EP2367689B1 - Tintenverteiler mit mehrleitungsabsperrventil - Google Patents

Tintenverteiler mit mehrleitungsabsperrventil Download PDF

Info

Publication number
EP2367689B1
EP2367689B1 EP08878823.7A EP08878823A EP2367689B1 EP 2367689 B1 EP2367689 B1 EP 2367689B1 EP 08878823 A EP08878823 A EP 08878823A EP 2367689 B1 EP2367689 B1 EP 2367689B1
Authority
EP
European Patent Office
Prior art keywords
shut
valves
ink
valve
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08878823.7A
Other languages
English (en)
French (fr)
Other versions
EP2367689A4 (de
EP2367689A1 (de
Inventor
Norman Micheal Berry
Akira Nakazawa
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memjet Technology Ltd
Original Assignee
Memjet Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memjet Technology Ltd filed Critical Memjet Technology Ltd
Publication of EP2367689A1 publication Critical patent/EP2367689A1/de
Publication of EP2367689A4 publication Critical patent/EP2367689A4/de
Application granted granted Critical
Publication of EP2367689B1 publication Critical patent/EP2367689B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/1752Mounting within the printer
    • B41J2/17523Ink connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure

Definitions

  • the present invention relates to fluidic couplings and in particular, ink couplings within inkjet printers.
  • Pagewidth printheads increase print speeds as the printhead does not traverse back and forth across the page to deposit a line of an image.
  • the pagewidth printhead simply deposits the ink on the media as it moves past at high speeds.
  • Such printheads have made it possible to perform full colour 1600dpi printing at speeds in the vicinity of 60 pages per minute, speeds previously unattainable with conventional inkjet printers.
  • the high print speeds require a large ink supply flow rate. Not only are the flow rates higher but distributing the ink along the entire length of a pagewidth printhead is more complex than feeding ink to a relatively small reciprocating printhead.
  • Some of the Applicant's printers provide the printhead as a user removable cartridge. This recognizes that individual ink ejection nozzles may fail over time and eventually there are enough dead nozzles to cause artifacts in the printed image. Allowing the user to replace the printhead maintains the print quality without requiring the entire printer to be replaced. It also permits the user to substitute a different printhead for different print jobs.
  • a draft quality printhead can be installed for some low resolution documents printed at high speed, and subsequently removed and replaced with the original high resolution printhead.
  • a number of the Applicant's printhead cartridges do not have an inbuilt ink supply for the printhead. These printhead cartridges need to be fluidically coupled to the ink supply upon installation.
  • the supply flowrate to the pagewidth printhead is too high for needle valves because of the narrow internal diameter. This requires the coupling conduits to be relatively large and therefore residual ink leaks freely out of the conduits once decoupled from the supply. This is typically not an issue for needle valve couplings because-the surface tension at the open end of a small conduit will usually prevent leakage.
  • US 1055 520 discloses an ink manifold.
  • the fluid coupling 10 is shown with the first conduit 12 disengaged from the second conduit 14.
  • the first conduit 12 leads to the pagewidth printhead of the removable printhead cartridge (described below).
  • the second conduit 14 is connected to the ink supply (not shown) and sized such that it can telescopically engage the first conduit 12 with a sliding fit.
  • the ink is retained by the shut off valve 30 biased against valve seat 34 by the resilient struts 32.
  • the second conduit 14 defines a seal seat 35 for the annular seal 16.
  • the annular seal 16 is retained in the seal seat 35 by the compression member 18. In the disengaged position shown in Figure 1 , the annular seal 16 is not compressed by the compression member 18 such that the inner surface 36 of the seal remains flat. When flat, the inner surface 36 does not to interfere with the sliding fit between the first and second conduits (12 and 14).
  • An input arm 20 is hinged to compression member 18.
  • a compression lever 22 is fixed at an angle to the input arm 20.
  • the input arm 20 and the compression lever 22 are part of a lever system described in greater detail below with reference to Figures 3 and 4 .
  • the lever system is an engagement mechanism that the user actuates to advance the second conduit 14 and compression member 18 onto the first conduit 12. As the input arm 20 rotates, it pushes on the hinge 24 which in turn moves the compression member 18 together with the second conduit 14.
  • the compression member 18 and the second conduit 14 advances until the input arm 20 is parallel to the direction of travel. Continued rotation of the input arm 20 brings the compression lever 22 into contact with the rear 26 of the second conduit 14. The compression lever 22 is carefully dimensioned to keep the second conduit 14 stationary relative to the first conduit 12 as the input arm 20 retracts the compression member 18 by pulling on the hinge 24. The compression member 18 compresses the annular seal 16 to force the flat inner surface 36 to bulge and form a fluid tight seal against the outside of the first conduit 12.
  • Figure 2 also shows the first conduit 12 engaging the shut off valve 30 to open fluid communication between the ink supply and the printhead.
  • the resilient struts 32 buckle with little resistance upon engagement with the end of the first conduit 12. Apertures 28 allow ink to flow around the valve member 30 and into the first conduit 12.
  • the input arm 20 When the fluid coupling disengages, the input arm 20 is rotated in the opposite direction to simultaneously decompress the annular seal 16 and retract the second conduit 14 from the first conduit 12.
  • This coupling is configured establish a sealed fluid connection with the first conduit subjected to little or no insertion force.
  • the structure that the supports the first conduit is not overly flexed or bowed. This protects any components that are not robust enough to withstand structural deformation.
  • the fluid coupling 10 is used to provide a detachable connection between the cartridge 38 and the printer 42.
  • the cartridge 38 is seated in the printer 42 such that the first conduits 12 face the compression member 18 (which covers the second conduits).
  • the latch 40 is lifted to allow the cartridge to be installed.
  • An actuator arm 56 is fixed relative to the latch 40 and rotates therewith about the hinge 50.
  • the distal end of the actuator arm 56 is hinged to the input arm 20.
  • the input arm 20 is likewise raised, which retracts the compression member 18 away from the first conduit 12.
  • the compression lever 22 With the input arm in the raised and retracted position, the compression lever 22 is disengaged from the back of the second conduit (see 14 and 26 of Fig 2 ). As discussed above, the annular seal is not compressed in the disengaged position so as not to interfere with the sliding fit with the first conduit.
  • the fluid coupling 10 is engaged by simply lowering the latch 40 onto the cartridge 38 until the complementary snap-lock formations 46 and 48 engage.
  • Actuator arm 56 rotates the input arm 20 and advances the compression member 18 towards the first conduit 12.
  • the first conduit 12 telescopically engages the second conduit with a loose sliding fit until the actuator arm 56 and the input arm 20 are parallel to the direction of travel.
  • the shut off valve is opened and the cartridge 38 is in fluid communication with ink tank 44 via the flexible tubing 52.
  • the compression lever 22 engages the second conduit (not shown).
  • the compression lever 22 is dimensioned to hold the second conduit stationary relative to the first conduit as the input arm 20 continues to rotate and draw the compression member 18 back to compress the seal and establish the fluid seal (see Fig. 2 ).
  • Figure 5 shows a printhead cartridge 38 installed in a print engine 3.
  • the print engine 3 is the mechanical heart of a printer which can have many different external casing shapes, ink tank locations and capacities, as well as different media feed and collection trays.
  • the printhead cartridge 38 is inserted and removed by the user lifting and lowering the latch 40.
  • the print engine 3 forms an electrical connection with contacts on the printhead cartridge 38 and fluid couplings 10 are formed at the inlet and outlet manifolds, 148 and 150 respectively.
  • Figure 6 shows the print engine 3 with the printhead cartridge removed to reveal the apertures 120 in each of the compression members 18.
  • Each aperture 120 receives one of the spouts 12 on the inlet and outlet manifolds (see Fig. 9 ).
  • the spouts correspond to the first conduits 12 of the schematic representations of Figures 1-4 .
  • the ink tanks, media feed and collection trays have an arbitrary position and configuration depending on the design of the printer's outer casing.
  • FIG 7 is a perspective of the complete.printhead cartridge 38.
  • the printhead cartridge 38 has a top molding 144 and a removable protective cover 142.
  • the top molding 144 has a central web for structural stiffness and to provide grip textured surfaces 158 for manipulating the cartridge during insertion and removal.
  • the base portion of the protective cover 142 protects the printhead ICs (not shown) and line of contacts (not shown) prior to installation in the printer.
  • Caps 156 are integrally formed with the base portion to cover the inlet and outlet spouts (see 12 of Fig. 9 ).
  • Figure 8 shows the cartridge 38 with its protective cover 142 removed to expose the printhead ICs (see Fig. 10 ) on the bottom surface and the line of contacts 133 on the side surface.
  • the protective cover is discarded to the recycling waste or fitted to the printhead cartridge being replaced to contain leakage from residual ink.
  • Figure 9 is a partially exploded perspective of the cartridge 38 without the protective cover.
  • the top cover 144 has been removed reveal the inlet manifold 148 and the outlet manifold 150.
  • the inlet and outlet shrouds 146 and 147 have been removed to expose the five inlet and outlet spouts 12.
  • the inlet and outlet manifolds 148 and 150 feed ink to their respective connectors 60 which lead to the molded liquid crystal polymer (LCP) channels 4 that supply the printhead ICs 31 (see Fig. 10 ).
  • LCP liquid crystal polymer
  • Figure 10 is a section view through a fluid coupling 10 of the print engine 3 with the cartridge 38 installed.
  • the components corresponding to the elements of the schematic representations of Figures 1-4 have been identified using the same reference numerals.
  • the paper path 5 is shown extending through the print engine 3 and past the printhead ICs 31.
  • the coupling is shown forming a sealed fluid connection between one of the spouts 12 and the one of the second conduits 14. It will be appreciated that the coupling at the inlet and outlet manifolds are identical with the exception that the ink flows from the second conduit 14 to the spout 12 at the inlet manifold and in the opposing direction at the outlet manifold. For the purposes of this description, the coupling will be described at the inlet manifold. Accordingly, flexible tubing 52 feeds ink from an ink tank (not shown) to the second conduit 14. The shut off valve 30 in the second conduit 14 is being held open by the end of the spout 12. The ink flows into the spout 12 and down to the LCP channel molding 4 where it is distributed to the printhead ICs 31.
  • the coupling 10 is actuated by the actuator arm 56 hinged to the print engine chassis 42 at shaft 50.
  • the latch 40 (not shown in Fig. 10 ) also extends from the shaft 50 for fixed rotation with the actuator arm 56.
  • the actuator arm 56 rotates the input arm 20 to push the compression member 18, and in turn the second conduit 14 into telescopic engagement with the spout 12.
  • the compression lever 22 engages the rear 26 of the second conduit 14.
  • the input arm 20 draws back on the hinge connection 24 which in turn pulls on the central rod 58 extending to the middle of the compression member 18.
  • the resilient seal 16 is compressed and bulges to form a fluid tight seal against the outer surface of the spout 12.
  • the compression member 18 compresses all the annular seals 16 for each of the input spouts 12 simultaneously. Using a central rod 58 attached to the middle of the compression member 18 ensures that the compressive force on each annular seal is uniform. Furthermore, as the latch 40 is the longest lever of the lever system, the force that the user needs to apply is conveniently weak.
  • the latch (not shown) is lifted off the cartridge to automatically rotate the actuator arm 56 upwards, thereby lifting and retracting the input arm 20.
  • the annular seal 16 is released when the compression lever 22 swings out of engagement with the surface 26.
  • the second conduits and the corresponding spouts 12 now have a loose sliding fit and slide easily away from each other. With the compression member 18 and the spouts 12 completely disengaged, the user simply lifts the cartridge 38 out of the print engine 3.
  • Figures 11 to 19 show another embodiment of the ink manifolds 148 and 150 on the printhead cartridge.
  • the inlet and outlet manifolds are mirror images of each other and so only the inlet manifold 148 be described. However, the description is equally applicable to the outlet manifold 150 with the exception that the ink flow direction is opposite and the outlet manifold 150 couples to the sump instead of the ink supply.
  • the internal diameter of the spouts 12 is relatively wide (approximately 2mm) to provide the flow rate necessary for the high ink consumption of a pagewidth printhead.
  • this causes high levels of ink leakage when the printhead cartridge is removed from the printer, particularly when one end is raised and hydrostatic pressure drives the ink flow from the lower end.
  • the ink manifold shown in Figure 11 to 19 has shut off valves for each of the spouts 12.
  • the spouts 12 extend from the front of the polymer channel molding 152.
  • the spouts 12 and the connectors 60 are positioned in the same locations as the inlet and outlet manifolds 148 and 150 described in the previous embodiment.
  • the spouts 12 each lead to an opening 162 and a shut off valve 160.
  • the shut off valve 160 is a dish-shaped rubber molding best shown in the partial enlarged section view of Figure 14 .
  • a central sealing cap 164 is shaped to seal the periphery of the opening 162.
  • An integrally molded collapsible section 166 mounts to the channel molding 152 and supports the sealing cap 164 over the opening 162.
  • the shut off valve is an FKM synthetic rubber molding with a set of compression characteristics that ensure it will consistently return to its original shape after compression.
  • FIG 12 the shut off valve is shown in its uncompressed state whereby the sealing cap is spaced from the opening 162 and the valve is open. Hence the shut off valve 160 is biased to the open position.
  • Figure 14 shows the shut off valve 160 in its compressed state.
  • the valve actuator that applies the compressive force to the shut off valve 160 has been omitted in the interests of clarity.
  • Pressure from the actuator on the sealing cap 164 elastically deforms the thin collapsible section 166 that forms an annular skirt around the cap.
  • the sealing cap 164 form a fluid seal at the opening 162 to close the valve.
  • the sealing cap 164 is held in the closed position by the actuator, against the bias of collapsible section 166.
  • the rear of the channel molding 152 is sealed by a polypropylene film foil 168.
  • This is a highly cost effective and simple method of providing a reliable fluid seal around the channels 176 and the valve chambers 178 formed by the channel molding 152.
  • dome-shaped plastic deformations 172 are pressed into the sealing film 168.
  • the deformations 172 extend inwardly, out of the plane of the sealing film 168 when the actuator 190 (see Figure 17 ) is compressing the shut off valves 160.
  • the actuator 190 releases the shut off valves 160
  • the deformations 172 can invert outwardly such that the sealing film 168 does not impede the opening of the valve.
  • the plastic deformations 172 ensure that the actuator or the shut off valves do not create excessive tension in the film 168 that can compromise the fluid seal.
  • Figure 16 is an exploded view of the perspective shown in Figure 15 .
  • the sealing film 168 and the shut off valves 160 removed, the features of the valve chambers 178.
  • the openings 162 extend into the chambers 178 for contact with the sealing cap 164.
  • the sealing cap 164 and the collapsible section 166 are held in position by a series of ribs 180.
  • the ribs 180 also create gaps between the shut off valve 160 and the side walls of the chamber 178 to provide a flow path for the ink.
  • Each of the valve chambers 178 feeds one of the channels 176 respectively.
  • the channels 176 lead to the connector 60 which in turn feeds the LCP channels 4 (see Figure 10 ).
  • the channel 176 connects to the corresponding valve chamber 178 at its most elevated point. This avoids the top of the chamber becoming a bubble trap as the manifold primes with ink.
  • Figure 17, 18 and 19 illustrate the structure and function of the valve actuator 190.
  • a polymer flange body 174 extends through a central aperture 170 in the channel molding 152 and the sealing film 168.
  • An abutment face 188 extends proud of the front face of the channel molding 152.
  • Flange 182 sits on the exterior of the sealing film 186 on the rear face of the channel molding 152.
  • a metal plate 196 reinforces the back of the flange 182.
  • the sealing film 168 is protected from any sharp burrs on the plate 196 by the flange 182.
  • a metal spring cage 186 fits over the abutment face 188 and seats against the front face of the channel molding 152.
  • the metal spring cage 186 has a pair of arms 194 that extend through the central aperture 170, the holes 192 in the flange 182 and the metal plate 196.
  • the arms 194 hook over one end of a steel compression spring 184.
  • the other end of the spring 184 sits on the plate 196.
  • the spring is held in compression such that plate 196 and the flange 12 press all the shut off valves 160 to the closed position. It will be appreciated that the compressive force of the spring 184 needs to exceed the bias of the shut off valves 160.
  • the compression members are the interface between the printer and the printhead cartridge.
  • the compression member 18 advances onto the spouts 12 to form a connection with the second conduits 14 and the ink supply.
  • the compression member 18 advances towards the ink manifold 148, it pushes on the abutment surface 188 to further compress the spring 184 and draw the flange 182 away from the shut off valves 160.
  • the tolerances for the engagement of the compression member 18 and the ink manifold 148 are much higher than the tolerances on the operation of the shut off valves 160.
  • the flange 182 completely disengages from the shut off valve 160 so any variation in the travel of the compression member 18 is isolated from the shut off valves 160.
  • Shut off valves are normally biased closed to provide a fluid seal as soon as the fluid coupling is disconnected.
  • the ink manifold according to this invention achieves the same shut off action with valves that are biased open such that they can operate independent of the closing actuator.

Claims (4)

  1. Tintenverteiler (148), der mehrere Fluiddurchflusswege definiert, wobei der Tintenverteiler Folgendes umfasst:
    ein Kanalformteil (152), das eine Vielzahl von Öffnungen (162) definiert, die um ein mittleres Loch (170) herum angeordnet sind;
    eine Vielzahl von Sperrventilen (160), wobei jedes Sperrventil an einer jeweiligen Öffnung positioniert ist, wobei jedes einzelne Sperrventil in Richtung auf eine offene Position vorgespannt ist;
    ein Stellglied (190) zum Vorspannen jedes der Sperrventil (160) in Richtung auf eine geschlossene Position, wobei das Stellglied Folgendes umfasst:
    einen Flanschkörper (174), der durch das mittlere Loch (170) vorsteht, wobei der Flanschkörper eine Widerlagerseite (188) aufweist;
    einen Flansch (182), der mit jedem der Sperrventil in Eingriff kommt; und
    ein nachgiebiges Element (184) zum Vorspannen des Flansches (182) gegen die Vielzahl von Sperrventilen (160), wobei die Vorspannung des nachgiebigen Elements größer als eine kombinierte Vorspannung ist, die von den Sperrventilen (160) ausgeübt wird;
    wobei das Stellglied im Gebrauch alle Sperrventile geschlossen hält, wenn es sich in der geschlossenen Position befindet, und das Stellglied in eine offene Position bewegbar ist, indem man auf die Widerlagerseite (188) drückt, um den Flansch (182) von den Sperrventilen (160) zu entfernen.
  2. Tintenverteiler nach Anspruch 1, wobei die Sperrventile jeweils nachgiebige Kappen (164) sind, die auf die jeweiligen Umkreise jeder der Öffnungen (162) durch einen einstückig geformten, zusammenklappbaren Abschnitt (166) eingepasst sind, wobei der zusammenklappbare Abschnitt jede nachgiebige Kappe von der jeweiligen Öffnung weg vorspannt.
  3. Druckkopfpatrone (38), umfassend den Tintenverteiler nach Anspruch 1.
  4. Druckkopfpatrone nach Anspruch 3, umfassend zwei der Tintenverteiler, wobei einer ein Einlassverteiler (148) und der andere ein Auslassverteiler (150) ist.
EP08878823.7A 2008-12-19 2008-12-19 Tintenverteiler mit mehrleitungsabsperrventil Not-in-force EP2367689B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2008/001875 WO2010068963A1 (en) 2008-12-19 2008-12-19 Ink manifold with multiple conduit shut off valve

Publications (3)

Publication Number Publication Date
EP2367689A1 EP2367689A1 (de) 2011-09-28
EP2367689A4 EP2367689A4 (de) 2013-04-24
EP2367689B1 true EP2367689B1 (de) 2015-09-16

Family

ID=42268155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08878823.7A Not-in-force EP2367689B1 (de) 2008-12-19 2008-12-19 Tintenverteiler mit mehrleitungsabsperrventil

Country Status (4)

Country Link
EP (1) EP2367689B1 (de)
AU (1) AU2008365367B2 (de)
CA (1) CA2742314C (de)
WO (1) WO2010068963A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115353A (en) * 1981-01-09 1982-07-17 Ricoh Co Ltd Solenoid valve for ink jet
US4591875A (en) * 1985-04-12 1986-05-27 Eastman Kodak Company Ink cartridge and cooperative continuous ink jet printing apparatus
JPS6228577A (ja) * 1985-07-30 1987-02-06 Canon Inc 逆止弁
JPH10235890A (ja) * 1996-06-25 1998-09-08 Seiko Epson Corp インクカートリッジ
US6305793B1 (en) * 1998-01-23 2001-10-23 Hewlett-Packard Company Diaphragm pump having an integral pressure plate
DE69927302T2 (de) * 1998-02-13 2006-06-14 Seiko Epson Corp Verfahren zur Wiederherstellung der Tintenstrahltropfenausstossfähigkeit
US6041805A (en) * 1998-07-07 2000-03-28 Imation Corp. Valve assembly for a removable ink cartridge
US7334888B2 (en) * 2003-11-25 2008-02-26 Brother Kogyo Kabushiki Kaisha Ink cartridge
US7448734B2 (en) * 2004-01-21 2008-11-11 Silverbrook Research Pty Ltd Inkjet printer cartridge with pagewidth printhead
US7357496B2 (en) * 2005-12-05 2008-04-15 Silverbrook Research Pty Ltd Inkjet printhead assembly with resilient ink connectors
CN101287606B (zh) * 2006-03-03 2010-11-03 西尔弗布鲁克研究有限公司 脉冲阻尼射流结构
JP5288743B2 (ja) * 2006-08-23 2013-09-11 キヤノン株式会社 インクタンクおよびインクジェット記録装置
US7780278B2 (en) * 2007-03-21 2010-08-24 Silverbrook Research Pty Ltd Ink coupling for inkjet printer with cartridge

Also Published As

Publication number Publication date
AU2008365367B2 (en) 2011-12-22
EP2367689A4 (de) 2013-04-24
EP2367689A1 (de) 2011-09-28
WO2010068963A1 (en) 2010-06-24
CA2742314C (en) 2013-10-22
CA2742314A1 (en) 2010-06-24
AU2008365367A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US8444257B2 (en) Printhead cartridge for releasable mounting in a printer
AU2005252099B2 (en) Ink tank, printing head and inkjet printing apparatus
US7854499B2 (en) Liquid housing container
WO2006068313A1 (ja) インクタンクおよびインクジェット記録装置
US20070252864A1 (en) Ink-Jet Recording Apparatus
JP4047258B2 (ja) 液体供給システム
US7465043B2 (en) Liquid distribution unit, ink-jet recording apparatus and image forming apparatus
EP2367689B1 (de) Tintenverteiler mit mehrleitungsabsperrventil
US8113638B2 (en) Fluid coupling
EP2237958B1 (de) Strömungskupplung mit geringer einführungskraft
US20150224781A1 (en) Cartridge ejector for page-wide, micro-fluid ejection heads
TWI468305B (zh) 具有多導管停止閥的墨水歧管
US20090179967A1 (en) Multiple conduit fluid coupling with leakage flow control
KR100832590B1 (ko) 잉크 탱크, 인쇄 헤드 및 잉크젯 인쇄 장치
EP2237965B1 (de) Mehrere leitungen aufweisende strömungskupplung mit leckflusssteuerung
JP2005153523A (ja) インキ供給システム
JP2005280072A (ja) インク供給システム、流体連通構造、インクタンク並びに前記流体連通構造を用いるインクジェット記録ヘッドおよび装置
JP2003211703A (ja) インクカートリッジ及びインクジェット式記録装置
JP2013202888A (ja) 液滴噴射装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130322

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 2/175 20060101AFI20130318BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZAMTEC LIMITED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZAMTEC LIMITED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEMJET TECHNOLOLGY LIMITED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEMJET TECHNOLOGY LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 749485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008040246

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 749485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160118

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008040246

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20160617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201227

Year of fee payment: 13

Ref country code: IE

Payment date: 20201228

Year of fee payment: 13

Ref country code: GB

Payment date: 20201228

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201229

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008040246

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231