EP2363876B1 - Détecteur de rayonnement ionisant - Google Patents

Détecteur de rayonnement ionisant Download PDF

Info

Publication number
EP2363876B1
EP2363876B1 EP20110156361 EP11156361A EP2363876B1 EP 2363876 B1 EP2363876 B1 EP 2363876B1 EP 20110156361 EP20110156361 EP 20110156361 EP 11156361 A EP11156361 A EP 11156361A EP 2363876 B1 EP2363876 B1 EP 2363876B1
Authority
EP
European Patent Office
Prior art keywords
detector
tube
coupled
tubes
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110156361
Other languages
German (de)
English (en)
Other versions
EP2363876A1 (fr
Inventor
Bruno Guerard
Jean-Claude Buffet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUT MAX VON LAUE - PAUL LANGEVIN
Original Assignee
INSTITUT MAX VON LAUE - PAUL LANGEVIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUT MAX VON LAUE - PAUL LANGEVIN filed Critical INSTITUT MAX VON LAUE - PAUL LANGEVIN
Priority to US13/038,915 priority Critical patent/US8481957B2/en
Publication of EP2363876A1 publication Critical patent/EP2363876A1/fr
Application granted granted Critical
Publication of EP2363876B1 publication Critical patent/EP2363876B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/12Neutron detector tubes, e.g. BF3 tubes
    • H01J47/1205Neutron detector tubes, e.g. BF3 tubes using nuclear reactions of the type (n, alpha) in solid materials, e.g. Boron-10 (n,alpha) Lithium-7, Lithium-6 (n, alpha)Hydrogen-3
    • H01J47/1211Ionisation chambers

Definitions

  • the present invention relates to the field of detectors for particles or ionizing radiation, and in particular neutron, ⁇ or X-ray detectors.
  • the figure 1 schematically represents a conventional structure of a detector sensitive to ionizing radiation.
  • This detector comprises a conductive tube 1 filled with a gaseous mixture, sealed at its ends by insulating plugs 3.
  • a conductive wire 5 whose ends pass tightly through the plugs 3 is held taut at the center of the tube 1 by a spring 7 located inside the tube.
  • a positive electrical potential applied to the wire 5 by a measuring circuit 9 makes it possible to define inside the tube an electric field which is conducive to the drift and the amplification of electrons generated during the passage of the ionizing radiation.
  • the gaseous mixture contained in the tube is intended to be ionized by the particles that are to be detected, either directly or after conversion into ionizing particles.
  • a mixture of CF 4 and 3 He in which the 3 He acts as a converter can be used for the detection of neutrons, and the CF 4 as the gas for stopping both particles.
  • ionizing proton and triton
  • the measurement circuit includes a read electronics for load signal amplitude measurement at each end of the wire. This detection mode is always complex. Another mode of operation, called “counting”, uses electronics based on the comparison, with respect to a reference voltage, of the signal measured at one end of the wire. This detection mode is generally imprecise in its current implementations.
  • the uniformity of response of the detector is affected by the inaccuracy of centering of the wire inside the tube, and this centering is difficult to achieve.
  • the difficulty of centering the wire 8 limits the maximum amplification gain with which the detector can operate, which has a direct impact on the performance of the detector (resolution in energy and in position).
  • An ionizing radiation detector is conventionally formed of several elementary detectors whose tubes are juxtaposed. The operation of a detector depends on the quality and pressure of the gas mixture it contains. In addition, when several detectors must be used together with a minimum of space between the tubes, typically 10 mm, it is difficult to ensure the continuity of the electromagnetic shielding between the tube casing and the measuring circuit 9 without exceeding the outer diameter of the tube, which has the effect of creating dead spaces between the detectors, resulting in a loss of sensitivity of the whole.
  • An object of an embodiment of the present invention is to provide a simple and inexpensive assembly to make detectors sensitive to ionizing radiation.
  • An object of an embodiment of the present invention is to provide an ionizing radiation detector particularly suitable for using thin layers of converter material producing charged particles.
  • Another object of an embodiment of the present invention is to provide a detector adapted to detect the presence or absence of ionizing radiation, with or without location of the conversion point of said radiation.
  • an embodiment of the present invention provides an ionizing radiation detector comprising a plurality of parallel conductor tubes containing a gaseous mixture, a conductive wire being tensioned in the center of each tube and adapted to be polarized relative to the latter, in which each tube is divided into electrically insulated longitudinal sections, all the sections of tubes of the same transverse slice being formed of a grid of electrically connected slats and each set of sections of the same slice comprising a means connecting to a detection circuit.
  • the grid of blades of each slice is linked to a frame.
  • each blade is coated with a layer containing a radiation converting product generating ions in response to an ionizing radiation.
  • the converter product contains boron-10.
  • the gas mixture is a mixture of pressurized gas containing BF 3 .
  • the blades are made of aluminum.
  • a first group of grid blades comprises slits which cooperate with slots of a second group of blades of the grid orthogonal to the first group.
  • the detection circuit comprises a plurality of resistors coupled in series between first and second amplifiers, the nodes between the resistors being coupled to the connection means of the respective slots.
  • each of the tubes comprises means for connecting the conductive wire of the tube to another detection circuit.
  • the conducting wires of a group of tubes are coupled to each other.
  • the other detection circuit comprises a plurality of resistors coupled in series between third and fourth amplifiers, the nodes between the resistors being coupled to the connection means of the tubes or groups of tubes. respectively.
  • the detector is provided for detecting neutrons.
  • An embodiment of the present invention provides a device for detecting ionizing radiation comprising a plurality of detectors as above arranged side by side.
  • each of the plurality of detectors is disposed in a corresponding one of a succession of chambers forming a cylinder portion.
  • an ionizing radiation detector comprises a parallel assembly of tubes 10-1, 10-2, 10-3, 10-n, each tube consisting of a set of stacked sections 12-1, 12-2, 12- 3 ..., 12-m insulated electrically by insulators or intervals 11.
  • Each tube is traversed by a conductive element 14-1, 14-2 ... 14-n, this conductive element having for example the shape of a wire, or as will be seen below, a thin band.
  • the wires are connected to a polarization and detection circuit 16, and all the tube elements corresponding to the same wafer (a gate) are connected to a polarization and detection circuit 18.
  • the structure can be considered as constituted of a set of cells 12-ijk, i being between 1 and n, j being between 1 and m, and k being between 1 and 1, l being the number of tubes in the direction perpendicular to the plane of the figure.
  • ionizing radiation interacts with one of the cells, an ionization of a gas contained in the cell occurs and this ionization provides an electrical signal on the one hand on the central conductor, on the other hand on the wall of the tube. There is thus an indication in x, y and z of the location at which the ionization has occurred.
  • FIG. 3 very schematically represents an assembly of detectors.
  • This detector assembly comprises vertically stacked slices in the y direction, the x axis designates the horizontal direction and the z axis designates the direction in which the ionizing radiation is likely to arrive.
  • circuits 16 and 18 it will be possible to precisely determine the cell at which a conversion of a radiation, for example of a neutron, has taken place.
  • the entire structure is disposed in an enclosure filled with a clean gas to be ionized.
  • the gas is for example under pressure.
  • the converter product reacting to the ionizing radiation may be, as in the prior art described above, a gas such as helium-3 or BF 3 .
  • a gas such as helium-3 or BF 3 .
  • It may also be a reactive material deposited in a thin layer, alone or in combination with another material, on the walls of each tube, or else the combination of helium-3 or BF 3 and layers thin reactive material.
  • This reactive material may be boron-10, capable of interacting with a neutron to provide lithium-7 and an alpha-4 particle.
  • Other products that may be used are known in the art.
  • helium 3 is extremely expensive and hardly available.
  • the use of BF 3 gas and a boron coating on the walls of each tube leads to a double effect for the detection of neutrons.
  • the figure 4 is an exploded view of an exemplary embodiment of a horizontal slice (disposed between two adjacent horizontal planes), which comprises a section of each tube of a detector according to an embodiment of the present invention.
  • the wafer is formed from a frame 21 whose opposite edges are provided with grooves 22 for receiving first plates 23 oriented in the z direction.
  • the plates 23 are provided with slots 24 in which are intended to fit orthogonal plates 25 provided with slots 26 cooperating with the slots 24.
  • the ends of the plates 25 are received in opposite slots 27 of the edges of the frame oriented according to the direction z.
  • the contact between the plates 23, 25 and the frame 21 and between the plates is conductive. This gives the set of cells or sections of a horizontal slice (a grid) of the detector.
  • FIG. 4 an insulating joint 28 for separating two slices of a detector according to embodiments of the invention.
  • each section and each wire passing through a set of vertically aligned sections are connected to a polarization and detection system so that the wires constitute anodes and the walls of the cathode wafer sections to attract the ionized gases produced by the conversion of ionizing bombardment.
  • each wire and cell slice is connected by a separate conductor to recognize the cell at which the ionizing radiation has been converted. In fact, this discrimination of the cells is not always necessary. In some cases, one simply wants, for example in airport security devices, to know if a piece of luggage or a container contains radioactive products emitting neutrons. It will be enough then to connect together all the wires and all the sections to have a very simple device to use, with few lines of exit.
  • each section may have a side of the order of 2 cm and a height of the order of 2 cm and the entire structure may have a height of about 3 m.
  • Those skilled in the art will be able to adapt these dimensions to their needs.
  • an advantage of using a grid structure is that the section of each tube can have small dimensions. For example, rather than being 2 cm as described above, the lateral length of each section of each rectangular tube is for example only 4 to 10 mm. This allows the electrons resulting from a reaction to have a short flight time and thus a relatively high gas pressure can be used in the tube, for example greater than 2.10 5 Pa. This is particularly advantageous when the gas is from BF 3 .
  • a grid structure can advantageously be consisting of plates or blades 23, 25 of aluminum having for example a thickness of 0.5 mm or less.
  • the figure 5 shows in more detail a radiation detector and in particular an example of a detection circuit of the polarization and detection device 18.
  • the detection circuit comprises a resistor network 30 comprising a succession of resistors 30-1 to 30-7 in series. .
  • Each resistor has for example a value between 100 and 200 ohms.
  • Both ends of the resistor network are coupled to amplifiers 32 and 34, respectively, which provide respective output voltages VA and V B. Based on these voltages, the slice in which radiation is detected can be identified. In particular, the position is indicated by calculating V A / (V A + V B ).
  • An advantage of the use of the resistance network 30 of the figure 5 is that it reduces the number of output lines to two rather than to a number equal to the number of slices.
  • the figure 6 is a top view of the upper edge of the radiation detector, and shows the polarization and detection circuit 16 according to an example in which groups of conductive wires 14 of each tube are coupled to each other.
  • the tube block son, 4 in depth and 2 in width are coupled to each other, although other shapes and dimensions of blocks can be chosen. This further reduces the number of output lines for the radiation detector.
  • one or more resistive networks may be used to reduce the number of connections to the wires.
  • the figure 6 illustrates the example of a resistor network 36 having three series resistors 36-1 to 36-3 and amplifiers 38 and 40 at each end. providing voltages V C and V D.
  • the corresponding nodes of the resistor network 36 are coupled to four of the interconnected wire groups.
  • the bias circuit for applying a bias voltage to these wires is also shown and includes, for example, a high voltage supply HV coupled by a resistor at the end of the resistor network, on the amplifier side 40.
  • a capacitor 41 is coupled between the resistor network and the amplifier 40, while the input of the amplifier 40 is also coupled by a resistance to ground.
  • the figure 6 is an example of a resistor network 42 having three resistors connected in series 42-1 to 42-3 and amplifiers 44 and 46 at each end providing voltages V E and V F. Corresponding nodes of the resistor network 42 are coupled to four of the interconnected wire groups.
  • the bias circuit for applying a bias voltage to these wires is also shown and includes, for example, a high voltage power supply coupled by a resistor at the end of the resistor network, on the amplifier side 46.
  • a capacitor 47 is coupled between the resistor network and the amplifier 46 while the input of the amplifier 47 is also coupled by a resistance to ground.
  • the figure 7 is a top view illustrating a radiation detection device 50 having a curved wall 51 consisting of a succession of chambers 52 each of which contains the pressurized gas detectors.
  • the wall 51 is for example made of metal sheets having a thickness of the order of 3 mm.
  • Each chamber 52 comprises a radiation detector as described above, an example 56 of which is shown.
  • the slices of the same level of neighboring detectors are coupled to each other, for example in pairs, to provide combined outputs, a level of these outputs being designated by references 58-1 to 58-6 in figure 7 . This further reduces the number of output lines.
  • Such a device can be used in a scientific application to detect the direction of radiation from a source 54 in the center of a partial cylinder consisting of the curved wall 51.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Measurement Of Radiation (AREA)

Description

    Domaine de l'invention
  • La présente invention concerne le domaine des détecteurs de particules ou de rayonnements ionisants, et en particulier des détecteurs de neutrons, de rayons y ou X.
  • Exposé de l'art antérieur
  • La figure 1 représente schématiquement une structure classique d'un détecteur sensible à un rayonnement ionisant. Ce détecteur comporte un tube conducteur 1 rempli d'un mélange gazeux, scellé à ses extrémités par des bouchons isolants 3. Un fil conducteur 5 dont les extrémités traversent de manière étanche les bouchons 3 est maintenu tendu au centre du tube 1 par un ressort 7 situé à l'intérieur du tube. Un potentiel électrique positif appliqué au fil 5 par un circuit de mesure 9 permet de définir à l'intérieur du tube un champ électrique qui est propice à la dérive et à l'amplification d'électrons générés au passage du rayonnement ionisant.
  • Le mélange gazeux contenu dans le tube est prévu pour être ionisé par les particules que l'on veut détecter, soit directement, soit après conversion en particules ionisantes. Par exemple, on peut utiliser pour la détection de neutrons un mélange de CF4 et de 3He dans lequel le 3He joue le rôle de convertisseur, et le CF4 celui de gaz d'arrêt des deux particules ionisantes (proton et triton) émises après capture d'un neutron par un atome de 3He.
  • Pour mesurer la position de l'impact le long du tube on utilise couramment un procédé dit par division de charge. Le fil est alors résistif. Le circuit de mesure comprend une électronique de lecture permettant une mesure d'amplitude de signal de charge à chaque extrémité du fil. Ce mode de détection est toujours complexe. Un autre mode de fonctionnement, dit "de comptage", utilise une électronique basée sur la comparaison, par rapport à une tension de référence, du signal mesuré à une seule extrémité du fil. Ce mode de détection est généralement imprécis dans ses implémentations courantes.
  • L'uniformité de réponse du détecteur est affectée par l'imprécision de centrage du fil à l'intérieur du tube, et ce centrage est difficile à réaliser. La difficulté de centrage du fil 8 limite le gain d'amplification maximum avec lequel peut fonctionner le détecteur, ce qui a des conséquences directes sur les performances du détecteur (résolution en énergie et en position).
  • Un détecteur de rayonnement ionisant est classiquement formé de plusieurs détecteurs élémentaires dont les tubes sont juxtaposés. Le fonctionnement d'un détecteur dépend de la qualité et de la pression du mélange gazeux qu'il contient. En outre, lorsque plusieurs détecteurs doivent être utilisés ensemble avec un minimum d'espace entre les tubes, typiquement 10 mm, il est difficile d'assurer la continuité du blindage électromagnétique entre l'enveloppe du tube et le circuit de mesure 9 sans dépasser le diamètre extérieur du tube, ce qui a pour effet de créer des espaces morts entre les détecteurs, d'où une perte de sensibilité de l'ensemble.
  • Résumé
  • Un objet d'un mode de réalisation de la présente invention est de prévoir un assemblage simple et peu coûteux à réaliser de détecteurs sensibles à des rayonnements ionisants.
  • Un objet d'un mode de réalisation de la présente invention est de prévoir un détecteur de rayonnement ionisant particulièrement adapté à utiliser des couches minces de matériau convertisseur produisant des particules chargées.
  • Un autre objet d'un mode de réalisation de la présente invention est de prévoir un détecteur adapté à détecter la présence ou l'absence de rayonnement ionisant, avec ou sans localisation du point de conversion dudit rayonnement.
  • Pour atteindre ces objets, un mode de réalisation de la présente invention prévoit un détecteur de rayonnement ionisant comprenant une pluralité de tubes conducteurs disposés parallèlement contenant un mélange gazeux, un fil conducteur étant tendu au centre de chaque tube et propre à être polarisé par rapport à celui-ci, dans lequel chaque tube est divisé en sections longitudinales électriquement isolées, toutes les sections de tubes d'une même tranche transversale étant formées d'un quadrillage de lames connectées électriquement et chaque ensemble de sections d'une même tranche comprenant un moyen de connexion à un circuit de détection.
  • Selon un mode de réalisation de la présente invention, le quadrillage de lames de chaque tranche est lié à un cadre.
  • Selon un mode de réalisation de la présente invention, chaque lame est revêtue d'une couche contenant un produit convertisseur de rayonnement générant des ions en réponse à un rayonnant ionisant.
  • Selon un mode de réalisation de la présente invention, le produit convertisseur contient du bore-10.
  • Selon un mode de réalisation de la présente invention, le mélange de gaz est un mélange de gaz sous pression contenant du BF3.
  • Selon un mode de réalisation de la présente invention, les lames sont en aluminium.
  • Selon un mode de réalisation de la présente invention, un premier groupe de lames du quadrillage comprend des fentes qui coopèrent avec des fentes d'un second groupe de lames du quadrillage orthogonal au premier groupe.
  • Selon un mode de réalisation de la présente invention, le circuit de détection comprend une pluralité de résistances couplées en série entre des premier et second amplificateurs, les noeuds entre les résistances étant couplés aux moyens de connexion des tranches respectives.
  • Selon un mode de réalisation de la présente invention, chacun des tubes comprend des moyens pour connecter le fil conducteur du tube à un autre circuit de détection.
  • Selon un mode de réalisation de la présente invention, les fils conducteurs d'un groupe de tubes sont couplés les uns aux autres.
  • Selon un mode de réalisation de la présente invention, l'autre circuit de détection comprend une pluralité de résistances, couplées en série entre des troisième et quatrième amplificateurs, les noeuds entre les résistances étant couplés aux moyens de connexion des tubes ou des groupes de tubes respectifs.
  • Selon un mode de réalisation de la présente invention, le détecteur est prévu pour détecter des neutrons.
  • Un mode de réalisation de la présente invention prévoit un dispositif pour détecter un rayonnement ionisant comprenant une pluralité de détecteurs tels que ci-dessus disposés côte à côte.
  • Selon un mode de réalisation de la présente invention, chacun de la pluralité de détecteurs est disposé dans l'une correspondante d'une succession de chambres formant une portion de cylindre.
  • Brève description des dessins
  • Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
    • la figure 1, décrite précédemment, représente le schéma d'un élément d'un détecteur de rayonnement classique ;
    • la figure 2 représente de façon schématique une vue de face d'un détecteur de rayonnement ionisant selon un mode de réalisation de la présente invention ;
    • la figure 3 est un schéma destiné à préciser les axes de coordonnées utilisés dans la présente description ;
    • la figure 4 représente un mode de réalisation d'un élément d'un détecteur selon un mode de réalisation de la présente invention ;
    • la figure 5 représente plus en détail un détecteur de rayonnement selon un mode de réalisation de la présente invention ;
    • la figure 6 représente schématiquement et plus en détail une vue de dessus d'une tranche supérieure du détecteur de rayonnement de la figure 5 selon un mode de réalisation de la présente invention ; et
    • la figure 7 représente un dispositif de détection de rayonnement selon un mode de réalisation de la présente invention.
    Description détaillée
  • Comme le représente la figure 2, un détecteur de rayonnement ionisant comprend un ensemble en parallèle de tubes 10-1, 10-2, 10-3, 10-n, chaque tube étant constitué d'un ensemble de sections empilées 12-1, 12-2, 12-3..., 12-m isolées électriquement par des isolants ou intervalles 11. Chaque tube est traversé par un élément conducteur 14-1, 14-2...14-n, cet élément conducteur ayant par exemple la forme d'un fil, ou comme on le verra ci-après, d'une bande mince. Les fils sont connectés à un circuit 16 de polarisation et de détection, et tous les éléments de tube correspondant à une même tranche (une grille) sont reliés à un circuit de polarisation et de détection 18. Ainsi, la structure peut être considérée comme constituée d'un ensemble de cellules 12-ijk, i étant compris entre 1 et n, j étant compris entre 1 et m, et k étant compris entre 1 et 1, l étant le nombre de tubes dans la direction perpendiculaire au plan de la figure. Quand un rayonnement ionisant interagit au niveau de l'une des cellules, il se produit une ionisation d'un gaz contenu dans la cellule et cette ionisation fournit un signal électrique d'une part sur le conducteur central, d'autre part sur la paroi du tube. On dispose ainsi d'une indication en x, y et z de l'emplacement au niveau duquel l'ionisation est survenue.
  • Pour les orientations des axes x, y et z, on se référera à la figure 3 qui représente très schématiquement un assemblage de détecteurs. Cet assemblage de détecteurs comprend des tranches empilées verticalement dans la direction des y, l'axe x désigne la direction horizontale et l'axe z désigne la direction dans laquelle les rayonnements ionisants sont susceptibles d'arriver.
  • Ainsi, avec les circuits 16 et 18, on pourra déterminer avec précision la cellule au niveau de laquelle a eu lieu une conversion d'un rayonnement, par exemple d'un neutron.
  • L'ensemble de la structure est disposé dans une enceinte remplie d'un gaz propre à être ionisé. Le gaz est par exemple sous pression. D'autre part, le produit convertisseur réagissant au rayonnement ionisant (par exemple des neutrons), peut être, comme dans l'art antérieur décrit précédemment, un gaz tel que de l'hélium-3 ou du BF3. Il pourra aussi s'agir d'un matériau réactif déposé en couche mince, seul ou en combinaison avec un autre matériau, sur les parois de chaque tube, ou bien encore de la combinaison d'hélium-3 ou de BF3 et de couches minces de matériau réactif. Ce matériau réactif pourra être du bore-10, susceptible d'interagir avec un neutron pour fournir du lithium-7 et une particule alpha-4. D'autres produits susceptibles d'être utilisés sont connus dans la technique. Il pourra par exemple s'agir d'isotopes de gadolinium ou de lithium, ces matériaux étant déposés en couches minces sur les parois du tube et/ou sur la bande centrale. Il est intéressant d'utiliser de tels matériaux convertisseurs car l'hélium 3 est extrêmement coûteux et difficilement disponible. De façon avantageuse, l'utilisation de BF3 gazeux et d'un revêtement de bore sur les parois de chaque tube conduit à un double effet pour la détection de neutrons. Par contre, il est très difficile de revêtir les parois internes d'un tube d'une couche contenant un tel matériau.
  • La structure proposée ici permet, comme on le verra ci-après, de réaliser très simplement le revêtement des parois.
  • La figure 4 est une vue explosée d'un exemple de réalisation d'une tranche horizontale (disposée entre deux plans horizontaux voisins), qui comprend une section de chaque tube d'un détecteur selon un mode de réalisation de la présente invention. La tranche est constituée à partir d'un cadre 21 dont des bords opposés sont munis de rainures 22 destinées à recevoir des premières plaques 23 orientées dans la direction z. Les plaques 23 sont munies de fentes 24 dans lesquelles sont destinées à venir s'emboîter des plaques orthogonales 25 munies de fentes 26 coopérant avec les fentes 24. Les extrémités des plaques 25 sont reçues dans des fentes opposées 27 des bords du cadre orientés selon la direction z. Le contact entre les plaques 23, 25 et le cadre 21 et entre les plaques est conducteur. On obtient ainsi l'ensemble de cellules ou sections d'une tranche horizontale (une grille) du détecteur.
  • On notera que les plaques, ou lames, 23 et 25 pourront sans difficulté être enduites d'un produit convertisseur avant montage, ce qui simplifie beaucoup cette enduction ou dépôt. Ainsi, quand un rayonnement ionisant interagit au niveau de l'une des cellules, il en résulte un signal électrique sur le conducteur central et sur la tranche. On a en outre représenté en figure 4 un joint isolant 28 destiné à séparer deux tranches d'un détecteur selon des modes de réalisation de l'invention.
  • On comprendra qu'il ne s'agit là que d'un exemple de réalisation de la présente invention. On pourra utiliser toute structure en nid d'abeille, comportant par exemple des cellules de forme hexagonale ou autre. En outre, on notera que le cadre 21 comprenant des fentes 22 et 27 est optionnel. A titre de variante, un empilement de plaques 23 et 25 pourrait être fixé dans une chambre comme cela est décrit plus en détail ci-après.
  • On a indiqué précédemment que chaque section et chaque fil traversant un ensemble de sections alignées verticalement sont reliés à un système de polarisation et de détection de sorte que les fils constituent des anodes et les parois des sections d'une tranche des cathodes permettant d'attirer les gaz ionisés produits par la conversion du bombardement ionisant. On a également indiqué que chaque fil et chaque tranche de cellules était relié par un conducteur séparé pour pouvoir reconnaître la cellule au niveau de laquelle le rayonnement ionisant a été converti. En fait, cette discrimination des cellules n'est pas toujours nécessaire. Dans certains cas, on veut simplement, par exemple dans des dispositifs de sécurité d'aéroport, savoir si un bagage ou un conteneur contient des produits radioactifs émettant des neutrons. Il suffira alors de relier ensemble tous les fils et toutes les sections pour disposer d'un dispositif très simple à utiliser, avec peu de lignes de sortie.
  • A titre d'exemple de dimensions, chaque section pourra avoir un côté de l'ordre de 2 cm et une hauteur de l'ordre de 2 cm et l'ensemble de la structure pourra avoir une hauteur de l'ordre de 3 m. L'homme de l'art saura adapter ces dimensions à ses besoins.
  • Un avantage de l'utilisation d'une structure en quadrillage est que la section de chaque tube peut avoir de petites dimensions. Par exemple, plutôt que d'être égale à 2 cm comme cela a été décrit ci-dessus, la longueur latérale de chaque section de chaque tube rectangulaire est par exemple seulement de 4 à 10 mm. Ceci permet que les électrons résultant d'une réaction aient un faible temps de vol et donc qu'une pression relativement élevée de gaz puisse être utilisée dans le tube, par exemple supérieure à 2.105 Pa. Ceci est particulièrement avantageux quand le gaz est du BF3. En outre, une telle structure en quadrillage peut avantageusement être constituée de plaques ou lames 23, 25 en aluminium ayant par exemple une épaisseur de 0,5 mm ou moins.
  • La figure 5 représente plus en détails un détecteur de rayonnement et en particulier un exemple de circuit de détection du dispositif de polarisation et de détection 18. Le circuit de détection comprend un réseau de résistances 30 comprenant une succession de résistances 30-1 à 30-7 en série. Chaque résistance a par exemple une valeur comprise entre 100 et 200 ohms. Dans cet exemple, il y a huit tranches et sept résistances, et une connexion depuis le quadrillage de chaque tranche est couplée à la connexion d'un quadrillage voisin par une résistance correspondante. Les deux extrémités du réseau de résistances sont couplées à des amplificateurs 32 et 34, respectivement, qui fournissent des tensions de sortie respectives VA et VB. Sur la base de ces tensions, la tranche dans laquelle un rayonnement est détecté peut être identifiée. En particulier, la position est indiquée en calculant VA/(VA+VB).
  • Un avantage de l'utilisation du réseau de résistances 30 de la figure 5 est que cela réduit le nombre de lignes de sortie à deux plutôt qu'à un nombre égal au nombre de tranches.
  • La figure 6 est une vue de dessus de la tranche supérieure du détecteur de rayonnement, et représente le circuit de polarisation et de détection 16 selon un exemple dans lequel des groupes de fils conducteur 14 de chaque tube sont couplés les uns aux autres. Dans l'exemple particulier de la figure 6, les fils de blocs de tubes, 4 en profondeur et 2 en largeur, sont couplés les uns aux autres, bien que d'autres formes et dimensions de blocs puissent être choisies. Ceci réduit encore le nombre de lignes de sortie pour le détecteur de rayonnement.
  • En outre ou à titre de variante, un ou plusieurs réseaux résistifs peuvent être utilisés pour réduire le nombre de connexions aux fils. La figure 6 illustre l'exemple d'un réseau de résistances 36 comportant trois résistances en série 36-1 à 36-3 et des amplificateurs 38 et 40 à chaque extrémité fournissant des tensions VC et VD. Les noeuds correspondants du réseau de résistances 36 sont couplés à quatre des groupes de fils interconnectés. Le circuit de polarisation pour appliquer une tension de polarisation à ces fils est également représenté et comprend par exemple une alimentation haute tension HV couplée par une résistance à l'extrémité du réseau de résistances, du côté de l'amplificateur 40. Un condensateur 41 est couplé entre le réseau de résistances et l'amplificateur 40, alors que l'entrée de l'amplificateur 40 est également couplée par une résistance à la masse. De façon similaire, la figure 6 représente un exemple de réseau de résistances 42 comportant trois résistances connectées en série 42-1 à 42-3 et des amplificateurs 44 et 46 à chaque extrémité fournissant des tensions VE et VF. Des noeuds correspondants du réseau de résistances 42 sont couplés à quatre des groupes de fils interconnectés. Le circuit de polarisation pour appliquer une tension de polarisation à ces fils est également représenté et comprend par exemple une alimentation haute tension couplée par une résistance à l'extrémité du réseau de résistances, du côté de l'amplificateur 46. Un condensateur 47 est couplé entre le réseau de résistances et l'amplificateur 46 alors que l'entrée de l'amplificateur 47 est également couplée par une résistance à la masse.
  • La figure 7 est une vue de dessus illustrant un dispositif de détection de rayonnement 50 ayant une paroi courbe 51 constitué d'une succession de chambres 52 dont chacune contient le gaz sous pression des détecteurs. La paroi 51 est par exemple constituée de feuilles de métal ayant une épaisseur de l'ordre de 3 mm. Chaque chambre 52 comprend un détecteur de rayonnement tel que décrit ci-dessus dont un exemple 56 est représenté.
  • Dans un mode de réalisation, les tranches du même niveau de détecteurs voisins sont couplées les unes aux autres, par exemple par paires, pour fournir des sorties combinées, un niveau de ces sorties étant désigné par les références 58-1 à 58-6 en figure 7. Ceci réduit encore le nombre de lignes de sortie.
  • Un tel dispositif peut être utilisé dans une application scientifique pour détecter la direction d'un rayonnement provenant d'une source 54 au centre d'un cylindre partiel constitué de la paroi courbe 51.
  • Des modes de réalisation particuliers de la présente invention ont été décrits. Diverses variantes et modifications apparaîtront à l'homme de l'art. En particulier, les tranches superposées pourront définir diverses formes d'alvéoles et être constituées de diverses manières.

Claims (14)

  1. Détecteur de rayonnement ionisant comprenant une pluralité de tubes conducteurs disposés parallèlement contenant un mélange gazeux, un fil conducteur (14-1, ... 14-n) étant tendu au centre de chaque tube et propre à être polarisé par rapport à celui-ci, dans lequel chaque tube est divisé en sections longitudinales électriquement isolées (12-ijk), chaque ensemble de sections d'une même tranche comprenant un moyen de connexion à un circuit de détection (18) caractérisé en ce que toutes les sections de tubes d'une même tranche transversale sont formées d'un quadrillage de lames (23, 25) connectées électriquement.
  2. Détecteur selon la revendication 1, dans lequel le quadrillage de lames de chaque tranche est lié à un cadre (21).
  3. Détecteur selon la revendication 1 ou 2, dans lequel chaque lame est revêtue d'une couche contenant un produit convertisseur de rayonnement générant des ions en réponse à un rayonnant ionisant.
  4. Détecteur selon la revendication 3, dans lequel le produit convertisseur contient du bore-10.
  5. Détecteur selon l'une quelconque des revendications 1 à 4, dans lequel le mélange de gaz est un mélange de gaz sous pression contenant du BF3.
  6. Détecteur selon l'une quelconque des revendications 1 à 5, dans lequel les lames sont en aluminium.
  7. Détecteur selon l'une quelconque des revendications 1 à 6, dans lequel un premier groupe de lames (23) du quadrillage comprend des fentes (24) qui coopèrent avec des fentes (27) d'un second groupe de lames du quadrillage orthogonal au premier groupe.
  8. Détecteur selon l'une quelconque des revendications 1 à 7, dans lequel le circuit de détection (18) comprend une pluralité de résistances (30-1 à 30-7) couplées en série entre des premier et second amplificateurs (32, 34), les noeuds entre les résistances étant couplés aux moyens de connexion des tranches respectives.
  9. Détecteur selon l'une quelconque des revendications 1 à 8, dans lequel chacun des tubes comprend des moyens pour connecter le fil conducteur du tube à un autre circuit de détection (16).
  10. Détecteur selon la revendication 9, dans lequel les fils conducteurs d'un groupe de tubes sont couplés les uns aux autres.
  11. Détecteur selon la revendication 9 ou 10, dans lequel l'autre circuit de détection (16) comprend une pluralité de résistances (36-1 à 36-3, 42-1 à 42-3), couplées en série entre des troisième et quatrième amplificateurs (44, 46), les noeuds entre les résistances étant couplés aux moyens de connexion des tubes ou des groupes de tubes respectifs.
  12. Détecteur selon l'une quelconque des revendications 1 à 11 prévu pour détecter des neutrons.
  13. Dispositif pour détecter un rayonnement ionisant comprenant une pluralité de détecteurs selon l'une quelconque des revendications 1 à 12 disposés côte à côte.
  14. Dispositif selon la revendication 13, dans lequel chacun de la pluralité de détecteurs est disposé dans l'une correspondante d'une succession de chambres formant une portion de cylindre.
EP20110156361 2010-03-02 2011-03-01 Détecteur de rayonnement ionisant Active EP2363876B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/038,915 US8481957B2 (en) 2010-03-02 2011-03-02 Ionizing radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1051502A FR2957188B1 (fr) 2010-03-02 2010-03-02 Detecteur de rayonnement ionisant

Publications (2)

Publication Number Publication Date
EP2363876A1 EP2363876A1 (fr) 2011-09-07
EP2363876B1 true EP2363876B1 (fr) 2015-04-29

Family

ID=42979826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110156361 Active EP2363876B1 (fr) 2010-03-02 2011-03-01 Détecteur de rayonnement ionisant

Country Status (4)

Country Link
US (1) US8481957B2 (fr)
EP (1) EP2363876B1 (fr)
JP (1) JP2011191295A (fr)
FR (1) FR2957188B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108766A1 (de) * 2012-09-18 2014-03-20 CDT Cascade Detector Technologies GmbH Neutronendetektoreinheit sowie Neutronendetektoranordnung
US9847215B2 (en) 2014-11-08 2017-12-19 Jefferson Science Associates, Llc Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR943262A (fr) * 1946-03-14 1949-03-03 Texaco Development Corp Perfectionnements aux détecteurs de radiation
US4447727A (en) * 1981-06-30 1984-05-08 Irt Corporation Large area neutron proportional counter and portal monitor detector
US5071381A (en) * 1990-03-07 1991-12-10 Advanced Interconnect Technology Inc. Process for the manufacture of straw tube drift chambers
US5734689A (en) * 1996-01-29 1998-03-31 The United States Of America As Represented By The Secretary Of The Navy Thermal neutron detector
DE19907042A1 (de) * 1999-02-19 2000-08-31 Gsf Forschungszentrum Umwelt Modularer Ionisationsdetektor
WO2004043372A2 (fr) * 2002-11-13 2004-05-27 Proportional Technologies, Inc. Detecteur de neutrons par tubes pailles enduits de bore
US7233007B2 (en) * 2004-03-01 2007-06-19 Nova Scientific, Inc. Radiation detectors and methods of detecting radiation
WO2007138604A2 (fr) * 2006-06-01 2007-12-06 Ben-Gurion University Of The Negev Research And Development Authority Système et procédé de traitement par dénitrification
US7633062B2 (en) * 2006-10-27 2009-12-15 Los Alamos National Security, Llc Radiation portal monitor system and method
US7858949B2 (en) * 2008-07-18 2010-12-28 Brookhaven Science Associates, Llc Multi-anode ionization chamber

Also Published As

Publication number Publication date
US8481957B2 (en) 2013-07-09
EP2363876A1 (fr) 2011-09-07
US20110215251A1 (en) 2011-09-08
JP2011191295A (ja) 2011-09-29
FR2957188A1 (fr) 2011-09-09
FR2957188B1 (fr) 2012-08-17

Similar Documents

Publication Publication Date Title
EP0855086B1 (fr) Detecteur de position, a haute resolution, de hauts flux de particules ionisantes
EP0678896B1 (fr) Dispositif d'imagerie médicale en Rayonnement ionisant X ou gamma à faible dose
EP0810631B1 (fr) Dispositif d'imagerie radiographique à haute résolution
EP0742954A1 (fr) Detecteur de rayonnements ionisants a microcompteurs proportionnels
EP0007842B1 (fr) Dispositif de détection et de localisation de rayonnements
EP0515261B1 (fr) Structure multiplicatrice d'électrons en céramique notamment pour photomultiplicateur et son procédé de fabrication
EP2363876B1 (fr) Détecteur de rayonnement ionisant
WO1993003495A1 (fr) Detecteur a gaz de rayonnement ionisant
FR2951580A1 (fr) Dispositif d'imagerie radiographique et detecteur pour un dispositif d'imagerie radiographique
EP0010474B1 (fr) Détecteur de rayonnement
FR2505492A1 (fr)
EP0593333A1 (fr) Cellule de détection, détecteur, capteur et spectroscope
FR2705791A1 (fr) Détecteur de rayons X pour l'obtention de réponses sélectives en énergie.
FR2504278A1 (fr) Detecteur de rayons x
EP1410420A1 (fr) Detecteur de rayonnements ionisants, a lame solide de conversion des rayonnements, et procede de fabrication de ce detecteur
WO2008129159A1 (fr) Dispositif de multiplication des electrons et systeme de detection de rayonnements ionisants
EP1343194A1 (fr) Détecteurs de radiations et dispositifs d'imagerie autoradiographique comprenant de tels détecteurs
FR2514557A1 (fr) Spectrometre magnetique miniature a structure coaxiale
EP0441853B1 (fr) Procede et dispositif de localisation bidimensionnelle et particules neutres, notamment pour faibles taux de comptage
WO2022180085A1 (fr) Dispositif de mesure de pression vide secondaire et système embarqué pour mesure de pression de vide résiduel
EP1131843A1 (fr) Detecteur de localisation de photons, a remplissage gazeux
EP0839327A1 (fr) Detecteur de particules sensible a la position et transparent
FR3076948A1 (fr) Detecteur de photons x dans la gamme d'energie 1 a 5 kev
EP3086139A1 (fr) Canne de maintien d'un dispositif de detection spherique
WO1993022792A1 (fr) Dispositif pour la detection et la localisation bidimensionnelle de neutrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724849

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011016035

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 724849

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011016035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160301

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110301

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240307

Year of fee payment: 14

Ref country code: GB

Payment date: 20240325

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240319

Year of fee payment: 14

Ref country code: FR

Payment date: 20240328

Year of fee payment: 14