EP2366831B1 - Method for controlling the process of applying a layer of road paving material and paver - Google Patents

Method for controlling the process of applying a layer of road paving material and paver Download PDF

Info

Publication number
EP2366831B1
EP2366831B1 EP10002897.6A EP10002897A EP2366831B1 EP 2366831 B1 EP2366831 B1 EP 2366831B1 EP 10002897 A EP10002897 A EP 10002897A EP 2366831 B1 EP2366831 B1 EP 2366831B1
Authority
EP
European Patent Office
Prior art keywords
control system
tamper
actuating
screed
paver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10002897.6A
Other languages
German (de)
French (fr)
Other versions
EP2366831A1 (en
Inventor
Martin Dipl.-Ing. Buschmann
Ralf Weiser
Achim Eul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP10002897.6A priority Critical patent/EP2366831B1/en
Priority to PL10002897T priority patent/PL2366831T3/en
Priority to JP2011055070A priority patent/JP5820133B2/en
Priority to US13/048,093 priority patent/US8454266B2/en
Priority to CN201110065946.2A priority patent/CN102304887B/en
Publication of EP2366831A1 publication Critical patent/EP2366831A1/en
Application granted granted Critical
Publication of EP2366831B1 publication Critical patent/EP2366831B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4833Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with tamping or vibrating means for consolidating or finishing, e.g. immersed vibrators, with or without non-vibratory or non-percussive pressing or smoothing means
    • E01C19/4853Apparatus designed for railless operation, e.g. crawler-mounted, provided with portable trackway arrangements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/002Apparatus for preparing and placing the materials and for consolidating or finishing the paving

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a road finisher according to the preamble of patent claim 7.
  • a known automatic tamper control system can be the tamper frequency or the number of strokes of the tamper strip per unit of the traveled route adjust or adjust automatically depending on changes in the installation speed.
  • the tamper stroke is not changed.
  • the tamper frequency has a relatively small influence on the precompression result.
  • leveling systems or even automatic leveling systems for road pavers are known, which typically contain closed control loops and control the leveling cylinders of the paver.
  • At least one sensor samples a reference and provides a reading that is compared to a setpoint in the system.
  • the setpoint is input by an operator.
  • the system then generates a control signal for the leveling cylinders.
  • the lining thickness is controlled, taking into account other significant machine parameters for the lining thickness, such as the tamper stroke, the tamper frequency and the installation speed.
  • machine parameters must be optimally selected and implemented by the operator.
  • the machine parameters are not process objectives, which means that the operator can not set what he wants to achieve, namely a certain amount of lining.
  • the operator controls the machine, so to speak, in order to finally achieve the desired result. Direct process control is not possible with this method.
  • the invention has for its object to provide a method of the type mentioned above and a paver for performing the method, which make it possible to control the installation process directly, without burdening operators with impractical high responsibility of selecting right machine parameters.
  • the installation process is controlled directly and largely automatically, because the control system knows and takes into account all relevant process target values, and above all takes into account the angle of attack of the screed as an additional control variable, to regulate the lining thickness to the target value and also to optimize the operating point of the precompression system so that the target lining thickness is achieved with optimum pre-compaction, optimum flatness and optimum structure of the lining with minimal wear of the working components and with minimal energy consumption.
  • the angle of attack as here continuously recorded and taken into account control variable is processable as a relevant indicator of the operating state of the precompression system by the control system to avoid in the process control that too low or too steep angle of incidence arises, the achieved compaction, flatness and structure negative would affect.
  • the control system processes the information about the actual installation speed and the actual angle of attack of the screed so that the manipulated variables are generated and converted with respect to the setpoint of the lining thickness, wherein the actual angle of attack is kept largely at the preselected desired angle of attack.
  • An actuator for the tamper stroke generated via an eccentric drive is a remote-controlled transmission for adjusting the eccentricity according to the method during the installation process, which is causally responsible for the size of the tamper stroke.
  • the gear can be adjusted mechanically, hydraulically or electrically.
  • the paver can be performed with greater comfort and without basic knowledge of the context of different installation parameters by a relatively untrained operator with high comfort for the installation process, which is controlled by the direct process control, the layer thickness to setpoint while the operating point of the precompression system is optimized.
  • An actuator for the tamper stroke generated via an eccentric drive is a remote-controlled transmission for adjusting the eccentricity according to the method during the installation process, which is causally responsible for the size of the tamper stroke.
  • the gear can be adjusted mechanically, hydraulically or electrically.
  • control signals are generated at least for the tamper or tamper frequency, or even for the tamper and tamper frequency by the control system in the process control, which are then implemented by the corresponding actuators so that even taking into account the angle of attack as a control variable of the tamper
  • the main contribution is to achieve the right thickness evenly with optimum precompression, flatness and structure of the lining.
  • actuating signals for actuators of the leveling cylinder and / or the lifting cylinder are generated and implemented to assist the Vorverdichtungssystem by adjusting the height of the articulation points of the traction arms and / or by an over the lifting cylinder relief of the screed for example, while maintaining the target value of the pitch ,
  • the detected actual installation speed is transmitted as manipulated variable information for processing to the control system.
  • a change in the installation speed causes an automatic change of the control signals for the actuators in order to keep both substantially constant, namely the lining thickness and the angle of attack.
  • the installation speed is selected or preselected by an operator and the actual installation speed is transmitted as disturbance information for processing to the control system.
  • the installation speed is made available to the control system for processing in this case, it can be freely selected by an operator. This is important because the installation speed should be chosen in practice so that the desired performance (mass flow rate of paving material, area performance) is tuned to the particular circumstances or specific requirements. Therefore, it is expedient, in spite of the automatic control or control of the installation process, to offer the operator an influence, at least with regard to the installation speed.
  • control system generates an installation speed recommendation in the form of a speed value or speed range for the operator during direct process control, which the operator can implement or implement with regard to optimum performance during the installation process.
  • At least some or all of the acquired information for direct process control in the control system can be processed as control variables in order to generate at least the control signals for the tamper stroke or the tamper frequency or the tamper stroke and the tamper frequency. Flanking can also be generated and implemented control signals for the leveling cylinder or the lifting cylinder to make the process control essentially only by the control system and to relieve the operator.
  • actuators are connected to the control system at least for setting the tamper stroke or the tamper stroke and the tamper frequency based on control signals generated by the control system.
  • control elements for adjusting the leveling cylinder and / or the lifting cylinder based on the control system generated control signals may be useful in another embodiment, in addition to connect control elements for adjusting the leveling cylinder and / or the lifting cylinder based on the control system generated control signals to avoid unwanted changes in the angle of attack or with the control system counteract this immediately.
  • the control system either comprises at least one, preferably a plurality of, in-line, gain controllers, for example three size controllers, one of which is e.g. one tames the tamper frequency in consideration of the installation speed, another regulates the tamper stroke taking into account the angle of attack, and another actuates the leveling cylinder taking into account the lining thickness, or at least one multi-variable controller which, for example, processes a plurality of control variables and generates a plurality of actuating signals.
  • the multivariable controller processes the control variables paving speed and angle of attack and generates the control signals for changing the tamper frequency and the tamper stroke.
  • the in-feed controller processes the information on the pad thickness and, if necessary, generates actuating signals for the leveling cylinders and / or the lifting cylinders.
  • control system is equipped with a display in which, inter alia, a built-speed recommendation for an operator can be displayed, for example if the control system learns self-learning that the installation speed is too high or too low or due to a change in a control variable of a change requirement.
  • control system at least one predetermined characteristic or a characteristic field and / or a characteristic curve or characteristic diagram control for manipulated variables to be correlated with one another.
  • An actuator for the tamper frequency generated by a hydraulic drive may be a solenoid-operated valve, preferably even a proportional flow control valve, to adjust the tamper frequency above the speed generated by the hydraulic drive.
  • An actuator for the angle of attack of the screed may be at least one solenoid-operated valve for the leveling cylinder, wherein the current actual position of the leveling cylinder can be fed back to the control system.
  • An actuator, preferably for setting a particular plank relief, may be a solenoid operated valve for the hydraulic lift cylinders.
  • the direct process control can also take into account to vary at least the Tamperhub or the Tamperhub and the tamper frequency over the pave width of the screed at a transverse to the working direction pad thickness to produce the same compaction also transverse to the working direction.
  • Fig. 1 shows a self-propelled road paver 1 when performing a mounting process, ie, when installing a covering 6 bituminous or concrete-5 on a planum 7 with a covering thickness S and a mounting speed V relative to the planum 7, wherein the covering 6, at least by a precompression 13th a screed 3 pre-compressed and just installed.
  • the core of the paver 1 is a computerized, either fully automatic or user-assisted control system 25, for example, in a control panel P on a cab and / or in an outside steering position P 'on the screed 3.
  • the control system 25 is used by an operator so that the operator Directly control installation process, and essentially does not need to select any installation parameters themselves and / or need to change during installation.
  • a bunker 4 is arranged frontally, from which a non-highlighted longitudinal conveyor system 5 deposits behind the chassis 2 on the subgrade 7, where it is distributed by a transverse distribution before the screed 3 from the pavement 6 is installed.
  • the screed 3 is mounted on Switzerlandholmen 8, which are hinged to articulation points 9 on the chassis 2 so that the screed 3 is floating on the paving material 5 is dragged.
  • the articulation points 9 are height-adjustable with leveling cylinders, for example via actuators 10 '(hydraulic valves or the like) and influence an angle of attack ⁇ of the screed 3.
  • the angle of attack ⁇ should be positive but with an optimal size, i.
  • 2 lifting cylinders 28 are hinged to the chassis, which act on the Switzerlandholmen 8 and serve, for example, for transporting the screed 3 excavated position, or make a plank relief during installation or optionally to increase the contact pressure of the screed 3.
  • the screed 3 comprises, for example, a base screed 11 and extending screeds 12, each with a precompression system 13, for example at least one tamper 14, and optionally a vibration device, not shown, for a bottom screed 18.
  • the screed 3 can also be used with a high compression device, not shown be equipped.
  • the tamper 14 is (see Fig. 2 ) For example, by means of an eccentric drive with selectable stroke H and selectable frequency F operable.
  • the outside steering position P 'on the screed 3 may have a similar equipment as the control panel P.
  • a speed selector 26 is provided for setting the installation speed V.
  • the speed selector 26 can be adjusted by an actuator, not shown, if necessary, also from the control system 25 to change the installation speed V.
  • the actual installation speed V is detected by at least one symbolically indicated sensor 31 and transmitted to the control system 25.
  • the sensor 31 may be placed in the paver, for example in the control panel P or in a traction drive or scan a reference on the planum 7.
  • an input section 27 may be provided for inputting and / or displaying parameters.
  • the lifting cylinders 28 is at least one actuator 28 ', for example, a solenoid-operated hydraulic valve assigned.
  • at least one sensor 30 can be provided as equipment of the road paver 1, which picks up the temperature, density or consistency of the built-in material, for example immediately before the screed 3, and optionally transmitted as information to the control system 25. This installation parameter could alternatively be entered by the operator.
  • at the screed 3 at least one sensor 29 is provided, which detects the angle of attack ⁇ of the screed 3, for example relative to the planum 7. This sensor 29 could tapping the angle ⁇ also at the Switzerlandholmen. It could be provided over the mounting width several sensors 29.
  • a sensor 37 may be provided for picking up the lining thickness S, which scans, for example, the plane 7 or a reference line, not shown.
  • Actuators for setting the Tamperhubes H and the tamper frequency F are also provided in the paver 1 or the screed 3 to implement generated by the control system 25 control signals.
  • Fig. 2 shows Fig. 2 a partially exposed portion of the screed 3 with the precompression system 13 and the tamper 14.
  • the tamper 14 may be shielded at the front of the screed 3 by a cover 19 and between the cover 19 and the front edge of the Glättbleches 18 substantially vertically movably guided.
  • a bearing block 16 On a lower side of the screed plate 18 supporting frame 17, a bearing block 16 is mounted, the relative altitude is adjustable for example by means of an adjusting screw 20, such that the tamper 14 has a certain relative position to the screed plate 18 at the bottom dead center of each stroke.
  • an eccentric shaft 15 rotatably mounted, each having an eccentric portion 22 of a certain eccentricity.
  • the eccentric portion 22 engages in a connecting rod 21, which connects the eccentric shaft 15 with the tamper 14.
  • On the eccentric portion 22 is an eccentric bushing 23 via a the actuator for the tamper stroke H forming gear 24 rotatably coupled to the eccentric portion 22.
  • the gear 24 is supported on the frame 17.
  • the eccentric bush 23 is rotatably mounted in the connecting rod 21. By means of the gear 24, the eccentric bushing 23 can be relative to the eccentric section Twist 22 and couple in the set rotational position with the eccentric shaft 15.
  • the relative rotation of the eccentric bushing 23 relative to the eccentric section 22 effects an adjustment of the stroke, which the connecting rod transmits to the tamper 14.
  • the tamper stroke H is set automatically via the control system 25.
  • the eccentric shaft 15 is rotationally driven, for example, by a hydraulic motor 32.
  • the speed determines the tamper frequency F.
  • the actuator 33 for the hydraulic motor 32 may serve a solenoid-operated valve, such as a proportional flow control valve, which is acted upon by the control system 25 with control signals.
  • the representation of the transmission in Fig. 2 is only to be understood schematically, since the transmission 24 of course due to the rotation of the eccentric shaft 15 indirectly as adjusting on the eccentric shaft 15 has an effect on the eccentric bushing 23.
  • the gear 24 as an actuator for setting the Tamperhubes H different versions are conceivable, of which Fig. 2 only one non-limiting embodiment shows.
  • the control system 25 is designed to directly control the installation process and to require an operator to input only process targets such as a certain lining thickness S, for example at the input section 27, and then control the installation process without further operator intervention.
  • the paver 1 can drive at a predetermined or programmed installation speed V, where appropriate, an operator can select the installation speed V, and / and the control system 25, for example, in a non-highlighted display the operator is offered a built-speed recommendation that the control system 25, for example in In terms of the process objective or optimal performance (mass flow, area performance), and which can then be implemented by the operator.
  • the sensor 29 picks up the actual installation speed and transmits it to the control system 25 so that the process control is not interrupted by a the default deviating installation speed change is falsified.
  • the installation speed V could be taken into account as a disturbance variable, ie the installation speed V is made available to the control system 25 for processing, for example by the information provided by the at least one sensor 29 and / or by the speed selector 26, but by an operator can be chosen. This is significant because the paving speed is used to set the optimum performance of the paver during the paving process (mass flow, area performance).
  • the control system 25 regulates the lining thickness S to a predetermined desired value. Furthermore, the control system 25 optimizes the operating point of the precompression system 13 with the tamper 14 such that the desired value of the layer thickness S with optimum pre-compaction, optimal flatness and optimum structure of the coating 6 with minimal wear, for example in the precompression system 13 and minimal energy consumption is achieved.
  • This positive effect also leads the control system 25 above all by the fact that the angle of attack ⁇ of the screed is determined and processed as an additional control variable.
  • For the angle of attack ⁇ is an excellent indicator for assessing the operating state of the precompression system 13. For example, for example, too shallow as well as too steep an angle ⁇ would cause problems in the compression, the flatness and in the structure.
  • Fig. 3 to 5 show a selection of embodiments of the control system 25. This selection is not intended to be limiting.
  • the control system 25 has a controller 35, which is designed as a multi-variable controller 38, and to which a comparator section 34 is assigned.
  • the comparator section 34 receives, for example, specifications i ⁇ and i s for the angle of attack ⁇ and the lining thickness S, for example as nominal values. Dotted is indicated that the installation speed V, such as entered by an operator, can be considered here. This dashed line indicated input of the installation speed V, an operator on the basis of a generated by the control system 25 and, for example, in a display, not shown installation speed recommendation E v choose if the control system 25 should determine that the originally specified installation speed V is not appropriate.
  • the comparator section 34 also transmits the values detected by the sensors 29, 37 as information about the lining thickness S and the angle of attack ⁇ . If differences occur between the specifications and the actual values, the comparator section 34 feeds the controller 35, which also contains the actual installation speed detected by the at least one sensor 31 is supplied as information i v . From the information supplied, the controller generates 35 control signals H for the tamper stroke and / or F for the tamper frequency, and, optionally, at least one actuating signal either for the leveling cylinders 10 (the actuator 10 ') and / or the lifting cylinders 28 (actuator 28'). ). By implementing these control signals, the installation process 36 is controlled so that the desired covering thickness S is achieved and also the angle of attack ⁇ is maintained, in which case feedbacks to the comparator section 34 are indicated.
  • control system 25 is formed here with three parallel size controllers 39, 40, 41.
  • the inputs controller 39 receives, for example, from the sensor 31, the installation speed information (possibly also from the speed selector 26 or superimposed with its setting) and generates the control signal for the actuator 33 of the tamper frequency F.
  • the inputs controller 40 receives the information on the actual angle of attack ⁇ and generates the actuating signal for the actuator (gear 24) for setting the Tamperhubes H.
  • the inputs controller 41 receives the information on the lining thickness S (the setpoint or a determined from the setpoint and the actual control variable) and generates actuating signals for the actuator 10th 'and / or 28' for the leveling cylinder 10 and the lifting cylinder 28th
  • the control system 25 includes a multi-variable controller 38 and at least one inputs regulator 41.
  • the multi-variable controller 38 receives the installation speed information from the at least one sensor 31 and also the information on the angle of attack ⁇ and generates control signals for the tamper and tamper H.
  • the inputs controller 41 receives the information on the coating thickness S and generates, if appropriate, control signals, for example, for the actuators 10 ', and / or 28'.
  • the controllers in embodiments 3 to 5 may be classical PID controllers, or adaptive controllers, or fuzzy logic controllers or neural network controllers or other computerized controllers. Further, the controller or the control system may include characteristics or maps or displayed as a characteristic / map control.
  • the characteristic curves relate, for example, to manipulated variables to be correlated with each other, e.g. F or H; F and H; F or H and ⁇ , F or H and 10 ', 28', or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäß Oberbegriff des Patentanspruchs 1 sowie einen Straßenfertiger gemäß Oberbegriff des Patentanspruchs 7.The invention relates to a method according to the preamble of claim 1 and a road finisher according to the preamble of patent claim 7.

Aus DE 198 36 269 A ist ein Verfahren bekannt, bei dem die Tamperfrequenz in Abhängigkeit vom abgetasteten Anstellwinkel der Einbaubohle nach einer vorgegebenen Gesetzmäßigkeit geregelt wird. Da nur der Anstellwinkel als Einflussgröße allein berücksichtigt wird, muss der Bediener weitere Einflussgrößen nach Gefühl einstellen, d.h., der Bediener kann den Einbauprozess nicht direkt steuern, sondern muss bestimmte Maschinenparameter selbst auswählen, wobei er durch die Regelung der Tamperfrequenz in Abhängigkeit vom Anstellwinkel unterstützt wird. Es liegt am Bediener, dass er die einzugebenden Maschinenparameter so auswählt, dass er schlussendlich das gewünschte Ergebnis erzielt.Out DE 198 36 269 A a method is known in which the tamper frequency is regulated in dependence on the scanned angle of the screed according to a predetermined law. Since only the angle of attack is taken into account as the influencing variable alone, the operator must set further influencing variables according to feeling, ie the operator can not directly control the installation process, but has to select certain machine parameters himself, whereby he is supported by the control of the tamper frequency depending on the angle of attack , It is up to the operator to select the machine parameters to be entered in such a way that he ultimately achieves the desired result.

Aus DE 40 40 029 A ist ein Verfahren bekannt, bei dem die Tamperfrequenz in Abhängigkeit von der Einbaugeschwindigkeit nach einer vorgegebenen Gesetzmäßigkeit variiert wird. Weitere Maschinenparameter muss der Bediener auswählen und eingeben, so dass keine direkte Steuerung des Einbauprozesses möglich ist.Out DE 40 40 029 A a method is known in which the tamper frequency is varied in dependence on the installation speed according to a predetermined law. Further machine parameters must be selected and entered by the operator so that no direct control of the installation process is possible.

Aus EP 1 179 636 A ist ein Straßenfertiger bekannt, dessen Einbaubohle im Vorverdichtungssystem einen Tamper aufweist, dessen Tamperdrehzahl fernverstellbar in einem geschlossenen Regelkreis veränderbar ist, um die Frequenz der Tamperhübe zu variieren. Die Wirkung einer Änderung der Tamperdrehzahl auf das Vorverdichtungsresultat ist jedoch nur gering.Out EP 1 179 636 A is a paver known, the screed has in Vorverdichtungssystem a tamper whose tamper speed is remotely adjustable in a closed loop to vary the frequency of Tamperhübe. However, the effect of changing the tamper speed to the precompression result is small.

Ein aus DE 200 10 498 U1 bekannter Straßenfertiger weist in der Einbaubohle im Vorverdichtungssystem einen über einen Exzenterantrieb mit fester Amplitude, d.h. festem Tamperhub, betreibbaren Tamper und gegebenenfalls eine Vibrationseinrichtung für das Glättblech auf. An der Hinterseite des Glättbleches ist eine Pressleiste angeordnet, die ständig auf der Oberfläche des vorverdichteten Belages aufliegt und hydraulisch mit Schwellkraftimpulsen beaufschlagt wird, um eine Hochverdichtung zu erzeugen. Die Pressleiste ist kein Bestandteil des Vorverdichtungssystems.On off DE 200 10 498 U1 Known road paver has in the screed in Vorverdichtungssystem on an eccentric drive with a fixed amplitude, ie fixed tamper, operable tamper and optionally a vibration device for the screed plate on. At the rear of the Glättbleches a pressure bar is arranged, which rests constantly on the surface of the precompressed coating and is hydraulically acted upon by Schwellkraftimpulsen to produce a high compression. The pressure bar is not part of the precompression system.

Mit einem aus EP 1 258 564 A bekannten automatischen Tampersteuersystem lässt sich die Tamperfrequenz bzw. die Anzahl der Hübe der Tamperleiste pro Einheit der gefahrenen Strecke einstellen bzw. abhängig von Änderungen der Einbaufahrgeschwindigkeit automatisch anpassen. Der Tamperhub wird nicht verändert. Die Tamperfrequenz hat einen relativ geringen Einfluss auf das Vorverdichtungsresultat.With one out EP 1 258 564 A known automatic tamper control system can be the tamper frequency or the number of strokes of the tamper strip per unit of the traveled route adjust or adjust automatically depending on changes in the installation speed. The tamper stroke is not changed. The tamper frequency has a relatively small influence on the precompression result.

Aus der europäischen Patentanmeldung mit älterem Zeitrang, Anmeldeaktenzeichen 09 014 516.0 ist ein Vorschlag bekannt, zumindest den Tamperhub unter Berücksichtigung verschiedener Einbauparameter automatisch zu variieren. Auch hier ist keine direkte Prozesssteuerung möglich, weil der Anstellwinkel der Einbaubohle bzw. eine beim Einbau auftretende Änderung des Anstellwinkels nicht berücksichtigt wird. Der Anstellwinkel der Einbaubohle wäre nämlich ein sehr brauchbarer Indikator des Betriebszustandes oder Betriebspunktes des Vorverdichtungssystems, weil ein zu flacher oder ein zu steiler Anstellwinkel zwangsweise in Problemen bezüglich der erzielbaren Verdichtung, Ebenheit und Struktur des Belages resultiert.From the European patent application with seniority senior, Anmeldeaktenzeichen 09 014 516.0 a proposal is known to vary at least the tamper automatically under consideration of various installation parameters. Again, no direct process control is possible because the angle of attack of the screed or occurring during installation change of the angle of attack is not taken into account. The angle of incidence of the screed would be a very useful indicator of the operating state or operating point of the precompression system, because too shallow or too steep an angle inevitably results in problems regarding the achievable compression, flatness and structure of the lining.

Ferner sind in der Praxis Nivelliersysteme bzw. sogar automatische Nivelliersysteme für Straßenfertiger bekannt, die typischerweise geschlossene Regelkreise enthalten und die Nivellierzylinder des Straßenfertigers ansteuern. Wenigstens ein Sensor tastet eine Referenz ab und liefert einen Messwert, der in dem System mit einem Sollwert verglichen wird. Den Sollwert gibt ein Bediener ein. Das System generiert dann ein Stellsignal für die Nivellierzylinder. Auf diese Weise wird die Belagstärke geregelt, wobei andere wesentliche Maschinenparameter für die Belagstärke, wie der Tamperhub, die Tamperfrequenz und die Einbaugeschwindigkeit, unberücksichtigt bleiben. Diese Maschinenparameter müssen vom Bediener optimal gewählt und umgesetzt werden. Die Maschinenparameter sind keine Prozess-Zielgrößen, was bedeutet, dass der Bediener nicht das einstellen kann, was zu erreichen angestrebt wird, nämlich eine bestimmte Belagstärke. Der Bediener steuert sozusagen die Maschine, um schlussendlich das gewünschte Ergebnis zu erzielen. Eine direkte Prozesssteuerung ist mit diesem Verfahren nicht möglich.Furthermore, in practice leveling systems or even automatic leveling systems for road pavers are known, which typically contain closed control loops and control the leveling cylinders of the paver. At least one sensor samples a reference and provides a reading that is compared to a setpoint in the system. The setpoint is input by an operator. The system then generates a control signal for the leveling cylinders. In this way, the lining thickness is controlled, taking into account other significant machine parameters for the lining thickness, such as the tamper stroke, the tamper frequency and the installation speed. These machine parameters must be optimally selected and implemented by the operator. The machine parameters are not process objectives, which means that the operator can not set what he wants to achieve, namely a certain amount of lining. The operator controls the machine, so to speak, in order to finally achieve the desired result. Direct process control is not possible with this method.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie einen Straßenfertiger zum Durchführen des Verfahrens anzugeben, die es ermöglichen, den Einbauprozess direkt zu steuern, ohne Bediener mit unzweckmäßig hoher Verantwortung der Auswahl richtiger Maschinenparameter zu belasten.The invention has for its object to provide a method of the type mentioned above and a paver for performing the method, which make it possible to control the installation process directly, without burdening operators with impractical high responsibility of selecting right machine parameters.

Die gestellte Aufgabe wird mit den Merkmalen des Patentanspruchs 1 und mit dem Straßenfertiger mit den Merkmalen des Patentanspruchs 7 gelöst.The stated object is achieved with the features of claim 1 and with the paver with the features of claim 7.

Bei dem Verfahren wird der Einbauprozess direkt und weitestgehend automatisch gesteuert, weil das Regelsystem alle maßgeblichen Prozess-Zielgrößen kennt und berücksichtigt, und vor allem auch den Anstellwinkel der Einbaubohle als zusätzliche Regelführungsgröße berücksichtigt, um die Belagstärke auf den Sollwert zu regeln und darüber hinaus den Betriebspunkt des Vorverdichtungssystems so zu optimieren, dass die Soll-Belagstärke mit optimaler Vorverdichtung, optimaler Ebenheit und optimaler Struktur des Belages bei minimalem Verschleiß der Arbeitskomponenten und mit minimalem Energieverbrauch erreicht wird. Der Anstellwinkel als hier fortlaufend erfasste und berücksichtigte Regelführungsgröße, ist als maßgeblicher Indikator für den Betriebszustand des Vorverdichtungssystems durch das Regelsystem verarbeitbar, um bei der Prozesssteuerung zu vermeiden, dass ein zu flacher oder zu steiler Anstellwinkel entsteht, der die erzielte Verdichtung, Ebenheit und Struktur negativ beeinflussen würde. Das Regelsystem verarbeitet die Information zur Ist-Einbaugeschwindigkeit und über den Ist-Anstellwinkel der Einbaubohle so, dass die Stellgrößen im Hinblick auf den Sollwert der Belagstärke generiert und umgesetzt werden, wobei der Ist-Anstellwinkel jeweils weitestgehend beim vorgewählten Soll-Anstellwinkel gehalten wird. Ein Stellglied für den über einen Exzenterantrieb erzeugten Tamperhub ist ein fernbetätigbares Getriebe zur verfahrensgemäßen Verstellung der Exzentrizität während des Einbauprozesses, die ursächlich für die Größe des Tamperhubes verantwortlich ist. Das Getriebe kann mechanisch, hydraulisch oder elektrisch verstellt werden.In the process, the installation process is controlled directly and largely automatically, because the control system knows and takes into account all relevant process target values, and above all takes into account the angle of attack of the screed as an additional control variable, to regulate the lining thickness to the target value and also to optimize the operating point of the precompression system so that the target lining thickness is achieved with optimum pre-compaction, optimum flatness and optimum structure of the lining with minimal wear of the working components and with minimal energy consumption. The angle of attack as here continuously recorded and taken into account control variable is processable as a relevant indicator of the operating state of the precompression system by the control system to avoid in the process control that too low or too steep angle of incidence arises, the achieved compaction, flatness and structure negative would affect. The control system processes the information about the actual installation speed and the actual angle of attack of the screed so that the manipulated variables are generated and converted with respect to the setpoint of the lining thickness, wherein the actual angle of attack is kept largely at the preselected desired angle of attack. An actuator for the tamper stroke generated via an eccentric drive is a remote-controlled transmission for adjusting the eccentricity according to the method during the installation process, which is causally responsible for the size of the tamper stroke. The gear can be adjusted mechanically, hydraulically or electrically.

Der Straßenfertiger lässt sich mit höherem Komfort und ohne grundlegende Kenntnisse zu den Zusammenhängen der unterschiedlichen Einbauparameter auch von einem relativ ungeschulten Bediener mit hohem Komfort für den Einbauprozess führen, wobei durch die direkte Prozesssteuerung die Schichtdicke zum Sollwert geregelt und dabei der Betriebspunkt des Vorverdichtungssystems optimiert wird. Ein Stellglied für den über einen Exzenterantrieb erzeugten Tamperhub ist ein fernbetätigbares Getriebe zur verfahrensgemäßen Verstellung der Exzentrizität während des Einbauprozesses, die ursächlich für die Größe des Tamperhubes verantwortlich ist. Das Getriebe kann mechanisch, hydraulisch oder elektrisch verstellt werden. Mit dem Straßenfertiger ist bei geregelter Belagstärke eine optimale Vorverdichtung bei optimaler Ebenheit und optimaler Struktur des Belages erzeugbar, wobei sich minimaler Verschleiß bei den Arbeitskomponenten erzielen lässt und mit minimalem Energieverbrauch gearbeitet wird.The paver can be performed with greater comfort and without basic knowledge of the context of different installation parameters by a relatively untrained operator with high comfort for the installation process, which is controlled by the direct process control, the layer thickness to setpoint while the operating point of the precompression system is optimized. An actuator for the tamper stroke generated via an eccentric drive is a remote-controlled transmission for adjusting the eccentricity according to the method during the installation process, which is causally responsible for the size of the tamper stroke. The gear can be adjusted mechanically, hydraulically or electrically. With the paver with regulated lining thickness an optimal pre-compaction with optimal flatness and optimum structure of the coating can be produced, with minimal wear on the working components can be achieved and worked with minimal energy consumption.

Bei einer zweckmäßigen Verfahrensvariante werden vom Regelsystem bei der Prozesssteuerung Stellsignale zumindest für den Tamperhub oder die Tamperfrequenz, oder sogar für den Tamperhub und die Tamperfrequenz generiert, die dann von den entsprechenden Stellgliedern so umgesetzt werden, dass auch unter Berücksichtigung des Anstellwinkels als Regelführungsgröße der Tamper einen Hauptanteil leistet, um die richtige Belagstärke gleichmäßig bei optimaler Vorverdichtung, Ebenheit und Struktur des Belages zu erzielen.In a suitable variant of the method control signals are generated at least for the tamper or tamper frequency, or even for the tamper and tamper frequency by the control system in the process control, which are then implemented by the corresponding actuators so that even taking into account the angle of attack as a control variable of the tamper The main contribution is to achieve the right thickness evenly with optimum precompression, flatness and structure of the lining.

Bei einer weiteren Verfahrensvariante werden zusätzlich Stellsignale für Stellglieder der Nivellierzylinder und/oder der Hubzylinder generiert und umgesetzt, um beispielsweise beim Einhalten des Sollwertes des Anstellwinkels dem Vorverdichtungssystem durch Höhenverstellen der Anlenkpunkte der Zugarme und/oder durch eine über die Hubzylinder vorgenommene Entlastung der Einbaubohle zu assistieren.In a further variant of the method additionally actuating signals for actuators of the leveling cylinder and / or the lifting cylinder are generated and implemented to assist the Vorverdichtungssystem by adjusting the height of the articulation points of the traction arms and / or by an over the lifting cylinder relief of the screed for example, while maintaining the target value of the pitch ,

Bei einer zweckmäßigen Verfahrensvariante wird die erfasste Ist-Einbaugeschwindigkeit als Stellgrößen-Information zur Verarbeitung an das Regelsystem übermittelt. Eine Änderung der Einbaugeschwindigkeit bewirkt eine automatische Änderung der Stellsignale für die Stellglieder, um beides im Wesentlichen konstant zu halten, nämlich die Belagstärke und den Anstellwinkel.In an expedient method variant, the detected actual installation speed is transmitted as manipulated variable information for processing to the control system. A change in the installation speed causes an automatic change of the control signals for the actuators in order to keep both substantially constant, namely the lining thickness and the angle of attack.

Bei einer alternativen Verfahrensvariante werden die Einbaugeschwindigkeit durch einen Bediener gewählt oder vorgewählt und die Ist-Einbaugeschwindigkeit als Störgrößen-Information zur Verarbeitung an das Regelsystem übermittelt. Die Einbaugeschwindigkeit wird in diesem Fall zwar dem Regelsystem zur Verarbeitung zur Verfügung gestellt, ist aber durch einen Bediener frei wählbar. Dies ist deshalb von Bedeutung, weil die Einbaugeschwindigkeit in der Praxis so gewählt werden sollte, dass die gewünschte Arbeitsleistung (Massendurchsatz an Einbaumaterial, Flächenleistung) auf die jeweiligen Gegebenheiten oder bestimmte Vorgaben abstimmbar ist. Deshalb ist es zweckmäßig, trotz der automatischen Regelung bzw. Steuerung des Einbauprozesses den Bediener eine Einflussnahme zumindest bezüglich der Einbaugeschwindigkeit zu bieten.In an alternative method variant, the installation speed is selected or preselected by an operator and the actual installation speed is transmitted as disturbance information for processing to the control system. Although the installation speed is made available to the control system for processing in this case, it can be freely selected by an operator. This is important because the installation speed should be chosen in practice so that the desired performance (mass flow rate of paving material, area performance) is tuned to the particular circumstances or specific requirements. Therefore, it is expedient, in spite of the automatic control or control of the installation process, to offer the operator an influence, at least with regard to the installation speed.

Bei einer weiteren Verfahrensvariante generiert das Regelsystem bei der direkten Prozesssteuerung für einen Bediener eine Einbaugeschwindigkeits-Empfehlung in Form eines Geschwindigkeitswertes oder Geschwindigkeitsbereiches, den der Bediener im Hinblick auf optimale Leistung beim Einbauprozess umsetzt oder umsetzen kann.In a further variant of the method, the control system generates an installation speed recommendation in the form of a speed value or speed range for the operator during direct process control, which the operator can implement or implement with regard to optimum performance during the installation process.

Zweckmäßig werden zumindest einige oder alle erfassten Informationen zur direkten Prozesssteuerung in dem Regelsystem als Regelführungsgrößen verarbeitet, um zumindest die Stellsignale für den Tamperhub oder die Tamperfrequenz oder den Tamperhub und die Tamperfrequenz zu generieren. Flankierend können daraus auch Stellsignale für die Nivellierzylinder bzw. die Hubzylinder generiert und umgesetzt werden, um die Prozesssteuerung im Wesentlichen nur durch das Regelsystem vornehmen zu lassen und den Bediener zu entlasten.It is expedient for at least some or all of the acquired information for direct process control in the control system to be processed as control variables in order to generate at least the control signals for the tamper stroke or the tamper frequency or the tamper stroke and the tamper frequency. Flanking can also be generated and implemented control signals for the leveling cylinder or the lifting cylinder to make the process control essentially only by the control system and to relieve the operator.

Bei einer zweckmäßigen Ausführungsform des Straßenfertigers sind mit dem Regelsystem Stellglieder zumindest zum Einstellen des Tamperhubes oder des Tamperhubs und der Tamperfrequenz anhand vom Regelsystem generierter Stellsignale verbunden. Unter Umsetzen dieser Stellsignale wird unter Berücksichtigung der Einbaugeschwindigkeit und vor allem auch des Anstellwinkels die Vorverdichtungsleistung des Vorverdichtungssystems optimiert, um die Soll-Belagstärke zu erreichen und den Anstellwinkel nicht nennenswert zu variieren. Eine bestimmte Vorverdichtungsleistung, abhängig vom Tamperhub und der Tamperfrequenz würde nämlich bei einer Verminderung der Einbaugeschwindigkeit dazu führen, dass die Einbaubohle ansteigt und sich der Anstellwinkel unzweckmäßig verkleinert, während eine Erhöhung der Einbaugeschwindigkeit zum umgekehrten Resultat, nämlich zum Absinken der Einbaubohle und einer Vergrößerung des Anstellwinkels führen würde, jeweils mit unerwünschten Nebenwirkungen.In an expedient embodiment of the paver, actuators are connected to the control system at least for setting the tamper stroke or the tamper stroke and the tamper frequency based on control signals generated by the control system. By implementing this Adjusting signals is optimized, taking into account the speed of installation and above all the angle of attack, the precompression performance of the precompression system in order to achieve the desired lining thickness and to vary the angle of attack is not appreciable. Namely, a certain precompression performance, depending on the tamper stroke and the tamper frequency, would cause the screed to increase and the angle of incidence to increase inconveniently, while increasing the paving speed would lead to the opposite result, namely, lowering of the screed and an increase in the angle of attack would lead, each with unwanted side effects.

Um solche Nebenwirkungen bei der Prozesssteuerung auszuschließen oder zu minimieren, kann es bei einer weiteren Ausführungsform zweckmäßig sein, mit dem Regelsystem zusätzlich Stellglieder zum Einstellen der Nivellierzylinder und/oder der Hubzylinder anhand vom Regelsystem generierter Stellsignale zu verbinden, um unerwünschte Änderungen des Anstellwinkels zu vermeiden oder diesen umgehend gegenzusteuern.To exclude or minimize such side effects in the process control, it may be useful in another embodiment, in addition to connect control elements for adjusting the leveling cylinder and / or the lifting cylinder based on the control system generated control signals to avoid unwanted changes in the angle of attack or with the control system counteract this immediately.

Bei einer zweckmäßigen Ausführungsform des Straßenfertigers weist das Regelsystem entweder wenigstens einen, vorzugsweise mehrere parallel geschaltete, Eingrößen-Regler auf, beispielsweise drei Eingrößen-Regler, von denen z.B. einer unter Berücksichtigung der Einbaugeschwindigkeit die Tamperfrequenz regelt, ein weiterer unter Berücksichtigung des Anstellwinkels den Tamperhub regelt, und ein weiterer unter Berücksichtigung der Belagstärke die Nivellierzylinder betätigt, oder wenigstens einen Mehrgrößen-Regler auf, der beispielsweise mehrere Regelführungsgrößen verarbeitet und mehrere Stellsignale generiert. Beispielsweise verarbeitet der Mehrgrößen-Regler die Regelführungsgrößen Einbaugeschwindigkeit und Anstellwinkel und generiert er die Stellsignale zum Ändern der Tamperfrequenz und des Tamperhubes. Der Eingrößen-Regler verarbeitet hingegen die Informationen zur Belagstärke und generiert bei Bedarf Stellsignale für die Nivellierzylinder und/oder die Hubzylinder.In an expedient embodiment of the road paver, the control system either comprises at least one, preferably a plurality of, in-line, gain controllers, for example three size controllers, one of which is e.g. one tames the tamper frequency in consideration of the installation speed, another regulates the tamper stroke taking into account the angle of attack, and another actuates the leveling cylinder taking into account the lining thickness, or at least one multi-variable controller which, for example, processes a plurality of control variables and generates a plurality of actuating signals. For example, the multivariable controller processes the control variables paving speed and angle of attack and generates the control signals for changing the tamper frequency and the tamper stroke. On the other hand, the in-feed controller processes the information on the pad thickness and, if necessary, generates actuating signals for the leveling cylinders and / or the lifting cylinders.

Bei einer zweckmäßigen Ausführungsform ist das Regelsystem mit einem Display ausgestattet, in welchem unter anderem eine Einbaugeschwindigkeits-Empfehlung für einen Bediener darstellbar ist, beispielsweise falls das Regelsystem selbstlernend erkennt, dass die Einbaugeschwindigkeit zu hoch oder zu niedrig ist oder aufgrund einer Änderung einer Regelführungsgröße einer Änderung bedarf.In an expedient embodiment, the control system is equipped with a display in which, inter alia, a built-speed recommendation for an operator can be displayed, for example if the control system learns self-learning that the installation speed is too high or too low or due to a change in a control variable of a change requirement.

In dem Regelsystem können klassische PID-Regler, adaptive Regler, aber auch Fuzzy-Logic-Regler, Neuronalnetz-Regler, oder sonstige Regler verwendet werden.In the control system classic PID controller, adaptive controller, but also fuzzy logic controller, neural network controller, or other controllers can be used.

Weiterhin kann es zweckmäßig sein, in dem Regelsystem wenigstens eine vorbestimmte Kennlinie oder ein Kennfeld und/oder eine Kennlinien- oder Kennfeld-Steuerung für miteinander zu korrelierende Stellgrößen vorzusehen.Furthermore, it may be expedient to provide in the control system at least one predetermined characteristic or a characteristic field and / or a characteristic curve or characteristic diagram control for manipulated variables to be correlated with one another.

Ein Stellglied für die über einen Hydraulikantrieb erzeugte Tamperfrequenz kann ein magnetbetätigtes Ventil sein, vorzugsweise sogar ein Proportional-Stromregelventil, um die Tamperfrequenz über die vom Hydraulikantrieb erzeugte Drehzahl einzustellen.An actuator for the tamper frequency generated by a hydraulic drive may be a solenoid-operated valve, preferably even a proportional flow control valve, to adjust the tamper frequency above the speed generated by the hydraulic drive.

Ein Stellglied für den Anstellwinkel der Einbaubohle kann wenigstens ein magnetbetätigtes Ventil für die Nivellierzylinder sein, wobei die momentane Ist-Stellung der Nivellierzylinder an das Regelsystem rückgemeldet werden kann. Ein Stellglied, vorzugsweise zum Einstellen einer bestimmten Bohlenentlastung, kann ein magnetbetätigtes Ventil für die hydraulischen Hubzylinder sein.An actuator for the angle of attack of the screed may be at least one solenoid-operated valve for the leveling cylinder, wherein the current actual position of the leveling cylinder can be fed back to the control system. An actuator, preferably for setting a particular plank relief, may be a solenoid operated valve for the hydraulic lift cylinders.

Die direkte Prozesssteuerung kann auch berücksichtigen, bei einer quer zur Arbeitsfahrtrichtung variierenden Belagdicke zumindest den Tamperhub bzw. den Tamperhub und die Tamperfrequenz über die Einbaubreite der Einbaubohle zu variieren, um auch quer zur Arbeitsfahrtrichtung die gleiche Verdichtungswirkung zu erzeugen.The direct process control can also take into account to vary at least the Tamperhub or the Tamperhub and the tamper frequency over the pave width of the screed at a transverse to the working direction pad thickness to produce the same compaction also transverse to the working direction.

Anhand der Zeichnungen werden Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:

Fig. 1
eine schematische Seitenansicht eines Straßenfertigers beim Ausführen eines Einbauprozesses,
Fig. 2
ein Detail einer Einbaubohle des Straßenfertigers von Fig. 1,
Fig. 3
eine Schemadarstellung eines Regelsystems des Straßenfertigers von Fig. 1,
Fig. 4
eine andere Ausführungsform des Regelsystems in schematischer Darstellung, und
Fig. 5
eine weitere Ausführungsform des Regelsystems in schematischer Darstellung.
With reference to the drawings, embodiments of the subject invention will be explained. Show it:
Fig. 1
a schematic side view of a paver when performing a mounting process,
Fig. 2
a detail of a screed of road paver from Fig. 1 .
Fig. 3
a schematic representation of a control system of the paver of Fig. 1 .
Fig. 4
another embodiment of the control system in a schematic representation, and
Fig. 5
a further embodiment of the control system in a schematic representation.

Fig. 1 zeigt einen selbstfahrenden Straßenfertiger 1 beim Ausführen eines Einbauprozesses, d.h., beim Einbauen eines Belages 6 aus bituminösem oder Beton-Einbaugut 5 auf einem Planum 7 mit einer Belagstärke S und einer Einbaugeschwindigkeit V relativ zum Planum 7, wobei der Belag 6 zumindest durch ein Vorverdichtungssystem 13 einer Einbaubohle 3 vorverdichtet und eben eingebaut wird. Fig. 1 shows a self-propelled road paver 1 when performing a mounting process, ie, when installing a covering 6 bituminous or concrete-5 on a planum 7 with a covering thickness S and a mounting speed V relative to the planum 7, wherein the covering 6, at least by a precompression 13th a screed 3 pre-compressed and just installed.

Kern des Straßenfertigers 1 ist ein computerisiertes, entweder vollautomatisches oder bedienerassistiertes Regelsystem 25, beispielsweise in einem Bedienpult P auf einem Führerstand und/oder in einem Außensteuerstand P' an der Einbaubohle 3. Das Regelsystem 25 ist durch einen Bediener so nutzbar, dass der Bediener den Einbauprozess direkt steuern kann, und im Wesentlichen keine Einbauparameter selbst auszuwählen und/oder beim Einbau verändern zu braucht.The core of the paver 1 is a computerized, either fully automatic or user-assisted control system 25, for example, in a control panel P on a cab and / or in an outside steering position P 'on the screed 3. The control system 25 is used by an operator so that the operator Directly control installation process, and essentially does not need to select any installation parameters themselves and / or need to change during installation.

An einem Chassis 2 des Straßenfertigers 1 ist ein Bunker 4 frontseitig angeordnet, von dem ein nicht hervorgehobenes Längsfördersystem Einbaumaterial 5 hinter dem Chassis 2 auf das Planum 7 ablegt, wo es von einer Querverteileinrichtung verteilt wird, ehe die Einbaubohle 3 daraus den Belag 6 einbaut. Die Einbaubohle 3 ist an Zugholmen 8 montiert, die an Anlenkpunkten 9 am Chassis 2 so angelenkt sind, dass die Einbaubohle 3 schwimmend auf dem Einbaumaterial 5 geschleppt wird. Die Anlenkpunkte 9 sind mit Nivellierzylindern beispielsweise über Stellglieder 10' (Hydraulikventile oder dgl.) höhenverstellbar und beeinflussen einen Anstellwinkel α der Einbaubohle 3. Der Anstellwinkel α sollte positiv aber mit einer optimalen Größe, d.h. nicht zu flach und nicht zu steil sein, und wird durch das Regelsystem 25 bei einer optimalen Größe geregelt gehalten. Zusätzlich sind am Chassis 2 Hubzylinder 28 angelenkt, die an den Zugholmen 8 angreifen und dazu dienen, beispielsweise für Transportfahrt die Einbaubohle 3 ausgehoben zu positionieren, oder beim Einbau eine Bohlenentlastung vorzunehmen bzw. gegebenenfalls den Auflagedruck der Einbaubohle 3 zu verstärken.On a chassis 2 of the road paver 1, a bunker 4 is arranged frontally, from which a non-highlighted longitudinal conveyor system 5 deposits behind the chassis 2 on the subgrade 7, where it is distributed by a transverse distribution before the screed 3 from the pavement 6 is installed. The screed 3 is mounted on Zugholmen 8, which are hinged to articulation points 9 on the chassis 2 so that the screed 3 is floating on the paving material 5 is dragged. The articulation points 9 are height-adjustable with leveling cylinders, for example via actuators 10 '(hydraulic valves or the like) and influence an angle of attack α of the screed 3. The angle of attack α should be positive but with an optimal size, i. not too shallow and not too steep, and is controlled by the control system 25 at an optimum size. In addition, 2 lifting cylinders 28 are hinged to the chassis, which act on the Zugholmen 8 and serve, for example, for transporting the screed 3 excavated position, or make a plank relief during installation or optionally to increase the contact pressure of the screed 3.

Die Einbaubohle 3 umfasst beispielsweise eine Grundbohle 11 und daran verfahrbare Ausziehbohlen 12, jeweils mit einem Vorverdichtungssystem 13, beispielsweise wenigstens einem Tamper 14, und gegebenenfalls einer nicht gezeigte Vibrationseinrichtung für ein bodenseitiges Glättblech 18. Als Option kann die Einbaubohle 3 auch mit einer nicht gezeigten Hochverdichtungseinrichtung ausgerüstet sein. Der Tamper 14 ist (siehe Fig. 2) beispielsweise mittels eines Exzenterantriebes mit wählbarem Hub H und wählbarer Frequenz F betreibbar.The screed 3 comprises, for example, a base screed 11 and extending screeds 12, each with a precompression system 13, for example at least one tamper 14, and optionally a vibration device, not shown, for a bottom screed 18. As an option, the screed 3 can also be used with a high compression device, not shown be equipped. The tamper 14 is (see Fig. 2 ) For example, by means of an eccentric drive with selectable stroke H and selectable frequency F operable.

Der Außensteuerstand P' an der Einbaubohle 3 kann eine ähnliche Ausstattung haben, wie das Bedienpult P. Im Bedienpult P ist ein Geschwindigkeitswähler 26 zum Einstellen der Einbaugeschwindigkeit V vorgesehen. Der Geschwindigkeitswähler 26 kann durch ein nicht gezeigtes Stellglied gegebenenfalls auch vom Regelsystem 25 verstellt werden, um die Einbaugeschwindigkeit V zu ändern. Die Ist-Einbaugeschwindigkeit V wird durch wenigstens einen symbolisch angedeuteten Sensor 31 erfasst und an das Regelsystem 25 übermittelt. Der Sensor 31 kann im Straßenfertiger beispielsweise in dem Bedienpult P oder bei einem Fahrantrieb platziert sein oder eine Referenz auf dem Planum 7 abtasten. Im Bedienpult P oder bei dem Regelsystem 25 kann eine Eingabesektion 27 zum Eingeben und/oder Anzeigen von Parametern vorgesehen sein. Den Hubzylindern 28 ist mindestens ein Stellglied 28', beispielsweise ein magnetbetätigtes Hydraulikventil, zugeordnet. Ferner kann als Ausstattung des Straßenfertigers 1 wenigstens ein Sensor 30 vorgesehen sein, der die Temperatur, Dichte oder Konsistenz des Einbaumaterials, beispielsweise unmittelbar vor der Einbaubohle 3 abgreift, und gegebenenfalls als Information an das Regelsystem 25 übermittelt. Dieser Einbauparameter könnte alternativ vom Bediener eingegeben werden. Beispielsweise an der Einbaubohle 3 ist zumindest ein Sensor 29 vorgesehen, der den Anstellwinkel α der Einbaubohle 3 erfasst, z.B. relativ zum Planum 7. Dieser Sensor 29 könnte den Anstellwinkel α auch an den Zugholmen 8 abgreifen. Es könnten über die Einbaubreite mehrere Sensoren 29 vorgesehen sein. Weiterhin kann ein Sensor 37 zum Abgreifen der Belagstärke S vorgesehen sein, der beispielsweise das Planum 7 oder eine nicht gezeigte Referenzlinie abtastet.The outside steering position P 'on the screed 3 may have a similar equipment as the control panel P. In the control panel P, a speed selector 26 is provided for setting the installation speed V. The speed selector 26 can be adjusted by an actuator, not shown, if necessary, also from the control system 25 to change the installation speed V. The actual installation speed V is detected by at least one symbolically indicated sensor 31 and transmitted to the control system 25. The sensor 31 may be placed in the paver, for example in the control panel P or in a traction drive or scan a reference on the planum 7. In the control panel P or in the control system 25, an input section 27 may be provided for inputting and / or displaying parameters. The lifting cylinders 28 is at least one actuator 28 ', for example, a solenoid-operated hydraulic valve assigned. Furthermore, at least one sensor 30 can be provided as equipment of the road paver 1, which picks up the temperature, density or consistency of the built-in material, for example immediately before the screed 3, and optionally transmitted as information to the control system 25. This installation parameter could alternatively be entered by the operator. For example, at the screed 3, at least one sensor 29 is provided, which detects the angle of attack α of the screed 3, for example relative to the planum 7. This sensor 29 could tapping the angle α also at the Zugholmen. It could be provided over the mounting width several sensors 29. Furthermore, a sensor 37 may be provided for picking up the lining thickness S, which scans, for example, the plane 7 or a reference line, not shown.

Stellglieder zum Einstellen des Tamperhubes H bzw. der Tamperfrequenz F sind ebenfalls im Straßenfertiger 1 oder der Einbaubohle 3 vorgesehen, um vom Regelsystem 25 generierte Stellsignale umzusetzen.Actuators for setting the Tamperhubes H and the tamper frequency F are also provided in the paver 1 or the screed 3 to implement generated by the control system 25 control signals.

Beispielsweise zeigt Fig. 2 einen teilweise freigelegten Bereich der Einbaubohle 3 mit dem Vorverdichtungssystem 13 und dem Tamper 14. Der Tamper 14 kann an der Vorderseite der Einbaubohle 3 durch eine Abdeckung 19 abgeschirmt und zwischen der Abdeckung 19 und der vorderen Kante des Glättbleches 18 im Wesentlichen vertikal beweglich geführt sein. An einem unterseitig das Glättblech 18 tragenden Rahmen 17 ist ein Lagerbock 16 montiert, dessen relative Höhenlage beispielsweise mittels einer Justierschraube 20 einstellbar ist, derart, dass der Tamper 14 im unteren Totpunkt jedes Hubes eine bestimmte Relativposition zum Glättblech 18 hat. Im Lagerbock 16 (über die Länge des Rahmens 17 können mehrere Lagerböcke 16 montiert sein) ist eine Exzenterwelle 15 drehbar gelagert, die jeweils einen Exzenterabschnitt 22 einer bestimmten Exzentrizität aufweist. Der Exzenterabschnitt 22 greift in ein Pleuel 21 an, das die Exzenterwelle 15 mit dem Tamper 14 verbindet. Auf dem Exzenterabschnitt 22 ist eine Exzenterbuchse 23 über ein das Stellglied für den Tamperhub H bildendes Getriebe 24 drehfest mit dem Exzenterabschnitt 22 gekoppelt. Das Getriebe 24 stützt sich am Rahmen 17 ab. Die Exzenterbuchse 23 ist im Pleuel 21 drehbar gelagert. Mittels des Getriebes 24 lässt sich die Exzenterbuchse 23 relativ zum Exzenterabschnitt 22 verdrehen und in der jeweils eingestellten Drehposition mit der Exzenterwelle 15 kuppeln. Die relative Verdrehung der Exzenterbuchse 23 gegenüber dem Exzenterabschnitt 22 bewirkt eine Verstellung des Hubes, den das Pleuel auf den Tamper 14 überträgt. Die Einstellung des Tamperhubes H erfolgt automatisch über das Regelsystem 25.For example, shows Fig. 2 a partially exposed portion of the screed 3 with the precompression system 13 and the tamper 14. The tamper 14 may be shielded at the front of the screed 3 by a cover 19 and between the cover 19 and the front edge of the Glättbleches 18 substantially vertically movably guided. On a lower side of the screed plate 18 supporting frame 17, a bearing block 16 is mounted, the relative altitude is adjustable for example by means of an adjusting screw 20, such that the tamper 14 has a certain relative position to the screed plate 18 at the bottom dead center of each stroke. In the bearing block 16 (over the length of the frame 17 a plurality of bearing blocks 16 may be mounted) is an eccentric shaft 15 rotatably mounted, each having an eccentric portion 22 of a certain eccentricity. The eccentric portion 22 engages in a connecting rod 21, which connects the eccentric shaft 15 with the tamper 14. On the eccentric portion 22 is an eccentric bushing 23 via a the actuator for the tamper stroke H forming gear 24 rotatably coupled to the eccentric portion 22. The gear 24 is supported on the frame 17. The eccentric bush 23 is rotatably mounted in the connecting rod 21. By means of the gear 24, the eccentric bushing 23 can be relative to the eccentric section Twist 22 and couple in the set rotational position with the eccentric shaft 15. The relative rotation of the eccentric bushing 23 relative to the eccentric section 22 effects an adjustment of the stroke, which the connecting rod transmits to the tamper 14. The tamper stroke H is set automatically via the control system 25.

Die Exzenterwelle 15 wird beispielsweise von einem Hydromotor 32 drehangetrieben. Die Drehzahl bestimmt die Tamperfrequenz F. Als Stellglied 33 für den Hydromotor 32 kann ein magnetbetätigtes Ventil dienen, z.B. ein Proportional-Stromregelventil, das von dem Regelsystem 25 mit Stellsignalen beaufschlagt wird. Die Darstellung des Getriebes in Fig. 2 ist nur schematisch zu verstehen, da das Getriebe 24 natürlich aufgrund der Drehung der Exzenterwelle 15 indirekt als Verstelleinrichtung über die Exzenterwelle 15 auf die Exzenterbuchse 23 einzuwirken hat. Für das Getriebe 24 als Stellglied zum Einstellen des Tamperhubes H sind unterschiedliche Ausführungen denkbar, von denen Fig. 2 nur eine nicht beschränkende Ausführungsform zeigt.The eccentric shaft 15 is rotationally driven, for example, by a hydraulic motor 32. The speed determines the tamper frequency F. As the actuator 33 for the hydraulic motor 32 may serve a solenoid-operated valve, such as a proportional flow control valve, which is acted upon by the control system 25 with control signals. The representation of the transmission in Fig. 2 is only to be understood schematically, since the transmission 24 of course due to the rotation of the eccentric shaft 15 indirectly as adjusting on the eccentric shaft 15 has an effect on the eccentric bushing 23. For the gear 24 as an actuator for setting the Tamperhubes H different versions are conceivable, of which Fig. 2 only one non-limiting embodiment shows.

Das Regelsystem 25 ist so konzipiert, dass es den Einbauprozess direkt steuert bzw. regelt und ein Bediener nur Prozess-Zielgrößen wie eine bestimmte Belagstärke S, beispielsweise an der Eingabesektion 27, einzugeben braucht, und dann der Einbauprozess ohne weitere Eingriffe des Bedieners gesteuert wird. Der Straßenfertiger 1 kann mit einer vorgegebenen oder programmierten Einbaugeschwindigkeit V fahren, wobei gegebenenfalls ein Bediener die Einbaugeschwindigkeit V wählen kann, oder/und vom Regelsystem 25 beispielsweise in einem nicht hervorgehobenen Display dem Bediener eine Einbaugeschwindigkeits-Empfehlung angeboten wird, die das Regelsystem 25 beispielsweise im Hinblick auf das Prozessziel oder eine optimale Leistung (Massendurchsatz, Flächenleistung) angibt, und die dann vom Bediener umgesetzt werden kann. Da äußere Einflüsse Änderungen der Einbaugeschwindigkeit V gegenüber der Vorgabe bewirken können, z.B. Steigungen, Gefälle, Fahrwiderstand, und dgl., greift der Sensor 29 jedoch die Ist-Einbaugeschwindigkeit ab und übermittelt er diese an das Regelsystem 25, damit die Prozesssteuerung nicht durch eine von der Vorgabe abweichende Einbaugeschwindigkeitsänderung verfälscht wird. Ähnliches gilt auch für den Ist-Anstellwinkel α, der zunächst durch die Höheneinstellung der Anlenkpunkte 9 vorgegeben und der gewünschten Belagstärke S zugeordnet ist, jedoch während des Einbauprozesses aufgrund äußerer Einflüsse variieren kann und deshalb beispielsweise durch den mindestens einen Sensor 37 innerhalb der Arbeitsbreite erfasst und an das Regelsystem 25 übermittelt wird.The control system 25 is designed to directly control the installation process and to require an operator to input only process targets such as a certain lining thickness S, for example at the input section 27, and then control the installation process without further operator intervention. The paver 1 can drive at a predetermined or programmed installation speed V, where appropriate, an operator can select the installation speed V, and / and the control system 25, for example, in a non-highlighted display the operator is offered a built-speed recommendation that the control system 25, for example in In terms of the process objective or optimal performance (mass flow, area performance), and which can then be implemented by the operator. Since external influences can cause changes in the installation speed V with respect to the specification, eg gradients, gradients, driving resistance, and the like, the sensor 29, however, picks up the actual installation speed and transmits it to the control system 25 so that the process control is not interrupted by a the default deviating installation speed change is falsified. The same applies to the actual angle of attack α, which is initially determined by the height adjustment of the articulation points 9 and the desired covering thickness S, but may vary during the installation process due to external influences and therefore detected, for example by the at least one sensor 37 within the working width and is transmitted to the control system 25.

Alternativ könnte die Einbaugeschwindigkeit V als Störgröße berücksichtigt werden, d.h., dass die Einbaugeschwindigkeit V zwar dem Regelsystem 25 zur Verarbeitung zur Verfügung gestellt wird, beispielsweise durch die vom wenigstens einen Sensor 29 bereitgestellten Informationen und/oder durch den Geschwindigkeitswähler 26, jedoch durch einen Bediener frei gewählt werden kann. Dies ist von Bedeutung, da die Einbaugeschwindigkeit genutzt wird, um eine optimale Leistung des Straßenfertigers während des Einbauprozesses einzustellen (Massendurchsatz, Flächenleistung).Alternatively, the installation speed V could be taken into account as a disturbance variable, ie the installation speed V is made available to the control system 25 for processing, for example by the information provided by the at least one sensor 29 and / or by the speed selector 26, but by an operator can be chosen. This is significant because the paving speed is used to set the optimum performance of the paver during the paving process (mass flow, area performance).

Während des Einbauprozesses regelt das Regelsystem 25 die Belagstärke S auf einen vorgegebenen Sollwert. Ferner optimiert das Regelsystem 25 den Betriebspunkt des Vorverdichtungssystems 13 mit dem Tamper 14 derart, dass der Sollwert der Schichtstärke S mit optimaler Vorverdichtung, optimaler Ebenheit und optimaler Struktur des Belages 6 bei minimalem Verschleiß, beispielsweise im Vorverdichtungssystem 13 und auch minimalem Energieverbrauch, erreicht wird. Diese positive Wirkung führt das Regelsystem 25 auch vor allem dadurch herbei, dass der Anstellwinkel α der Einbaubohle als zusätzliche Regelführungsgröße ermittelt und verarbeitet wird. Denn der Anstellwinkel α ist ein hervorragender Indikator zur Beurteilung des Betriebszustandes des Vorverdichtungssystems 13. Beispielsweise würde nämlich ein zu flacher als auch ein zu steiler Anstellwinkel α Probleme bei der Verdichtung, der Ebenheit und in der Struktur erzeugen.During the installation process, the control system 25 regulates the lining thickness S to a predetermined desired value. Furthermore, the control system 25 optimizes the operating point of the precompression system 13 with the tamper 14 such that the desired value of the layer thickness S with optimum pre-compaction, optimal flatness and optimum structure of the coating 6 with minimal wear, for example in the precompression system 13 and minimal energy consumption is achieved. This positive effect also leads the control system 25 above all by the fact that the angle of attack α of the screed is determined and processed as an additional control variable. For the angle of attack α is an excellent indicator for assessing the operating state of the precompression system 13. For example, for example, too shallow as well as too steep an angle α would cause problems in the compression, the flatness and in the structure.

Die Fig. 3 bis 5 zeigen eine Auswahl von Ausführungsformen des Regelsystems 25. Diese Auswahl ist nicht beschränkend aufzufassen.The Fig. 3 to 5 show a selection of embodiments of the control system 25. This selection is not intended to be limiting.

In Fig. 3 weist das Regelsystem 25 einen Regler 35 auf, der als Mehrgrößen-Regler 38 ausgelegt ist, und dem eine Vergleichersektion 34 zugeordnet ist. Die Vergleichersektion 34 erhält beispielsweise Vorgaben iα und is für den Anstellwinkel α und die Belagstärke S, z.B. als Sollwerte. Gestrichelt ist angedeutet, dass auch die Einbaugeschwindigkeit V, wie beispielsweise von einem Bediener eingegeben, hier berücksichtigt werden kann. Diese gestrichelt angedeutete Eingabe der Einbaugeschwindigkeit V kann ein Bediener anhand einer vom Regelsystem 25 generierten und beispielsweise in einem nicht gezeigten Display dargestellten Einbaugeschwindigkeits-Empfehlung Ev wählen, falls das Regelsystem 25 feststellen sollte, dass die ursprünglich vorgegebene Einbaugeschwindigkeit V nicht zweckmäßig ist. Der Vergleichersektion 34 werden auch die mittels der Sensoren 29, 37 erfassten Werte als Informationen zur Belagstärke S und zum Anstellwinkel α übermittelt. Die Vergleichersektion 34 speist, falls Abweichungen zwischen den Vorgaben und den Istwerten auftreten, den Regler 35, dem auch die von dem zumindest einen Sensor 31 erfasste Ist-Einbaugeschwindigkeit als Information iv zugeführt wird. Aus den zugeführten Informationen generiert der Regler 35 Stellsignale H für den Tamperhub und/oder F für die Tamperfrequenz, und, optional, auch zumindest ein Stellsignal entweder für die Nivellierzylinder 10 (das Stellglied 10') und/oder die Hubzylinder 28 (Stellglied 28'). Unter Umsetzung dieser Stellsignale wird der Einbauprozess 36 gesteuert, damit die gewünschte Belagstärke S erzielt und auch der Anstellwinkel α gehalten wird, wobei hier Rückführungen zur Vergleichersektion 34 angedeutet sind.In Fig. 3 For example, the control system 25 has a controller 35, which is designed as a multi-variable controller 38, and to which a comparator section 34 is assigned. The comparator section 34 receives, for example, specifications iα and i s for the angle of attack α and the lining thickness S, for example as nominal values. Dotted is indicated that the installation speed V, such as entered by an operator, can be considered here. This dashed line indicated input of the installation speed V, an operator on the basis of a generated by the control system 25 and, for example, in a display, not shown installation speed recommendation E v choose if the control system 25 should determine that the originally specified installation speed V is not appropriate. The comparator section 34 also transmits the values detected by the sensors 29, 37 as information about the lining thickness S and the angle of attack α. If differences occur between the specifications and the actual values, the comparator section 34 feeds the controller 35, which also contains the actual installation speed detected by the at least one sensor 31 is supplied as information i v . From the information supplied, the controller generates 35 control signals H for the tamper stroke and / or F for the tamper frequency, and, optionally, at least one actuating signal either for the leveling cylinders 10 (the actuator 10 ') and / or the lifting cylinders 28 (actuator 28'). ). By implementing these control signals, the installation process 36 is controlled so that the desired covering thickness S is achieved and also the angle of attack α is maintained, in which case feedbacks to the comparator section 34 are indicated.

In der Ausführungsform in Fig. 4 ist das Regelsystem 25 mit hier drei parallelen Eingrößen-Reglern 39, 40, 41 ausgebildet. Der Eingrößen-Regler 39 erhält beispielsweise vom Sensor 31 die Einbaugeschwindigkeits-Information (gegebenenfalls auch vom Geschwindigkeitswähler 26 oder überlagert mit dessen Einstellung) und generiert das Stellsignal für das Stellglied 33 der Tamperfrequenz F. Der Eingrößen-Regler 40 erhält die Information zum Ist-Anstellwinkel α und generiert das Stellsignal für das Stellglied (Getriebe 24) zum Einstellen des Tamperhubes H. Der Eingrößen-Regler 41 erhält die Information zur Belagstärke S (den Sollwert oder eine aus dem Sollwert und dem Istwert ermittelte Regelführungsgröße) und generiert Stellsignale für das Stellglied 10' und/oder 28' für die Nivellierzylinder 10 bzw. die Hubzylinder 28.In the embodiment in FIG Fig. 4 the control system 25 is formed here with three parallel size controllers 39, 40, 41. The inputs controller 39 receives, for example, from the sensor 31, the installation speed information (possibly also from the speed selector 26 or superimposed with its setting) and generates the control signal for the actuator 33 of the tamper frequency F. The inputs controller 40 receives the information on the actual angle of attack α and generates the actuating signal for the actuator (gear 24) for setting the Tamperhubes H. The inputs controller 41 receives the information on the lining thickness S (the setpoint or a determined from the setpoint and the actual control variable) and generates actuating signals for the actuator 10th 'and / or 28' for the leveling cylinder 10 and the lifting cylinder 28th

In der Ausführungsform in Fig. 5 umfasst das Regelsystem 25 einen Mehrgrößen-Regler 38 und wenigstens einen Eingrößen-Regler 41. Der Mehrgrößen-Regler 38 erhält die Einbaugeschwindigkeits-Information von dem wenigstens einen Sensor 31 und auch die Information zum Anstellwinkel α und generiert Stellsignale für die Tamperfrequenz und für den Tamperhub H. Der Eingrößen-Regler 41 erhält die Information zur Belagstärke S und generiert, falls zweckmäßig, Stellsignale beispielsweise für die Stellglieder 10', oder/und 28'.In the embodiment in FIG Fig. 5 The control system 25 includes a multi-variable controller 38 and at least one inputs regulator 41. The multi-variable controller 38 receives the installation speed information from the at least one sensor 31 and also the information on the angle of attack α and generates control signals for the tamper and tamper H. The inputs controller 41 receives the information on the coating thickness S and generates, if appropriate, control signals, for example, for the actuators 10 ', and / or 28'.

Die Regler in den Ausführungsformen 3 bis 5 können klassische PID-Regler, oder adaptive Regler, oder Fuzzy-Logic-Regler oder Neuronalnetz-Regler oder sonstige computerisierte Regler sein. Ferner können die Regler oder kann das Regelsystem Kennlinien oder Kennfelder beinhalten oder als Kennlinien-/Kennfeld-Steuerung dargestellt werden. Die Kennlinien oder Kennfelder betreffen beispielsweise miteinander zu korrelierende Stellgrößen, z.B. F oder H; F und H; F oder H und α, F oder H und 10', 28', oder dgl..The controllers in embodiments 3 to 5 may be classical PID controllers, or adaptive controllers, or fuzzy logic controllers or neural network controllers or other computerized controllers. Further, the controller or the control system may include characteristics or maps or displayed as a characteristic / map control. The characteristic curves relate, for example, to manipulated variables to be correlated with each other, e.g. F or H; F and H; F or H and α, F or H and 10 ', 28', or the like.

Claims (16)

  1. Method for controlling the process of applying a layer (6) of bituminous or concrete road paving material (5) in a selectable paving thickness (S) on a formation level (7) with a paver (1) self-propelled at a laying rate (V) and towing a floating screed (3) at anchoring point (9) by towing spars (8), wherein the screed (3) comprises a pre-compaction system (13) with at least one tamper (14), which can be operated by an excenter drive with selectable stroke (H) and selectable frequency (F), the anchoring points (9) of the towing spars (8) being adjustable in height by levelling cylinders (10) and the towing spars (8) being pivotable by lifting cylinders (28) about the anchoring points (9), characterised in that the applying process (36) is automatically controlled in that a target value (is) for the paving thickness (9) is input into an automatic closed-loop control system (25), an actual angle (α) of attack of the screed (3), the actual paving thickness (S) and the laying rate (V) are acquired and communicated as information to the control system (25), that the control system (25), at least from the communicated information, generates actuating signals (H, F) for actuating members (10', 28', 24, 33) and communicates the actuating signals to actuating members which automatically implement the actuating signals by controlling the actual paving thickness (S) to the target value (is) of the paving thickness (S) and optimizes an operating point of the pre-compaction system (13), wherein actuating signals (H) are generated at least for the tamper stroke and are implemented by an actuating member (24) in the form of a remotely operable gear train for adjusting during the applying process the eccentricity for the tamper stroke (H) as produced by an excenter drive.
  2. Method according to Claim 1, characterised in that additionally actuating signals for actuating members (10') of the levelling cylinders (10) and / or for actuating members (28') of the lifting cylinders (28) are generated.
  3. Method according to Claim 1, characterised in that the acquired actual laying rate (V) is communicated for processing to the closed-loop control system (25) as an actuating variable information.
  4. Method according to Claim 1, characterised in that the laying rate (V) is selected by an operator and either the selected laying rate or the acquired actual laying rate is communicated for processing to the closed-loop control system (25) as a disturbance variable information.
  5. Method according to at least one of the preceding claims, characterised in that the closed-loop control system (25) generates a laying rate recommendation (Ev) for an operator in the form of a speed value or a speed range, and that the operator implements the laying rate recommendation.
  6. Method according to at least one of the preceding claims, characterised in that at least some of the acquired information are processed in the closed-loop control system (25) as regulation input variables.
  7. Paver (1) comprising a screed (3) attached to towing spars (8) for applying a layer (6) of bituminous or concrete road paving material (5) in a paving thickness (S) on a formation level (7), wherein the screed (3) has a pre-compaction system (13) with at least one tamper (14) operable by an excenter drive with selectable stroke (H) and selectable frequency (F), anchoring points (9) of the towing spars (8) being adjustable in height by levelling cylinders (10) and the towing spars (8) being pivotable by lifting cylinders (28) about the anchoring points (9), characterised in that for controlling the laying process (36), the paver (1) has a computerised, either fully automatic or operator aided closed-loop control system (25) for controlling the paving thickness (S) to a predetermined target value (is) and for optimising an operating point of the pre-compaction system (13), that sensors (29, 37, 31) at least for the acquisition of the angle (α) of attack of the screed (3), of the paving thickness (S) and of the laying rate (V) are connected to the control system (25), and that an actuating member (24) at least for adjusting the tamper stroke (H) based on actuating signals generated by the control system (25) during the applying process is connected to the control system (25), and that the actuating member (24) is a remotely operable gear train for adjusting the eccentricity of the tamper stroke (H) of the tamper (14), which tamper stroke (H) is generated by the excenter drive.
  8. Paver according to Claim 7, characterised in that an actuating member (33) for adjusting the tamper frequency (F) based on actuating signals generated by the control system (25) during the applying process is also connected to the closed-loop control system (25).
  9. Paver according to Claim 7, characterised in that additionally actuating members (10', 28') for adjusting the levelling cylinders (10) and / or the lifting cylinders (28) based on actuating signals generated by the control system (25) are connected to the closed-loop control system (25).
  10. Paver according to at least one of Claims 7 to 9, characterised in that the closed-loop control system (25) has at least one, preferably three parallel connected single-variable regulators (39, 40, 41) and / or at least one multi-variable regulator (38).
  11. Paver according to at least one of Claims 7 to 10, characterised in that the closed-loop control system (25) is linked to a display at least for displaying a laying rate recommendation for an operator.
  12. Paver according to at least one of Claims 7 to 11, characterised in that the respective single-variable regulators (39, 40, 41) or the multi-variable regulator (38) is a PID-regulator or an adaptive regulator or a fuzzy-logic regulator or a neural-network regulator.
  13. Paver according to at least one of Claims 7 to 12, characterised in that in the closed-loop control system (25) is provided at least one predetermined characteristic curve or a characteristics map and / or a control based on a characteristic curve or on a characteristics map of mutually correlated actuating variables.
  14. Paver according to at least one of Claims 7 to 13, characterised in that an actuating member for the tamper frequency (F) as generated by a hydraulic drive is a solenoid-operated valve (33), preferably a proportional flow rate control valve.
  15. Paver according to at least one of Claims 7 to 14, characterised in that an actuating member for the angle (α) of attack of the screed (3) is a solenoid-operated valve (10') for the levelling cylinders (10).
  16. Paver according to at least one of Claims 7 to 15, characterised in that an actuating member, preferably for adjusting a screed relief, is a solenoid-operated valve (28') for the lifting cylinders (28).
EP10002897.6A 2010-03-18 2010-03-18 Method for controlling the process of applying a layer of road paving material and paver Active EP2366831B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10002897.6A EP2366831B1 (en) 2010-03-18 2010-03-18 Method for controlling the process of applying a layer of road paving material and paver
PL10002897T PL2366831T3 (en) 2010-03-18 2010-03-18 Method for controlling the process of applying a layer of road paving material and paver
JP2011055070A JP5820133B2 (en) 2010-03-18 2011-03-14 Process control method and road finishing machine when manufacturing paved road
US13/048,093 US8454266B2 (en) 2010-03-18 2011-03-15 Method for controlling the process when producing a paving mat and road finisher
CN201110065946.2A CN102304887B (en) 2010-03-18 2011-03-18 Method for controlling the process of applying a layer of road paving material and paver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10002897.6A EP2366831B1 (en) 2010-03-18 2010-03-18 Method for controlling the process of applying a layer of road paving material and paver

Publications (2)

Publication Number Publication Date
EP2366831A1 EP2366831A1 (en) 2011-09-21
EP2366831B1 true EP2366831B1 (en) 2014-12-24

Family

ID=42555915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10002897.6A Active EP2366831B1 (en) 2010-03-18 2010-03-18 Method for controlling the process of applying a layer of road paving material and paver

Country Status (5)

Country Link
US (1) US8454266B2 (en)
EP (1) EP2366831B1 (en)
JP (1) JP5820133B2 (en)
CN (1) CN102304887B (en)
PL (1) PL2366831T3 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366832B1 (en) * 2010-03-18 2015-09-23 Joseph Vögele AG Method and paver for producing a compacted paved surface
PL2514871T3 (en) * 2011-04-18 2016-12-30 Method for laying and compacting an asphalt layer
EP2620549B1 (en) * 2012-01-26 2014-05-14 Joseph Vögele AG Paver with controllable conveyor devices
US8371770B1 (en) * 2012-04-09 2013-02-12 Caterpillar Inc. Apparatus for tamping paving material
JP5648033B2 (en) * 2012-09-24 2015-01-07 株式会社東洋内燃機工業社 Concrete finisher
CN103015301B (en) * 2013-01-17 2016-01-20 徐工集团工程机械股份有限公司道路机械分公司 At the method and system of the levelling cylinder piston position of spreader starting stage control
US9200415B2 (en) * 2013-11-19 2015-12-01 Caterpillar Paving Products Inc. Paving machine with automatically adjustable screed assembly
DE102015007647A1 (en) * 2014-06-26 2015-12-31 Dynapac Gmbh Paver and method for operating a paver
PL3075909T3 (en) * 2015-03-30 2018-02-28 Joseph Vögele AG Road construction machine with network for data transmission and use of a portion of a power line
PL3214222T3 (en) 2016-03-02 2018-10-31 Joseph Vögele AG Screeds assembly and method of operating same
US10316476B2 (en) * 2016-04-11 2019-06-11 Caterpillar Paving Products Inc. Screed assembly for a paving machine
CN107794830B (en) * 2017-10-26 2019-11-12 襄阳路桥建设集团有限公司 A kind of municipal administration road asphalt laying apparatus
US10280572B1 (en) 2017-11-07 2019-05-07 Caterpillar Paving Products Inc. System for heating a paving screed
US10246834B1 (en) * 2017-11-20 2019-04-02 Caterpillar Paving Products Inc. Tamper bar and wear plate for screed assembly of paving machine
EP4375095A2 (en) 2017-12-13 2024-05-29 Joseph Vögele AG Adjustment of the levelling cylinder in a road finisher
PL3594409T3 (en) 2018-07-13 2022-08-08 Joseph Vögele AG Construction machine with a conveyor belt installation with a weight sensor
CN109115102B (en) * 2018-07-25 2020-08-21 南京天辰礼达电子科技有限公司 Automatic layering and layer thickness data correction method in roadbed compaction process
US10889944B2 (en) 2018-08-28 2021-01-12 Caterpillar Paving Products Inc. Control system for controlling operation of compaction systems of a paving machine
CN109162180A (en) * 2018-09-11 2019-01-08 中建路桥集团有限公司 A kind of highway pavement spells paving vehicle automatically
CN109235418A (en) * 2018-09-25 2019-01-18 谢跃连 A kind of road construction compacting trimming device
WO2020203475A1 (en) * 2019-03-29 2020-10-08 住友建機株式会社 Asphalt finisher
EP4097300B1 (en) * 2020-01-27 2024-05-01 Volvo Construction Equipment AB A tamper device for a screed of a working machine and a method for adjusting a stroke of a tamper device for a screed of a working machine
EP4029991B1 (en) * 2021-01-14 2023-05-10 Joseph Vögele AG Tamper stroke adjustment
CN115133842B (en) * 2022-07-19 2023-04-07 上海交通大学 PWM servo driver electromagnetic interference solution method based on virtual closed loop

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810985B1 (en) * 1968-12-20 1973-04-09
US4828428A (en) * 1987-10-23 1989-05-09 Pav-Saver Manufacturing Company Double tamping bar vibratory screed
US5213442A (en) * 1990-08-15 1993-05-25 Aw-2R, Inc. Controlled density paving and apparatus therefor
JPH0749643B2 (en) * 1990-11-14 1995-05-31 株式会社新潟鐵工所 Pavement thickness control method for leveling machine
DE4040029C1 (en) 1990-12-14 1992-04-23 Joseph Voegele Ag, 6800 Mannheim, De
JPH081045B2 (en) * 1991-11-13 1996-01-10 株式会社新潟鉄工所 Laying machine
US5356238A (en) * 1993-03-10 1994-10-18 Cedarapids, Inc. Paver with material supply and mat grade and slope quality control apparatus and method
US5484227A (en) * 1993-04-09 1996-01-16 Niigata Engineering Co., Ltd. Control device for asphalt finisher
NL1001653C2 (en) 1995-11-15 1997-05-21 Otterspoor Produkties B V Box.
DE19836269C1 (en) 1998-08-11 1999-08-26 Abg Allg Baumaschinen Gmbh Road building machine with undercarriage
US6749364B1 (en) * 1999-05-19 2004-06-15 Blaw-Knox Construction Equipment Corporation Temperature sensing for controlling paving and compaction operations
DE20010498U1 (en) 2000-06-13 2000-09-28 Voegele Ag J Paver
JP3797652B2 (en) * 2000-07-03 2006-07-19 住友建機製造株式会社 Compaction control device for paving machine
DE10038943A1 (en) 2000-08-09 2002-02-21 Voegele Ag J Asphalt pavers and paving processes
US20020168226A1 (en) * 2001-05-14 2002-11-14 Feucht Timothy A. Automatic tamping mechanism control
US7549821B2 (en) * 2005-03-01 2009-06-23 Hall David R Wireless remote-controlled pavement recycling machine
DE102005022266A1 (en) * 2005-05-10 2006-11-16 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Paver for floor-level installation of layers for roads or the like.
US7484911B2 (en) * 2006-08-08 2009-02-03 Caterpillar Inc. Paving process and machine with feed forward material feed control system
DE102007019419A1 (en) * 2007-04-23 2008-10-30 Hamm Ag Method for determining a degree of compaction of asphalts and system for determining a degree of compaction
EP2025811B1 (en) * 2007-08-16 2019-04-24 Joseph Vögele AG Method for laying a road paving and paver for carrying out this method
US8190338B2 (en) * 2008-09-02 2012-05-29 The Board Of Regents Of The University Of Oklahoma Method and apparatus for compaction of roadway materials
EP2325392B1 (en) * 2009-11-20 2020-09-30 Joseph Vögele AG Method for laying a road paving and paving screed
EP2366832B1 (en) * 2010-03-18 2015-09-23 Joseph Vögele AG Method and paver for producing a compacted paved surface

Also Published As

Publication number Publication date
US8454266B2 (en) 2013-06-04
US20110229263A1 (en) 2011-09-22
CN102304887A (en) 2012-01-04
PL2366831T3 (en) 2015-07-31
JP5820133B2 (en) 2015-11-24
CN102304887B (en) 2015-07-22
EP2366831A1 (en) 2011-09-21
JP2011196174A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
EP2366831B1 (en) Method for controlling the process of applying a layer of road paving material and paver
EP3138961B1 (en) Paving screed
EP2514871B1 (en) Method for laying and compacting an asphalt layer
EP2366830B1 (en) Method and system for applying a street pavement
EP2366832A1 (en) Method and paver for producing a compacted paved surface
DE102005040326A1 (en) Output monitoring system for a paving machine
EP2025811B1 (en) Method for laying a road paving and paver for carrying out this method
EP2735650B1 (en) Method for treating layers, a construction machine and an auxiliary construction machine
EP2333157A1 (en) Method for regulating the output of a road finisher or feeder and road finisher or feeder
EP3483341B1 (en) Self-propelled construction machine and method for operating the same
DE112009001610T5 (en) Paving system and plaster method
DE112016000713B4 (en) Auto-calibration of an automatic leveling control system in a work machine
EP3498914A1 (en) Adjustment of the levelling cylinder in a road finisher
DE102017206050A1 (en) SMOOTHBOARD ASSEMBLY FOR A ROAD CONSTRUCTION MACHINE
DE102017002225A1 (en) Road paver with control unit for determining the weight and / or the center of gravity and / or the width of the screed and method
DE102015002426A1 (en) Ground milling machine and method for adjusting the scraper blade of a ground milling machine
DE102008033565A1 (en) Method for operating a road paver
EP1179636B1 (en) Road paver and method of paving
DE102019120758A1 (en) TAKE OFF FROM A RIGID SCAL FOR IMPROVED PERFORMANCE
DE10109775A1 (en) Drive system of a work vehicle
EP2832205B2 (en) Self-propelled harvester
EP3981918B1 (en) Road finisher and method for levelling the screed of a finisher
DE9211854U1 (en) Paver
DE102017202461A1 (en) STAMPING SYSTEMS WITH STAGE-ADJUSTABLE AMPLITUDE AND FREQUENCY
DE102007039105A1 (en) Hoist and method for controlling a hoist

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 703208

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008544

Country of ref document: DE

Effective date: 20150212

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008544

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150925

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 703208

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 15

Ref country code: GB

Payment date: 20240320

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240314

Year of fee payment: 15

Ref country code: IT

Payment date: 20240327

Year of fee payment: 15

Ref country code: FR

Payment date: 20240321

Year of fee payment: 15