EP2343235B1 - Submarine - Google Patents

Submarine Download PDF

Info

Publication number
EP2343235B1
EP2343235B1 EP10014866.7A EP10014866A EP2343235B1 EP 2343235 B1 EP2343235 B1 EP 2343235B1 EP 10014866 A EP10014866 A EP 10014866A EP 2343235 B1 EP2343235 B1 EP 2343235B1
Authority
EP
European Patent Office
Prior art keywords
drive shaft
submarine
rotary feedthrough
fluid
propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10014866.7A
Other languages
German (de)
French (fr)
Other versions
EP2343235A3 (en
EP2343235B8 (en
EP2343235A2 (en
Inventor
Roland Dr.-Ing. Körner
Ulrich Dipl.-Ing. Stäuble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp Marine Systems GmbH
Publication of EP2343235A2 publication Critical patent/EP2343235A2/en
Publication of EP2343235A3 publication Critical patent/EP2343235A3/en
Application granted granted Critical
Publication of EP2343235B1 publication Critical patent/EP2343235B1/en
Publication of EP2343235B8 publication Critical patent/EP2343235B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/34Propeller shafts; Paddle-wheel shafts; Attachment of propellers on shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/36Shaft tubes

Definitions

  • the invention relates to a submarine with the features specified in the preamble of claim 1.
  • Non-atomic submarines are known that are equipped with fuel cell systems for external air independent power supply.
  • submarines belong to the prior art, which are also driven independently of the air from a circulating diesel engine or a Stir-ling engine. Both diesel and Stirling engines as well as methanol reformers for hydrogen production for fuel cells produce C02. which must be deployed during the dive trip from the submarine.
  • the C02 can not be released from the submarine in gaseous form, as the gas bubbles rising up to the surface of the water significantly increase the signature of the submarine. Therefore, the gas is first dissolved in water and then discharged from the submarine.
  • it is not possible to dissolve all of the CO 2 in water so that a CO 2 -water mixture flowing out of the submarine always contains micro-bubbles which may adversely affect flow-critical areas of the submarine, in particular the acoustic locating systems.
  • the US5561276A describes an underwater moving object and ways to discharge the exhaust via sound attenuating elements within a hollow drive shaft.
  • the invention has for its object to provide a submarine, from which during the dive a fluid can be discharged in a manner that this fluid flow critical Areas at most negligible and preferably not affected at all.
  • the submarine according to the invention has a propeller drive in the usual way.
  • This propeller drive has at least one outside, d. H. Propeller arranged outside of the submarine and a drive shaft guided by the pressure body of the submarine, which carries the propeller at one end and is coupled in motion with a drive.
  • the drive shaft is formed as a hollow shaft and means are provided for discharging at least one fluid from the submarine through the hollow shaft.
  • the fluid may be liquids or gases.
  • the fluid will be CO 2 dissolved in a liquid and preferably in water or other gases dissolved in liquids or water.
  • a rotary feedthrough around the drive shaft.
  • the fluid can be pumped via a supply line into the housing of the rotary feedthrough, where it can flow through at least one and preferably via a plurality of formed on the drive shaft in the region of the housing interior holes in the hollow interior of the drive shaft and from there from the submarine.
  • a rotary feedthrough is arranged on the drive shaft in a region which is located between the propeller and a clutch operatively coupling the drive shaft to the drive motor.
  • the drive shaft is expediently closed in a fluid-tight manner at its end arranged in the pressure hull.
  • a closure z. B. in the form of a welded there disc or be in the pressure body to the drive shaft subsequent coupling forms such a closure.
  • radial seals are provided which seal the rotary feedthrough against the drive shaft.
  • These radial seals which are, for example, to usual Radial shaft seals can act, are typically designed so that they withstand the prevailing in the rotary feedthrough fluid pressure.
  • the drive shafts of submarines are usually stored in water-lubricated plain bearings. There, the drive shafts change their position depending on the load, d. h., They are movable in the radial direction. To compensate for such radial movements of the drive shaft, the radial seals are preferably mounted elastically in the radial direction. Thus, the radial seals can be arranged with a certain radial play between the rotary feedthrough and the drive shaft. Optionally, it is also possible to mount the entire rotary feedthrough on the drive shaft radially movable, which, however, is associated with a much greater design effort.
  • the rotary feedthrough can advantageously be arranged within the pressure hull of the submarine. Accordingly, the laminatede from the submarine fluid is introduced into the pressure body in the drive shaft.
  • the rotary feedthrough in the pressure chamber interior can be arranged in the immediate vicinity of a stern tube bearing formed on the pressure body wall.
  • the arrangement of the rotary feedthrough within the pressure hull makes it possible to carry out maintenance or repair work on the rotary feedthrough or the replacement of the rotary feedthrough in the floating state of the submarine, since this only the opening of the drive shaft located on the propeller must be sealed by a diver and provided sealing means must be that seal the pressure hull of the submarine against the drive shaft at standstill of the drive shaft.
  • the rotary feedthrough may also be useful to arrange the rotary feedthrough outside the pressure hull. Opposite an arrangement of the rotary feedthrough In the pressure vessel interior, this arrangement of the rotary feedthrough has the advantage that possibly occurring at the rotary feedthrough leaks have no significant effect.
  • the seals of the rotary unions can be designed with respect to the seals used in a pressure medium inside arranged rotary feedthrough for smaller pressure differences. However, it is in an arrangement of the rotary feedthrough outside of the pressure hull required to provide an additional pressure body passage for the fluid line to the rotary feedthrough. Furthermore, repairs or the replacement of the rotary feedthrough can only be made in the dry, for example in a dock.
  • Submarines usually have immersion cells in the bow and stern extensions of the pressure hull.
  • the rotary feedthrough can be arranged in the tail side adjoining the pressure body immersion cell.
  • the drive shafts of submarines are usually stored in water-lubricated slide bearings. These slide bearings are cooled with cooling water.
  • the drive shaft is preferably arranged outside of the pressure hull in a serving for cooling water flow pipe.
  • the cooling water is to lead around the rotary feedthrough around.
  • it is preferably provided to arrange a bypass line around the rotary leadthrough around the pipe serving for the coolant guide.
  • the rotary feedthrough can also be arranged outside of an immersion cell limiting outer skin.
  • a stern tube bearing for guiding the drive shaft.
  • the rotary feedthrough may be arranged for example in a region between this stern tube bearing and the propeller.
  • the holes are arranged on the drive shaft for introducing the fluid into the drive shaft in the highest load zone of the drive shaft and a very long fluid supply line from the pressure body to the rotary feedthrough is required.
  • the illustrated military submarine has a pressure body 2, which is bounded by a pressure-resistant Druckmaschinewandung 4.
  • a front immersion cell 6 is arranged and in the rear-side extension of the pressure hull 2, a rear immersion cell 8 is arranged.
  • the immersion cells 6 and 8 are surrounded by an outer skin 10.
  • the submarine has a propeller drive with a propeller 12 arranged at the stern of the submarine.
  • the propeller 12 is on a drive shaft 14 emerging at the stern of the submarine attached, which is coupled for movement via a coupling 16 with a drive motor 18.
  • the drive shaft 14 is formed as a hollow shaft which is open at its end carrying the propeller 12 and formed closed at its end arranged in the pressure body.
  • the drive shaft is guided in two sterntube bearings 20 and 22.
  • the stern tube bearing 20 adjoins the pressure body wall 4 at the rear, while the stern tube bearing 22 is arranged at the rear end of the immersion cell 8.
  • the drive shaft 14 is mounted in a water-cooled slide bearing 24 and in the stern tube bearing 22 in a water-cooled slide bearing 26.
  • the water for water cooling of the plain bearings 24 and 26 is supplied via a arranged in the pressure body 2 cooling water line 28, which opens at the sterntube bearing 20 on the pressure side of the sliding bearing 24. From the sliding bearing 24, the cooling water via a pipe 30 which surrounds the drive shaft 14 at a distance and extending from the stern tube bearing 20 to the stern tube bearing 22, guided to the sliding bearing 26.
  • the hollow drive shaft 14 is used for discharging fluids from the interior of the pressure hull 2 in the direction of travel behind the entire submarine.
  • the drive shaft 14 serves to dissipate the released from a methanol reformer for hydrogen production for fuel cells or released from a diesel or Stirling engine CO 2 dissolved in water from the submarine.
  • the fluid is not discharged directly to the open end of the drive shaft 14, instead, a propeller hood 31 is attached to the drive shaft 14 in the direction of travel of the submarine behind the propeller 12, which forms an extension of the flow channel formed by the drive shaft 14.
  • a rotary feedthrough 32 is provided.
  • a rotary feedthrough 32 in the pressure body 2 at the in Fig. 2 is arranged with position I designated location
  • the second rotary feedthrough 32 is disposed at position II within the immersion cell 8
  • the third rotary feedthrough 32 is arranged at position III on the outside of the outer skin 10.
  • the positions I, II and III represent alternative arrangement position for the rotary feedthrough 32, but the submarine has only one of the three rotary unions 32 shown.
  • the rotary feedthrough 32 shown in position I is arranged in the pressure body 2 at a portion of the drive shaft 14 between the pressure body wall 4 and the coupling 16, wherein it connects directly to the stern tube bearing 20. It has a housing 34 which is arranged fixedly around the rotating drive shaft 14. The housing 34 forms a cavity around the drive shaft 14. In this cavity of the housing 34, the redesignate from the submarine fluid is introduced by means of a pump 36 via a supply line 38. From there, the fluid is passed over in the region of the cavity of the housing 34 on the drive shaft 14 distributed over its circumference formed holes 40 in the interior of the drive shaft 14.
  • a valve 42 closing against the pumping direction of the pump 36 is arranged as a check valve in the feed line 38.
  • a radial seal 44 is arranged at the stern tube bearing 20 facing the end of the cavity of the housing 34. This radial seal is flexible in the radial direction and can thus compensate for movements of the drive shaft 14 transversely to its longitudinal extent.
  • the rotary feedthrough 32 is sealed off from the drive shaft 14 by means of a mechanical seal 46.
  • a penetration of water into the housing 34 of the rotary feedthrough To prevent 32, an actuatable stationary seal 48 and the outside of the mechanical seal 46, a likewise operable stationary seal 50 is disposed on the rotary feedthrough in a region between the radial seal 44 and the stern tube bearing 20.
  • the tube 30 is formed in two parts.
  • a bypass line 52 connecting the two parts of the tube 30 and bridging the rotary leadthrough 32 is provided.
  • the rotary feedthrough 32 shown in position II has a housing 54.
  • the cavity formed by the housing 54 about the drive shaft 14 is sealed by means of two radial seals 44 relative to the drive shaft 14.
  • a plurality of bores 56 are formed in a arranged in the interior of the housing 54 of the rotary feedthrough 32 portion of the drive shaft 14 distributed over the circumference.
  • a rotary feedthrough 32 arranged in position III, the rotary leadthrough 32 is arranged on the outside of the outer skin 10 surrounding the immersion cell 8, with the rotary leadthrough 32 directly adjoining the rear end of the stern tube bearing 22.
  • This rotary feedthrough 32 has a housing 58. Again, the cavity formed by the housing 58 is sealed to the drive shaft 14 by means of two radial seals 44 relative to the drive shaft 14. Furthermore, a plurality of bores 60 are also formed here for introducing the fluid supplied into the rotary feedthrough 32 into the drive shaft 14 in a region of the drive shaft 14 arranged in the interior of the housing 58 of the rotary feedthrough 32.
  • the housing 58 is designed in such a way that, in terms of flow, it forms a transition aligned with the outer skin 10.
  • a pressure body bushing 62 is required, through which the feed line 38 is guided from the interior of the pressure body 2 to the relevant rotary feedthrough 32. Also in this case, a valve 42 is provided in the interior of the pressure body 2 in the supply line 38, which prevents the ingress of seawater into the pressure body 2.

Description

Die Erfindung betrifft ein Unterseeboot mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.The invention relates to a submarine with the features specified in the preamble of claim 1.

Es sind konventionelle, d. h. nicht atomarbetriebene Unterseeboote bekannt, die mit Brennstoffzellenanlagen zur Außenluft unabhängigen Energieversorgung ausgestattet sind. Daneben gehören Unterseeboote zum Stand der Technik, die ebenfalls außenluftunabhängig von einem nach dem Kreislaufverfahren arbeitenden Dieselmotor oder einem Stir-ling-Motor angetrieben werden. Sowohl Diesel- und Stirling-Motoren als auch Methanolreformer zur Wasserstoffgewinnung für Brennstoffzellen erzeugen C02. das während der Tauchfahrt aus dem Unterseeboot ausgebracht werden muss.They are conventional, d. H. Non-atomic submarines are known that are equipped with fuel cell systems for external air independent power supply. In addition, submarines belong to the prior art, which are also driven independently of the air from a circulating diesel engine or a Stir-ling engine. Both diesel and Stirling engines as well as methanol reformers for hydrogen production for fuel cells produce C02. which must be deployed during the dive trip from the submarine.

Das C02 kann in der Regel nicht gasförmig aus dem Unterseeboot aus gebracht werden, da die an die Wasseroberfläche aufsteigenden Gasblasen die Signatur des Unterseeboots deutlich erhöhen. Daher wird das Gas zunächst in Wasser gelöst und dann aus dem Unterseeboot abgeführt. Allerdings lässt sich nicht das gesamte C02 in Wasser lösen, so dass ein aus dem Unterseeboot ausströmendes C02-Wasser-Gemisch immer Mikroblasen enthält, die gegebenenfalls strömungskritische Bereiche des Unterseeboots negativ beeinflussen können, insbesondere die akustischen Ortungsanlagen.As a rule, the C02 can not be released from the submarine in gaseous form, as the gas bubbles rising up to the surface of the water significantly increase the signature of the submarine. Therefore, the gas is first dissolved in water and then discharged from the submarine. However, it is not possible to dissolve all of the CO 2 in water so that a CO 2 -water mixture flowing out of the submarine always contains micro-bubbles which may adversely affect flow-critical areas of the submarine, in particular the acoustic locating systems.

Die US5561276A beschreibt ein unter Wasser bewegtes Objekt und Möglichkeiten das Abgas über schalldämpfende Elemente innerhalb einer hohlen Antriebswelle abzuleiten.The US5561276A describes an underwater moving object and ways to discharge the exhaust via sound attenuating elements within a hollow drive shaft.

Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Unterseeboot zu schaffen, aus dem während der Tauchfahrt ein Fluid in einer Weise abgelassen werden kann, dass dieses Fluid strömungskritische Bereiche allenfalls vernachlässigbar und vorzugsweise gar nicht beeinflusst.Against this background, the invention has for its object to provide a submarine, from which during the dive a fluid can be discharged in a manner that this fluid flow critical Areas at most negligible and preferably not affected at all.

Gelöst wird diese Aufgabe durch ein Unterseeboot mit den in Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen dieses Unterseeboots ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie der Zeichnung. Hierbei können gemäß der Erfindung die in den Unteransprüchen angegebenen Merkmale jeweils für sich, aber auch in Kombination, die erfindungsgemäße Lösung gemäß Anspruch 1 weiter ausgestalten.This object is achieved by a submarine with the features specified in claim 1. Advantageous developments of this submarine result from the dependent claims, the following description and the drawings. In this case, according to the invention, the features specified in the subclaims in each case, but also in combination, the solution according to the invention according to claim 1 further develop.

Das erfindungsgemäße Unterseeboot weist in üblicher Weise einen Propellerantrieb auf. Dieser Propellerantrieb verfügt über mindestens einen außenseitig, d. h. außerhalb des Unterseeboots angeordneten Propeller und eine durch den Druckkörper des Unterseeboots geführte Antriebswelle, die an einem Ende den Propeller trägt und mit einem Antrieb bewegungsgekoppelt ist. Gemäß der Erfindung ist die Antriebswelle als eine Hohlwelle ausgebildet und es sind Mittel zum Ausbringen von mindestens einem Fluid aus dem Unterseeboot durch die Hohlwelle vorgesehen.The submarine according to the invention has a propeller drive in the usual way. This propeller drive has at least one outside, d. H. Propeller arranged outside of the submarine and a drive shaft guided by the pressure body of the submarine, which carries the propeller at one end and is coupled in motion with a drive. According to the invention, the drive shaft is formed as a hollow shaft and means are provided for discharging at least one fluid from the submarine through the hollow shaft.

Bei dem Fluid kann es sich um Flüssigkeiten oder Gase handeln. In der Regel wird das Fluid in einer Flüssigkeit und vorzugsweise in Wasser gelöstes CO2 oder in Flüssigkeiten bzw. Wasser gelöste andere Gase sein. Diese Fluide werden mit den Mitteln zum Ausbringen des Fluids über die hohle Antriebswelle hinter dem Propeller des Unterseeboots, also in Fahrtrichtung hinter dem gesamten Unterseeboot ausgelassen, so dass in dem Fluid befindliche Gasbläschen das Unterseeboot und demzufolge typischerweise auch strömungskritische Bereiche des Unterseeboots, nicht umströmen können.The fluid may be liquids or gases. In general, the fluid will be CO 2 dissolved in a liquid and preferably in water or other gases dissolved in liquids or water. These fluids are discharged with the means for discharging the fluid through the hollow drive shaft behind the propeller of the submarine, so in the direction behind the entire submarine, so that located in the fluid gas bubbles the submarine and consequently typically flow critical areas of the submarine can not flow around ,

Prinzipiell ist es möglich, das Fluid mittels Hohlwellen durch die der Antriebswelle vorgelagerten Baugruppen, wie z. B. Antriebsmotor, Kupplung und Drucklager zu leiten. Allerdings ist eine solche Ausgestaltung mit einem erheblichen konstruktiven Aufwand verbunden. Daher ist zum Einbringen des Fluids in die Antriebswelle bevorzugt vorgesehen, eine Drehdurchführung um die Antriebswelle anzuordnen. Unter einer Drehdurchführung ist ein um die rotierende Antriebswelle angeordnetes feststehendes Gehäuse zu verstehen, das gegenüber der Antriebswelle fluiddicht abgedichtet ist. Mit einer Pumpe kann das Fluid über eine Zufuhrleitung in das Gehäuse der Drehdurchführung gepumpt werden, wo es über mindestens eine und vorzugsweise über mehrere an der Antriebswelle im Bereich des Gehäuseinneren ausgebildete Bohrungen in das hohle Innere der Antriebswelle und von dort aus dem Unterseeboot strömen kann. Vorteilhaft ist eine solche Drehdurchführung an der Antriebswelle in einem Bereich angeordnet, der zwischen dem Propeller und einer die Antriebswelle mit dem Antriebsmotor wirkungsverbindenden Kupplung gelegen ist.In principle, it is possible for the fluid by means of hollow shafts through the upstream of the drive shaft assemblies such. B. drive motor, clutch and thrust bearing. However, such a design is associated with a considerable design effort. Therefore, for introducing the fluid into the drive shaft is preferably provided to arrange a rotary feedthrough around the drive shaft. Under a rotary feedthrough is arranged around the rotating drive shaft fixed housing to understand, which is sealed against the drive shaft fluid-tight. With a pump, the fluid can be pumped via a supply line into the housing of the rotary feedthrough, where it can flow through at least one and preferably via a plurality of formed on the drive shaft in the region of the housing interior holes in the hollow interior of the drive shaft and from there from the submarine. Advantageously, such a rotary feedthrough is arranged on the drive shaft in a region which is located between the propeller and a clutch operatively coupling the drive shaft to the drive motor.

Damit über die Antriebswelle kein Umgebungswasser des Unterseeboots in das Innere des Druckkörpers eindringen kann, ist die Antriebswelle zweckmäßigerweise an ihrem im Druckkörper angeordneten Ende fluiddicht verschlossen. Demzufolge kann an dem im Druckkörper befindlichen Ende der Antriebswelle ein Verschluss z. B. in Form einer dort aufgeschweißten Scheibe angeordnet sein oder die sich in dem Druckkörper an die Antriebswelle anschließende Kupplung bildet einen solchen Verschluss.So that no ambient water of the submarine can penetrate into the interior of the pressure hull via the drive shaft, the drive shaft is expediently closed in a fluid-tight manner at its end arranged in the pressure hull. Accordingly, at the end located in the pressure body of the drive shaft, a closure z. B. in the form of a welded there disc or be in the pressure body to the drive shaft subsequent coupling forms such a closure.

Um zu verhindern, dass das unter Druck stehende Fluid aus der Drehdurchführung dort, wo die Antriebswelle durch die Drehdurchführung geführt ist, austreten kann, sind vorteilhaft Radialdichtungen vorgesehen, die die Drehdurchführung gegen die Antriebswelle abdichten. Diese Radialdichtungen, bei denen es sich beispielsweise um übliche Radialwellendichtringe handeln kann, sind typischerweise so ausgelegt, dass sie dem in der Drehdurchführung herrschenden Fluiddruck standhalten.In order to prevent the pressurized fluid from the rotary feedthrough where the drive shaft is passed through the rotary feedthrough can escape, advantageously radial seals are provided which seal the rotary feedthrough against the drive shaft. These radial seals, which are, for example, to usual Radial shaft seals can act, are typically designed so that they withstand the prevailing in the rotary feedthrough fluid pressure.

Die Antriebswellen von Unterseebooten sind in der Regel in wassergeschmierten Gleitlagern gelagert. Dort ändern die Antriebswellen je nach Belastung ihre Position, d. h., sie sind in radialer Richtung beweglich. Um solche Radialbewegungen der Antriebswelle auszugleichen, sind die Radialdichtungen bevorzugt in radialer Richtung elastisch gelagert. So können die Radialdichtungen mit einem gewissen radialen Spiel zwischen der Drehdurchführung und der Antriebswelle angeordnet sein. Optional ist es auch möglich, die gesamte Drehdurchführung auf der Antriebswelle radial beweglich zu lagern, was allerdings mit einem deutlich größeren konstruktiven Aufwand verbunden ist.The drive shafts of submarines are usually stored in water-lubricated plain bearings. There, the drive shafts change their position depending on the load, d. h., They are movable in the radial direction. To compensate for such radial movements of the drive shaft, the radial seals are preferably mounted elastically in the radial direction. Thus, the radial seals can be arranged with a certain radial play between the rotary feedthrough and the drive shaft. Optionally, it is also possible to mount the entire rotary feedthrough on the drive shaft radially movable, which, however, is associated with a much greater design effort.

Die Drehdurchführung kann vorteilhaft innerhalb des Druckkörpers des Unterseeboots angeordnet sein. Dementsprechend wird das aus dem Unterseeboot auszubringende Fluid in dem Druckkörper in die Antriebswelle eingeleitet. Beispielsweise kann die Drehdurchführung im Druckkörperinneren in unmittelbarer Nachbarschaft zu einem an der Druckkörperwandung ausgebildeten Stevenrohrlager angeordnet sein. Die Anordnung der Drehdurchführung innerhalb des Druckkörpers ermöglicht es, Wartungs- oder Reparaturarbeiten an der Drehdurchführung bzw. den Austausch der Drehdurchführung im schwimmenden Zustand des Unterseeboots vorzunehmen, da hierzu lediglich die an dem Propeller befindliche Öffnung der Antriebswelle von einem Taucher abgedichtet werden muss und Dichtmittel vorgesehen sein müssen, die den Druckkörper des Unterseeboots gegen die Antriebswelle bei Stillstand der Antriebswelle abdichten.The rotary feedthrough can advantageously be arranged within the pressure hull of the submarine. Accordingly, the auszubringende from the submarine fluid is introduced into the pressure body in the drive shaft. For example, the rotary feedthrough in the pressure chamber interior can be arranged in the immediate vicinity of a stern tube bearing formed on the pressure body wall. The arrangement of the rotary feedthrough within the pressure hull makes it possible to carry out maintenance or repair work on the rotary feedthrough or the replacement of the rotary feedthrough in the floating state of the submarine, since this only the opening of the drive shaft located on the propeller must be sealed by a diver and provided sealing means must be that seal the pressure hull of the submarine against the drive shaft at standstill of the drive shaft.

Alternativ kann es auch sinnvoll sein, die Drehdurchführung außerhalb des Druckkörpers anzuordnen. Gegenüber einer Anordnung der Drehdurchführung im Druckkörperinneren hat diese Anordnung der Drehdurchführung den Vorteil, dass gegebenenfalls an der Drehdurchführung auftretende Leckagen keine nennenswerten Auswirkungen haben. Darüber hinaus können die Dichtungen der Drehdurchführungen gegenüber den bei einer im Druckkörperinneren angeordneten Drehdurchführung verwendeten Dichtungen für kleinere Druckdifferenzen ausgelegt werden. Allerdings ist es bei einer Anordnung der Drehdurchführung außerhalb des Druckkörpers erforderlich, für die Fluidleitung zu der Drehdurchführung eine zusätzliche Druckkörperdurchführung vorzusehen. Des Weiteren können Reparaturen bzw. der Austausch der Drehdurchführung nur im Trockenen, beispielsweise in einem Dock vorgenommen werden.Alternatively, it may also be useful to arrange the rotary feedthrough outside the pressure hull. Opposite an arrangement of the rotary feedthrough In the pressure vessel interior, this arrangement of the rotary feedthrough has the advantage that possibly occurring at the rotary feedthrough leaks have no significant effect. In addition, the seals of the rotary unions can be designed with respect to the seals used in a pressure medium inside arranged rotary feedthrough for smaller pressure differences. However, it is in an arrangement of the rotary feedthrough outside of the pressure hull required to provide an additional pressure body passage for the fluid line to the rotary feedthrough. Furthermore, repairs or the replacement of the rotary feedthrough can only be made in the dry, for example in a dock.

Unterseeboote weisen üblicherweise in bug- und heckseitiger Verlängerung des Druckkörpers Tauchzellen auf. Vorteilhaft kann die Drehdurchführung in der sich heckseitig an den Druckkörper anschließenden Tauchzelle angeordnet sein. Wie bereits angemerkt worden ist, sind die Antriebswellen von Unterseebooten üblicherweise in wassergeschmierten Gleitlagern gelagert. Diese Gleitlager werden mit Kühlwasser gekühlt. Zur Kühlwasserführung außerhalb des Druckkörpers dient bevorzugt ein Rohr, das die Antriebswelle umgibt, d. h., die Antriebswelle ist außerhalb des Druckkörpers vorzugsweise in einem zur Kühlwasserführung dienenden Rohr angeordnet. Bei einer Anordnung der Drehdurchführung in der Tauchzelle ist das zur Kühlwasserführung dienende Rohr durch die Drehdurchführung zweigeteilt. Zweckmäßigerweise ist daher das Kühlwasser um die Drehdurchführung herum zu leiten. Hierzu ist vorzugsweise vorgesehen, an dem zur Kühlmittelführung dienenden Rohr eine Bypassleitung um die Drehdurchführung herum anzuordnen.Submarines usually have immersion cells in the bow and stern extensions of the pressure hull. Advantageously, the rotary feedthrough can be arranged in the tail side adjoining the pressure body immersion cell. As has already been noted, the drive shafts of submarines are usually stored in water-lubricated slide bearings. These slide bearings are cooled with cooling water. For cooling water flow outside the pressure body is preferably a tube surrounding the drive shaft, d. h., The drive shaft is preferably arranged outside of the pressure hull in a serving for cooling water flow pipe. In an arrangement of the rotary feedthrough in the immersion cell serving for cooling water pipe is divided into two by the rotary feedthrough. Conveniently, therefore, the cooling water is to lead around the rotary feedthrough around. For this purpose, it is preferably provided to arrange a bypass line around the rotary leadthrough around the pipe serving for the coolant guide.

Weiter vorteilhaft kann die Drehdurchführung auch außerhalb einer die Tauchzelle begrenzenden Außenhaut angeordnet sein. An dem heckseitigen Ende der die Tauchzelle begrenzenden Außenhaut ist üblicherweise ein Stevenrohrlager zur Führung der Antriebswelle angeordnet. Bei einer Anordnung der Durchführung außerhalb der Tauchzelle kann die Drehdurchführung beispielsweise in einem Bereich zwischen diesem Stevenrohrlager und dem Propeller angeordnet sein. Dies ist insofern vorteilhaft, als die Drehdurchführung, obwohl sie bei dieser Anordnung auch im Trockenen, d.h. in einem Dock gewartet bzw. ausgetauscht werden muss, im Vergleich zu einer Anordnung in der Tauchzelle, besser zugänglich ist. Allerdings ist zu berücksichtigen, dass die Bohrungen an der Antriebswelle zur Einleitung des Fluids in die Antriebswelle in der höchsten Belastungszone der Antriebswelle angeordnet sind und eine sehr lange Fluidzufuhrleitung von dem Druckkörper zu der Drehdurchführung benötigt wird.Further advantageously, the rotary feedthrough can also be arranged outside of an immersion cell limiting outer skin. At the rear end of the immersion cell limiting outer skin is usually arranged a stern tube bearing for guiding the drive shaft. In an arrangement of the implementation outside of the immersion cell, the rotary feedthrough may be arranged for example in a region between this stern tube bearing and the propeller. This is advantageous in that the rotary feedthrough, although it must be maintained or replaced in a dry, ie in a dock in this arrangement, compared to an arrangement in the immersion cell, is more accessible. However, it should be noted that the holes are arranged on the drive shaft for introducing the fluid into the drive shaft in the highest load zone of the drive shaft and a very long fluid supply line from the pressure body to the rotary feedthrough is required.

Nachfolgend ist die Erfindung anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. In der Zeichnung zeigt:

Fig. 1
in stark vereinfachter schematischer Darstellung ein Unterseeboot in einem Längsschnitt und
Fig. 2
einen Heckbereich des in Fig. 1 dargestellten Unterseeboots in einem Längsschnitt.
The invention is explained in more detail with reference to the embodiments illustrated in the drawings. In the drawing shows:
Fig. 1
in a highly simplified schematic representation of a submarine in a longitudinal section and
Fig. 2
a rear area of the in Fig. 1 illustrated submarines in a longitudinal section.

Das dargestellte militärische Unterseeboot weist einen Druckkörper 2 auf, der von einer druckfesten Druckkörperwandung 4 begrenzt wird. In bugseitiger Verlängerung des Druckkörpers 2 ist eine vordere Tauchzelle 6 angeordnet und in heckseitiger Verlängerung des Druckkörpers 2 ist eine hintere Tauchzelle 8 angeordnet. Die Tauchzellen 6 und 8 sind von einer Außenhaut 10 umgeben.The illustrated military submarine has a pressure body 2, which is bounded by a pressure-resistant Druckkörperwandung 4. In bow-sided extension of the pressure hull 2, a front immersion cell 6 is arranged and in the rear-side extension of the pressure hull 2, a rear immersion cell 8 is arranged. The immersion cells 6 and 8 are surrounded by an outer skin 10.

Das Unterseeboot weist einen Propellerantrieb mit einem am Heck des Unterseeboots angeordneten Propeller 12 auf. Der Propeller 12 ist an einem an dem Heck des Unterseeboots austretenden Antriebswelle 14 befestigt, die über eine Kupplung 16 mit einem Antriebsmotor 18 bewegungsgekoppelt ist. Die Antriebswelle 14 ist als eine Hohlwelle ausgebildet, die an ihrem den Propeller 12 tragenden Ende offen und an ihrem im Druckkörper angeordneten Ende verschlossen ausgebildet ist.The submarine has a propeller drive with a propeller 12 arranged at the stern of the submarine. The propeller 12 is on a drive shaft 14 emerging at the stern of the submarine attached, which is coupled for movement via a coupling 16 with a drive motor 18. The drive shaft 14 is formed as a hollow shaft which is open at its end carrying the propeller 12 and formed closed at its end arranged in the pressure body.

Im Bereich der Tauchzelle 8 ist die Antriebswelle in zwei Stevenrohrlagern 20 und 22 geführt. Das Stevenrohrlager 20 schließt sich heckseitig an die Druckkörperwandung 4 an, während das Stevenrohrlager 22 an dem heckseitigen Ende der Tauchzelle 8 angeordnet ist. In dem Stevenrohrlager 20 ist die Antriebswelle 14 in einem wassergekühlten Gleitlager 24 und in dem Stevenrohrlager 22 in einem wassergekühlten Gleitlager 26 gelagert. Das Wasser zur Wasserkühlung der Gleitlager 24 und 26 wird über eine in dem Druckkörper 2 angeordnete Kühlwasserleitung 28, die an dem Stevenrohrlager 20 druckkörperseitig des Gleitlagers 24 mündet, zugeführt. Von dem Gleitlager 24 wird das Kühlwasser über ein Rohr 30, das die Antriebswelle 14 mit Abstand umgibt und sich von dem Stevenrohrlager 20 zu dem Stevenrohrlager 22 erstreckt, zu dem Gleitlager 26 geführt.In the area of the immersion cell 8, the drive shaft is guided in two sterntube bearings 20 and 22. The stern tube bearing 20 adjoins the pressure body wall 4 at the rear, while the stern tube bearing 22 is arranged at the rear end of the immersion cell 8. In the stern tube bearing 20, the drive shaft 14 is mounted in a water-cooled slide bearing 24 and in the stern tube bearing 22 in a water-cooled slide bearing 26. The water for water cooling of the plain bearings 24 and 26 is supplied via a arranged in the pressure body 2 cooling water line 28, which opens at the sterntube bearing 20 on the pressure side of the sliding bearing 24. From the sliding bearing 24, the cooling water via a pipe 30 which surrounds the drive shaft 14 at a distance and extending from the stern tube bearing 20 to the stern tube bearing 22, guided to the sliding bearing 26.

Die hohle Antriebswelle 14 dient zum Ausbringen von Fluiden aus dem Inneren des Druckkörpers 2 in Fahrtrichtung hinter dem gesamten Unterseeboot. Insbesondere dient die Antriebswelle 14 dazu, das von einem Methanolreformer zur Wasserstoffgewinnung für Brennstoffzellen bzw. das von einem Diesel- oder Stirling-Motor freigegebene CO2 in Wasser gelöst aus dem Unterseeboot abzuführen. Das Fluid wird nicht direkt an dem offenen Ende der Antriebswelle 14 ausgebracht, stattdessen ist an der Antriebswelle 14 in Fahrtrichtung des Unterseeboots hinter dem Propeller 12 eine Propellerhaube 31 angebracht, die eine Verlängerung des von der Antriebswelle 14 gebildeten Strömungskanal bildet.The hollow drive shaft 14 is used for discharging fluids from the interior of the pressure hull 2 in the direction of travel behind the entire submarine. In particular, the drive shaft 14 serves to dissipate the released from a methanol reformer for hydrogen production for fuel cells or released from a diesel or Stirling engine CO 2 dissolved in water from the submarine. The fluid is not discharged directly to the open end of the drive shaft 14, instead, a propeller hood 31 is attached to the drive shaft 14 in the direction of travel of the submarine behind the propeller 12, which forms an extension of the flow channel formed by the drive shaft 14.

Um das Fluid in die Antriebswelle 14 einzuleiten ist eine Drehdurchführung 32 vorgesehen. In den Zeichnungsfiguren sind drei Drehdurchführungen 32 dargestellt, von denen eine Drehdurchführung 32 in dem Druckkörper 2 an der in Fig. 2 mit Position I bezeichneten Stelle angeordnet ist, die zweite Drehdurchführung 32 an Position II innerhalb der Tauchzelle 8 angeordnet ist und die dritte Drehdurchführung 32 an Position III außenseitig der Außenhaut 10 angeordnet ist. Es sei darauf hingewiesen, dass die Positionen I, II und III alternative Anordnungsposition für die Drehdurchführung 32 darstellen, wobei das Unterseeboot aber nur eine der drei gezeigten Drehdurchführungen 32 aufweist.To initiate the fluid in the drive shaft 14, a rotary feedthrough 32 is provided. In the drawing figures are three rotary joints 32, of which a rotary feedthrough 32 in the pressure body 2 at the in Fig. 2 is arranged with position I designated location, the second rotary feedthrough 32 is disposed at position II within the immersion cell 8 and the third rotary feedthrough 32 is arranged at position III on the outside of the outer skin 10. It should be noted that the positions I, II and III represent alternative arrangement position for the rotary feedthrough 32, but the submarine has only one of the three rotary unions 32 shown.

Die in Position I dargestellte Drehdurchführung 32 ist in dem Druckkörper 2 an einem Abschnitt der Antriebswelle 14 zwischen der Druckkörperwandung 4 und der Kupplung 16 angeordnet, wobei sie sich direkt an das Stevenrohrlager 20 anschließt. Sie weist ein Gehäuse 34 auf, das feststehend um die rotierende Antriebswelle 14 angeordnet ist. Das Gehäuse 34 bildet einen Hohlraum um die Antriebswelle 14. In diesen Hohlraum des Gehäuses 34 wird das aus dem Unterseeboot auszubringende Fluid mittels einer Pumpe 36 über eine Zuführleitung 38 eingeleitet. Von dort wird das Fluid über im Bereich des Hohlraums des Gehäuses 34 an der Antriebswelle 14 über ihren Umfang verteilt ausgebildete Bohrungen 40 in das Innere der Antriebswelle 14 geleitet. Um zu verhindern, dass über die Antriebswelle 14 und die Drehdurchführung 32 Seewasser in den Druckkörper 2 eindringen kann, ist in der Zuführleitung 38 ein entgegen der Pumprichtung der Pumpe 36 schließendes Ventil 42 als Rückschlagventil angeordnet. An dem dem Stevenrohrlager 20 zugewandten Ende des Hohlraums des Gehäuses 34 ist eine Radialdichtung 44 angeordnet. Diese Radialdichtung ist in radialer Richtung flexibel und kann so Bewegungen der Antriebswelle 14 quer zu deren Längsausdehnung ausgleichen. An dem der Kupplung 16 zugewandten Ende der Drehdurchführung 32 ist die Drehdurchführung 32 mittels einer Gleitringdichtung 46 gegenüber der Antriebswelle 14 abgedichtet. Um bei Wartungs- oder Reparaturarbeiten, d.h. bei Stillstand der Antriebwelle 14 ein Eindringen von Wasser in das Gehäuse 34 der Drehdurchführung 32 zu verhindern, ist an der Drehdurchführung in einem Bereich zwischen der Radialdichtung 44 und dem Stevenrohrlager 20 eine betätigbare Stillstandsdichtung 48 und außenseitig der Gleitringdichtung 46 eine ebenfalls betätigbare Stillstandsdichtung 50 angeordnet.The rotary feedthrough 32 shown in position I is arranged in the pressure body 2 at a portion of the drive shaft 14 between the pressure body wall 4 and the coupling 16, wherein it connects directly to the stern tube bearing 20. It has a housing 34 which is arranged fixedly around the rotating drive shaft 14. The housing 34 forms a cavity around the drive shaft 14. In this cavity of the housing 34, the auszubringende from the submarine fluid is introduced by means of a pump 36 via a supply line 38. From there, the fluid is passed over in the region of the cavity of the housing 34 on the drive shaft 14 distributed over its circumference formed holes 40 in the interior of the drive shaft 14. In order to prevent seawater from penetrating into the pressure body 2 via the drive shaft 14 and the rotary feedthrough 32, a valve 42 closing against the pumping direction of the pump 36 is arranged as a check valve in the feed line 38. At the stern tube bearing 20 facing the end of the cavity of the housing 34, a radial seal 44 is arranged. This radial seal is flexible in the radial direction and can thus compensate for movements of the drive shaft 14 transversely to its longitudinal extent. At the end of the rotary feedthrough 32 facing the coupling 16, the rotary feedthrough 32 is sealed off from the drive shaft 14 by means of a mechanical seal 46. In order for maintenance or repair work, ie at standstill of the drive shaft 14, a penetration of water into the housing 34 of the rotary feedthrough To prevent 32, an actuatable stationary seal 48 and the outside of the mechanical seal 46, a likewise operable stationary seal 50 is disposed on the rotary feedthrough in a region between the radial seal 44 and the stern tube bearing 20.

Ist die Drehdurchführung 32 in Position II in der Tauchzelle 8 angeordnet, so ist das Rohr 30 zweiteilig ausgebildet. Um ein Überströmen des Kühlwassers von dem Gleitlager 24 zu dem Gleitlager 26 zu ermöglichen, ist eine die beiden Teile des Rohres 30 verbindende und die Drehdurchführung 32 überbrückender Bypassleitung 52 vorgesehen. Die in Position II dargestellte Drehdurchführung 32 weist ein Gehäuse 54 auf. Der von dem Gehäuse 54 gebildete Hohlraum um die Antriebswelle 14 wird mittels zweier Radialdichtungen 44 gegenüber der Antriebswelle 14 abgedichtet. Zur Einleitung des der Drehdurchführung 32 zugeführten Fluids in die Antriebswelle 14 sind in einem im Inneren des Gehäuses 54 der Drehdurchführung 32 angeordneten Bereich der Antriebswelle 14 über deren Umfang verteilt mehrere Bohrungen 56 ausgebildet.If the rotary feedthrough 32 is arranged in position II in the immersion cell 8, then the tube 30 is formed in two parts. In order to enable an overflow of the cooling water from the sliding bearing 24 to the sliding bearing 26, a bypass line 52 connecting the two parts of the tube 30 and bridging the rotary leadthrough 32 is provided. The rotary feedthrough 32 shown in position II has a housing 54. The cavity formed by the housing 54 about the drive shaft 14 is sealed by means of two radial seals 44 relative to the drive shaft 14. To initiate the rotary feedthrough 32 supplied fluid into the drive shaft 14 a plurality of bores 56 are formed in a arranged in the interior of the housing 54 of the rotary feedthrough 32 portion of the drive shaft 14 distributed over the circumference.

Bei einer in der Position III angeordneten Drehdurchführung 32 ist die Drehdurchführung 32 außenseitig der die Tauchzelle 8 umgebenden Außenhaut 10 angeordnet, wobei sich die Drehdurchführung 32 direkt an das heckseitige Ende des Stevenrohrlagers 22 anschließt. Diese Drehdurchführung 32 weist ein Gehäuse 58 auf. Auch hier wird der von dem Gehäuse 58 gebildete Hohlraum um die Antriebswelle 14 mittels zweier Radialdichtungen 44 gegenüber der Antriebswelle 14 abgedichtet. Des Weiteren sind auch hier zur Einleitung des der Drehdurchführung 32 zugeführten Fluids in die Antriebswelle 14 in einem im Inneren des Gehäuses 58 der Drehdurchführung 32 angeordneten Bereich der Antriebswelle 14 über deren Umfang verteilt mehrere Bohrungen 60 ausgebildet. Das Gehäuse 58 ist derart ausgebildet, dass es strömungsgünstig einen mit der Außenhaut 10 fluchtenden Übergang bildet.In a rotary feedthrough 32 arranged in position III, the rotary leadthrough 32 is arranged on the outside of the outer skin 10 surrounding the immersion cell 8, with the rotary leadthrough 32 directly adjoining the rear end of the stern tube bearing 22. This rotary feedthrough 32 has a housing 58. Again, the cavity formed by the housing 58 is sealed to the drive shaft 14 by means of two radial seals 44 relative to the drive shaft 14. Furthermore, a plurality of bores 60 are also formed here for introducing the fluid supplied into the rotary feedthrough 32 into the drive shaft 14 in a region of the drive shaft 14 arranged in the interior of the housing 58 of the rotary feedthrough 32. The housing 58 is designed in such a way that, in terms of flow, it forms a transition aligned with the outer skin 10.

Wenn die Drehdurchführung 32 in der Position II oder in der Position III angeordnet ist, ist eine Druckkörperdurchführung 62 erforderlich, durch die die Zuführleitung 38 von dem Inneren des Druckkörpers 2 zu der betreffenden Drehdurchführung 32 geführt ist. Auch in diesem Fall ist im Inneren des Druckkörpers 2 in der Zuführleitung 38 ein Ventil 42 vorzusehen, das das Eindringen von Seewasser in den Druckkörper 2 verhindert.If the rotary feedthrough 32 is arranged in the position II or in the position III, a pressure body bushing 62 is required, through which the feed line 38 is guided from the interior of the pressure body 2 to the relevant rotary feedthrough 32. Also in this case, a valve 42 is provided in the interior of the pressure body 2 in the supply line 38, which prevents the ingress of seawater into the pressure body 2.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
- Druckkörper- Pressure body
44
- Druckkörperwandung- Pressure body wall
66
- Tauchzelle- immersion cell
88th
- Tauchzelle- immersion cell
1010
- Außenhaut- outer skin
1212
- Propeller- Propeller
1414
- Antriebswelle- Drive shaft
1616
- Kupplung- coupling
1818
- Antriebsmotor- Drive motor
2020
- Stevenrohrlager- stern tube bearing
2222
- Stevenrohrlager- stern tube bearing
2424
- Gleitlager- Bearings
2626
- Gleitlager- Bearings
2828
- Kühlwasserleitung- Cooling water pipe
3030
- Rohr- Pipe
3131
- Propellerhaube- Propeller hood
3232
- Drehdurchführung- rotary feedthrough
3434
- Gehäuse- Casing
3636
- Pumpe- pump
3838
- Zuführleitung- Feed line
4040
- Bohrung- Drilling
4242
- Rückschlagventil- Check valve
4444
- Radialdichtung- Radial seal
4646
- Gleitringdichtung- Mechanical seal
4848
- Stillstandsdichtung- Standstill seal
5050
- Stillstandsdichtung- Standstill seal
5252
- Bypassleitung- bypass line
5454
- Gehäuse- Casing
5656
- Bohrung- Drilling
5858
- Gehäuse- Casing
6060
- Bohrung- Drilling
6262
- Druckkörperdurchführung- Pressure body feedthrough
II
- Position- position
IIII
- Position- position
IIIIII
- Position- position

Claims (9)

  1. Submarine having a propeller drive, having at least one propeller (12), which is arranged on the outside, and having a drive shaft (14) which is guided through the pressure hull (2) of the submarine and which, at one end, bears the propeller (12) and which is coupled in terms of movement to a drive, wherein the drive shaft (14) is designed in the form of a hollow shaft, and means for discharging at least one fluid from the submarine through the hollow shaft (14) are provided, characterized in that, for the purpose of introducing the fluid into the drive shaft (14), a rotary leadthrough (32) is arranged around said drive shaft.
  2. Submarine according to Claim 1, characterized in that the drive shaft (14) is closed off in a fluid-tight manner at the end thereof arranged in the pressure hull (2).
  3. Submarine according to either of the preceding claims, characterized in that radial seals (44) seal off the rotary leadthrough (32) with respect to the drive shaft (14).
  4. Submarine according to Claim 3, characterized in that the radial seals (44) are elastically mounted in a radial direction.
  5. Submarine according to one of the preceding claims, characterized in that the rotary leadthrough (32) is arranged within the pressure hull (2).
  6. Submarine according to Claim 1, characterized in that the rotary leadthrough (32) is arranged outside the pressure hull (2).
  7. Submarine according to one of the preceding claims, characterized in that the rotary leadthrough (32) is arranged in a ballast tank (8) adjoining the pressure hull (2) at the rear side.
  8. Submarine according to Claim 7, characterized in that the drive shaft (14) is arranged outside the pressure hull (2) in a tube (30) which serves for guiding cooling water, wherein, at the tube (30), a bypass line (52) is arranged around the rotary leadthrough (34).
  9. Submarine according to one of the preceding claims, characterized in that the rotary leadthrough (32) is arranged outside an outer skin (10) of the submarine that delimits the ballast tank (8).
EP10014866.7A 2010-01-07 2010-11-23 Submarine Active EP2343235B8 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010004124A DE102010004124A1 (en) 2010-01-07 2010-01-07 submarine

Publications (4)

Publication Number Publication Date
EP2343235A2 EP2343235A2 (en) 2011-07-13
EP2343235A3 EP2343235A3 (en) 2015-07-29
EP2343235B1 true EP2343235B1 (en) 2019-07-24
EP2343235B8 EP2343235B8 (en) 2019-09-18

Family

ID=43829351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10014866.7A Active EP2343235B8 (en) 2010-01-07 2010-11-23 Submarine

Country Status (3)

Country Link
EP (1) EP2343235B8 (en)
KR (1) KR101566439B1 (en)
DE (1) DE102010004124A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588594B (en) * 2012-02-29 2015-07-29 哈尔滨工业大学(威海) The self-draining seal arrangement of double-layer seal for underwater rotating machinery
TWM481195U (en) * 2013-07-11 2014-07-01 Chien-Chung Kang Multiple waterproof chamber structure for rotating rod
FR3073816B1 (en) * 2017-11-20 2019-11-29 Naval Group SUBMARINE VEHICLE COMPRISING A PROPULSION CHAIN AND METHOD THEREOF
CN110329482B (en) * 2019-04-30 2022-03-18 中国舰船研究设计中心 External submersible vehicle shafting device
FR3096025B1 (en) * 2019-05-15 2021-10-15 Naval Group Device for measuring a line of trees, naval platform comprising such a device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253603A (en) * 1992-07-10 1993-10-19 Hughes Aircraft Company Underwater vehicle muffler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB575066A (en) * 1943-10-30 1946-02-01 William Fancher Sheffield Improvements in ventilating systems for submarines
US5561276A (en) * 1995-10-30 1996-10-01 The United States Of America As Represented By The Secretary Of The Navy Two-phase-flow muffler in a rotating shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253603A (en) * 1992-07-10 1993-10-19 Hughes Aircraft Company Underwater vehicle muffler

Also Published As

Publication number Publication date
KR20140095590A (en) 2014-08-04
DE102010004124A1 (en) 2011-07-14
EP2343235A3 (en) 2015-07-29
EP2343235B8 (en) 2019-09-18
EP2343235A2 (en) 2011-07-13
KR101566439B1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
EP2343235B1 (en) Submarine
DE102009019539B3 (en) submarine
US8715021B2 (en) Service space for a retractable propulsion device
EP1582456B1 (en) Under-pressure mixing device for ship exhaust gasses
DE102008003982B3 (en) Pressure-bodyless submarine vehicle, has cylinder with gas-filled cylinder chamber containing gas-filled volume that is changeable by controlling of piston, where volume is limited by piston movably guided in cylinder
EP2427369B1 (en) Pivotable propeller nozzle for a watercraft
DE102015221427B4 (en) Covering device and thruster
DE2052226A1 (en) Jet nozzle arrangement especially for rocket engines
DE3718222C2 (en)
EP1997729B1 (en) Submarine
EP1599381B1 (en) Rapid exhaust-free boat propelled by at least one waterjet propulsion system
DE10031409C1 (en) Storage and firing container for underwater or surface missile provided by closed tubular sleeve in which missile is supported by suspension in anti-corrosion liquid
DE102010054124A1 (en) submarine
DE102007004178B4 (en) Device for storing and deploying submerged bodies in a submarine
DE10330174B3 (en) Submarine for military purposes comprises a retractable unit with a container resistant to immersion pressure on its free end and containing a tubular weapon which is free from recoil
DE10208595A1 (en) Active rudder arrangement with integral thrust or rotary device, has propeller drive integrated into rudder reinforcing unit beneath rudder support
DE2226796A1 (en) SHAFT SEAL
EP3253651B1 (en) Vessel
EP3359444B1 (en) Position changing device, in particular for a watercraft
DE2901442A1 (en) Model submarine with simplified submerge mechanism - comprises two bidirectional electric motors driving pump pistons that feed or expel water from two tanks
DE102013107206B4 (en) Height-adjustable Rudderpropeller
EP1502848B1 (en) Container for storing and launching underwater objects
DE102016115450A1 (en) Thrusters
EP1902941A2 (en) Ship's propulsion with an adjustable propeller
DE102006003089B3 (en) Cross-stream rudder for a ship comprises a shaft with an advancing channel with walls closed up to lateral ducts for the advancing channel and receiving an advancing element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B63H 23/32 20060101ALI20150622BHEP

Ipc: B63G 8/08 20060101AFI20150622BHEP

Ipc: B63H 23/36 20060101ALI20150622BHEP

Ipc: B63H 23/34 20060101ALI20150622BHEP

17P Request for examination filed

Effective date: 20160121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016146

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG PRIORITAET

Ref country code: AT

Ref legal event code: REF

Ref document number: 1157853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010016146

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016146

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1157853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221125

Year of fee payment: 13

Ref country code: FR

Payment date: 20221129

Year of fee payment: 13

Ref country code: DE

Payment date: 20220801

Year of fee payment: 13