EP2367689B1 - Ink manifold with multiple conduit shut off valve - Google Patents
Ink manifold with multiple conduit shut off valve Download PDFInfo
- Publication number
- EP2367689B1 EP2367689B1 EP08878823.7A EP08878823A EP2367689B1 EP 2367689 B1 EP2367689 B1 EP 2367689B1 EP 08878823 A EP08878823 A EP 08878823A EP 2367689 B1 EP2367689 B1 EP 2367689B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shut
- valves
- ink
- valve
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/1752—Mounting within the printer
- B41J2/17523—Ink connection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17513—Inner structure
Definitions
- the present invention relates to fluidic couplings and in particular, ink couplings within inkjet printers.
- Pagewidth printheads increase print speeds as the printhead does not traverse back and forth across the page to deposit a line of an image.
- the pagewidth printhead simply deposits the ink on the media as it moves past at high speeds.
- Such printheads have made it possible to perform full colour 1600dpi printing at speeds in the vicinity of 60 pages per minute, speeds previously unattainable with conventional inkjet printers.
- the high print speeds require a large ink supply flow rate. Not only are the flow rates higher but distributing the ink along the entire length of a pagewidth printhead is more complex than feeding ink to a relatively small reciprocating printhead.
- Some of the Applicant's printers provide the printhead as a user removable cartridge. This recognizes that individual ink ejection nozzles may fail over time and eventually there are enough dead nozzles to cause artifacts in the printed image. Allowing the user to replace the printhead maintains the print quality without requiring the entire printer to be replaced. It also permits the user to substitute a different printhead for different print jobs.
- a draft quality printhead can be installed for some low resolution documents printed at high speed, and subsequently removed and replaced with the original high resolution printhead.
- a number of the Applicant's printhead cartridges do not have an inbuilt ink supply for the printhead. These printhead cartridges need to be fluidically coupled to the ink supply upon installation.
- the supply flowrate to the pagewidth printhead is too high for needle valves because of the narrow internal diameter. This requires the coupling conduits to be relatively large and therefore residual ink leaks freely out of the conduits once decoupled from the supply. This is typically not an issue for needle valve couplings because-the surface tension at the open end of a small conduit will usually prevent leakage.
- US 1055 520 discloses an ink manifold.
- the fluid coupling 10 is shown with the first conduit 12 disengaged from the second conduit 14.
- the first conduit 12 leads to the pagewidth printhead of the removable printhead cartridge (described below).
- the second conduit 14 is connected to the ink supply (not shown) and sized such that it can telescopically engage the first conduit 12 with a sliding fit.
- the ink is retained by the shut off valve 30 biased against valve seat 34 by the resilient struts 32.
- the second conduit 14 defines a seal seat 35 for the annular seal 16.
- the annular seal 16 is retained in the seal seat 35 by the compression member 18. In the disengaged position shown in Figure 1 , the annular seal 16 is not compressed by the compression member 18 such that the inner surface 36 of the seal remains flat. When flat, the inner surface 36 does not to interfere with the sliding fit between the first and second conduits (12 and 14).
- An input arm 20 is hinged to compression member 18.
- a compression lever 22 is fixed at an angle to the input arm 20.
- the input arm 20 and the compression lever 22 are part of a lever system described in greater detail below with reference to Figures 3 and 4 .
- the lever system is an engagement mechanism that the user actuates to advance the second conduit 14 and compression member 18 onto the first conduit 12. As the input arm 20 rotates, it pushes on the hinge 24 which in turn moves the compression member 18 together with the second conduit 14.
- the compression member 18 and the second conduit 14 advances until the input arm 20 is parallel to the direction of travel. Continued rotation of the input arm 20 brings the compression lever 22 into contact with the rear 26 of the second conduit 14. The compression lever 22 is carefully dimensioned to keep the second conduit 14 stationary relative to the first conduit 12 as the input arm 20 retracts the compression member 18 by pulling on the hinge 24. The compression member 18 compresses the annular seal 16 to force the flat inner surface 36 to bulge and form a fluid tight seal against the outside of the first conduit 12.
- Figure 2 also shows the first conduit 12 engaging the shut off valve 30 to open fluid communication between the ink supply and the printhead.
- the resilient struts 32 buckle with little resistance upon engagement with the end of the first conduit 12. Apertures 28 allow ink to flow around the valve member 30 and into the first conduit 12.
- the input arm 20 When the fluid coupling disengages, the input arm 20 is rotated in the opposite direction to simultaneously decompress the annular seal 16 and retract the second conduit 14 from the first conduit 12.
- This coupling is configured establish a sealed fluid connection with the first conduit subjected to little or no insertion force.
- the structure that the supports the first conduit is not overly flexed or bowed. This protects any components that are not robust enough to withstand structural deformation.
- the fluid coupling 10 is used to provide a detachable connection between the cartridge 38 and the printer 42.
- the cartridge 38 is seated in the printer 42 such that the first conduits 12 face the compression member 18 (which covers the second conduits).
- the latch 40 is lifted to allow the cartridge to be installed.
- An actuator arm 56 is fixed relative to the latch 40 and rotates therewith about the hinge 50.
- the distal end of the actuator arm 56 is hinged to the input arm 20.
- the input arm 20 is likewise raised, which retracts the compression member 18 away from the first conduit 12.
- the compression lever 22 With the input arm in the raised and retracted position, the compression lever 22 is disengaged from the back of the second conduit (see 14 and 26 of Fig 2 ). As discussed above, the annular seal is not compressed in the disengaged position so as not to interfere with the sliding fit with the first conduit.
- the fluid coupling 10 is engaged by simply lowering the latch 40 onto the cartridge 38 until the complementary snap-lock formations 46 and 48 engage.
- Actuator arm 56 rotates the input arm 20 and advances the compression member 18 towards the first conduit 12.
- the first conduit 12 telescopically engages the second conduit with a loose sliding fit until the actuator arm 56 and the input arm 20 are parallel to the direction of travel.
- the shut off valve is opened and the cartridge 38 is in fluid communication with ink tank 44 via the flexible tubing 52.
- the compression lever 22 engages the second conduit (not shown).
- the compression lever 22 is dimensioned to hold the second conduit stationary relative to the first conduit as the input arm 20 continues to rotate and draw the compression member 18 back to compress the seal and establish the fluid seal (see Fig. 2 ).
- Figure 5 shows a printhead cartridge 38 installed in a print engine 3.
- the print engine 3 is the mechanical heart of a printer which can have many different external casing shapes, ink tank locations and capacities, as well as different media feed and collection trays.
- the printhead cartridge 38 is inserted and removed by the user lifting and lowering the latch 40.
- the print engine 3 forms an electrical connection with contacts on the printhead cartridge 38 and fluid couplings 10 are formed at the inlet and outlet manifolds, 148 and 150 respectively.
- Figure 6 shows the print engine 3 with the printhead cartridge removed to reveal the apertures 120 in each of the compression members 18.
- Each aperture 120 receives one of the spouts 12 on the inlet and outlet manifolds (see Fig. 9 ).
- the spouts correspond to the first conduits 12 of the schematic representations of Figures 1-4 .
- the ink tanks, media feed and collection trays have an arbitrary position and configuration depending on the design of the printer's outer casing.
- FIG 7 is a perspective of the complete.printhead cartridge 38.
- the printhead cartridge 38 has a top molding 144 and a removable protective cover 142.
- the top molding 144 has a central web for structural stiffness and to provide grip textured surfaces 158 for manipulating the cartridge during insertion and removal.
- the base portion of the protective cover 142 protects the printhead ICs (not shown) and line of contacts (not shown) prior to installation in the printer.
- Caps 156 are integrally formed with the base portion to cover the inlet and outlet spouts (see 12 of Fig. 9 ).
- Figure 8 shows the cartridge 38 with its protective cover 142 removed to expose the printhead ICs (see Fig. 10 ) on the bottom surface and the line of contacts 133 on the side surface.
- the protective cover is discarded to the recycling waste or fitted to the printhead cartridge being replaced to contain leakage from residual ink.
- Figure 9 is a partially exploded perspective of the cartridge 38 without the protective cover.
- the top cover 144 has been removed reveal the inlet manifold 148 and the outlet manifold 150.
- the inlet and outlet shrouds 146 and 147 have been removed to expose the five inlet and outlet spouts 12.
- the inlet and outlet manifolds 148 and 150 feed ink to their respective connectors 60 which lead to the molded liquid crystal polymer (LCP) channels 4 that supply the printhead ICs 31 (see Fig. 10 ).
- LCP liquid crystal polymer
- Figure 10 is a section view through a fluid coupling 10 of the print engine 3 with the cartridge 38 installed.
- the components corresponding to the elements of the schematic representations of Figures 1-4 have been identified using the same reference numerals.
- the paper path 5 is shown extending through the print engine 3 and past the printhead ICs 31.
- the coupling is shown forming a sealed fluid connection between one of the spouts 12 and the one of the second conduits 14. It will be appreciated that the coupling at the inlet and outlet manifolds are identical with the exception that the ink flows from the second conduit 14 to the spout 12 at the inlet manifold and in the opposing direction at the outlet manifold. For the purposes of this description, the coupling will be described at the inlet manifold. Accordingly, flexible tubing 52 feeds ink from an ink tank (not shown) to the second conduit 14. The shut off valve 30 in the second conduit 14 is being held open by the end of the spout 12. The ink flows into the spout 12 and down to the LCP channel molding 4 where it is distributed to the printhead ICs 31.
- the coupling 10 is actuated by the actuator arm 56 hinged to the print engine chassis 42 at shaft 50.
- the latch 40 (not shown in Fig. 10 ) also extends from the shaft 50 for fixed rotation with the actuator arm 56.
- the actuator arm 56 rotates the input arm 20 to push the compression member 18, and in turn the second conduit 14 into telescopic engagement with the spout 12.
- the compression lever 22 engages the rear 26 of the second conduit 14.
- the input arm 20 draws back on the hinge connection 24 which in turn pulls on the central rod 58 extending to the middle of the compression member 18.
- the resilient seal 16 is compressed and bulges to form a fluid tight seal against the outer surface of the spout 12.
- the compression member 18 compresses all the annular seals 16 for each of the input spouts 12 simultaneously. Using a central rod 58 attached to the middle of the compression member 18 ensures that the compressive force on each annular seal is uniform. Furthermore, as the latch 40 is the longest lever of the lever system, the force that the user needs to apply is conveniently weak.
- the latch (not shown) is lifted off the cartridge to automatically rotate the actuator arm 56 upwards, thereby lifting and retracting the input arm 20.
- the annular seal 16 is released when the compression lever 22 swings out of engagement with the surface 26.
- the second conduits and the corresponding spouts 12 now have a loose sliding fit and slide easily away from each other. With the compression member 18 and the spouts 12 completely disengaged, the user simply lifts the cartridge 38 out of the print engine 3.
- Figures 11 to 19 show another embodiment of the ink manifolds 148 and 150 on the printhead cartridge.
- the inlet and outlet manifolds are mirror images of each other and so only the inlet manifold 148 be described. However, the description is equally applicable to the outlet manifold 150 with the exception that the ink flow direction is opposite and the outlet manifold 150 couples to the sump instead of the ink supply.
- the internal diameter of the spouts 12 is relatively wide (approximately 2mm) to provide the flow rate necessary for the high ink consumption of a pagewidth printhead.
- this causes high levels of ink leakage when the printhead cartridge is removed from the printer, particularly when one end is raised and hydrostatic pressure drives the ink flow from the lower end.
- the ink manifold shown in Figure 11 to 19 has shut off valves for each of the spouts 12.
- the spouts 12 extend from the front of the polymer channel molding 152.
- the spouts 12 and the connectors 60 are positioned in the same locations as the inlet and outlet manifolds 148 and 150 described in the previous embodiment.
- the spouts 12 each lead to an opening 162 and a shut off valve 160.
- the shut off valve 160 is a dish-shaped rubber molding best shown in the partial enlarged section view of Figure 14 .
- a central sealing cap 164 is shaped to seal the periphery of the opening 162.
- An integrally molded collapsible section 166 mounts to the channel molding 152 and supports the sealing cap 164 over the opening 162.
- the shut off valve is an FKM synthetic rubber molding with a set of compression characteristics that ensure it will consistently return to its original shape after compression.
- FIG 12 the shut off valve is shown in its uncompressed state whereby the sealing cap is spaced from the opening 162 and the valve is open. Hence the shut off valve 160 is biased to the open position.
- Figure 14 shows the shut off valve 160 in its compressed state.
- the valve actuator that applies the compressive force to the shut off valve 160 has been omitted in the interests of clarity.
- Pressure from the actuator on the sealing cap 164 elastically deforms the thin collapsible section 166 that forms an annular skirt around the cap.
- the sealing cap 164 form a fluid seal at the opening 162 to close the valve.
- the sealing cap 164 is held in the closed position by the actuator, against the bias of collapsible section 166.
- the rear of the channel molding 152 is sealed by a polypropylene film foil 168.
- This is a highly cost effective and simple method of providing a reliable fluid seal around the channels 176 and the valve chambers 178 formed by the channel molding 152.
- dome-shaped plastic deformations 172 are pressed into the sealing film 168.
- the deformations 172 extend inwardly, out of the plane of the sealing film 168 when the actuator 190 (see Figure 17 ) is compressing the shut off valves 160.
- the actuator 190 releases the shut off valves 160
- the deformations 172 can invert outwardly such that the sealing film 168 does not impede the opening of the valve.
- the plastic deformations 172 ensure that the actuator or the shut off valves do not create excessive tension in the film 168 that can compromise the fluid seal.
- Figure 16 is an exploded view of the perspective shown in Figure 15 .
- the sealing film 168 and the shut off valves 160 removed, the features of the valve chambers 178.
- the openings 162 extend into the chambers 178 for contact with the sealing cap 164.
- the sealing cap 164 and the collapsible section 166 are held in position by a series of ribs 180.
- the ribs 180 also create gaps between the shut off valve 160 and the side walls of the chamber 178 to provide a flow path for the ink.
- Each of the valve chambers 178 feeds one of the channels 176 respectively.
- the channels 176 lead to the connector 60 which in turn feeds the LCP channels 4 (see Figure 10 ).
- the channel 176 connects to the corresponding valve chamber 178 at its most elevated point. This avoids the top of the chamber becoming a bubble trap as the manifold primes with ink.
- Figure 17, 18 and 19 illustrate the structure and function of the valve actuator 190.
- a polymer flange body 174 extends through a central aperture 170 in the channel molding 152 and the sealing film 168.
- An abutment face 188 extends proud of the front face of the channel molding 152.
- Flange 182 sits on the exterior of the sealing film 186 on the rear face of the channel molding 152.
- a metal plate 196 reinforces the back of the flange 182.
- the sealing film 168 is protected from any sharp burrs on the plate 196 by the flange 182.
- a metal spring cage 186 fits over the abutment face 188 and seats against the front face of the channel molding 152.
- the metal spring cage 186 has a pair of arms 194 that extend through the central aperture 170, the holes 192 in the flange 182 and the metal plate 196.
- the arms 194 hook over one end of a steel compression spring 184.
- the other end of the spring 184 sits on the plate 196.
- the spring is held in compression such that plate 196 and the flange 12 press all the shut off valves 160 to the closed position. It will be appreciated that the compressive force of the spring 184 needs to exceed the bias of the shut off valves 160.
- the compression members are the interface between the printer and the printhead cartridge.
- the compression member 18 advances onto the spouts 12 to form a connection with the second conduits 14 and the ink supply.
- the compression member 18 advances towards the ink manifold 148, it pushes on the abutment surface 188 to further compress the spring 184 and draw the flange 182 away from the shut off valves 160.
- the tolerances for the engagement of the compression member 18 and the ink manifold 148 are much higher than the tolerances on the operation of the shut off valves 160.
- the flange 182 completely disengages from the shut off valve 160 so any variation in the travel of the compression member 18 is isolated from the shut off valves 160.
- Shut off valves are normally biased closed to provide a fluid seal as soon as the fluid coupling is disconnected.
- the ink manifold according to this invention achieves the same shut off action with valves that are biased open such that they can operate independent of the closing actuator.
Landscapes
- Ink Jet (AREA)
Description
- The present invention relates to fluidic couplings and in particular, ink couplings within inkjet printers.
- The Applicant has developed a wide range of printers that employ pagewidth printheads instead of traditional scanning printheads. Pagewidth designs increase print speeds as the printhead does not traverse back and forth across the page to deposit a line of an image. The pagewidth printhead simply deposits the ink on the media as it moves past at high speeds. Such printheads have made it possible to perform full colour 1600dpi printing at speeds in the vicinity of 60 pages per minute, speeds previously unattainable with conventional inkjet printers.
- The high print speeds require a large ink supply flow rate. Not only are the flow rates higher but distributing the ink along the entire length of a pagewidth printhead is more complex than feeding ink to a relatively small reciprocating printhead.
- Some of the Applicant's printers provide the printhead as a user removable cartridge. This recognizes that individual ink ejection nozzles may fail over time and eventually there are enough dead nozzles to cause artifacts in the printed image. Allowing the user to replace the printhead maintains the print quality without requiring the entire printer to be replaced. It also permits the user to substitute a different printhead for different print jobs. A draft quality printhead can be installed for some low resolution documents printed at high speed, and subsequently removed and replaced with the original high resolution printhead.
- A number of the Applicant's printhead cartridges do not have an inbuilt ink supply for the printhead. These printhead cartridges need to be fluidically coupled to the ink supply upon installation. The supply flowrate to the pagewidth printhead is too high for needle valves because of the narrow internal diameter. This requires the coupling conduits to be relatively large and therefore residual ink leaks freely out of the conduits once decoupled from the supply. This is typically not an issue for needle valve couplings because-the surface tension at the open end of a small conduit will usually prevent leakage.
- In pagewidth printhead cartridges, the leakage problem is exacerbated by the length of the ink flow paths. If the cartridge is held vertically during removal (or even held with one end slightly raised), the residual ink in the cartridge generates hydrostatic pressure at the lower end. This pressure is a strong driver for leakage and as discussed above, the large conduits provide little resistance.
- Shut off valves that close upon disengagement of a fluid coupling are known and used in many devices. Unfortunately, these are unsuitable for the specific requirements of a consumable component such as an ink jet cartridge. Firstly, the ink should not contact any metal components. Reaction between the ink and metal can create artifacts in the print. Secondly, coupling the cartridge to the printer involves relatively high tolerances so that installation is fast and simple. The operation of an ink valve has much smaller tolerances to keep ink flow characteristics within specification. Coupling the printer and the cartridge in a way that also actuates the valve should not require the coupling tolerance to be reduced to that of the valve. Finally, the unit cost of consumables needs to be as low as possible. This requires design simplicity and low production costs.
-
US 1055 520 discloses an ink manifold. - Accordingly, the present teaching provides an ink manifold in accordance with claim 1. Advantageous features are defined in the dependent claims.
- Preferred embodiment of the invention will now be described by way of example only, with reference to the accompanying drawings, in which:
-
Figure 1 is a schematic section view of a fluid coupling with the first and second conduits disengaged; -
Figure 2 is a schematic section view of a fluid coupling with the first and second conduits engaged; -
Figures 3 and4 are diagrammatic sketches of the fluid coupling being used to connect a printhead cartridge and an inkjet printer; -
Figure 5 is a section view of the fluid coupling being used to connect a printhead cartridge and a print engine; -
Figure 6 is a perspective view of the print engine with the printhead cartridge; -
Figure 7 is a perspective of the printhead cartridge; -
Figure 8 shows the printhead cartridge ofFig. 7 with the protective cover removed;' -
Figure 10 is a section view of the print engine and printhead cartridge through the fluid coupling; -
Figure 11 is an elevation of another embodiment of the ink manifold for the printhead cartridge with the shut off valve actuator removed for clarity; -
Figure 12 is Section 12-12 shown inFigure 11 ; -
Figure 13 is a rear elevation of the ink manifold shown inFigure 11 ; -
Figure 14 is a cross section of one of the shut off valves used in the ink manifold ofFigure 11 ; -
Figure 15 is a perspective of the ink manifold ofFigure 13 ; -
Figure 16 is an exploded perspective of the ink manifold ofFigure 13 ; -
Figure 17 is an elevation of the ink manifold with the shut off valve actuator; -
Figure 18 is Section 18-18 shown inFigure 17 ; and, -
Figure 19 is an exploded perspective of the ink manifold together with shut off valve actuator. - The invention will be described with specific reference to a fluid coupling between an inkjet print engine and its corresponding printhead cartridge. However, the ordinary worker will appreciate that the invention is equally applicable to other arrangements requiring a detachable fluid connection.
- In
Figure 1 , thefluid coupling 10 is shown with thefirst conduit 12 disengaged from thesecond conduit 14. Thefirst conduit 12 leads to the pagewidth printhead of the removable printhead cartridge (described below). Thesecond conduit 14 is connected to the ink supply (not shown) and sized such that it can telescopically engage thefirst conduit 12 with a sliding fit. The ink is retained by the shut offvalve 30 biased againstvalve seat 34 by theresilient struts 32. Thesecond conduit 14 defines aseal seat 35 for theannular seal 16. Theannular seal 16 is retained in theseal seat 35 by thecompression member 18. In the disengaged position shown inFigure 1 , theannular seal 16 is not compressed by thecompression member 18 such that theinner surface 36 of the seal remains flat. When flat, theinner surface 36 does not to interfere with the sliding fit between the first and second conduits (12 and 14). - An
input arm 20 is hinged tocompression member 18. Acompression lever 22 is fixed at an angle to theinput arm 20. Theinput arm 20 and thecompression lever 22 are part of a lever system described in greater detail below with reference toFigures 3 and4 . The lever system is an engagement mechanism that the user actuates to advance thesecond conduit 14 andcompression member 18 onto thefirst conduit 12. As theinput arm 20 rotates, it pushes on thehinge 24 which in turn moves thecompression member 18 together with thesecond conduit 14. - As best shown. in
Figure 2 , thecompression member 18 and thesecond conduit 14 advances until theinput arm 20 is parallel to the direction of travel. Continued rotation of theinput arm 20 brings thecompression lever 22 into contact with the rear 26 of thesecond conduit 14. Thecompression lever 22 is carefully dimensioned to keep thesecond conduit 14 stationary relative to thefirst conduit 12 as theinput arm 20 retracts thecompression member 18 by pulling on thehinge 24. Thecompression member 18 compresses theannular seal 16 to force the flatinner surface 36 to bulge and form a fluid tight seal against the outside of thefirst conduit 12. -
Figure 2 also shows thefirst conduit 12 engaging the shut offvalve 30 to open fluid communication between the ink supply and the printhead. The resilient struts 32 buckle with little resistance upon engagement with the end of thefirst conduit 12.Apertures 28 allow ink to flow around thevalve member 30 and into thefirst conduit 12. - When the fluid coupling disengages, the
input arm 20 is rotated in the opposite direction to simultaneously decompress theannular seal 16 and retract thesecond conduit 14 from thefirst conduit 12. This coupling is configured establish a sealed fluid connection with the first conduit subjected to little or no insertion force. In light of this the structure that the supports the first conduit is not overly flexed or bowed. This protects any components that are not robust enough to withstand structural deformation. - In
Figures 3 and4 , thefluid coupling 10 is used to provide a detachable connection between thecartridge 38 and theprinter 42. Referring toFigure 3 , thecartridge 38 is seated in theprinter 42 such that thefirst conduits 12 face the compression member 18 (which covers the second conduits). Thelatch 40 is lifted to allow the cartridge to be installed. Anactuator arm 56 is fixed relative to thelatch 40 and rotates therewith about thehinge 50. The distal end of theactuator arm 56 is hinged to theinput arm 20. When the latch is raised for cartridge installation or removal, theinput arm 20 is likewise raised, which retracts thecompression member 18 away from thefirst conduit 12. With the input arm in the raised and retracted position, thecompression lever 22 is disengaged from the back of the second conduit (see 14 and 26 ofFig 2 ). As discussed above, the annular seal is not compressed in the disengaged position so as not to interfere with the sliding fit with the first conduit. - Referring to
Figure 4 , thefluid coupling 10 is engaged by simply lowering thelatch 40 onto thecartridge 38 until the complementary snap-lock formations Actuator arm 56 rotates theinput arm 20 and advances thecompression member 18 towards thefirst conduit 12. Thefirst conduit 12 telescopically engages the second conduit with a loose sliding fit until theactuator arm 56 and theinput arm 20 are parallel to the direction of travel. When the second conduit is at its maximum engagement with the first conduit, the shut off valve is opened and thecartridge 38 is in fluid communication withink tank 44 via theflexible tubing 52. - When the compression member is at its point of maximum travel towards the cartridge, the
compression lever 22 engages the second conduit (not shown). Thecompression lever 22 is dimensioned to hold the second conduit stationary relative to the first conduit as theinput arm 20 continues to rotate and draw thecompression member 18 back to compress the seal and establish the fluid seal (seeFig. 2 ). -
Figure 5 shows aprinthead cartridge 38 installed in aprint engine 3. Theprint engine 3 is the mechanical heart of a printer which can have many different external casing shapes, ink tank locations and capacities, as well as different media feed and collection trays. Theprinthead cartridge 38 is inserted and removed by the user lifting and lowering thelatch 40. Theprint engine 3 forms an electrical connection with contacts on theprinthead cartridge 38 andfluid couplings 10 are formed at the inlet and outlet manifolds, 148 and 150 respectively. -
Figure 6 shows theprint engine 3 with the printhead cartridge removed to reveal theapertures 120 in each of thecompression members 18. Eachaperture 120 receives one of thespouts 12 on the inlet and outlet manifolds (seeFig. 9 ). The spouts correspond to thefirst conduits 12 of the schematic representations ofFigures 1-4 . As discussed above, the ink tanks, media feed and collection trays have an arbitrary position and configuration depending on the design of the printer's outer casing. -
Figure 7 is a perspective of thecomplete.printhead cartridge 38. Theprinthead cartridge 38 has atop molding 144 and a removableprotective cover 142. Thetop molding 144 has a central web for structural stiffness and to provide grip texturedsurfaces 158 for manipulating the cartridge during insertion and removal. The base portion of theprotective cover 142 protects the printhead ICs (not shown) and line of contacts (not shown) prior to installation in the printer.Caps 156 are integrally formed with the base portion to cover the inlet and outlet spouts (see 12 ofFig. 9 ). -
Figure 8 shows thecartridge 38 with itsprotective cover 142 removed to expose the printhead ICs (seeFig. 10 ) on the bottom surface and the line ofcontacts 133 on the side surface. The protective cover is discarded to the recycling waste or fitted to the printhead cartridge being replaced to contain leakage from residual ink.Figure 9 is a partially exploded perspective of thecartridge 38 without the protective cover. Thetop cover 144 has been removed reveal theinlet manifold 148 and theoutlet manifold 150. The inlet and outlet shrouds 146 and 147 have been removed to expose the five inlet and outlet spouts 12. The inlet and outlet manifolds 148 and 150 feed ink to theirrespective connectors 60 which lead to the molded liquid crystal polymer (LCP)channels 4 that supply the printhead ICs 31 (seeFig. 10 ). A detailed description of the fluid flows through thecartridge 38, and the printhead assembly within it, is provided by co-pendingUSSN 12014768 -
Figure 10 is a section view through afluid coupling 10 of theprint engine 3 with thecartridge 38 installed. The components corresponding to the elements of the schematic representations ofFigures 1-4 have been identified using the same reference numerals. For context, thepaper path 5 is shown extending through theprint engine 3 and past theprinthead ICs 31. - The coupling is shown forming a sealed fluid connection between one of the
spouts 12 and the one of thesecond conduits 14. It will be appreciated that the coupling at the inlet and outlet manifolds are identical with the exception that the ink flows from thesecond conduit 14 to thespout 12 at the inlet manifold and in the opposing direction at the outlet manifold. For the purposes of this description, the coupling will be described at the inlet manifold. Accordingly,flexible tubing 52 feeds ink from an ink tank (not shown) to thesecond conduit 14. The shut offvalve 30 in thesecond conduit 14 is being held open by the end of thespout 12. The ink flows into thespout 12 and down to theLCP channel molding 4 where it is distributed to theprinthead ICs 31. - The
coupling 10 is actuated by theactuator arm 56 hinged to theprint engine chassis 42 atshaft 50. As discussed above the latch 40 (not shown inFig. 10 ) also extends from theshaft 50 for fixed rotation with theactuator arm 56. Theactuator arm 56 rotates theinput arm 20 to push thecompression member 18, and in turn thesecond conduit 14 into telescopic engagement with thespout 12. Upon further rotation, thecompression lever 22 engages the rear 26 of thesecond conduit 14. Theinput arm 20 draws back on thehinge connection 24 which in turn pulls on thecentral rod 58 extending to the middle of thecompression member 18. Theresilient seal 16 is compressed and bulges to form a fluid tight seal against the outer surface of thespout 12. It will be appreciated that thecompression member 18 compresses all theannular seals 16 for each of the input spouts 12 simultaneously. Using acentral rod 58 attached to the middle of thecompression member 18 ensures that the compressive force on each annular seal is uniform. Furthermore, as thelatch 40 is the longest lever of the lever system, the force that the user needs to apply is conveniently weak. - When the
printhead cartridge 38 is to be replaced, the latch (not shown) is lifted off the cartridge to automatically rotate theactuator arm 56 upwards, thereby lifting and retracting theinput arm 20. Theannular seal 16 is released when thecompression lever 22 swings out of engagement with thesurface 26. The second conduits and the correspondingspouts 12 now have a loose sliding fit and slide easily away from each other. With thecompression member 18 and thespouts 12 completely disengaged, the user simply lifts thecartridge 38 out of theprint engine 3. -
Figures 11 to 19 show another embodiment of theink manifolds inlet manifold 148 be described. However, the description is equally applicable to theoutlet manifold 150 with the exception that the ink flow direction is opposite and theoutlet manifold 150 couples to the sump instead of the ink supply. - As discussed in the Background of the Invention, the internal diameter of the
spouts 12 is relatively wide (approximately 2mm) to provide the flow rate necessary for the high ink consumption of a pagewidth printhead. However, this causes high levels of ink leakage when the printhead cartridge is removed from the printer, particularly when one end is raised and hydrostatic pressure drives the ink flow from the lower end. To avoid this, the ink manifold shown inFigure 11 to 19 has shut off valves for each of thespouts 12. - Referring to
Figures 11 and 12 , thespouts 12 extend from the front of thepolymer channel molding 152. Thespouts 12 and theconnectors 60 are positioned in the same locations as the inlet and outlet manifolds 148 and 150 described in the previous embodiment. However, thespouts 12 each lead to anopening 162 and a shut offvalve 160. The shut offvalve 160 is a dish-shaped rubber molding best shown in the partial enlarged section view ofFigure 14 . Acentral sealing cap 164 is shaped to seal the periphery of theopening 162. An integrally moldedcollapsible section 166 mounts to thechannel molding 152 and supports the sealingcap 164 over theopening 162. The shut off valve is an FKM synthetic rubber molding with a set of compression characteristics that ensure it will consistently return to its original shape after compression. - In
Figure 12 , the shut off valve is shown in its uncompressed state whereby the sealing cap is spaced from theopening 162 and the valve is open. Hence the shut offvalve 160 is biased to the open position.Figure 14 shows the shut offvalve 160 in its compressed state. The valve actuator that applies the compressive force to the shut offvalve 160 has been omitted in the interests of clarity. Pressure from the actuator on the sealingcap 164 elastically deforms the thincollapsible section 166 that forms an annular skirt around the cap. The sealingcap 164 form a fluid seal at theopening 162 to close the valve. The sealingcap 164 is held in the closed position by the actuator, against the bias ofcollapsible section 166. - The rear of the
channel molding 152 is sealed by apolypropylene film foil 168. This is a highly cost effective and simple method of providing a reliable fluid seal around thechannels 176 and thevalve chambers 178 formed by thechannel molding 152. To accommodate the movement of the shut offvalves 160, dome-shapedplastic deformations 172 are pressed into the sealingfilm 168. Thedeformations 172 extend inwardly, out of the plane of the sealingfilm 168 when the actuator 190 (seeFigure 17 ) is compressing the shut offvalves 160. When theactuator 190 releases the shut offvalves 160, thedeformations 172 can invert outwardly such that the sealingfilm 168 does not impede the opening of the valve. Furthermore, theplastic deformations 172 ensure that the actuator or the shut off valves do not create excessive tension in thefilm 168 that can compromise the fluid seal. -
Figure 16 is an exploded view of the perspective shown inFigure 15 . With the sealingfilm 168 and the shut offvalves 160 removed, the features of thevalve chambers 178. Theopenings 162 extend into thechambers 178 for contact with the sealingcap 164. The sealingcap 164 and thecollapsible section 166 are held in position by a series ofribs 180. Theribs 180 also create gaps between the shut offvalve 160 and the side walls of thechamber 178 to provide a flow path for the ink. - Each of the
valve chambers 178 feeds one of thechannels 176 respectively. Thechannels 176 lead to theconnector 60 which in turn feeds the LCP channels 4 (seeFigure 10 ). Thechannel 176 connects to the correspondingvalve chamber 178 at its most elevated point. This avoids the top of the chamber becoming a bubble trap as the manifold primes with ink. -
Figure 17, 18 and19 illustrate the structure and function of thevalve actuator 190. Apolymer flange body 174 extends through acentral aperture 170 in thechannel molding 152 and thesealing film 168. Anabutment face 188 extends proud of the front face of thechannel molding 152.Flange 182 sits on the exterior of the sealingfilm 186 on the rear face of thechannel molding 152. Ametal plate 196 reinforces the back of theflange 182. The sealingfilm 168 is protected from any sharp burrs on theplate 196 by theflange 182. - A
metal spring cage 186 fits over theabutment face 188 and seats against the front face of thechannel molding 152. Themetal spring cage 186 has a pair ofarms 194 that extend through thecentral aperture 170, theholes 192 in theflange 182 and themetal plate 196. Thearms 194 hook over one end of asteel compression spring 184. The other end of thespring 184 sits on theplate 196. The spring is held in compression such thatplate 196 and theflange 12 press all the shut offvalves 160 to the closed position. It will be appreciated that the compressive force of thespring 184 needs to exceed the bias of the shut offvalves 160. - As discussed above, the compression members are the interface between the printer and the printhead cartridge. Referring back to
Figures 3 and4 , thecompression member 18 advances onto thespouts 12 to form a connection with thesecond conduits 14 and the ink supply. As thecompression member 18 advances towards theink manifold 148, it pushes on theabutment surface 188 to further compress thespring 184 and draw theflange 182 away from the shut offvalves 160. The tolerances for the engagement of thecompression member 18 and theink manifold 148 are much higher than the tolerances on the operation of the shut offvalves 160. However, theflange 182 completely disengages from the shut offvalve 160 so any variation in the travel of thecompression member 18 is isolated from the shut offvalves 160. Shut off valves are normally biased closed to provide a fluid seal as soon as the fluid coupling is disconnected. However, the ink manifold according to this invention achieves the same shut off action with valves that are biased open such that they can operate independent of the closing actuator. - The above embodiments are purely illustrative and not restrictive or limiting on the scope of the invention. The skilled worker will readily recognize many variations and modifications which do not depart from the scope of the invention as claimed.
Claims (4)
- An ink manifold (148) defining multiple fluid flow paths, the ink manifold comprising:a channel molding (152) defining a plurality of openings (162) arranged about a central aperture (170);a plurality of shut off valves (160), each shut off valve being positioned at a respective opening, each individual shut off valve being biased towards an open position;an actuator (190) for biasing each of the shut off valves (160) towards a closed position, the actuator comprising:a flange body (174) projecting through the central aperture (170), the flange body having an abutment face (188);a flange (182) engaging each of the shut off valves; anda resilient element (184) for biasing the flange (182) against the plurality of shut off valves (160), the bias of the resilient element being greater than a combined bias exerted by the shut off valves (160),wherein, during use, the actuator holds all the shut off valves closed when in the closed position, and the actuator is movable to an open position by pushing on the abutment face (188) to draw the flange (182) away from the shut off valves (160).
- An ink manifold according to claim 1, wherein the shut off valves are each resilient caps (164) fitted to the respective peripheries of each of the openings (162) by an integrally molded collapsible section (166), the collapsible section biasing each resilient cap away from the respective opening.
- A printhead cartridge (38) comprising the ink manifold according to claim 1
- A printhead cartridge according to claim 3 having two of the ink manifolds, one being an inlet manifold (148) and the other being an outlet manifold (150).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AU2008/001875 WO2010068963A1 (en) | 2008-12-19 | 2008-12-19 | Ink manifold with multiple conduit shut off valve |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2367689A1 EP2367689A1 (en) | 2011-09-28 |
EP2367689A4 EP2367689A4 (en) | 2013-04-24 |
EP2367689B1 true EP2367689B1 (en) | 2015-09-16 |
Family
ID=42268155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08878823.7A Not-in-force EP2367689B1 (en) | 2008-12-19 | 2008-12-19 | Ink manifold with multiple conduit shut off valve |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2367689B1 (en) |
AU (1) | AU2008365367B2 (en) |
CA (1) | CA2742314C (en) |
WO (1) | WO2010068963A1 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57115353A (en) * | 1981-01-09 | 1982-07-17 | Ricoh Co Ltd | Solenoid valve for ink jet |
US4591875A (en) * | 1985-04-12 | 1986-05-27 | Eastman Kodak Company | Ink cartridge and cooperative continuous ink jet printing apparatus |
JPS6228577A (en) * | 1985-07-30 | 1987-02-06 | Canon Inc | Check valve |
JPH10235890A (en) * | 1996-06-25 | 1998-09-08 | Seiko Epson Corp | Ink cartridge |
US6305793B1 (en) * | 1998-01-23 | 2001-10-23 | Hewlett-Packard Company | Diaphragm pump having an integral pressure plate |
WO1999041083A1 (en) * | 1998-02-13 | 1999-08-19 | Seiko Epson Corporation | Ink jet recorder, sub-tank unit suitable therefor, and method of recovering ink droplet discharging capability |
US6041805A (en) * | 1998-07-07 | 2000-03-28 | Imation Corp. | Valve assembly for a removable ink cartridge |
US7334888B2 (en) * | 2003-11-25 | 2008-02-26 | Brother Kogyo Kabushiki Kaisha | Ink cartridge |
US7448734B2 (en) * | 2004-01-21 | 2008-11-11 | Silverbrook Research Pty Ltd | Inkjet printer cartridge with pagewidth printhead |
US7357496B2 (en) * | 2005-12-05 | 2008-04-15 | Silverbrook Research Pty Ltd | Inkjet printhead assembly with resilient ink connectors |
EP1991422B1 (en) * | 2006-03-03 | 2012-06-27 | Silverbrook Research Pty. Ltd | Pulse damped fluidic architecture |
JP5288743B2 (en) * | 2006-08-23 | 2013-09-11 | キヤノン株式会社 | Ink tank and ink jet recording apparatus |
US7780278B2 (en) * | 2007-03-21 | 2010-08-24 | Silverbrook Research Pty Ltd | Ink coupling for inkjet printer with cartridge |
-
2008
- 2008-12-19 WO PCT/AU2008/001875 patent/WO2010068963A1/en active Application Filing
- 2008-12-19 CA CA2742314A patent/CA2742314C/en active Active
- 2008-12-19 EP EP08878823.7A patent/EP2367689B1/en not_active Not-in-force
- 2008-12-19 AU AU2008365367A patent/AU2008365367B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU2008365367B2 (en) | 2011-12-22 |
CA2742314A1 (en) | 2010-06-24 |
WO2010068963A1 (en) | 2010-06-24 |
CA2742314C (en) | 2013-10-22 |
EP2367689A1 (en) | 2011-09-28 |
AU2008365367A1 (en) | 2010-06-24 |
EP2367689A4 (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8444257B2 (en) | Printhead cartridge for releasable mounting in a printer | |
AU2005252099B2 (en) | Ink tank, printing head and inkjet printing apparatus | |
US7854499B2 (en) | Liquid housing container | |
WO2006068313A1 (en) | Ink tank and ink jet recording apparatus | |
US20070252864A1 (en) | Ink-Jet Recording Apparatus | |
JP4047258B2 (en) | Liquid supply system | |
EP2367689B1 (en) | Ink manifold with multiple conduit shut off valve | |
US8113638B2 (en) | Fluid coupling | |
US20060132559A1 (en) | Liquid distribution unit, ink-jet recording apparatus and image forming apparatus | |
EP2237958B1 (en) | Low insertion force fluid coupling | |
US20150224781A1 (en) | Cartridge ejector for page-wide, micro-fluid ejection heads | |
TWI468305B (en) | Ink manifold with multiple conduit shut off valve | |
US20090179967A1 (en) | Multiple conduit fluid coupling with leakage flow control | |
KR100832590B1 (en) | Ink tank, printing head and inkjet printing apparatus | |
EP2237965B1 (en) | Multiple conduit fluid coupling with leakage flow control | |
JP2005153523A (en) | Ink supply system | |
JP2005280072A (en) | Ink supply system, fluid communication structure, ink tank, and ink jet recording head and recorder employing fluid communication structure | |
JP2003211703A (en) | Ink cartridge and ink-jet recording apparatus | |
JP2013202888A (en) | Liquid droplet ejection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110511 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20130322 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41J 2/175 20060101AFI20130318BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZAMTEC LIMITED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZAMTEC LIMITED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MEMJET TECHNOLOLGY LIMITED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MEMJET TECHNOLOGY LIMITED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150428 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 749485 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008040246 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151217 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 749485 Country of ref document: AT Kind code of ref document: T Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160116 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160118 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008040246 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20160617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081219 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20201227 Year of fee payment: 13 Ref country code: IE Payment date: 20201228 Year of fee payment: 13 Ref country code: GB Payment date: 20201228 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201229 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008040246 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |