the pump is in an operational state and can dose with it.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
- Förderraum/Dosierraum- Delivery room / Dosierraum
22
- Hubstange- lifting rod
33
- Verdrängungskolben- displacement piston
3'3 '
- In den Förderraum hinein weisende Fläche des Kolbens 3- Surface of the piston 3 pointing into the delivery chamber
44
- Gasblase- Gas bubble
55
- Saugventil- Suction valve
66
- Druckventil- Pressure valve
77
- Sammelgasblase- Collection gas bubble
7'7 '
- Austrittsgasblase- exit gas bubble
7"7 "
- Aus der Saugleitung nachgeführte Gasblasen- Gas bubbles trailed from the suction line
88th
- Gasblase- Gas bubble
8'8th'
- Auftriebsgasblase- buoyancy gas bubble
99
- Öffnung zur Saugleitung- opening to the suction line
9'9 '
- Ventilraum des Saugventils- Valve chamber of the suction valve
1010
- Öffnung zur Druckleitung- Opening to the pressure line
10'10 '
- Ventilraum zur Druckleitung- Valve chamber to the pressure line
2020
- Hubvolumen VH - Stroke volume V H
aa
- Bewegung des Kolbens in Richtung Förderraum- Movement of the piston in the direction of delivery chamber
bb
- Bewegung des Kolbens aus dem Förderraum heraus- Movement of the piston out of the pumping chamber
cc
- Bewegung der Gasblasen im Förderraum- Movement of the gas bubbles in the delivery room

Claims (13)

  1. A metering pump for metering fluids, with a delivery chamber (1), said delivery chamber comprising the fluid to be delivered, being in fluid connection with a suction conduit which can be opened via a suction valve as well as in fluid connection with a delivery conduit which can be opened via a delivery valve and being delimited at least at one side by a displacement body in the form of a membrane, characterised in that
    a device for carrying out an impulse generation is arranged in the delivery chamber, said device being formed by the displacement body which can be driven via a rotation angle controlled or path controlled drive device, wherein the rotation-angle controlled or path controlled drive device is suitable for providing part-suction-strokes and part-delivery-strokes of the displacement body and that the metering pump is suitable for carrying out the following method for degassing the delivery chamber (1) of the metering pump:
    carrying out an impulse generation, wherein gas bubbles which have arisen in the delivery chamber (1) due to a gas-forming fluid and which adhere on the inner surface are detached from these surfaces, wherein the gas bubbles (4, 4', 8, 8') which are present in the delivery chamber (1) accumulate into a collective gas bubble and wherein the collective gas bubble (7) escapes from the delivery chamber (1) due to an increase in pressure.
  2. A metering pump according to claim 1, characterised in that the metering pump is designed in manner such that the gas bubbles (4, 4', 8, 8') execute a movement (c) in the direction of the delivery valve (6) on account of the impulse generation and form the collective gas bubble at the delivery-space side of the delivery valve (6) and wherein the collective gas bubble (7) which is present at the delivery valve (6) escapes into the delivery conduit as exit gas bubbles (7') given an increase in pressure.
  3. A metering pump according to claim 1 or 2, characterised in that the metering pump is designed in a manner such that the pressure increase in the delivery chamber (1) arises due to the exit of the gas out of the fluid and/or due to a part-delivery-stroke of the displacement body.
  4. A metering pump according to one of the preceding claims, characterised in that the metering pump is designed in a manner such that the implementation of the impulse generation is effected by way of carrying out at least one part-stroke or a part-stroke sequence or a vibration of the displacement body.
  5. A metering pump according to one of the preceding claims, characterised in that the metering pump is designed for executing a part-stroke sequence with increasing stroke lengths of the displacement body (3), so that the collective gas bubble (7) is brought into the delivery conduit, and gas bubbles which still adhere to the inner surfaces are transported in a following manner in dependence on the increasing stroke length and form an renewed collective gas bubble (7).
  6. A metering pump according to claim 5, characterised in that the metering pump is designed in a manner such that a predefined number of part-strokes determines the part-stroke sequence with increasing stroke lengths.
  7. A metering pump according to at least one of the preceding claims 1 to 5, characterised in that the metering pump is designed for determining the desired degree of degassing, wherein a pressure gradient in the delivery chamber (1) is detected on executing a delivery or suction stroke, and the determined pressure increase is compared to a pressure gradient value which serves as a calibration pressure increase and which was determined for a degassed delivery chamber (1)
    wherein the desired degree of degassing herein corresponds to a pressure increase which corresponds to the calibration pressure gradient, minus a predefined tolerance of the calibration pressure gradient value.
  8. A metering pump according to at least one of the claims 1 to 6, characterised in that the metering pump is designed in a manner such that
    a part-suction-stroke corresponds to a share of 0.1 % to 99 %, preferably of 1 % to 50 %, mostly preferably from 1 % to 25 % of a complete suction stroke, and
    a part-delivery-stroke corresponds to a share of 0.1 % to 99 %, preferably from 1 % to 50 %, mostly preferably from 1 % to 25 % of a complete delivery stroke.
  9. A metering pump according to one of the preceding claims, characterised in that the metering pump is designed in a manner such that the execution of the impulse generation is carried out during a downtime or during a pump stop.
  10. A metering pump according to at least one of the claims 5 to 8, characterised in that the metering pump is designed in a manner such that the execution of the part-stroke sequence is carried out with increasing stroke lengths for starting up the pump after a downtime of the pump.
  11. A metering pump according to at least one of the claims 5 to 10, characterised in that the metering pump is designed for
    presetting time intervals (tintervall) or points in time of a time control device which is operatively connected to the pump, so that the execution of the impulse generation and the execution of the part-stroke sequence with increasing stroke lengths is carried out in a time-controlled manner.
  12. A metering pump according to at least one of the claims 7 to 11, characterised in that the metering pump is designed for
    feeding the values from the determining of an actual pressure gradient during a stroke of the displacement body and the values from the comparison of the actual pressure increase behaviour of the pump with the desired pressure increase behaviour of the pump to an evaluation device for evaluating the comparison results, wherein the comparison results are led to a control device for actuating the pump as control parameters for starting up the pump,
    - during a downtime of the pump,
    - during a pump stop
    - after a pump stop, or
    - for starting up the pump after a downtime of the pump.
  13. A metering pump according to one of the preceding claims, characterised in that the rotation-angle-controlled or path-controlled drive device is a stepper motor, an EC-motor or a linear motor.
EP09793469.9A 2008-12-15 2009-12-11 Metering pump with device for degassing the pumping chamber Active EP2368041B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008061904A DE102008061904A1 (en) 2008-12-15 2008-12-15 Method and device for degassing the delivery chamber of a metering pump
PCT/EP2009/008876 WO2010072340A1 (en) 2008-12-15 2009-12-11 Method and device for degassing the transport chamber of a metering pump

Publications (2)

Publication Number Publication Date
EP2368041A1 EP2368041A1 (en) 2011-09-28
EP2368041B1 true EP2368041B1 (en) 2018-11-21

Family

ID=41800652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09793469.9A Active EP2368041B1 (en) 2008-12-15 2009-12-11 Metering pump with device for degassing the pumping chamber

Country Status (7)

Country Link
US (1) US8540799B2 (en)
EP (1) EP2368041B1 (en)
CN (1) CN102245901B (en)
AU (1) AU2009331947B2 (en)
DE (1) DE102008061904A1 (en)
RU (1) RU2490515C2 (en)
WO (1) WO2010072340A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753431B2 (en) * 2009-08-12 2014-06-17 National University Corporation Nagoya Institute Of Technology Bubble removal method and bubble removal device
DE102012102088A1 (en) * 2012-03-13 2013-09-19 Prominent Dosiertechnik Gmbh Positive displacement pump with forced ventilation
KR101539896B1 (en) 2014-10-14 2015-08-06 울산대학교 산학협력단 Method for diagnosis of induction motor fault
TWI724158B (en) * 2016-05-12 2021-04-11 國立大學法人名古屋工業大學 Continuous bubble removing method and continuous bubble removing device
CN110980915B (en) * 2019-12-23 2022-08-02 解冰 Application of nano oxygen free radical water in anticancer medicine
DE102021102664A1 (en) 2021-02-04 2022-08-04 Prominent Gmbh Dosing pump with temporary direction reversal of the displacement element

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1453465A1 (en) * 1963-03-12 1969-02-06 Huels Chemische Werke Ag Process for conveying and venting pumpable liquid media under reduced pressure and / or with a tendency to outgassing when sucked in by means of oscillating displacement pumps and a device for carrying out the process
BE794443A (en) * 1972-01-25 1973-07-24 Ciba Geigy FLUID DEGASING PROCESS AND DEVICE
DK143719C (en) * 1979-01-03 1982-03-08 Radiometer As PROCEDURE FOR BREATHING A LIQUIDIZING PUMP PUMP AND PUMP PUMP WITH AN ARRANGEMENT FOR USE IN EXERCISE THE PROCEDURE
DE3546189A1 (en) 1985-12-27 1987-07-02 Ott Kg Lewa METHOD AND DEVICE FOR MEASURING FLOW IN OSCILLATING DISPLACEMENT PUMPS
DE3827489C1 (en) 1988-08-12 1989-10-12 Gruenbeck Wasseraufbereitung Gmbh, 8884 Hoechstaedt, De
DE3837097A1 (en) * 1988-11-01 1990-05-03 Profor Ab METHOD FOR VENTILATING A FILLING SYSTEM AND DEVICE FOR CARRYING OUT SUCH A METHOD
JPH05293306A (en) * 1992-04-22 1993-11-09 Purantetsukusu:Kk Defoaming device
DE4439962A1 (en) * 1994-11-09 1996-05-15 Lang Apparatebau Gmbh Dosing pump with venting device
JPH10115621A (en) * 1996-10-14 1998-05-06 Aloka Co Ltd Dispenser
DE102005024888A1 (en) * 2005-05-31 2006-12-07 Linde Ag Cryo compressor with laterally arranged pressure valve
CN200999708Y (en) * 2007-01-05 2008-01-02 顾仁生 Electromagnetic water pump with snuffle valve
JP2008286587A (en) * 2007-05-16 2008-11-27 Olympus Corp Dispensing device and automatic analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20110247490A1 (en) 2011-10-13
EP2368041A1 (en) 2011-09-28
AU2009331947B2 (en) 2015-09-17
US8540799B2 (en) 2013-09-24
WO2010072340A1 (en) 2010-07-01
AU2009331947A1 (en) 2011-07-14
DE102008061904A1 (en) 2010-06-17
RU2011129341A (en) 2013-01-20
CN102245901B (en) 2015-07-08
CN102245901A (en) 2011-11-16
RU2490515C2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
EP2368041B1 (en) Metering pump with device for degassing the pumping chamber
DE60309108T2 (en) Fluidic system with constant flow rate
DE60317850T2 (en) pump valve
EP1088166B1 (en) Diaphragm pump and method for controlling same
DE102016101080B4 (en) Pump system and method for detection of pump anomalies
DE2754809C2 (en) Device for periodic rinsing of body cavities, in particular the abdominal cavity and the urinary bladder
EP2362102B1 (en) Metering pump aggregate
DE102014206442B4 (en) Method and device for operating a pressure accumulator, in particular for common rail injection systems in motor vehicle technology
DE102010039829A1 (en) Diaphragm pump with inertia-controlled leak-relief valve
DE102014013152A1 (en) A method for determining a system compressibility value of a medical diaphragm pump drive
DE102013113387A1 (en) Injector for injecting a fluid and method for controlling an injector
WO1996015370A1 (en) Metering pump with an air-purge device
EP1905469A1 (en) Micro dosing device for a liquid medium
WO2015172981A1 (en) Hydraulic system
DE102010039831B4 (en) Diaphragm pump and method for adjusting such
EP2638288A1 (en) Method and system for identifying damage to piston membrane pumps containing working fluids
DE102009057359A1 (en) Pressure control device and flow rate control device
DE102016119930A1 (en) Positive displacement pump with adjustable stop surface
DE102013018606A1 (en) Slurry pump with feed unit and feed unit
DE102019212873A1 (en) Detection device for the operation of an actuating unit
DE102010019479A1 (en) Method for presentation of liquid for dosing device used to measure utility system, involves measuring liquid level-representative variable, and generating signal for stopping liquid suction if measured variable reaches preset limit
EP0366997A1 (en) Method for deaerating a filling installation, and device for performing the method
DE2014438A1 (en) Milk pumping/metering equipment
DE102008011007A1 (en) Color-saving ink supply of printing presses
DE2658104C2 (en) Device for the automatic operation of artificial circulation pumps for blood circulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 53/06 20060101AFI20131023BHEP

Ipc: F04B 13/00 20060101ALI20131023BHEP

17Q First examination report despatched

Effective date: 20140207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180615

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015472

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1067858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015472

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1067858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009015472

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 15

Ref country code: FR

Payment date: 20231221

Year of fee payment: 15

Ref country code: DE

Payment date: 20231214

Year of fee payment: 15