EP2346972B1 - Verfahren zur herstellung von fettsäureestern ein- oder mehrwertiger alkohole unter verwendung spezieller hydroxyfunktioneller quartärer ammoniumverbindungen als katalysatoren - Google Patents

Verfahren zur herstellung von fettsäureestern ein- oder mehrwertiger alkohole unter verwendung spezieller hydroxyfunktioneller quartärer ammoniumverbindungen als katalysatoren Download PDF

Info

Publication number
EP2346972B1
EP2346972B1 EP09744330A EP09744330A EP2346972B1 EP 2346972 B1 EP2346972 B1 EP 2346972B1 EP 09744330 A EP09744330 A EP 09744330A EP 09744330 A EP09744330 A EP 09744330A EP 2346972 B1 EP2346972 B1 EP 2346972B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
oil
fatty acid
glycerol
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09744330A
Other languages
English (en)
French (fr)
Other versions
EP2346972A1 (de
Inventor
Eckhard Weidner
Axel Kraft
Anna Grevé
Reinhard Broucek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Balchem Corp
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Balchem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Balchem Corp filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2346972A1 publication Critical patent/EP2346972A1/de
Application granted granted Critical
Publication of EP2346972B1 publication Critical patent/EP2346972B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances

Definitions

  • the present invention relates to a process for the preparation of fatty acid esters from fats and / or oils of biogenic origin by transesterification with monohydric or polyhydric alcohols in the presence of a specific hydroxy-functional quaternary ammonium compound as a catalyst.
  • Fatty acid esters are produced commercially by transesterification of oils and / or fats of biological origin consisting predominantly of triglycerides with an alcohol. Triglycerides react with alcohol in the presence of a catalyst to form fatty acid esters and glycerol:
  • this transesterification reaction is also referred to as alcoholysis.
  • the alcoholysis of fat and / or oil of biogenic origin is economically very important and has gained considerable importance in recent years in connection with the production of biodiesel (fatty acid methyl ester) by transesterification of vegetable oil, especially rapeseed oil, with methanol.
  • the transesterification or alcoholysis is an equilibrium reaction, which usually takes place already by mixing the starting materials at a suitable temperature. However, the reaction proceeds so slowly that catalysts are used in commercial processes to accelerate the reaction. Usually, base-catalyzed processes are used because they proceed much more rapidly than the acid-catalyzed processes also known in the art using sulfonic or sulfuric acid (for an overview, see, for example, FIG Schuchardt et al., J. Bras. Chem. Soc. 9 (3): 199-210 (1996 )).
  • Soap formation may be reduced by the use of sodium or potassium methylate instead of sodium hydroxide or potassium hydroxide.
  • the preparation of the methylates is significantly more expensive.
  • these require the most complete absence of water in the reaction system.
  • the alcohol / triglyceride ratio Another factor which significantly influences the base-catalyzed transesterification, in particular the yield, is the alcohol / triglyceride ratio.
  • the alcohol to be exchanged is added in excess in order to obtain a high yield of desired fatty acid esters.
  • the optimum molar ratio usually varies from 6: 1 to 45: 1 (in the case of a high concentration of free fatty acids).
  • the purity of the reactants (especially the water content), the quality of the starting oil or fat (in particular the content of free fatty acids) and the alcohol (type of alcohol and water content), and the alcohol / triglyceride ratio
  • the effectiveness of conventional base-catalyzed transesterification is highly dependent on the phase behavior during the reaction.
  • the triglycerides and the alcohol form a biphasic reaction mixture.
  • the contact of the reactants is initially limited by the mixing and thus the reaction is limited by the mass transfer resistances at the phase boundary alcohol / triglyceride.
  • partial glycerides and fatty acid esters are formed which result in better solubility of the alcohol.
  • the DE 10 2004 044 660 A1 and the WO 2006/029655 A1 the use of carbonic acid salts of guanidine or derivatives thereof, such as 1-aminoguanidine, as basic catalysts in the transesterification of fats and / or oils of biological origin by means of alcoholysis.
  • a further guanidine derivative namely N, N ', N "-tris- (3-dimethylaminopropyl) -guanidine, in the transesterification of sunflower, soybean and rapeseed oil is known from US 5,156,237 WO 2005/100306 A1 known.
  • a process for the reaction of fats and / or oils using a catalyst selected from salts of hydroxide (OH -) and alkoxides (alcoholates), such as methoxide (CH 3 -O -) or ethoxide (CH 3 -CH 2 -O -) , described with guanidine and N-alkylated derivatives thereof or with quaternary ammonium compounds.
  • a catalyst selected from salts of hydroxide (OH -) and alkoxides (alcoholates), such as methoxide (CH 3 -O -) or ethoxide (CH 3 -CH 2 -O -) , described with guanidine and N-alkylated derivatives thereof or with quaternary ammonium compounds.
  • WO 01/12581 A1 describes a two-step process for the preparation of fatty acid methyl ester, wherein in the second step, a transesterification of triglycerides using KOH or NaOH as basic catalysts in the presence of a co-solvent selected from the group consisting of tetrahydrofuran, 1,4-dioxane, diethyl ether, methyl tert-butyl ether and diisopropyl ether takes place.
  • a co-solvent selected from the group consisting of tetrahydrofuran, 1,4-dioxane, diethyl ether, methyl tert-butyl ether and diisopropyl ether takes place.
  • a process for producing fatty acid esters of monohydric alcohols using a catalyst comprising reacting triglycerides with monohydric alcohols in the presence of a base and a quaternary ammonium compound.
  • These ammonium compounds contain alkyl radicals with 4, preferably 8-18 carbon atoms, and may contain hydroxyalkyl radicals.
  • This object is achieved according to the invention by a process in which fat and / or oil of biogenic origin is reacted with monohydric and / or polyhydric alcohols in the presence of a catalyst, the catalyst being a hydroxy-functional quaternary ammonium compound of the following general formula (I): wherein R 1 , R 2 and R 3 are the same or different and each represents an unsubstituted or substituted straight-chain or branched-chain alkyl radical having 1 to 8 carbon atoms, and R is a straight-chain or branched hydroxyalkyl, hydroxyalkenyl or hydroxyalkyinyl radical having 1 to 12, preferably 1 to 8, more preferably 2 to 8 and more preferably 2 to 6 or 2 to 4 carbon atoms.
  • R 1 , R 2 and R 3 are the same or different and each represents an unsubstituted or substituted straight-chain or branched-chain alkyl radical having 1 to 8 carbon atoms
  • R is a straight-chain or branched
  • the substituents may be straight-chain or branched alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, alkenyloxy and alkenyloxyalkyl groups having 1 to 5, preferably 1 to 3, carbon atoms.
  • catalytically active compounds according to the general formula (I) after completion of the reaction lead to a rapid and complete separation of the glycerol from the biodiesel phase (fatty acid ester phase), whereby the separation or washing costs can be significantly reduced. Since the catalyst predominantly accumulates in the glycerol phase, the catalyst can thus also be separated substantially quantitatively with the glycerol phase. Usually, less than 1%, usually less than 0.1%, of the catalyst, eg choline, remains in the biodiesel phase and more than 99% or more than 99.9% in the glycerol phase.
  • glycerol mono- and diesters and the corresponding mono- and di-alcohol esters of propanediol are formed.
  • the compounds of the general formula (I) according to the invention still have a high catalytic activity even in the presence of a relatively high water concentration. This is surprising insofar as water actually shifts the equilibrium position of the transesterification reaction to the side of the educts. Thus, even traces of water when using commercial basic catalysts (i.e., NaOH, KOH, Na-methylate, K-methylate) lead to a drastic yield loss.
  • commercial basic catalysts i.e., NaOH, KOH, Na-methylate, K-methylate
  • the good water tolerance is of considerable economic importance, since thereby the alcohol prior to use in the method according to the invention does not have to be absolutized energy-consuming and cost-intensive or to a lesser extent.
  • the water tolerance is important, for example, in the production of "real" biodiesel by transesterification of fats and / or oils of biogenic origin with biotechnologically produced bioethanol and makes it possible to produce directly from an azeotropic solution of alcohol and water ethyl ester.
  • the overall efficiency of ethyl ester production improves significantly.
  • the compounds of the general formula (I) therefore uniquely combine the basicity required for the catalytic transesterification with the function of a solubilizer for the multiphase system used in the process according to the invention.
  • a further advantage of the process described herein is that the main by-product glycerol obtained in the transesterification process according to the invention, in particular when choline or a derivative thereof is used as catalyst according to the general formula (I), can be used in the feed industry.
  • glycerol can be used, for example, in poultry farming as feed additive up to a concentration of about 5% by weight ( Cerrate et al., Int. J. Poultry Sci. 5 (11): 1001-1007 (2006 )).
  • glycerine from conventional transesterification is unsuitable as a feed additive due to the salt load, as this can lead to disturbances in the electrolyte balance of the animals.
  • Choline is widely used as a feed additive in the diet of poultry, ruminants and swine. Choline compound residues in glycerol are therefore even advantageous for use in the feed industry and, in addition to the fatty acid esters, represent another valuable product obtainable by the process according to the invention.
  • the compounds of the general formula (I) used as catalysts in particular choline, for example in the form of choline base or in the form of a choline salt such as choline carbonate, can furthermore, in contrast to the catalysts used commercially (ie NaOH, KOH, Na-methylate, K-methylate ) free from alkalis and alkaline earths or other metal cations.
  • the catalyst-enriched glycerin obtained in the process of the present invention can be burned without catalyst (metal) salt formation occurring.
  • a catalyst which is particularly suitable in the context of the present invention is a compound of general formula (I) as defined above, wherein R 1 , R 2 and R 3 are the same or different and each represents an unsubstituted straight-chain alkyl radical having 1 to 6 carbon atoms.
  • Particularly suitable catalysts for use in the process according to the invention are furthermore the compounds of general formula (I) defined above, in which R is a straight-chain hydroxyalkyl radical having 1 to 12 carbon atoms, preferably 1 to 8, more preferably 2 to 8 and particularly preferably 2 to 6 or 2 represents up to 4 carbon atoms.
  • R has at least one, in particular only one, hydroxyl group, which is preferably located at position 2.
  • R 2 is particularly preferably hydroxyethyl.
  • Choline is most preferably used as the catalyst in the process according to the invention.
  • the compounds of general formula (I) used as catalysts can be prepared chemically-synthesized or obtained from biological sources.
  • a choline composition which is obtainable in the preparation of choline by ethoxylation of trimethylamine in methanol and in addition to choline as main component also over-ethoxylated products of the main component and over-ethoxylated solvent, such as methoxyethylene glycol, as by-products in an amount of up to 10 can be used Wt .-% contains.
  • the catalysts of general formula (I) used in the process according to the invention can be used either in free form or in the form of a salt, optionally dissolved in an organic solvent such as methanol.
  • Suitable salts include salts with organic or inorganic anions.
  • Preferred examples are basic salts of the compounds of the general formula (I), in particular hydroxide, phosphate and carboxylic acid salts, such as bicarbonate and carbonate salts.
  • Particularly preferred salts for use in the process according to the invention are in particular choline salts, for example choline hydroxide, choline phosphate and choline carbonate.
  • the organic or inorganic anions are not hydroxide or alcoholate anions.
  • the compounds of the general formula (I) can also be employed in a form in which they are carried on or bound to a support material, i. in heterogenized or supported form.
  • the catalyst is preferably used in the process according to the invention in an amount of 0.01 to 20 wt .-%, more preferably in an amount of 0.05 to 4.0 wt .-%, and particularly preferably in an amount of 0.1 to 2.0 wt .-%, based on the total weight of the fat and / or oil used biogenic origin (or the triglycerides used) used.
  • Suitable monohydric alcohols for use in the process of the present invention include, but are not limited to, methanol, ethanol, n-propanol, isopropanol and butanol not limited to this.
  • Preferred monohydric alcohols include methanol, which is derived from fossil resources in large quantities, and ethanol, which is readily available from biotechnological processes.
  • Particularly suitable polyhydric alcohols are divalent and, to a lesser extent, trihydric alcohols.
  • Preferred dihydric alcohols include, but are not limited to, propanediol or butanediol, especially 1,2-propanediol.
  • Both the monohydric and polyhydric alcohols may be used alone or in admixture with one and / or several other monohydric or polyhydric alcohols.
  • a monohydric alcohol selected from methanol and ethanol or a mixture thereof is used in the process according to the invention.
  • the inventive method is characterized by a surprisingly good water tolerance, so that the alcohols used may contain up to about 10 to 15 wt .-% of water and still, depending on the alcohol used, a conversion rate of 50 to 80% can be achieved.
  • the water content is preferably less than 2% by weight, in particular less than 1% by weight.
  • Fats and / or oils that can be used in the process of the invention include all fats and / or oils of biogenic origin, as well as any mixtures thereof.
  • biogenic origin used in the present invention means “biological or organic origin", that is not of chemical synthetic origin.
  • fats and / or oils of biogenic origin includes all fats and / or oils formed by plants, animals or microorganisms (especially fungi, algae and bacteria).
  • Fats and oils of biogenic origin consist of glycerides (mono-, di- and triglycerides), but essentially of triglycerides. In this description, the term “triglycerides” is therefore sometimes used synonymous with fat and / or oil of biogenic origin.
  • a fat and / or oil of plant origin is used in the process according to the invention.
  • a "vegetable oil” is understood to mean not only a vegetable oil of a particular plant, such as, for example, rapeseed oil, but also any mixtures of various vegetable oils.
  • suitable vegetable oils are cottonseed oil, thistle oil, jatropha oil, peanut oil, hazelnut oil, coconut oil, pumpkin seed oil, linseed oil, corn oil, olive oil, palm oil, palm kernel oil, rapeseed oil, rice oil, soybean oil, sunflower oil, grapeseed oil and wheat germ oil, in refined or cold pressed Form, and any mixtures from that.
  • Algae-derived oils can also be used.
  • Vegetable oils preferred in the present invention are rapeseed oil, palm oil, sunflower oil, soybean oil or mixtures thereof, with rapeseed oil and sunflower oil being particularly preferred.
  • Starting fats or oils which are particularly suitable for use in the process according to the invention have an acid number of less than 1.0, which corresponds to a concentration of free fatty acids of less than 0.5% by weight, depending on the particular fat or oil.
  • the fats and / or oils contain a proportion of free fatty acids of not more than 0.2 wt .-%.
  • fats and / or oils with a higher content of free fatty acids can also be used in the process according to the invention.
  • the fat or oil can also contain residual amounts of water, without this having a significantly negative effect on the process according to the invention.
  • the residual amount of water in the fats and / or oils that are commonly employed in the process of the present invention is typically very low and is typically not more than about 1 percent by weight.
  • the alcohol is usually added in excess in order to obtain a high yield of desired fatty acid esters of monohydric or polyhydric alcohols.
  • the molar ratio of the mono- and / or polyhydric alcohol to the fat and / or oil of biogenic origin is preferably at least 6: 1.
  • monohydric alcohols such as methanol or ethanol
  • this corresponds to a double stoichiometric excess, since at least 3 moles of methanol or ethanol are required to form 3 moles of methyl or ethyl ester from 1 mole of triglycerides.
  • the preferred molar ratio may also be lower and in the case of dihydric alcohols, for example at least 2: 1.
  • the transesterification can be carried out in standard stirred reactors without pressure and under reflux. Alternatively, the reaction is conceivable in tubular reactors.
  • the starting products i. Fats and / or oils of biogenic origin
  • the catalyst fed the catalyst to the reactor and reacted in the reactor at a suitable temperature to glycerol and the desired fatty acid ester of the mono- and / or polyhydric alcohol used.
  • reaction time After a contact time (hereinafter also "reaction time") of a few minutes, the formation of glycerol is observed, the transesterification reaction being complete after a reaction time of at least 15 minutes, typically 30 to 60 minutes.
  • the reaction is usually carried out with stirring, as it can increase the mass transfer and thus the reaction efficiency.
  • the temperature of the transesterification reaction is, if fats are used, above the melting temperature of the highest-melting fat used.
  • the reaction temperature of the process according to the invention is below 250.degree.
  • the reaction temperature is adjusted so that it is approximately in the range of the boiling temperature of the reaction mixture at atmospheric pressure.
  • the transesterification reaction proceeds to a significant extent even at lower temperatures, even at room temperature.
  • the fat and / or oil of biogenic origin is first brought into contact with the mono- and / or polyhydric alcohol and then the catalyst is added to the resulting mixture.
  • the catalyst is preferably dissolved in a solvent, the solvent preferably being an alcohol, in particular the monohydric and / or polyhydric alcohol used in the transesterification reaction, such as methanol or ethanol.
  • the catalyst may also be dissolved in the monohydric and / or polyhydric alcohol to be esterified and then mixed with the fat and / or oil of biogenic origin in the reactor.
  • the glycerol can be separated in a further process step. This can be done in the reaction vessel itself or in optionally downstream treatment stages. After completion of the stirring, the glycerol accumulates as the lower phase in the reaction vessel and can be removed separately. Alternatively, the glycerol may also be in downstream Apparatus or methods are deducted taking advantage of the density differences.
  • the phase separation can be gravity-driven, ie by simply standing. For this purpose, for example, a settling tank can be used. However, it is also possible to use centrifugal forces, for example in hydrocyclones or centrifuges.
  • the excess alcohol for example excess methanol or ethanol
  • the recovered alcohol can be recycled to the reaction. Due to the water tolerance of the process according to the invention, a costly final drying of the alcohol can be omitted or the interval until the use of fresh alcohol can be considerably extended.
  • the glycerol or the glycerol phase contains essentially the entire amount of the hydroxy-functional quaternary ammonium compound used as catalyst, generally more than 99% of the catalyst used.
  • the catalyst-containing glycerol may therefore be used in a next reaction stage, i. in a further transesterification, to catalyze the reaction between alcohols, in particular monohydric alcohols, such as methanol and / or ethanol, and triglycerides. It has surprisingly been found that the glycerol recycled in this way leads to a considerable extent to the formation of fatty acid esters. Such recycling of the glycerol produced in the transesterification process significantly improves the economy of the process according to the invention, since more fatty acid esters can be produced in this way with a certain amount of catalyst used as a whole.
  • the catalyst-containing glycerol can also be supplied to other uses after separation of the excess alcohol. Depending on the nature of the educts used, of the catalyst used and of the intended use, further purification steps known to a person skilled in the art, such as bleaching, filtration, neutralization, etc., may be necessary.
  • the resulting glycerol can be used materially or energetically.
  • the glycerol with the catalyst enriched therein, as already described above, optionally as a dietary supplement or feed additive in the animal or feed industry be used.
  • the catalyst-containing glycerol can also be used for energy production by combustion, gasification or pyrolysis or in fermentation processes and biogas plants.
  • the alcohol ester phase produced is, with careful selection and pre-cleaning of the fats and / or oils used as starting materials, a clear phase which under certain circumstances may be slightly yellowish in color. Depending on the intended use, the ester phase may be used as such. Alternatively, further purification steps may be required. Such purification steps may include neutralization, decolorization, removal of trace components, etc. This can be done, for example, by sorption processes with solid or liquid auxiliaries.
  • the esters formed can be used in the case of fatty acid esters formed with monohydric alcohols as a chemical raw material, for example as a starting material for chemical syntheses, or as Biobrenn- or -treibstoff.
  • the final product has transesterification with methanol, i. Fatty acid methyl ester, a significantly lower viscosity than the fat and / or oil and can be used due to its physical properties as a replacement for diesel fuel.
  • the glycerol monoesters or glycerol diesters formed in the transesterification with polyhydric alcohols, such as propanediol, may be used as a mixture or after purification or fractionation, for example as food emulsifiers or as a chemical raw material, e.g. in the detergent synthesis, are used.
  • This example illustrates the transesterification of rapeseed oil with methanol to fatty acid methyl esters and glycerol using choline base as catalyst.
  • reaction mixture was placed in a rotary evaporator to distill off the excess methanol (final pressure about 50 mbar).
  • final pressure about 50 mbar.
  • the residue from the distillation was then transferred to a separatory funnel.
  • the mixture separated into two phases at room temperature.
  • the lower heavier phase had a mass of 11.76 g and had a glycerol concentration of about 85% by weight.
  • the upper lighter phase had a mass of 97.14 g and contained 96.4% by weight of fatty acid methyl ester (rapeseed oil methyl ester), ⁇ 2% by weight of triglycerides, 0.96% by weight of diglycerides, 1.12% by weight.
  • the transesterification process according to Example 1 was carried out, but the reaction time was 45 minutes.
  • the resulting upper lighter and lower heavier phases had a mass of 98.17 g and 10.6 g, respectively.
  • the upper lighter phase contained 96.1% by weight of fatty acid methyl ester, ⁇ 2% by weight of triglycerides, 0.96% by weight of diglycerides, 0.91% by weight of monoglycerides and 0.02% by weight of glycerol.
  • the transesterification process according to Example 1 was carried out, but the reaction time was 15 minutes.
  • the resulting upper lighter and lower heavier phases had a mass of 96.40 g and 11.06 g, respectively.
  • the upper lighter phase contained 93.7 weight percent fatty acid methyl ester, ⁇ 2 weight percent triglycerides, 1.96 weight percent diglycerides, 1.30 weight percent monoglycerides and 0.03 weight percent glycerin.
  • the transesterification process according to Example 1 was carried out, but using a mixture of 100 g of rapeseed oil and 14 g of methanol (molar ratio of alcohol: oil of about 4.5: 1) and 5.0 g of catalyst solution (choline base solution 44% in methanol). and the reaction time was 30 minutes.
  • the resulting upper lighter phase had a mass of 99.10 g and the lower heavier phase had a mass of 10.6 g.
  • the upper lighter phase contained 90.6 weight percent fatty acid methyl ester, 2.19 weight percent triglycerides, 2.63 weight percent diglycerides, 1.42 weight percent monoglycerides and 0.02 weight percent glycerin.
  • This example illustrates the transesterification of rapeseed oil with ethanol to fatty acid ethyl esters and glycerol using choline base as a catalyst.
  • a mixture of 100 g rapeseed oil and 20 g ethanol (corresponding to a molar ratio of alcohol to oil of about 4.2: 1) was heated to reaction temperature (boiling temperature) with stirring and with reflux. After reaching the boiling point, 4.8 g of catalyst solution (choline base solution 44% in methanol) were added. A few seconds after the addition of the catalyst solution, the initially cloudy dispersion of ethanol and oil turned into a clear mixture and after a few minutes the precipitation of glycerol was observed.
  • reaction mixture was placed in a rotary evaporator to distill off the excess ethanol (final pressure about 50 mbar). The residue from the distillation was then transferred to a separatory funnel. The mixture separated into two phases at room temperature.
  • the lower heavier phase had a mass of 17.0 g and the glycerol concentration was about 43 wt .-%.
  • the upper lighter phase had a mass of 95.80 g and contained 87.1% by weight of fatty acid ethyl ester (rapeseed oil ethyl ester), ⁇ 1% by weight of triglycerides, 3.63% by weight of diglycerides, 1.5% by weight.
  • This example illustrates the transesterification of rapeseed oil with hydrous methanol to fatty acid methyl esters and glycerol using choline base as a catalyst.
  • the procedure used essentially corresponds to the method according to Example 2, except that the mixture of 100 g of rapeseed oil, 20 g of methanol (molar ratio of alcohol: oil of about 6: 1) and 4.8 g of catalyst solution (choline base solution 44% in methanol) a total of 2 g of water was added (corresponds to a water content of 8.8 wt .-%, based on the total amount of alcohol, ie 20 g of methanol plus the amount of alcohol introduced by the catalyst solution into the system).
  • the resulting upper lighter phase had a mass of 97.50 g and contained 74.6% by weight of fatty acid methyl ester,> 20% by weight of triglycerides, 5.24% by weight of diglycerides, 1.17% by weight of monoglycerides and 0.02% by weight of glycerin.
  • This example illustrates the transesterification of rapeseed oil with hydrous ethanol to fatty acid ethyl esters and glycerol using choline base as the catalyst.
  • the procedure used essentially corresponds to the method of Example 5, except that the mixture of 100 g of rapeseed oil, 20 g of ethanol (molar ratio of alcohol: oil of about 4.2: 1) and 4.8 g of catalyst solution (choline base solution 44% in Methanol) a total of 0.9 g of water was added (corresponds to a water content of 4.0% by weight, based on the total alcohol amount, ie 20 g of ethanol plus the amount of alcohol introduced into the system by the catalyst solution). In the case of ethanol, this water content corresponds to that of azeotropic ethanol.
  • the resulting upper lighter phase had a mass of 100.2 g and contained 60.6% by weight of fatty acid ethyl ester, 5.50% by weight of triglycerides, 10.94% by weight of diglycerides, 10.65% by weight of monoglycerides and> 0.55% by weight of glycerol.
  • This example illustrates the transesterification of rapeseed oil with methanol to fatty acid methyl esters and glycerol using choline carbonate as catalyst.
  • the method used essentially corresponds to the method according to Example 1, wherein a choline carbonate solution 74% in methanol was used as the catalyst solution.
  • the resulting upper lighter phase had a mass of 98.2 g, while the lower heavier phase had a mass of 5.7 g.
  • the upper lighter phase contained 56.3 wt% fatty acid methyl ester,> 20 wt% triglycerides, 20.96 wt% diglycerides, 4.32 wt% monoglycerides and 0.11 wt% glycerin.
  • This example illustrates the transesterification of rapeseed oil with ethanol to fatty acid ethyl esters and glycerol using choline carbonate as catalyst.
  • the method used essentially corresponds to the method according to Example 5, except that the catalyst solution used was a choline carbonate solution 74% in methanol.
  • the resulting upper lighter phase had a mass of 100.0 g, while the lower heavier phase had a mass of 6.2 g.
  • the upper lighter phase contained 62.3% by weight of fatty acid ethyl ester, 12.95% by weight of triglycerides, 17.47% by weight of diglycerides, 5.22% by weight of monoglycerides and 0.48% by weight of glycerol.
  • This example illustrates the transesterification of rapeseed oil with 1,2-propanediol to fatty acid esters and glycerol using choline base as a catalyst.
  • the residue had the following composition: 11% by weight of monoglycerides, 21.7% by weight of diglycerides, 1.2% by weight of triglycerides, 4% by weight of glycerol. Furthermore, small amounts of methyl ester were formed from the methanol fraction which was introduced by the methanolic solution of the catalyst.
  • This example illustrates the transesterification of rapeseed oil with methanol to fatty acid methyl esters and glycerol using a recycled choline base-containing glycerol phase.
  • Example 1 the transesterification process according to Example 1 was carried out, but 200 g of rapeseed oil, 24 g of methanol and 20 g of catalyst solution (choline base solution 20% in methanol) were used. The resulting heavier phase (25 g choline-based glycerol phase) was separated and used as catalyst for further transesterification without further treatment.
  • a mixture of 200 g of rapeseed oil, 40 g of methanol and 25 g of the choline base-containing glycerol phase from the first transesterification with stirring and reflux was heated to reaction temperature (boiling point). After 60 minutes, the experiment was terminated and the product phases were processed as described in Example 1.
  • the resulting upper lighter and lower heavier phases had a mass of 203.0 g and 30.44 g, respectively.
  • the upper lighter phase contained 67.58% by weight of fatty acid methyl ester, 17.58% by weight of triglycerides, 8.13% by weight of diglycerides, 2.28% by weight of monoglycerides and 0.06% by weight of glycerol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Husbandry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureestern aus Fetten und/oder Ölen biogenen Ursprungs durch Umesterung mit ein- oder mehrwertigen Alkoholen in Gegenwart einer speziellen hydroxyfunktionellen quartären Ammoniumverbindung als Katalysator.
  • Fettsäureester werden kommerziell durch Umesterung von Ölen und/oder Fetten biologischen Ursprungs, welche überwiegend aus Triglyceriden bestehen, mit einem Alkohol hergestellt. Dabei reagieren Triglyceride mit Alkohol in Gegenwart eines Katalysators unter Bildung von Fettsäureestern und Glycerin:
    Figure imgb0001
  • Da bei dieser Reaktion der ursprüngliche Ester, d.h. das Triglycerid, mit einem Alkohol umgesetzt wird, wird diese Umesterungsreaktion auch als Alkoholyse bezeichnet. Die Alkoholyse von Fett und/oder Öl biogenen Ursprungs ist wirtschaftlich sehr bedeutsam und hat in den letzten Jahren im Zusammenhang mit der Herstellung von Biodiesel (Fettsäuremethylester) durch Umesterung von Pflanzenöl, insbesondere Rapsöl, mit Methanol erheblich an Bedeutung gewonnen.
  • Die Umesterung bzw. Alkoholyse ist eine Gleichgewichtsreaktion, die in der Regel bereits durch Mischen der Ausgangsprodukte bei einer geeigneten Temperatur erfolgt. Die Reaktion verläuft jedoch so langsam, dass in kommerziellen Verfahren Katalysatoren zur Beschleunigung der Reaktion verwendet werden. Meistens werden basenkatalysierte Verfahren verwendet, da diese gegenüber den ebenfalls im Stand der Technik bekannten säurekatalysierten Verfahren unter Verwendung von Sulfon- oder Schwefelsäure erheblich schneller ablaufen (für einen Überblick siehe beispielsweise Schuchardt et al., J. Bras. Chem. Soc. 9(3): 199-210 (1996)). Als Katalysatoren in basenkatalysierten Umesterungen, insbesondere bei der Herstellung von als Biodiesel verwendeten Fettsäuremethylestern, werden meistens Kaliumhydroxid oder Natriumhydroxid bzw. die entsprechenden Methylate eingesetzt. Damit können Umsetzungsraten von >98% erreicht werden. Beide Katalysatoren hinterlassen jedoch ihren kationischen Bestandteil im Reaktionssystem und insbesondere im Glycerin, das sich beim Stehenlassen der Reaktionsmischung als separate Phase abscheidet. Dadurch wird eine aufwändige Abtrennung durch Neutralisation und Wasserwäsche notwendig.
  • Des Weiteren entsteht bei den alkalischen Umesterungsverfahren unter Verwendung von Natriumhydroxid oder Kaliumhydroxid eine gewisse Menge an Wasser durch Reaktion des Hydroxids mit dem eingesetzten Alkohol. Die Gegenwart von Wasser führt zur Verseifung, d.h. zur Hydrolyse der gebildeten Fettsäureester und zur Bildung von Alkalisalzen der freigesetzten Fettsäuren (sog. Seifen). Dadurch wird die Fettsäureesterausbeute durch Verbrauch des Katalysators reduziert. Ferner erschweren die gebildeten Seifen durch ihre emulgierende Wirkung die Trennung des erzeugten Glycerins von den gebildeten Fettsäureestern. Es müssen daher möglichst wasserfreie Edukte (Fette bzw. Öle und Alkohole) eingesetzt werden und die Ausgangsfette bzw. -öle sollten zudem einen geringen Anteil an freien Fettsäuren aufweisen, da die oben beschriebene Verseifung in Gegenwart freier Fettsäuren verstärkt auftritt und zu einem Anstieg der Viskosität des Reaktionsgemisches führt (siehe Freedman et al., J. Am. Oil Chem. Soc. 63(10): 1375-1380 (1986)).
  • Die Seifenbildung kann durch die Verwendung von Natrium- oder Kaliummethylat anstelle von Natriumhydroxid oder Kaliumhydroxid zwar verringert werden. Die Herstellung der Methylate ist jedoch deutlich teurer. Ferner erfordern diese für optimale Umsatzraten die möglichst vollständige Abwesenheit von Wasser im Reaktionssystem.
  • Ferner wird die Effizienz der basenkatalysierten Umesterung von Fetten und/oder Ölen biogenen Ursprungs mit Alkoholen auch maßgeblich von der Art des Alkohols bestimmt. So kann bei der Verwendung von Kaliumhydroxid oder Natriumhydroxid als Katalysator zwar grundsätzlich auch Ethanol als einwertiger Alkohol eingesetzt werden. Diese Umesterungsreaktion verläuft allerdings im Vergleich zu der Reaktion mit Methanol deutlich langsamer.
  • Ein weiterer Faktor, welcher die basenkatalysierte Umesterung, insbesondere die Ausbeute, signifikant beeinflusst, ist das Alkohol/Triglycerid-Verhältnis. Im Allgemeinen wird der auszutauschende Alkohol im Überschuss zugesetzt, um eine hohe Ausbeute an gewünschten Fettsäureestern zu erhalten. Je nach eingesetzten Fetten und/oder Ölen und Katalysator variiert das optimale Molverhältnis üblicherweise von 6:1 bis 45:1 (im Fall einer hohen Konzentration an freien Fettsäuren).
  • Neben der Art des Katalysators, der Reinheit der Reaktanten (insbesondere des Wassergehalts), der Qualität des Ausgangsöls bzw. -fetts (insbesondere des Gehalts an freien Fettsäuren) und des Alkohols (Art des Alkohols und Wassergehalt), und des Alkohol/Triglycerid-Verhältnis ist die Effektivität der herkömmlichen basenkatalysierten Umesterung stark vom Phasenverhalten während der Reaktion abhängig. Zu Beginn der Reaktion bilden die Triglyceride und der Alkohol ein zweiphasiges Reaktionsgemisch. Der Kontakt der Reaktanten ist zunächst durch die Durchmischung begrenzt und die Reaktion somit durch die Stofftransportwiderstände an der Phasengrenze Alkohol/Triglycerid limitiert. Mit fortschreitender Reaktionszeit werden Partialglyceride und Fettsäureester gebildet, die zu einer besseren Löslichkeit des Alkohols führen. Schließlich kann, insbesondere im Falle der Veresterung mit einwertigen Alkoholen, soviel Glycerin entstehen, dass dessen Löslichkeitsgrenze erreicht wird und eine separate Glycerinphase ausfällt. Dadurch verlangsamt sich in der herkömmlichen Katalyse der Umsatz der Triglyceride, da der Katalysator überproportional in die Glycerinphase gezogen wird. Die Reaktanten befinden sich jedoch hauptsächlich in der Triglyceridesterphase, so dass die Reaktion nun durch den Stofftransport und die ungünstige Verteilung des Katalysators begrenzt ist (Chiu et al., AIChE Journal 51(4): 1274-1278 (2005); Vicente et al., Ind. Eng. Chem. Res. 44: 5447-5454 (2005)).
  • Angesichts der oben genannten Probleme, die bei der Umesterung mit konventionell eingesetzten Katalysatoren (NaOH, KOH, Na-Methylat, K-Methylat) auftreten, wurden in den vergangenen Jahren eine Vielzahl organischer Basen im Hinblick auf deren Eignung als Katalysatoren in der basenkatalysierten Umesterung untersucht. In der wissenschaftlichen Literatur wurden verschiedene Amin-, Amidin-, (Alkyl)guanidin- und Triamino(imino)phosphoran-Verbindungen beschrieben, die als Katalysatoren bei der Umesterung von Fetten und/oder Ölen eingesetzt werden können (Schuchardt et al., J. Mol. Catal. 99: 65-70 (1995); Schuchardt et al., J. Mol. Catal. 109: 37-44 (1996); Schuchardt et al., J. Bras. Chem. Soc. 9: 199-210 (1998); Sercheli et al., J. Am. Oil Chem. Soc. 76: 1207-1210 (1999); Cerce et al., Ind. Eng. Chem. Res. 44(25): 9535-9541 (2005); Peter et al., Eur. J. Lipid Sci. Technol. 104: 324-330 (2002); Peter, S. & Weidner, E., Eur. J. Lipid Sci. Technol. 109: 11-16 (2007)).
  • Des Weiteren ist die Verwendung von Verbindungen mit einer Iminogruppe, tertiären Aminen, wobei die tertiären Amine mindestens eine OH-Gruppe oder NH2-Gruppe aufweisen und keine Aminosäuren oder Derivate davon sind, und Butylamin als Katalysatoren in der Herstellung von Fettsäureestern einwertiger Alkohole mittels Alkoholyse von Fett und/oder Öl biologischen Ursprungs aus der DE 102 45 806 A1 und der WO 2004/031119 A1 bekannt. Ferner offenbaren die DE 10 2004 044 660 A1 und die WO 2006/029655 A1 die Verwendung von Kohlensäuresalzen von Guanidin oder Derivaten davon, wie 1-Aminoguanidin, als basische Katalysatoren bei der Umesterung von Fetten und/oder Ölen biologischen Ursprungs mittels Alkoholyse. Überdies ist die Verwendung eines weiteren Guanidinderivats, nämlich des N, N',N"-tris-(3-Dimethylaminopropyl)-guanidins, in der Umesterung von Sonnenblumen-, Soja- und Rapsöl aus der WO 2005/100306 A1 bekannt. Schließlich ist in der WO 2007/143803 A1 ein Verfahren zur Umsetzung von Fetten und/oder Ölen unter Einsatz eines Katalysators ausgewählt aus Salzen von Hydroxid (OH-) und Alkoxiden (Alkoholaten), wie Methanolat (CH3-O-) oder Ethanolat (CH3-CH2-O-), mit Guanidin und N-alkylierten Derivaten davon oder mit quartären Ammoniumverbindungen beschrieben.
  • Die in den oben genannten wissenschaftlichen Veröffentlichungen und der erwähnten Patentliteratur beschriebenen Katalysatoren zeigen eine gute katalytische Aktivität bei der Umesterung von Triglyceriden, fungieren jedoch bei den herkömmlich eingesetzten Katalysatormengen nicht als Lösungsvermittler und können damit die oben erläuterten mit dem Phasenverhalten der Reaktionsmischung während der Umesterung einhergehenden Probleme nicht überwinden.
  • Zur Verbesserung des Phasenverhaltens wurde daher in der Literatur die Verwendung eines Co-Solvents vorgeschlagen. So beschreibt Kim et al. ein Verfahren, bei dem zur Minimierung der Stofftransportwiderstände eine zusätzliche Komponente als Co-Solvent, beispielsweise n-Hexan oder Tetrahydrofuran, eingesetzt wird. Diese Substanzen verbessern die Löslichkeit des Alkohols im Fett bzw. Öl (Kim et al., Catalysis Today 93-95: 315-320 (2004)). Ferner ist in der WO 01/12581 A1 ein zweistufiges Verfahren zur Herstellung von Fettsäuremethylester beschrieben, bei dem im zweiten Schritt eine Umesterung von Triglyceriden unter Verwendung von KOH oder NaOH als basische Katalysatoren in Gegenwart eines Co-Solvents ausgewählt aus der Gruppe bestehend aus Tetrahydrofuran, 1,4-Dioxan, Diethylether, Methyl-tert-butylether und Diisopropylether erfolgt.
  • Außerdem ist in der WO2007111604 ein Verfahren zur Herstellung von Fettsäureestern einwertiger Alkohole unter Verwendung eines Katalysators beschrieben, umfassend das Umsetzen von Triglyceride mit einwertigen Alkoholen in Gegenwart einer Base und einer quartäre Ammoniumverbindung. Diese Ammoniumverbindungen enthalten Alkylresten mit 4, vorzugsweise 8-18 Kohlenstoffatomen, und können Hydroxyalkylresten enthalten.
  • Die Verwendung eines Co-Solvents als Lösungsvermittler weist jedoch den Nachteil auf, dass eine weitere Komponente in das Reaktionssystem eingeführt wird, die später aufwändig abgetrennt werden muss.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung ein Verfahren bereitzustellen, das die oben genannten Probleme bei der Herstellung von Fettsäureestern durch Umsetzen von Fett und/oder Öl biogenen Ursprungs mit Alkoholen in Gegenwart eines Katalysators beseitigt oder minimiert.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem Fett und/oder Öl biogenen Ursprungs mit ein- und/oder mehrwertigen Alkoholen in Gegenwart eines Katalysators umgesetzt wird, wobei der Katalysator eine hydroxyfunktionelle quartäre Ammoniumverbindung der folgenden allgemeinen Formel (I) ist:
    Figure imgb0002
    wobei R1, R2 und R3 gleich oder verschieden sind und jeweils einen unsubstituierten oder substituierten geradkettigen oder verzweigtkettigen Alkylrest mit 1 bis 8 Kohlenstoffatomen darstellen, und R ein geradkettiger oder verzweigter Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyalkyinylrest mit 1 bis 12, vorzugsweise 1 bis 8, bevorzugter 2 bis 8 und besonders bevorzugt 2 bis 6 oder 2 bis 4 Kohlenstoffatomen darstellt. Die Substituenten können geradkettige oder verzweigte Alkyl-, Alkenyl-, Alkinyl-, Alkoxy-, Alkoxyalkyl-, Alkenyloxy- und Alkenyloxyalkylgruppen mit 1 bis 5, vorzugsweise 1 bis 3, Kohlenstoffatomen sein.
  • Es wurde überraschend gefunden, dass Verbindungen der oben dargestellten allgemeinen Formel (I) als Katalysatoren bei der Umesterung von Fetten und/oder Ölen biogenen Ursprungs mit ein- oder mehrwertigen Alkoholen aktiv sind. Diese Verbindungen zeichnen sich einerseits durch eine quartäre Ammoniumgruppe und andererseits durch die Absättigung einer Valenz am Stickstoffatom der quartären Ammoniumgruppe durch einen relativ kurzen geradkettigen oder verzweigten Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyalkyinylrest aus. Mit Hilfe dieser Katalysatoren kann in äußerst effizienter Weise in einem einzigen Prozessschritt ein Fettsäureestergehalt erhalten werden, welcher der Europäischen Norm für Biodiesel (DIN EN 14214) entspricht.
  • Es war für einen Fachmann angesichts der Struktur der katalytisch aktiven Verbindungen gemäß der allgemeinen Formel (I) auch nicht zu erwarten, dass diese Verbindungen grenzflächenaktive Eigenschaften zeigen, die zu einer erheblichen Verbesserung der gegenseitigen Durchmischbarkeit von Alkohol und Fett und/oder Öl führen. Überraschenderweise sind nur geringe Mengen der Verbindung der allgemeinen Formel (I) notwendig, um die Löslichkeit des Alkohols in den Triglyceriden signifikant zu verbessern. Der Alkohol und die Triglyceride bilden in Gegenwart der Verbindung der allgemeinen Formel (I) eine makroskopisch homogene, optisch transparente und thermodynamisch stabile Mischung. Hierbei handelt es sich vermutlich um eine Mikroemulsion. Durch die Ausbildung einer solchen Mikroemulsion wird die Raum-Zeit-Ausbeute der Reaktion erheblich beschleunigt.
  • Des Weiteren wurde überraschend gefunden, dass katalytisch aktive Verbindungen gemäß der allgemeinen Formel (I) nach Abschluss der Umsetzung zu einer schnellen und vollständigen Entmischung der Glycerinphase von der Biodieselphase (Fettsäureesterphase) führen, wodurch die Trennungs- bzw. Waschkosten deutlich verringert werden können. Da sich der Katalysator überwiegend in der Glycerinphase anreichert, kann damit auch der Katalysator im Wesentlichen quantitativ mit der Glycerinphase abgetrennt werden. Üblicherweise verbleiben weniger als 1%, in der Regel weniger als 0,1%, des Katalysators, z.B. Cholin, in der Biodieselphase und mehr als 99% bzw. mehr als 99,9% in der Glycerinphase.
  • Ferner wurde überraschend gefunden, dass mit dem erfindungsgemäßen Verfahren Triglyceride nicht nur mit Methanol sondern auch mit Ethanol in effizienter Weise umgesetzt werden können. So wird die oben beschriebene duale Funktion der Verbindungen der allgemeinen Formel (I) als Katalysator und Lösungsvermittler auch bei der Umesterung mit Ethanol beobachtet. Die Reaktion mit Ethanol verläuft dabei vergleichbar schnell ab wie die Reaktion mit Methanol. Des Weiteren war es für einen Fachmann nicht vorhersehbar, dass mit einer Verbindungen der allgemeinen Formel (I) auch die Umesterung von Triglyceriden mit mehrwertigen Alkoholen katalysiert werden kann. So entstehen beispielsweise aus einer Mischung von Propandiol und Triglyceriden (d.h. Fett und/oder Öl) bei Zugabe einer Verbindung der allgemeinen Formel (I) Glycerinmono- und -diester und die entsprechenden Mono- und Dialkoholester von Propandiol.
  • Darüber hinaus wurde unerwartet gefunden, dass die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) selbst in Gegenwart einer relativ hohen Wasserkonzentration immer noch eine hohe katalytische Aktivität aufweisen. Dies ist insofern überraschend, als Wasser die Gleichgewichtslage der Umesterungsreaktion eigentlich auf die Seite der Edukte verschiebt. So führen selbst Spuren von Wasser bei der Verwendung von kommerziellen basischen Katalysatoren (d.h. NaOH, KOH, Na-Methylat, K-Methylat) zu einem drastischen Ausbeuteverlust.
  • Die gute Wassertoleranz ist von erheblicher wirtschaftlicher Bedeutung, da dadurch der Alkohol vor der Verwendung in dem erfindungsgemäßen Verfahren nicht bzw. in geringerem Masse energie- und kostenintensiv absolutiert werden muss. Die Wassertoleranz ist beispielsweise bei der Herstellung von "echtem" Biodiesel durch Umesterung von Fetten und/oder Ölen biogenen Ursprungs mit biotechnologisch erzeugtem Bioethanol von Bedeutung und ermöglicht es, aus einer azeotropen Lösung von Alkohol und Wasser direkt Ethylester herzustellen. Damit verbessert sich der Gesamtwirkungsgrad der Ethylesterherstellung erheblich.
  • Die Verbindungen der allgemeinen Formel (I) kombinieren daher in einzigartiger Weise die für die katalytische Umesterung erforderliche Basizität mit der Funktion eines Lösungsvermittlers für das in dem erfindungsgemäßen Verfahren verwendete Mehrphasensystem.
  • Ein weiterer Vorteil des vorliegend beschriebenen Verfahrens liegt darin, dass das bei dem erfindungsgemäßen Umesterungsverfahren anfallende Hauptnebenprodukt Glycerin, insbesondere bei der Verwendung von Cholin oder einem Derivat davon als Katalysator gemäß der allgemeinen Formel (I), in der Futtermittelindustrie verwendet werden kann. Es ist bekannt, dass Glycerin beispielsweise in der Geflügelzucht als Futteradditiv bis zu einer Konzentration von etwa 5 Gew.-% eingesetzt werden kann (Cerrate et al., Int. J. Poultry Sci. 5(11): 1001-1007 (2006)). Glycerin aus konventionellen Umesterungen ist jedoch aufgrund der Salzfracht als Futteradditiv ungeeignet, da es dadurch zu Störungen im Elektrolythaushalt der Tiere kommen kann. Beim Einsatz von Cholin in dem erfindungsgemäßen Verfahren zur Herstellung von Fettsäureestern bestehen diese Problemen nicht. Cholin ist als Futteradditiv in der Ernährung von Geflügel, Wiederkäuern und Schweinen weit verbreitet. Cholinverbindungsrückstände im Glycerin sind daher für den Einsatz in der Futtermittelindustrie sogar von Vorteil und stellen neben den Fettsäureestern ein weiteres mit dem erfindungsgemäßen Verfahren erhältliches Wertprodukt dar.
  • Die als Katalysatoren verwendeten Verbindungen der allgemeinen Formel (I), insbesondere Cholin, beispielsweise in Form der Cholinbase oder in Form eines Cholinsalzes wie Cholincarbonat, können ferner im Gegensatz zu den kommerziell eingesetzten Katalysatoren (d.h. NaOH, KOH, Na-Methylat, K-Methylat) frei von Alkalien und Erdalkalien oder anderen Metallkationen hergestellt werden. Demzufolge kann das in dem erfindungsgemäßen Verfahren anfallende, mit Katalysator angereicherte Glycerin verbrannt werden, ohne dass eine katalysatorbedingte (Metall-)salzbildung auftritt.
  • Ein im Rahmen der vorliegenden Erfindung besonders geeigneter Katalysator ist eine vorstehend definierte Verbindung der allgemeinen Formel (I), wobei R1, R2 und R3 gleich oder verschieden sind und jeweils einen unsubstituierten geradkettigen Alkylrest mit 1 bis 6 Kohlenstoffatomen darstellen.
  • Besonders geeignete Katalysatoren zur Verwendung in dem erfindungsgemäßen Verfahren sind ferner die vorstehend definierten Verbindungen der allgemeinen Formel (I), worin R ein geradkettiger Hydroxyalkylrest mit 1 bis 12 Kohlenstoffatomen, vorzugsweise 1 bis 8, bevorzugter 2 bis 8 und besonders bevorzugt 2 bis 6 oder 2 bis 4 Kohlenstoffatomen darstellt. Vorzugsweise weist R wenigstens eine, insbesondere nur eine, Hydroxylgruppe auf, die sich vorzugsweise an der Position 2 befindet. Besonders bevorzugt ist R 2-Hydroxyethyl. Am meisten bevorzugt wird in dem erfindungsgemäßen Verfahren Cholin als Katalysator eingesetzt.
  • Die als Katalysatoren eingesetzten Verbindungen der allgemeinen Formel (I) können chemisch-synthetisch hergestellt oder aus biologischen Quellen gewonnen sein. Insbesondere kann auch eine Cholin-Zusammensetzung eingesetzt werden, welche bei der Herstellung von Cholin durch Ethoxylierung von Trimethylamin in Methanol erhältlich ist und neben Cholin als Hauptkomponente auch überethoxylierte Produkte der Hauptkomponente sowie überethoxyliertes Lösungsmittel, wie Methoxyethylenglykol, als Nebenprodukte in einer Menge von bis zu 10 Gew.-% enthält.
  • Die im erfindungsgemäßen Verfahren verwendeten Katalysatoren der allgemeinen Formel (I) können entweder in freier Form oder in Form eines Salzes, gegebenenfalls gelöst in einem organischen Lösungsmittel wie Methanol, eingesetzt werden. Geeignete Salze umfassen Salze mit organischen oder anorganischen Anionen. Bevorzugte Beispiele sind basische Salze der Verbindungen der allgemeinen Formel (I), insbesondere Hydroxid-, Phosphat- und Carbonsäuresalze, wie Hydrogencarbonat- und Carbonatsalze. Besonders bevorzugte Salze für die Verwendung in dem erfindungsgemäßen Verfahren sind insbesondere Cholinsalze, beispielsweise Cholinhydroxid, Cholinphosphat und Cholincarbonat. Gemäß einer besonderen anderen Ausführungsform der vorliegenden Erfindung sind die organischen oder anorganischen Anionen keine Hydroxid- oder Alkoholatanionen.
  • Ferner können die Verbindungen der allgemeinen Formel (I) im Rahmen der vorliegenden Erfindung auch in einer Form eingesetzt werden, bei welcher diese auf einem Trägermaterial getragen oder an selbiges gebunden sind, d.h. in heterogenisierter oder geträgerter Form.
  • Der Katalysator wird in dem erfindungsgemäßen Verfahren vorzugsweise in einer Menge von 0,01 bis 20 Gew.-%, bevorzugter in eine Menge von 0,05 bis 4,0 Gew.-%, und besonders bevorzugt in einer Menge von 0,1 bis 2,0 Gew.-%, bezogen auf das Gesamtgewicht des eingesetzten Fetts und/oder Öls biogenen Ursprungs (bzw. der eingesetzten Triglyceride), eingesetzt.
  • Geeignete einwertige Alkohole zur Verwendung in dem erfindungsgemäßen Verfahren umfassen Methanol, Ethanol, n-Propanol, Isopropanol und Butanol, sind jedoch nicht darauf beschränkt. Bevorzugte einwertige Alkohole umfassen Methanol, das in großen Mengen aus fossilen Rohstoffen gewonnen wird, und Ethanol, das aus biotechnologischen Prozessen leicht zugänglich ist. Als mehrwertige Alkohole eignen sich insbesondere zweiwertige und, in geringerem Maße, dreiwertige Alkohole. Bevorzugte zweiwertige Alkohole umfassen Propandiol oder Butandiol, insbesondere 1,2-Propandiol, sind jedoch nicht darauf beschränkt. Sowohl die einwertigen als auch die mehrwertigen Alkohole können alleine oder in Mischung mit einem und/oder mehreren anderen ein- oder mehrwertigen Alkoholen eingesetzt werden. Vorzugsweise wird in dem erfindungsgemäßen Verfahren ein einwertiger Alkohol ausgewählt aus Methanol und Ethanol oder ein Gemisch davon eingesetzt.
  • Wie oben beschrieben zeichnet sich das erfindungsgemäße Verfahren durch eine überraschend gute Wassertoleranz aus, so dass die verwendeten Alkohole einen Anteil an Wasser von bis zu etwa 10 bis 15 Gew.-% enthalten können und dennoch je nach verwendetem Alkohol eine Umsetzungsrate von 50 bis 80% erreicht werden kann. Für eine effiziente Umesterung (Umsetzungsrate > 90%) beträgt der Wasseranteil aber vorzugsweise weniger als 2 Gew.-%, insbesondere weniger als 1 Gew.-%.
  • Fette und/oder Öle, die in dem erfindungsgemäßen Verfahren verwendet werden können, umfassen alle Fette und/oder Öle biogenen Ursprungs sowie beliebige Mischungen davon. Der in vorliegender Erfindung verwendete Begriff "biogenen Ursprungs" bedeutet "biologischen oder organischen Ursprungs", also nicht chemischsynthetischer Herkunft. Somit umfasst der Begriff "Fette und/oder Öle biogenen Ursprungs" alle Fette und/oder Öle, die von Pflanzen, Tieren oder Mikroorganismen (insbesondere Pilze, Algen und Bakterien) gebildet werden. Fette und Öle biogenen Ursprungs bestehen aus Glyceriden (Mono-, Di- und Triglyceride), im Wesentlichen jedoch aus Triglyceriden. In dieser Beschreibung wird der Begriff "Triglyceride" daher manchmal auch synonym zu Fett und/oder Öl biogenen Ursprungs verwendet.
  • Vorzugsweise wird im erfindungsgemäßen Verfahren ein Fett und/oder Öl pflanzlicher Herkunft eingesetzt. Unter einem "Pflanzenöl" im Sinne der vorliegenden Erfindung wird nicht nur ein Pflanzenöl einer bestimmten Pflanze, wie z.B. Rapsöl, sondern auch beliebige Mischungen verschiedener Pflanzenöle verstanden. Beispiele für geeignete Pflanzenöle sind Baumwollsamenöl, Distelöl, Jatrophaöl, Erdnussöl, Haselnussöl, Kokosöl, Kürbiskernöl, Leinöl, Maiskeimöl, Olivenöl, Palmöl, Palmkernöl, Rapsöl (auch Rüböl genannt), Reisöl, Sojaöl, Sonnenblumenöl, Traubenkernöl und Weizenkeimöl, in raffinierter oder kaltgepresster Form, und beliebige Mischungen davon. Auch aus Algen gewonnene Öle sind einsetzbar. In vorliegender Erfindung bevorzugte Pflanzenöle sind Rapsöl, Palmöl, Sonnenblumenöl, Sojaöl oder Mischungen davon, wobei Rapsöl und Sonnenblumenöl besonders bevorzugt sind.
  • Zur Verwendung im erfindungsgemäßen Verfahren besonders geeignete Ausgangsfette bzw. -öle weisen eine Säurezahl von weniger als 1,0 auf, was abhängig vom jeweiligen Fett bzw. Öl etwa einer Konzentration an freien Fettsäuren von weniger als 0,5 Gew.-% entspricht. Vorzugsweise enthalten die Fette und/oder Öle einen Anteil an freien Fettsäuren von nicht mehr als 0,2 Gew.-%. In dem erfindungsgemäßen Verfahren können jedoch auch Fette und/oder Öle mit einem höheren Gehalt an freien Fettsäuren eingesetzt werden. Um ein Fett bzw. Öl mit einem sehr geringen Anteil an freien Fettsäuren zu erhalten, kann es erforderlich sein, dass die Ausgangsfette bzw. -öle vor ihrem Einsatz einer Entsäuerungsbehandlung unterzogen werden.
  • Wie bereits im Zusammenhang mit den einsetzbaren Alkoholen erläutert, kann auch das Fett oder Öl Restmengen an Wasser enthalten, ohne dass dies das erfindungsgemäße Verfahren signifikant negativ beeinflusst. Die Restmenge an Wasser in den Fetten und/oder Ölen, die üblicherweise in dem erfindungsgemäßen Verfahren eingesetzt werden, ist allerdings in der Regel sehr gering und beträgt typischerweise nicht mehr als etwa 1 Gew.-%.
  • In dem erfindungsgemäßen Verfahren wird der Alkohol üblicherweise im Überschuss zugesetzt, um eine hohe Ausbeute an gewünschten Fettsäureestern ein- oder mehrwertiger Alkohole zu erhalten. Hierbei beträgt das Molverhältnis des ein- und/oder mehrwertigen Alkohols zu dem Fett und/oder Öl biogenen Ursprungs vorzugsweise wenigstens 6:1. Dies entspricht im Fall von einwertigen Alkoholen, wie Methanol oder Ethanol, einem zweifachen stöchiometrischen Überschuss, weil mindestens 3 Mol Methanol bzw. Ethanol benötigt werden, um aus 1 Mol Triglyceriden 3 Mol Methyl- bzw. Ethylester zu bilden. Im Fall von mehrwertigen Alkoholen kann das bevorzugte Molverhältnis auch geringer sein und bei zweiwertigen Alkoholen beispielsweise wenigstens 2:1 betragen.
  • Zusätzlich zu den oben genannten Komponenten können der Reaktionsmischung gegebenenfalls weitere Substanzen, wie Katalysator-Stabilisatoren, zugegeben werden, welche mit den Reaktionsbedingungen und der beabsichtigen Anwendung der Reaktionsendprodukte kompatibel sind.
  • Die Umesterung kann in Standardrührreaktoren drucklos und unter Rückfluss durchgeführt werden. Alternativ ist die Reaktionsführung in Rohrreaktoren denkbar. Zunächst werden die Ausgangsprodukte, d.h. Fette und/oder Öle biogenen Ursprungs, und der Katalysator dem Reaktor zugeführt und im Reaktor bei einer geeigneten Temperatur zu Glycerin und dem gewünschten Fettsäureester des eingesetzten ein-und/oder mehrwertigen Alkohols umgesetzt. Nach einer Kontaktzeit (im Folgenden auch "Reaktionszeit") von wenigen Minuten wird die Bildung von Glycerin beobachtet, wobei die Umesterungsreaktion nach einer Reaktionszeit von wenigstens 15 Minuten, typischerweise 30 bis 60 Minuten, abgeschlossen ist.
  • Die Umsetzung erfolgt üblicherweise unter Rühren, da dadurch der Stofftransport und damit die Reaktionseffizienz erhöht werden kann. Die Temperatur der Umesterungsreaktion liegt, falls Fette eingesetzt werden, oberhalb der Schmelztemperatur des höchstschmelzenden eingesetzten Fettes. In der Regel liegt die Reaktionstemperatur des erfindungsgemäßen Verfahrens unter 250 °C. Vorzugsweise wird die Reaktionstemperatur so eingestellt, dass sie etwa im Bereich der Siedetemperatur des Reaktionsgemisches bei Atmosphärendruck liegt. Es wurde jedoch überraschend gefunden, dass die Umesterungsreaktion auch bei geringeren Temperaturen, sogar bei Raumtemperatur, in signifikantem Maße abläuft.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahren wird das Fett und/oder Öl biogenen Ursprungs zunächst mit dem ein- und/oder mehrwertigen Alkohol in Kontakt gebracht und dann wird der Katalysator der resultierenden Mischung zugegeben. Der Katalysator liegt dabei vorzugsweise in einem Lösungsmittel gelöst vor, wobei das Lösungsmittel vorzugsweise ein Alkohol, insbesondere der in der Umesterungsreaktion eingesetzte ein- und/oder mehrwertige Alkohol, wie Methanol oder Ethanol, ist. Alternativ kann der Katalysator auch in dem zu veresternden ein- und/oder mehrwertigen Alkohol gelöst und dann mit dem Fett und/oder Öl biogenen Ursprungs in dem Reaktor vermischt werden.
  • Nach Abschluss der Umsetzung von Fett und/oder Öl biogenen Ursprungs mit dem ein- und/oder mehrwertigen Alkohol in Gegenwart des hierin beschriebenen Katalysators unter Bildung von Glycerin und Fettsäureestern kann das Glycerin in einem weiteren Verfahrensschritt abgetrennt werden. Dies kann im Reaktionskessel selbst oder in gegebenenfalls nachgeschalteten Aufbereitungsstufen erfolgen. Nach Beenden des Rührens sammelt sich das Glycerin als untere Phase im Reaktionsgefäß an und kann separat abgezogen werden. Alternativ kann das Glycerin auch in nachgeschalteten Apparaten bzw. Verfahren unter Ausnutzung der Dichteunterschiede abgezogen werden. Die Phasentrennung kann schwerkraftgetrieben, d.h. durch einfaches Stehenlassen, erfolgen. Hierzu kann beispielsweise ein Absetzbehälter verwendet werden. Es können aber auch Zentrifugalkräfte, beispielsweise in Hydrozyklonen oder Zentrifugen, genutzt werden.
  • Der überschüssige Alkohol, beispielsweise überschüssiges Methanol oder Ethanol, kann jeweils separat aus der erhaltenen Glycerinphase und der erhaltenen Esterphase abgetrennt werden. Dies kann durch bekannte Verfahren, beispielsweise durch Destillation, erfolgen. In einer alternativen Ausgestaltung des erfindungsgemäßen Verfahrens kann der überschüssige Alkohol aber auch vor der Trennung der Glycerin-und Esterphase entfernt werden. Der rückgewonnene Alkohol kann in die Reaktion zurückgeführt werden. Aufgrund der Wassertoleranz des erfindungsgemäßen Verfahrens kann eine aufwändige Nachtrocknung des Alkohols unterbleiben bzw. das Intervall bis zum Einsatz frischen Alkohols erheblich verlängert werden.
  • Das Glycerin bzw. die Glycerinphase enthält im Wesentlichen die gesamte Menge der als Katalysator eingesetzten hydroxyfunktionellen quartären Ammoniumverbindung, in der Regel mehr als 99% des eingesetzten Katalysators. Das katalysatorhaltige Glycerin kann daher in einer nächsten Reaktionsstufe, d.h. in einer weiteren Umesterung, eingesetzt werden, um die Reaktion zwischen Alkoholen, insbesondere einwertigen Alkoholen, wie Methanol und/oder Ethanol, und Triglyceriden zu katalysieren. Es wurde überraschend gefunden, dass das auf diese Weise wiederverwertete Glycerin zu einer Bildung von Fettsäureestern in erheblichem Umfang führt. Eine solche Wiederverwertung des in dem Umesterungsverfahren erzeugten Glycerins verbessert die Wirtschaftlichkeit des erfindungsgemäßen Verfahrens deutlich, da auf diese Weise mit einer bestimmten Menge an insgesamt eingesetztem Katalysator mehr Fettsäureester als bisher erzeugt werden können.
  • Ferner kann das katalysatorhaltige Glycerin nach Abtrennung des überschüssigen Alkohols auch weiteren Verwendungen zugeführt werden. Je nach Art der eingesetzten Edukte, des eingesetzten Katalysators und des Verwendungszwecks können gegebenenfalls weitere einem Fachmann bekannte Reinigungsschritte, wie Bleichung, Filtration, Neutralisation, usw. erforderlich sein. Das erhaltene Glycerin kann stofflich oder energetisch genutzt werden. So kann das Glycerin mit dem darin angereicherten Katalysator, wie vorstehend bereits beschrieben, gegebenenfalls als Nahrungsergänzungsmittel oder Futteradditiv in der Tierindustrie oder Futtermittelindustrie verwendet werden. Alternativ kann das katalysatorhaltige Glycerin auch zur Energiegewinnung durch Verbrennung, Vergasung oder Pyrolyse oder in Fermentationsprozessen und Biogasanlagen verwendet werden.
  • Die erzeugte Alkoholesterphase ist bei sorgfältiger Auswahl und Vorreinigung der als Ausgangsprodukte eingesetzten Fette und/oder Öle eine klare Phase, die unter Umständen leicht gelblich verfärbt sein kann. Je nach der beabsichtigen Verwendung kann die Esterphase als solche verwendet werden. Alternativ können weitere Reinigungsschritte erforderlich sein. Solche Reinigungsschritte können Neutralisation, Entfärbung, Entfernung von Spurenkomponenten, etc. umfassen. Dies kann beispielsweise durch Sorptionsprozesse mit festen oder flüssigen Hilfsstoffen erfolgen.
  • Die gebildeten Ester können im Falle der mit einwertigen Alkoholen gebildeten Fettsäureester als Chemierohstoff, beispielsweise als Ausgangsprodukt für chemische Synthesen, oder als Biobrenn- oder -treibstoff verwendet werden. Beispielsweise hat das Endprodukt der Umesterung mit Methanol, d.h. Fettsäuremethylester, eine deutlich geringere Viskosität als das eingesetzte Fett und/oder Öl und kann aufgrund seiner physikalischen Eigenschaften als Ersatz für Dieselkraftstoff verwendet werden.
  • Die bei der Umesterung mit mehrwertigen Alkoholen, wie Propandiol, gebildeten Glycerinmonoester oder Glycerindiester können als Gemisch oder nach Aufreinigung bzw. Fraktionierung beispielsweise als Lebensmittelemulgatoren oder als Chemierohstoff, z.B. in der Waschmittelsynthese, eingesetzt werden.
  • Im Folgenden wird das erfindungsgemäße Verfahren durch verschiedene Beispiele näher erläutert.
  • BEISPIELE Beispiel 1
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit Methanol zu Fettsäuremethylestern und Glycerin unter Verwendung von Cholinbase als Katalysator.
  • Ein Gemisch aus 100 g Rapsöl und 20 g Methanol (entspricht einem Molverhältnis von Alkohol zu Öl von etwa 6:1) wurde unter Rühren und bei Rücklauf auf Reaktionstemperatur (Siedetemperatur) erhitzt. Nach Erreichen der Siedetemperatur wurden 4,8 g Katalysatorlösung (Cholinbase-Lösung 44% in Methanol) zugegeben. Wenige Sekunden nach Zugabe der Katalysatorlösung wandelte sich die anfänglich trübe Dispersion aus Methanol und Öl in eine klare Mischung um und nach einigen Minuten wurde das Ausfallen von Glycerin beobachtet.
  • Nach einer Reaktionszeit von 60 Minuten wurde das Reaktionsgemisch in einen Rotationsverdampfer gegeben, um das überschüssige Methanol abzudestillieren (Enddruck etwa 50 mbar). Der Rückstand aus der Destillation wurde dann in einen Scheidetrichter überführt. Das Gemisch trennte sich bei Raumtemperatur in zwei Phasen.
  • Die untere schwerere Phase hatte eine Masse von 11,76 g und wies eine Glycerinkonzentration von ca. 85 Gew.-% auf. Die obere leichtere Phase hatte eine Masse von 97,14 g und enthielt 96,4 Gew.-% Fettsäuremethylester (Rapsölmethylester), < 2 Gew.-% Triglyceride, 0,96 Gew.-% Diglyceride, 1,12 Gew.-% Monoglyceride und 0,04 Gew.-% Glycerin, ermittelt durch Gaschromatographie gemäß DIN EN 14103 für Fettsäuremethylester und gemäß DIN EN 14105 für Partialglyceride und Glycerin.
  • Beispiel 2
  • Es wurde das Umesterungsverfahren gemäß Beispiel 1 durchgeführt, jedoch betrug die Reaktionszeit 45 Minuten. Die resultierende obere leichtere und untere schwerere Phase wiesen eine Masse von 98,17 g bzw. 10,6 g auf. Die obere leichtere Phase enthielt 96,1 Gew.-% Fettsäuremethylester, < 2 Gew.-% Triglyceride, 0,96 Gew.-% Diglyceride, 0,91 Gew.-% Monoglyceride und 0,02 Gew.-% Glycerin.
  • Beispiel 3
  • Es wurde das Umesterungsverfahren gemäß Beispiel 1 durchgeführt, jedoch betrug die Reaktionszeit 15 Minuten. Die resultierende obere leichtere und untere schwerere Phase wiesen eine Masse von 96,40 g bzw. 11,06 g auf. Die obere leichtere Phase enthielt 93,7 Gew.-% Fettsäuremethylester, < 2 Gew.-% Triglyceride, 1,96 Gew.-% Diglyceride, 1,30 Gew.-% Monoglyceride und 0,03 Gew.-% Glycerin.
  • Beispiel 4
  • Es wurde das Umesterungsverfahren gemäß Beispiel 1 durchgeführt, verwendet wurde jedoch ein Gemisch aus 100 g Rapsöl und 14 g Methanol (Molverhältnis Alkohol:Öl von etwa 4,5:1) und 5,0 g Katalysatorlösung (Cholinbase-Lösung 44% in Methanol) und die Reaktionszeit betrug 30 Minuten.
  • Die resultierende obere leichtere Phase hatte eine Masse von 99,10 g und die untere schwerere Phase hatte eine Masse von 10,6 g. Die obere leichtere Phase enthielt 90,6 Gew.-% Fettsäuremethylester, 2,19 Gew.-% Triglyceride, 2,63 Gew.-% Diglyceride, 1,42 Gew.-% Monoglyceride und 0,02 Gew.-% Glycerin.
  • Beispiel 5
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit Ethanol zu Fettsäureethylestern und Glycerin unter Verwendung von Cholinbase als Katalysator.
  • Ein Gemisch aus 100 g Rapsöl und 20 g Ethanol (entspricht einem Molverhältnis von Alkohol zu Öl von etwa 4,2:1) wurde unter Rühren und bei Rücklauf auf Reaktionstemperatur (Siedetemperatur) erhitzt. Nach Erreichen der Siedetemperatur wurden 4,8 g Katalysatorlösung (Cholinbase-Lösung 44% in Methanol) zugegeben. Wenige Sekunden nach Zugabe der Katalysatorlösung wandelte sich die anfänglich trübe Dispersion aus Ethanol und Öl in eine klare Mischung um und nach einigen Minuten wurde das Ausfallen von Glycerin beobachtet.
  • Nach einer Reaktionszeit von 45 Minuten wurde das Reaktionsgemisch in einen Rotationsverdampfer gegeben, um das überschüssige Ethanol abzudestillieren (Enddruck etwa 50 mbar). Der Rückstand aus der Destillation wurde dann in einen Scheidetrichter überführt. Das Gemisch trennte sich bei Raumtemperatur in zwei Phasen.
  • Die untere schwerere Phase hatte eine Masse von 17,0 g und die Glycerinkonzentration betrug ca. 43 Gew.-%. Die obere leichtere Phase hatte eine Masse von 95,80 g und enthielt 87,1 Gew.-% Fettsäureethylester (Rapsölethylester), <1 Gew.-% Triglyceride, 3,63 Gew.-% Diglyceride, 1,5 Gew.-% Monoglyceride und 0,04 Gew.-% Glycerin, ermittelt mittels Gaschromatographie gemäß DIN EN 14103.
  • Beispiel 6
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit wasserhaltigem Methanol zu Fettsäuremethylestern und Glycerin unter Verwendung von Cholinbase als Katalysator.
  • Das verwendete Verfahren entspricht im Wesentlichen dem Verfahren gemäß Beispiel 2, wobei jedoch dem Gemisch aus 100 g Rapsöl, 20 g Methanol (Molverhältnis Alkohol:Öl von etwa 6:1) und 4,8 g Katalysatorlösung (Cholinbase-Lösung 44% in Methanol) insgesamt 2 g Wasser zugesetzt wurde (entspricht einem Wassergehalt von 8,8 Gew.-%, bezogen auf die Gesamtalkoholmenge, d.h. 20 g Methanol plus die Menge Alkohol, die durch die Katalysatorlösung ins System eingebracht wurde).
  • Die resultierende obere leichtere Phase hatte eine Masse von 97,50 g und enthielt 74,6 Gew.-% Fettsäuremethylester, > 20 Gew.-% Triglyceride, 5,24 Gew.-% Diglyceride, 1,17 Gew.-% Monoglyceride und 0,02 Gew.-% Glycerin.
  • Beispiel 7
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit wasserhaltigem Ethanol zu Fettsäureethylestern und Glycerin unter Verwendung von Cholinbase als Katalysator.
  • Das verwendete Verfahren entspricht im Wesentlichen dem Verfahren gemäß Beispiel 5, wobei jedoch dem Gemisch aus 100 g Rapsöl, 20 g Ethanol (Molverhältnis Alkohol:Öl von etwa 4,2:1) und 4,8 g Katalysatorlösung (Cholinbase-Lösung 44% in Methanol) insgesamt 0,9 g Wasser zugesetzt wurde (entspricht einem Wassergehalt von 4,0 Gew.-%, bezogen auf die Gesamtalkoholmenge, d.h. 20 g Ethanol plus die Menge Alkohol, die durch die Katalysatorlösung ins System eingebracht wurde). Im Fall von Ethanol korrespondiert dieser Wassergehalt mit demjenigen von azeotropem Ethanol.
  • Die resultierende obere leichtere Phase hatte eine Masse von 100,2 g und enthielt 60,6 Gew.-% Fettsäureethylester, 5,50 Gew.-% Triglyceride, 10,94 Gew.-% Diglyceride, 10,65 Gew.-% Monoglyceride und > 0,55 Gew.-% Glycerin.
  • Beispiel 8
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit Methanol zu Fettsäuremethylestern und Glycerin unter Verwendung von Cholincarbonat als Katalysator.
  • Das verwendete Verfahren entspricht im Wesentlichen dem Verfahren gemäß Beispiel 1, wobei als Katalysatorlösung eine Cholincarbonat-Lösung 74% in Methanol verwendet wurde. Die resultierende obere leichtere Phase hatte eine Masse von 98,2 g, während die untere schwerere Phase eine Masse von 5,7 g hatte. Die obere leichtere Phase enthielt 56,3 Gew.-% Fettsäuremethylester, > 20 Gew.-% Triglyceride, 20,96 Gew.-% Diglyceride, 4,32 Gew.-% Monoglyceride und 0,11 Gew.-% Glycerin.
  • Beispiel 9
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit Ethanol zu Fettsäureethylestern und Glycerin unter Verwendung von Cholincarbonat als Katalysator.
  • Das verwendete Verfahren entspricht im Wesentlichen dem Verfahren gemäß Beispiel 5, jedoch wurde als Katalysatorlösung eine Cholincarbonat-Lösung 74% in Methanol verwendet. Die resultierende obere leichtere Phase hatte eine Masse von 100,0 g, während die untere schwerere Phase eine Masse von 6,2 g hatte. Die obere leichtere Phase enthielt 62,3 Gew.-% Fettsäureethylester, 12,95 Gew.-% Triglyceride, 17,47 Gew.-% Diglyceride, 5,22 Gew.-% Monoglyceride und 0,48 Gew.-% Glycerin.
  • Beispiel 10
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit 1,2-Propandiol zu Fettsäureestern und Glycerin unter Verwendung von Cholinbase als Katalysator.
  • Ein Gemisch aus 50 g Rapsöl und 10 g 1,2-Propandiol (entspricht einem Molverhältnis von Alkohol zu Öl von etwa 2,5:1) wurde unter Rühren und bei Rücklauf auf Reaktionstemperatur (Siedetemperatur) erhitzt. Nach Erreichen der Siedetemperatur wurden 4,8 g Katalysatorlösung (Cholinbase-Lösung 44% in Methanol) zugegeben. Wenige Sekunden nach Zugabe der Katalysatorlösung wandelte sich die anfänglich trübe Dispersion aus 1,2-Propandiol und Öl in eine klare Mischung um.
  • Nach einer Reaktionszeit von 30 Minuten wurde das überschüssige 1,2-Propandiol mit einem Rotationsverdampfer (Enddruck 50 mbar) abgetrennt. Der Rückstand (homogene Phase) wies folgende Zusammensetzung auf: 11 Gew.-% Monoglyceride, 21,7 Gew.-% Diglyceride, 1,2 Gew.-% Triglyceride, 4 Gew.-% Glycerin. Des Weiteren entstanden geringe Mengen an Methylester aus dem Methanolanteil, der durch die methanolische Lösung des Katalysators eingetragen wurde.
  • Beispiel 11
  • Dieses Beispiel illustriert die Umesterung von Rapsöl mit Methanol zu Fettsäuremethylestern und Glycerin unter Verwendung einer wiederverwerteten Cholinbase-haltigen Glycerinphase.
  • Zunächst wurde das Umesterungsverfahren gemäß Beispiel 1 durchgeführt, jedoch wurden 200 g Rapsöl, 24 g Methanol und 20 g Katalysatorlösung (Cholinbase-Lösung 20 % in Methanol) eingesetzt. Die resultierende schwerere Phase (25 g Cholinbasehaltige Glycerinphase) wurde abgetrennt und ohne weitere Behandlung als Katalysator für eine weitere Umesterung eingesetzt. Dazu wurde ein Gemisch aus 200 g Rapsöl, 40 g Methanol und 25 g der Cholinbase-haltigen Glycerinphase aus der ersten Umesterung unter Rühren und bei Rücklauf auf Reaktionstemperatur (Siedetemperatur) erhitzt. Nach 60 Minuten wurde der Versuch beendet und die Produktphasen wie in Beispiel 1 beschrieben aufbereitet.
  • Die resultierende obere leichtere und untere schwerere Phase wiesen eine Masse von 203,0 g bzw. 30,44 g auf. Die obere leichtere Phase enthielt 67,58 Gew.-% Fettsäuremethylester, 17,58 Gew.-% Triglyceride, 8,13 Gew.-% Diglyceride, 2,28 Gew.-% Monoglyceride und 0,06 Gew.-% Glycerin.

Claims (12)

  1. Verfahren zur Herstellung von Fettsäureestern ein- oder mehrwertiger Alkohole unter Verwendung eines Katalysators, umfassend das Umsetzen von Fett und/oder Öl biogenen Ursprungs mit ein- und/oder mehrwertigen Alkoholen in Gegenwart eines Katalysators, wobei der Katalysator eine hydroxyfunktionelle quartäre Ammoniumverbindung der folgenden allgemeinen Formel (I) ist:
    Figure imgb0003
    wobei R1, R2 und R3 gleich oder verschieden sind und jeweils einen unsubstituierten oder substituierten geradkettigen oder verzweigten Alkylrest mit 1 bis 8 Kohlenstoffatomen darstellen, und
    R ein geradkettiger oder verzweigter Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyalkinylrest mit 1 bis 12 Kohlenstoffatomen darstellt.
  2. Verfahren nach Anspruch 1, wobei R1, R2 und R3 gleich oder verschieden sind und jeweils einen unsubstituierten geradkettigen Alkylrest mit 1 bis 6 Kohlenstoffatomen darstellen.
  3. Verfahren nach Anspruch 1 oder 2, wobei R ein geradkettiger Hydroxyalkylrest mit 1 bis 12 Kohlenstoffatomen darstellt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei R 2-Hydroxyethyl ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei als Katalysator Cholin oder ein Salz davon eingesetzt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der Katalysator in einer Menge von 0,01 bis 4,0 Gew.-%, bezogen auf das Gewicht des eingesetzten Fetts und/oder Öls biogenen Ursprungs, eingesetzt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der einwertige Alkohol aus der Gruppe bestehend aus Methanol, Ethanol, n-Propanol, Isopropanol, Butanol und Mischungen davon ausgewählt ist und der mehrwertige Alkohol ein aus der Gruppe bestehend aus Propandiol, Butandiol und Mischungen davon ausgewählter zweiwertiger Alkohol ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das eingesetzte Fett und/oder Öl biogenen Ursprungs weniger als 0,5 Gew.-% freie Fettsäuren enthält.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Molverhältnis des ein- und/oder mehrwertigen Alkohols zu dem Fett und/oder Öl biogenen Ursprungs mindestens 6:1 beträgt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, ferner umfassend das Aufreinigen der gebildeten Fettsäureester ein- oder mehrwertiger Alkohole durch Abtrennen der gebildeten Nebenprodukte.
  11. Verfahren nach Anspruch 10, wobei das gebildete Nebenprodukt ein Glycerinprodukt, umfassend eine katalysatorhaltige Glycerinfraktion, ist.
  12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die als Katalysator eingesetzte hydroxyfunktionelle quartäre Ammoniumverbindung in Form einer Glycerinfraktion eingesetzt wird, die gemäß einem Verfahren nach einem der Ansprüche 1 bis 11 erhältlich ist und in welcher die als Katalysator eingesetzte hydroxyfunktionelle quartäre Ammoniumverbindung angereichert ist.
EP09744330A 2008-10-22 2009-10-21 Verfahren zur herstellung von fettsäureestern ein- oder mehrwertiger alkohole unter verwendung spezieller hydroxyfunktioneller quartärer ammoniumverbindungen als katalysatoren Not-in-force EP2346972B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008052795A DE102008052795B4 (de) 2008-10-22 2008-10-22 Verfahren zur Herstellung von Fettsäureestern ein- oder mehrwertiger Alkohole unter Verwendung spezieller hydroxyfunktioneller quartärer Ammoniumverbindungen als Katalysatoren
PCT/EP2009/007544 WO2010046100A1 (de) 2008-10-22 2009-10-21 Verfahren zur herstellung von fettsäureestern ein- oder mehrwertiger alkohole unter verwendung spezieller hydroxyfunktioneller quartärer ammoniumverbindungen als katalysatoren

Publications (2)

Publication Number Publication Date
EP2346972A1 EP2346972A1 (de) 2011-07-27
EP2346972B1 true EP2346972B1 (de) 2013-01-02

Family

ID=41510615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09744330A Not-in-force EP2346972B1 (de) 2008-10-22 2009-10-21 Verfahren zur herstellung von fettsäureestern ein- oder mehrwertiger alkohole unter verwendung spezieller hydroxyfunktioneller quartärer ammoniumverbindungen als katalysatoren

Country Status (6)

Country Link
US (1) US8598377B2 (de)
EP (1) EP2346972B1 (de)
BR (1) BRPI0919929A8 (de)
DE (1) DE102008052795B4 (de)
MY (1) MY152293A (de)
WO (1) WO2010046100A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2215913A1 (de) 2009-01-23 2010-08-11 Nutreco Nederland B.V. Tierfutterzusatzmittel und Tierfutter enthaltend Alkylester von Fettsäuren mittlerer Kettenlänge, und ihre Verwendung in Tierfutter
US8956836B2 (en) 2009-09-07 2015-02-17 Council Of Scientific And Industrial Research Integrated process for the production of Jatropha methyl ester and by products
GB201321033D0 (en) * 2013-11-28 2014-01-15 Queens University Of The Belfast Removal of free fatty acids from crude palm oil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7007023A (de) * 1969-05-16 1970-11-18
PT1187833E (pt) 1999-06-23 2007-09-05 Syngenta Participations Ag Método para produzir tiametoxame
US6747146B2 (en) * 1999-06-23 2004-06-08 Syngenta Crop Protection, Inc. Method of producing nitroguanidine- and nitroenamine derivatives
MXPA02001636A (es) 1999-08-18 2003-07-14 Biox Corp Proceso en una sola fase para la produccion de metil esteres de acidos grasos a partir de mezclas de trigliceridos y acidos grasos.
DE10245806A1 (de) 2002-10-01 2004-04-15 Siegfried Prof. Dr. Peter Verfahren zur Herstellung von Fettsäureestern einwertiger Alkohole mittels Alkoholyse unter Verwendung spezieller basischer Katalysatoren
DE102004004660B4 (de) 2004-01-29 2006-04-13 Faurecia Innenraum Systeme Gmbh Innenverkleidungsteil und Instrumententafelmodul mit Handschuhkasten
HRP20040341B1 (en) 2004-04-15 2011-01-31 Institut "Ruder Boskovic" N,n',n"-tris-(3-dimethylaminopropyl)-guanidine. the procedure of preparation from carbodimide and application in reactions of oil
DE102004044660A1 (de) 2004-09-15 2006-03-30 Siegfried Prof. Dr. Peter Verfahren zur Umesterung von Fetten und Ölen biologischen Ursprungs mittels Alkoholyse unter Verwendung spezieller Kohlensäuresalze
US20090069585A1 (en) * 2006-03-29 2009-03-12 Halpern Marc E Transesterification Reacton of Triglycerides and Monohydric Alcohols
BRPI0603857A (pt) 2006-06-14 2008-01-29 Unicamp processo para transesterificação de óleos vegetais e gorduras animais, catalisado por base forte modificada para produção de ésteres alquìlicos
DE102006028560A1 (de) * 2006-06-22 2007-12-27 Cognis Ip Management Gmbh Verfahren zur Umesterung von Triglyceriden

Also Published As

Publication number Publication date
US8598377B2 (en) 2013-12-03
US20110300281A1 (en) 2011-12-08
BRPI0919929A8 (pt) 2017-10-24
DE102008052795B4 (de) 2012-01-26
EP2346972A1 (de) 2011-07-27
WO2010046100A1 (de) 2010-04-29
DE102008052795A1 (de) 2010-05-27
MY152293A (en) 2014-09-15
BRPI0919929A2 (pt) 2016-02-16

Similar Documents

Publication Publication Date Title
EP1141183B1 (de) Verfahren zur umesterung von fett und/oder öl biologischen ursprungs mittels alkoholyse
DE60023710T2 (de) Einphaseverfahren zur herstellung von fettsäuremethylestern aus gemischen von triglyceriden und fettsäuren
AT502218B1 (de) Verfahren zur herstellung von carbonsäurealkylestern
DE69005501T2 (de) Verfahren zum Herstellen von Niedrigalkylfettsäuremonoester.
EP0164643A2 (de) Verfahren zur Herstellung von Fettsäureestern kurzkettiger Alkohole
DE19925871A1 (de) Verfahren zur Herstellung von Fettsäureestern einwertiger Alkylalkohole und deren Verwendung
DE10043644A1 (de) Verfahren zur kontinuierlichen Herstellung von Biomethanol- und Bioethanoldiesel in Kleinstanlagen
EP0150794B1 (de) Verfahren zur Herstellung von Gemischen aus C6-C10-Fettsäuren
EP2548937A1 (de) Alkali- und Erdalkalimetall-Glycerate zur Entsäuerung und Trocknung von Fettsäureestern
EP2358851B1 (de) Verwendung von methansulfonsäure zur herstellung von fettsäureestern
DE102005038137A1 (de) Verfahren zur Herstellung von Niedrigalkylestern
WO1993001263A1 (de) Verfahren zur herstellung von fettsäureniedrigalkylestern
DE10038442A1 (de) Verfahren zur Gewinnung von Sterinen aus fettsäurehaltigen Rückständen
DE19600025A1 (de) Verfahren zur Herstellung von Fettstoffen
EP1358306B1 (de) Verfahren zur umesterung von fett und/oder öl mittels alkoholyse
EP2346972B1 (de) Verfahren zur herstellung von fettsäureestern ein- oder mehrwertiger alkohole unter verwendung spezieller hydroxyfunktioneller quartärer ammoniumverbindungen als katalysatoren
DE102009037579A1 (de) Verfahren zur Herstellung von Biodiesel durch saure Umesterung sowie die Verwendung einer Sulfonsäure als Katalysator bei der Herstellung von Biodiesel
EP1870446A1 (de) Verfahren zur Umesterung von Triglyceriden
EP0889023B1 (de) Verfahren zur Herstellung von Mischungen aus Sorbitmonoestern, Sorbitdiestern und Partialglyceriden
EP0728176B1 (de) Verfahren zur herstellung von fettsäureniedrigalkylestern
AT510636B1 (de) Verfahren zur herstellung von fettsäureestern niederer alkohole
WO2004031119A1 (de) Verfahren zur herstellung von fettsäureestern einwertiger alkohole mittels alkoholyse unter verwendung spezieller basischer katalysatoren
EP2205708A1 (de) Kontinuierliches verfahren zur heterogen katalysierten veresterung von fettsäuren
EP1308498B1 (de) Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 591639

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005881

Country of ref document: DE

Effective date: 20130307

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

26N No opposition filed

Effective date: 20131003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005881

Country of ref document: DE

Effective date: 20131003

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20131031

Owner name: BALCHEM CORP.

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091021

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191018

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191023

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009005881

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 591639

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201021

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201021